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ABSTRACT

Multi-task learning (MTL) has shown considerable practical benefits, particu-
larly when using pre-trained language models (PLMs). While this is commonly
achieved by simultaneously learning n tasks under a joint optimization proce-
dure, recent methods such as AdapterFusion structure the problem into two dis-
tinct stages: (i) task learning, where knowledge specific to a task is encapsulated
within sets of parameters (e.g., adapters), and (ii) transfer, where this already
learned knowledge is leveraged for a target task. This separation of concerns
provides numerous benefits, such as promoting reusability, and addressing cases
involving data privacy and societal concerns; on the flip side, current two-stage
MTL methods come with the cost of introducing a substantial number of addi-
tional parameters. In this work, we address this issue by leveraging the usefulness
of linearly scaling the output representations of source adapters for transfer learn-
ing. We introduce SCALEARN, a simple and highly parameter-efficient two-stage
MTL method that capitalizes on the knowledge of the source tasks by learning
a minimal set of scaling parameters that enable effective knowledge transfer to
a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and
HumSet) show that our SCALEARN, in addition to facilitating the benefits of two-
stage MTL, consistently outperforms strong baselines with only a small number
of transfer parameters – roughly 0.35% of those of AdapterFusion. Remarkably,
we observe that SCALEARN maintains its strong abilities even when further re-
ducing parameters through uniform scaling and layer-sharing, achieving similarly
competitive results with only 8 transfer parameters for each target task. Our pro-
posed approach thus demonstrates the power of simple scaling as a promise for
more efficient task transfer.1

1 INTRODUCTION

With the wide availability of pre-trained language models (PLMs) as the backbone of language pro-
cessing, multi-task learning (MTL) has shown significant benefits, especially for tasks with possible
conceptual commonalities (Ruder, 2017; Zhang & Yang, 2022; Raffel et al., 2020). The traditional
paradigm in MTL is to formulate a joint optimization objective based on a set of tasks and train a sin-
gle model to simultaneously learn and transfer the knowledge relevant to the tasks. This joint MTL
approach can be realized by fine-tuning a PLM (Liu et al., 2019a; Stickland & Murray, 2019), or,
more recently, by using parameter-efficient, often modularized, MTL approaches (Mahabadi et al.,
2021b; Zeng et al., 2023; Pilault et al., 2021; Asai et al., 2022; Ponti et al., 2023; Caccia et al., 2022).

As an alternative to the joint MTL paradigm, some works such as ADAPTERFUSION (Pfeiffer et al.,
2021) clearly distinguish task training from transfer learning, assigning dedicated parameters to each
of these aspects. In this paradigm, referred to as two-stage MTL, first each source task is trained
separately and stored into a separate module like an adapter (Houlsby et al., 2019), and then a task
transfer layer is trained for a given target task using information from an arbitrary set of source
tasks. This separation of concerns between task and transfer learning offers valuable benefits: (1)
Learning a separate transfer layer for each target task in a two-stage MTL approach reduces the
potentially destructive effects of transfer learning on specific tasks, as the transfer layer parameters
corresponding to each target task can independently decide what information should be used from
the available source tasks. As shown in our experiments, this supports the effectiveness of transfer
learning, making it less sensitive to task selection. (2) Since the source tasks can simply be taken
from already trained modules (no need for re-training), two-stage approaches particularly promote

1Our code is available at URL upon deanonymization.
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Figure 1: Performance and parameter-efficiency of single task learning (STL), and joint/two-stage MTL meth-
ods, evaluated on GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) using RoBERTaBASE (Liu
et al., 2019b). The reported values for the two-stage MTL methods only consider the ones in the respective
transfer layers. The full details of the learnable parameters and performance results are provided in Section 6.

reusability – a principle of Green AI (Scells et al., 2022; Schwartz et al., 2020). Further, they provide
a practical solution to cases involving issues such as data privacy and/or fairness constraints, as a
pre-trained module can readily provide the (e.g., already debiased) functionality of the source task
even without the need to have access to its training data (Lauscher et al., 2021; Kumar et al., 2023).

Despite these benefits, current two-stage MTL solutions introduce significantly more learnable pa-
rameters in comparison with recent joint MTL ones, exacerbated by the fact that the number of
parameters in two-stage methods increases linearly with the number of target tasks. As an example,
in our experiment setup with eight target tasks using RoBERTaBASE (Liu et al., 2019b), ADAPTER-
FUSION introduces ∼ 134% new parameters for transfer learning, while HYPERFORMER++ (Ma-
habadi et al., 2021b) conducts joint MTL by adding ∼ 4% (around 5 Million) trainable parameters
(details in Table 1 and Section 6). To date, this high number of parameters requiring optimization is
in stark contrast to the promise of green AI given by the modularized nature of two-stage MTL.

In this work, we propose a highly parameter-efficient and effective two-stage MTL method by scal-
ing the output representations of source adapters using encoder PLMs. Learning scaling vectors
applied to input representations has recently been introduced to fulfill various objectives such as
task learning, domain adaptation, and bias mitigation (Liu et al., 2022; Ilharco et al., 2023; Ma-
soudian et al., 2023). In the work at hand, we first analyze the effect of scaling output vectors of
source adapters on transfer learning, examined by linearly probing the performance on a given target
task. We observe that (1) the degree of scaling of source adapter representations is not necessarily
linearly correlated with the transfer learning performance on a target task; (2) when summing two
scaled adapter representations, the optimal scaling coefficients often do not sum up to 1. Building
on these findings, we introduce SCALEARN, a novel two-stage MTL method that learns to transfer
the knowledge of the source adapters using a small set of scaling parameters. For a given target
task, SCALEARN introduces a set of parameters that scale the output representation of each source
adapter and combine the resulting scaled representations by simply taking the element-wise sum.
SCALEARN learns to apply a (linear) scaling transformation without imposing any constraint on the
relation of the scaling coefficients across source tasks, where the parameters are optimized using
common gradient descent methods. This approach results in high parameter-efficiency, such that –
following the mentioned experiment setting – SCALEARN only adds ∼0.47% (around 0.5 million)
new parameters. We further introduce an even more parameter-efficient variation through uniform
scaling (SCALEARNUNIFORM), where each scaling vector is reduced to a single scaling parame-
ter. Finally, by sharing the parameters across the layers, we achieve our most parameter-efficient
variation (SCALEARNUNIFORM++), only containing 64 parameters for transfer learning.

We conduct a large set of transfer learning experiments on the GLUE (Wang et al., 2019b), Super-
GLUE (Wang et al., 2019a), and HumSet (Fekih et al., 2022) benchmarks using the RoBERTa model
(BASE and LARGE) (Liu et al., 2019b), and compare the parameter-efficiency and performance of
SCALEARN with strong joint and two-stage MTL baselines. Figure 1 summarizes our results on
GLUE and SuperGLUE. Our results show that SCALEARN, while providing high efficiency and the
benefits of the two-stage MTL paradigm, consistently outperforms the baselines. Interestingly, the
overall performance of SCALEARN remains highly competitive and only marginally different in its
more parameter-efficient variations. Our results also show the advantage of two-stage models in
avoiding destructive effects during transfer learning, particularly on the SuperGLUE and HumSet
benchmarks (cf. Section 6). Finally, SCALEARN exhibits strong performance in few-shot settings,
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outperforming both regular adapters and ADAPTERFUSION when trained only on a handful of data
points. Overall, with SCALEARN we leverage the power of scaling as a viable, non-destructive,
simple-to-implement, and highly parameter-efficient solution to the current shortcomings of two-
stage and joint MTL methods, paving the future for more effective and efficient task transfer.

2 BACKGROUND

In task transfer learning, we consider a PLM as well as two sets S and T , representing the source and
target tasks, respectively. The aim of MTL is to leverage the information of tasks in S to improve
the generalization on tasks in T .

Single Task Learning (STL). In this basic setting, a separate set of parameters is optimized on each
task (S = T ) without any knowledge transfer between tasks. STL can be done by fine-tuning the
PLM parameters or by introducing more parameter-efficient modules into the model, such as adapter
modules (Pfeiffer adapters (Houlsby et al., 2019; Pfeiffer et al., 2021), PROPETL (Zeng et al., 2023),
or COMPACTER++ (Mahabadi et al., 2021a)), (IA)3 (Liu et al., 2022), prefix-tuning (Li & Liang,
2021), or LoRA (Hu et al., 2022), each with Θs parameters for each task s.

Joint MTL. This approach is commonly done by having a unified model for all tasks (S = T ),
and a joint optimization objective that simultaneously optimizes the model using samples from all
tasks (Ruder, 2017). The general joint MTL objective can be formulated as Ljoint =

∑|S|
s=1 αsLs,

where αs is the sampling weight of task s. This optimization objective can be used to fine-tune the
parameters of a PLM (Liu et al., 2019a; Stickland & Murray, 2019; Raffel et al., 2020), or those of a
modularized architecture (Mahabadi et al., 2021b; Pilault et al., 2021; Ponti et al., 2023). Despite the
benefit of having one unified model, the joint loss often causes tasks to compete with each other for
learning capacity, leading to the task interference problem (Xin et al., 2022; McCloskey & Cohen,
1989; Kirkpatrick et al., 2017). This makes the joint MTL paradigm particularly sensitive to the
selection of tasks (Xin et al., 2022), while various methods in the literature have aimed to address
this issue (e.g., Kendall et al. (2018); Pilault et al. (2021); a brief review is provided in Section 7).

Two-stage MTL. In contrast to joint MTL, two-stage MTL methods optimize each target task in-
dependently, bypassing the issue of task interference (Pfeiffer et al., 2021). Similarly to STL, a
parameter-efficient module is first learned for each source task s with parameters Θs. In principle,
two-stage MTL methods can simply use already pre-trained modules (such as adapters), saving the
costs of re-training modules on each task. This facilitates the re-use of existing parameter-efficient
modules for each source task2, which may vary in performance and/or take into account additional
constraints such as fairness and bias mitigation (Pfeiffer et al., 2023; Kumar et al., 2023; Lauscher
et al., 2021). Moreover, it also removes the need for accessing the training data of the source tasks
(e.g., due to data privacy), so far as the source task’s functionality is solely provided via parameter-
efficient modules. Next, given |S| (pre-trained and frozen) source task modules, two-stage MTL
methods define and optimize a transfer layer for each target task to leverage the knowledge of source
tasks to solve the target task. This stage introduces Ωt new parameters for each target task t.

ADAPTERFUSION (Pfeiffer et al., 2021) introduces an implementation of the two-stage approach
with strong MTL performance (Pfeiffer et al., 2023). It uses an attention mechanism as its transfer
layer, inserted into each layer of the PLM, after the source adapters. More specifically, given the
output vector of each source adapter s in each layer l, referred to as ol

s, the attention layer (with
target task t as query and source tasks S as keys and values) learns to assign a weight ωl

s to each
source task. The final output of the target task t in this layer is calculated as:

ol
t =

|S|∑
s=1

ωl
so

l
s, where

|S|∑
s=1

ωl
s = 1 (1)

Regardless of how the weights are calculated, the method can be seen as a weighted summation of
source output vectors, where the weights form a categorical probability distribution. In the following
section, we provide an analysis on the effect of these weights in transfer learning.

3 ANALYSIS ON SCALING OUTPUT REPRESENTATIONS

We seek to leverage simple scaling as a novel composition method in transfer learning. To under-
stand the effect of scaling, we now conduct preliminary experiments in which we scale the output

2E.g., through sharing platforms such as AdapterHub (https://adapterhub.ml/) (Pfeiffer et al., 2020).
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representations of adapters – in isolation and combining two of them each. We use the popular
GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) benchmarks, utilizing a selection
of their tasks (owing to the high number of possible combinations), including entailment, paraphrase
detection, sentiment analysis, question answering, and commonsense reasoning tasks. We train
a Pfeiffer adapter (Pfeiffer et al., 2021) on each task using the encoder PLM RoBERTaBASE (Liu
et al., 2019b). In our probing-like setup (Tenney et al., 2019), we freeze both the PLM and adapter
weights and train a new task head on target task t each time we change the scaling factor. Complete
descriptions of the datasets, hyperparameters, and training procedure are provided in Section 5 and
Appendix A.1. Additional experiments and results on further tasks are provided in Appendix A.2.
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Figure 2: Probing results of 4 target tasks in various transfer learning conditions. (Top) Effect of scaling the
output representations of adapters by weight ωs using different source adapters. (Bottom) Effect of combining
independently scaled output representations of two adapters trained on the target task and MNLI, respectively.
Each point shows the mean over 5 seeds. Full results are reported in Appendix A.2.

We start by analyzing the performance change of a target task when scaling the output representa-
tions of the adapter of one given source task. We define ωs as the scaling value in the range of [0, 1],
multiplied by the output representations ol

s of the source task s in all layers, such that ol
t = ωso

l
s.

Figure 2 (Top) shows the probing results on four target tasks (each column), given various scaling
weights applied to four source tasks (one of which is the respective target task). The results show
that, while increasing the scaling weights generally improves the performance, the optimal value
is not necessarily at ωs = 1. In particular, there exist instances with 0 < ωs < 1 reaching better
performance than ωs = 1. This suggests that partial knowledge transfer of tasks may be more
beneficial. Notably, and as also reported in previous studies (Poth et al., 2021; Pruksachatkun et al.,
2020), some source tasks such as MNLI show strong transfer learning abilities.

Next, we go one step further by assessing the scaled combination of the output vectors of two
adapters. We focus on MNLI as one of the source tasks given its observed benefit in transfer learning,
and set the second source adapter (denoted by s) to the one corresponding to the target task. We use
two scaling parameters ωMNLI and ωs to scale ol

MNLI and ol
s, respectively. The resulting output vector

is defined as: ol
t = ωso

l
s + ωMNLIo

l
MNLI. Figure 2 (Bottom) shows the results for various values of

ωMNLI and ωs. Combining the information encapsulated within multiple adapters through scaling
can result in improved performance. Interestingly, in some cases, the best combination of ωMNLI and
ωs does not add up to 1, i.e., ωt + ωs ̸= 1. This finding stands in contrast to the established practice
of forcing the scaling coefficients to sum up to 1 (e.g., as in ADAPTERFUSION, as shown in Eq. 1).

These initial experiments – while only covering a simple combination of up to two source tasks –
provide insights into the benefits of scaling representations for transfer learning: (1) scaling out-
put vectors is an effective method for controlling the (partial or full) activation of the knowledge
contained in an adapter module; (2) an optimal configuration of the scaling parameter will, in many
cases, lead to superior results on the target task; (3) the optimal weights do not necessarily sum up to
1. These observations provide strong motivation for designing a method to combine representations
from several adapters by scaling their output vectors, presented in the next section.

4 SCALEARN – LEARNING TO SCALE FOR KNOWLEDGE TRANSFER

Building on our findings from Section 3, we present SCALEARN, a novel two-stage transfer learn-
ing method to combine the knowledge of source adapters by scaling their output representations.
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Our core contribution regards the transfer layer, built on the output of the tasks’ modular net-
works. Similar to Pfeiffer et al. (2021), we utilize adapter modules for the task learning layer.
In particular, the output representation of the adapter of source task s at layer l is defined as:
ol
s = U l

s(ReLU(Dl
s(x

l
s))) + xl

s, where xl
s is the input vector, and U l

s and Dl
s denote the up- and

down-projection parameter matrices, respectively.

Our introduced SCALEARN linearly scales and combines the output representations of the source
adapters, ol

1, . . . ,o
l
|S|, to achieve the objective of target task t. We define two variations of the scal-

ing operation: non-uniform which applies a scaling vector to each output vector using the element-
wise product (SCALEARN), and the more parameter-efficient uniform that scales each vector only
with a scalar parameter (SCALEARNUNIFORM). These variations are formulated below:

SCALEARN : ol
t =

|S|∑
s=1

ωl
s ⊙ ol

s SCALEARNUNIFORM : ol
t =

|S|∑
s=1

ωl
so

l
s, (2)

where ⊙ denotes the Hadamard product, and ωl
s and ωl

s are learnable vector and scalar parameters,
respectively. Inspired by previous studies (Mahabadi et al., 2021a; Zeng et al., 2023; Bai et al., 2022;
Goldberg, 2019; Jawahar et al., 2019), we further increase parameter-efficiency by learning shared
scaling parameters among all layers, formulated as follows:

SCALEARN++ : ol
t =

|S|∑
s=1

ωs ⊙ ol
s SCALEARNUNIFORM++ : ol

t =

|S|∑
s=1

ωso
l
s, (3)

where, similarly, ωs and ωs are learnable vector and scalar parameters, but shared among all layers.
In all the mentioned methods, to optimize the transfer parameters Ω, we use gradient descent as an
easy-to-implement and straightforward solution. On the basis of our experiments, we find that our
approach provides highly competitive results on a wide range of tasks (cf. Section 6). Furthermore,
we emphasize that SCALEARN models do not force any distributional properties on the ω values, as
commonly imposed in previous work Pfeiffer et al. (2021); Chronopoulou et al. (2023); Xin et al.
(2022) through functions such as softmax and average.

Parameter-efficiency of SCALEARN. To have a clear view of the parameter-efficiency of the in-
troduced models, we continue by analyzing the number of learnable parameters in the transfer layer.
The SCALEARN variant introduces d×L×|S| transfer parameters for a single target task, where d
is the embedding size and L denotes the number of layers. The overall number of parameters for all
target tasks then becomes d×L×|S|×|T |. Moving to SCALEARNUNIFORM, this number reduces
to L×|S|×|T |. The SCALEARN++ spares the L term and has d×|S|×|T | transfer parameters. Fi-
nally, the most parameter-efficient variant SCALEARNUNIFORM++ only adds |S|×|T | parameters.
Note that the new task head parameters are learned jointly with the transfer parameters for each task.

As a point of comparison, the number of transfer parameters of ADAPTERFUSION is 3×d2×L×|T |
(discarding bias and task head parameters), corresponding to the query, key, and value matrices of the
attention mechanism. Comparing the formulas, we observe that our methods are far more parameter-
efficient, since in practice |S| ≪ d, and hence the d×L term in SCALEARN becomes much smaller
than d2 in ADAPTERFUSION. Compared to the joint MTL paradigm, despite the linear increase of
parameters with |T |, our SCALEARN * models still provide high parameter-efficiency. This stems
from the fact that |T | ≪ d, and hence reducing the effect of d – which is fully eliminated in the
uniform variants – leaves a more significant impact on parameter-efficiency.

5 EXPERIMENT SETUP

Tasks and datasets. We conduct our experiments on the GLUE and SuperGLUE benchmarks,
respectively, each consisting of 8 tasks, as well as on the HumSet (Fekih et al., 2022) benchmark.
HumSet is a multilingual classification dataset for humanitarian crisis response consisting of 5 tasks.
Additionally, we use a combination of all GLUE and SuperGLUE tasks resulting in 15 datasets3.

PLM backbones. We use RoBERTaBASE and RoBERTaLARGE (Liu et al., 2019b) on GLUE and Su-
perGLUE. For the experiments on HumSet, following (Fekih et al., 2022) we utilize the multilingual
XLM-RBASE and XLM-RLARGE (Conneau et al., 2020) as this dataset consists of multiple languages.

Models and baselines. We conduct experiments on four variants of our model, namely SCALEARN,
SCALEARNUNIFORM, SCALEARN++, and SCALEARNUNIFORM++. As a direct baseline, we

3The RTE task is contained in both GLUE and SuperGLUE.
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Table 1: Percentage and number of trainable parameters per model (excluding task head parameters), when
training on 8 tasks (as in GLUE/SuperGLUE) using RoBERTaBASE. For two-stage MTL, source and target tasks
are the same (|S|= |T |=8), and the task parameters consist of |S| adapters, thus Θ = 8× 0.72% = 5.74%.

Category Model Parameters
(one task)

Parameters
(all tasks)

STL

FINETUNE 100.00% (125M) 800.00% (125M) -
ADAPTER 0.72% (895K) 5.74% (7M) -
PROPETL 0.77% (959K) 6.16% (8M) -
COMPACTER++ 0.02% (29K) 0.19% (235K) -
(IA)3 0.05% (57K) 0.37% (455K) -

Joint MTL

FINETUNE-M - 100.00% (125M) -
ADAPTER-M - 0.72% (895K) -
PROPETL-M - 1.24% (1.5M) -
HYPERFORMER - 47.67% (59M) -
HYPERFORMER++ - 4.09% (5M) -

Transfer (Ωt)
(target task t)

Transfer (Ω)
(all target tasks)

Task (Θ) + Transfer (Ω)
(source adapters + transfer layers)

Two-Stage MTL

ADAPTERFUSION 17.05% (21M) 136.40% (170M) 5.74% + 136.40% =142.14% (177M)
SCALEARN 0.06% (74K) 0.47% (590K) 5.74% + 0.47% =6.21% (8M)
SCALEARNUNIFORM 0.00% (96) 0.00% (768) 5.74% + 0.00% =5.74% (7M)
SCALEARN++ 0.00% (6K) 0.04% (49K) 5.74% + 0.04% =5.79% (7M)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64) 5.74% + 0.00% =5.74% (7M)

compare our models with ADAPTERFUSION, a common two-stage MTL method that shares the
same conceptual properties. We also compare our models with ADAPTERSOUP (Chronopoulou
et al., 2023), performing weight-space averaging over adapter weights of the 5 most similar tasks
according to their sentence similarity. We adapt their approach to our setup (cf. Appendix A.1).
In all two-stage MTL methods, source and target tasks are the same, containing the tasks of the
underlying benchmark. For each target task, they learn a transfer layer (except for ADAPTERSOUP)
and a new task head.

We select a set of strong STL baselines: FINETUNE, fully fine-tuning the PLM, ADAPTER Houlsby
et al. (2019) learning an adapter module for each task, PROPETL (Zeng et al., 2023) a more
memory-efficient variation based on parameter sparsification and COMPACTER++ (Mahabadi et al.,
2021a) a highly parameter-efficient variation that leverages parameter-sharing between layers. As
another STL baseline, we train (IA)3 (Liu et al., 2022), which learns scaling vectors applied to the
key and value matrices and intermediate activations in the feed-forward layer of the PLM.

Furthermore, we conduct experiments on several joint MTL baselines, namely FINETUNE-M,
ADAPTER-M, and PROPETL-M, the fully fine-tuned, adapter-based, and ProPETL-based joint
MTL variants, respectively; and, finally, HYPERFORMER and HYPERFORMER++ (Karimi Ma-
habadi et al., 2021). FINETUNE-M updates all PLM parameters, ADAPTER-M adds a single adapter
module shared for all tasks, and PROPETL-M combines sparse layer- and task-specific masks
through a logical OR operation. Based on task-specific embeddings, HYPERFORMER and HYPER-
FORMER++ generate module parameters by a shared hypernetwork. In all adapter-based models,
we use a reduction factor of 16, and, following Pfeiffer et al. (2021), insert the modules after the
feed-forward layer of the PLM. Furthermore, to allow a fair comparison, we adapt PROPETL-M,
HYPERFORMER, and HYPERFORMER++ to this setting by inserting the adapter modules only after
the feed-forward block of the PLM. To accommodate possible variations in performance, we train
each model on multiple seeds, and report the mean and standard deviation over multiple runs.

The full details of the experiment setup regarding the benchmarks and their splits, infrastructure,
training, and hyperparameters are provided in Appendix A.1. To further enable the reproducibility
of our results, our code, including documentation, is available at URL upon deanonymization.

6 RESULTS

6.1 PARAMETER-EFFICIENCY ANALYSIS

Table 1 provides a comprehensive overview of the number of learnable parameters of the models in
our experiment setting on GLUE and SuperGLUE: RoBERTaBASE as the backbone PLM, 8 source
tasks, and the same 8 tasks as target tasks (|S|= |T |= 8). Starting from the STL models, the first
and middle columns report the number of trainable parameters for one and all tasks, respectively.
The joint MTL models learn all tasks simultaneously, and hence only contain values in the mid-
dle column. For the two-stage MTL models, we report the number of trainable parameters of the
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Table 2: Evaluation results on GLUE using RoBERTaBASE. (Top) STL models, only learning a single task at
a time. (Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods,
composing the knowledge of several source adapters. The overall best results are underlined, and the best
results among the two-stage MTL models are shown in bold.

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.
FINETUNE 86.610.51 90.320.15 91.780.28 93.330.48 90.530.22 86.941.52 73.472.05 58.464.03 83.930.60
ADAPTER 86.500.33 90.180.11 92.250.19 93.650.71 90.230.41 86.641.07 72.892.54 58.282.50 83.830.48
PROPETL 86.190.25 88.880.48 92.050.80 93.810.72 90.030.35 85.931.22 74.192.03 59.292.07 83.800.42
COMPACTER++ 85.620.42 88.840.70 91.790.39 93.580.34 89.670.54 87.210.61 72.022.21 58.492.58 83.400.45
(IA)3 83.780.88 88.370.20 90.570.38 93.350.30 89.930.30 87.111.14 72.562.23 56.575.39 82.781.36

FINETUNE-M 84.950.36 89.760.12 90.910.07 92.580.76 86.140.53 83.420.50 80.992.54 49.121.74 82.230.41
ADAPTER-M 86.030.18 89.690.01 91.580.30 93.350.41 88.710.49 86.760.92 80.261.96 51.791.23 83.520.32
PROPETL-M 85.230.45 87.820.16 91.370.52 93.880.44 90.270.22 86.361.82 78.580.90 54.711.12 83.530.31
HYPERFORMER 86.080.46 89.130.23 91.810.07 93.160.99 90.630.32 87.010.87 82.791.68 57.302.21 84.740.39
HYPERFORMER++ 86.380.18 88.810.29 91.990.17 93.270.11 90.800.12 87.831.42 83.750.78 54.053.30 84.610.46

ADAPTERFUSION 86.820.04 90.230.01 92.480.15 93.230.95 90.370.20 88.410.49 79.492.21 59.041.69 85.010.37
ADAPTERSOUP 63.470.37 81.630.23 78.000.20 90.750.24 80.170.18 75.001.18 62.090.64 41.061.68 71.520.59
SCALEARN 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55
SCALEARNUNIFORM 86.930.10 90.380.11 92.530.28 93.580.20 90.080.07 87.570.86 80.071.18 59.041.05 85.020.49
SCALEARN++ 87.060.03 90.040.12 92.031.10 94.150.30 90.620.13 88.210.63 80.871.05 59.820.78 85.350.52
SCALEARNUNIFORM++ 86.980.17 90.380.01 92.530.28 94.110.07 90.180.19 87.430.63 80.040.99 59.450.67 85.140.38

Table 3: Evaluation results on SuperGLUE using RoBERTaBASE.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.
FINETUNE 71.610.84 71.641.15 76.801.34 66.382.08 63.460.00 68.606.74 81.964.33 73.472.05 71.742.32
ADAPTER 79.020.62 72.840.48 76.711.38 65.581.56 63.460.00 70.204.13 84.823.18 72.892.54 73.191.74
PROPETL 80.290.24 73.070.49 76.580.78 66.601.65 63.460.00 70.603.44 84.463.86 74.192.03 73.691.53
COMPACTER++ 77.692.67 70.440.57 75.880.96 66.461.63 63.460.00 68.304.00 87.683.62 72.022.21 72.741.96
(IA)3 75.270.23 70.320.49 76.310.79 67.071.68 63.350.32 69.303.37 87.324.57 72.562.23 72.691.71

FINETUNE-M 72.210.28 72.110.68 76.393.07 52.191.11 63.460.00 74.333.40 84.520.84 74.857.42 71.262.10
ADAPTER-M 72.430.64 72.460.43 75.322.78 51.991.74 59.942.97 71.673.40 86.311.68 76.531.06 70.831.84
PROPETL-M 73.140.19 72.070.58 73.913.27 50.730.99 59.625.44 74.003.27 82.141.46 73.653.83 69.912.38
HYPERFORMER 65.934.47 33.5433.54 74.011.10 55.491.72 52.8810.58 55.502.50 71.437.14 61.739.03 58.818.76
HYPERFORMER++ 24.508.13 19.4727.53 62.170.00 50.000.00 63.460.00 54.333.30 49.400.84 49.092.56 46.555.30

ADAPTERFUSION 78.820.49 71.791.67 76.720.55 66.571.24 63.460.00 73.104.51 82.322.85 76.032.38 73.601.71
ADAPTERSOUP 64.260.13 33.624.28 68.840.31 58.530.60 63.460.00 52.402.41 70.890.86 57.830.93 58.731.19
SCALEARN 79.520.06 73.220.44 77.270.68 66.351.20 63.460.00 74.802.15 90.892.59 78.882.14 75.551.16
SCALEARNUNIFORM 80.130.38 71.910.60 76.060.41 67.371.22 62.501.27 71.201.23 89.111.97 75.310.90 74.201.00
SCALEARN++ 80.130.09 72.710.57 76.440.53 67.131.24 62.262.28 75.201.93 93.042.14 79.030.95 75.741.22

SCALEARNUNIFORM++ 79.790.14 71.750.38 76.130.52 67.870.89 63.460.00 74.001.70 91.612.53 74.841.58 74.930.97

transfer layer for one target task (Ωt) in the first column, the same for all target tasks in the mid-
dle (Ω), and the sum of the number of transfer (Ω) and source adapter parameters (Θ) in the last
column. We deliberately organize the transfer parameters of the two-stage models (Ω) under the
corresponding numbers of other models in the middle column since the two-stage paradigm benefits
from already trained adapters and only needs to learn the transfer layer. The last column is provided
for completeness in the case that the adapters should also be trained.

Comparing the results of the two-stage MTL methods in the transfer layer, ADAPTERFUSION is
expectedly far less parameter-efficient than SCALEARN models, where SCALEARNUNIFORM++
only requires 64 parameters. The variants of SCALEARN add considerably fewer transfer parameters
compared to the overall parameters of the particularly efficient joint MTL methods. Moreover,
the SCALEARN models still remain comparable when also taking into account the source adapter
parameters. Considering these results, in the following we report and discuss the evaluation results
in transfer learning and few-shot learning on the respective benchmarks.

6.2 TRANSFER LEARNING PERFORMANCE

Results on GLUE. Table 2 shows the evaluation results on the GLUE benchmark using
RoBERTaBASE. The evaluation metrics are Pearson’s correlation for STS-B, Matthews’ correlation
for CoLA, and accuracy for the rest. We average the results over several runs and report the cor-
responding standard deviation in the subscripts. Overall, the two-stage models obtain strong gains,
outperforming STL and joint MTL models. Remarkably, all variants of SCALEARN, including the
highly parameter-efficient SCALEARNUNIFORM++ achieve similarly good results with only a frac-
tion of the parameters of ADAPTERFUSION. Comparing the different variations of our method,
while SCALEARN shows the best results, the other models also perform highly competitively.

Results on SuperGLUE. Table 3 shows the results on SuperGLUE for all methods considered.
The evaluation metrics are F1 for MultiRC and ReCoRD and accuracy for other tasks. We observe
similar patterns on this benchmark: two-stage models generally outperform other baselines. In
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Table 4: Evaluation results on HumSet using XLM-RBASE.

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

FINETUNE 71.990.32 50.400.24 43.760.67 61.040.26 41.680.62 53.770.42
ADAPTER 71.380.28 51.021.23 43.260.82 61.430.91 42.460.51 53.910.75
PROPETL 71.690.86 49.691.30 41.630.84 60.580.91 39.851.10 52.691.00
COMPACTER++ 69.971.89 37.377.99 37.762.14 58.131.64 33.109.00 47.264.53
(IA)3 70.220.97 45.553.43 40.053.15 58.541.38 39.271.01 50.731.99

FINETUNE-M 51.753.62 22.6512.88 13.546.06 33.2721.23 12.423.39 26.739.44
ADAPTER-M 56.202.72 28.5314.56 16.539.46 35.9017.36 18.892.64 31.219.35
PROPETL-M 59.8010.09 26.1014.36 29.577.40 37.5312.08 30.355.91 36.679.97
HYPERFORMER 71.081.04 40.656.93 34.163.37 46.2214.11 32.474.46 44.925.98
HYPERFORMER++ 60.429.79 22.077.45 20.357.04 30.5519.83 18.9010.84 30.4610.99

ADAPTERFUSION 72.050.12 49.630.53 43.150.38 60.680.23 42.140.46 53.530.35
ADAPTERSOUP 56.811.90 30.090.40 21.840.55 40.710.98 17.892.02 33.471.17
SCALEARN 72.360.05 51.630.61 44.060.37 61.520.11 42.810.63 54.480.35
SCALEARNUNIFORM 72.200.14 50.080.79 42.970.70 60.620.16 41.950.60 53.560.48
SCALEARN++ 72.380.27 51.660.27 44.230.50 61.660.13 42.210.21 54.430.28
SCALEARNUNIFORM++ 72.020.32 50.780.41 42.600.85 60.820.14 42.140.72 53.670.49

this benchmark, SCALEARN and SCALEARN++ improve upon ADAPTERFUSION by 2 percentage
points of the average results. Notably, we observe performance drops for various joint MTL models
in comparison to other models (up to −27% when comparing HYPERFORMER++ and ADAPTER).
This may be a signal of the sensitivity of these models to the selection of tasks. Furthermore, the
subpar performance of AdapterSoup suggests that calculating weights using sentence similarity is
not appropriate for our specific problem setup. In contrast, the other two-stage MTL models (and,
in particular, our SCALEARN models) do not show any considerable performance decreases.

Results on HumSet. Table 4 shows the results on HumSet using XLM-RBASE with the F1-score as
the evaluation metric. Similarly, SCALEARN performs the best among all the methods, whereas the
more parameter-efficient variants of SCALEARN are only marginally weaker in performance. On
this benchmark, in particular, all joint MTL methods show poor performance, highlighting the sen-
sitivity of these methods to task selection (up to −27% for STL and MTL versions of FINETUNE).

We conduct an ablation study on the effect on different combinatorial operators in SCALEARN,
reported in Appendix A.3. In Appendix A.4, we provide further experiments and analyses of the
results along with the results of GLUE and SuperGLUE using RoBERTaLARGE, HumSet using
XLM-RLARGE, and for the combination of all tasks from GLUE and SuperGLUE. Finally, we pro-
vide an analysis of the scaling coefficients of SCALEARNUNIFORM and SCALEARNUNIFORM++
in Appendix A.5, revealing the effect of various source adapters on a target task.

6.3 FEW-SHOT TRANSFER LEARNING
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Figure 3: Few-shot transfer learning results with k = {4,16,32,100} training samples for each target task using
the BASE models of RoBERTa and XLM-R. Full results over several runs are provided in Appendix A.6.

We further assess the applicability of SCALEARN in a few-shot setting, where we assume that only
k = {4,16,32,100} training samples are available for a given target task. For two-stage MTL
methods, for a given benchmark, we use the source adapters of all tasks except the one corresponding
to the target task, where we use a source adapter trained on only k samples. On the basis of this set
of source adapters, we then train a transfer layer on the target task using k data points.

Table 3 shows the performance of ADAPTER, ADAPTERFUSION, and SCALEARN on the GLUE,
SuperGLUE, and HumSet benchmarks, averaged over 5 runs. We observe that SCALEARN consis-
tently outperforms ADAPTER and ADAPTERFUSION in all benchmarks and values of k (except for
k = 4 on HumSet) pointing to the strength of our method for data-lean settings. We provide the full
results, including per-dataset ones, other variations of SCALEARN, and on RoBERTaLARGE in A.6.
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7 RELATED WORK

Parameter-efficient task learning in NLP. Various parameter-efficient methods have emerged as
a more sustainable alternative to full fine-tuning, enabling modularization, efficient sharing, and
reusability of knowledge. A common modularization approach is to introduce a small number of
additional parameters into a PLM, realized by various methods such as Adapters (Rebuffi et al.,
2017; Houlsby et al., 2019), Compacter (Mahabadi et al., 2021a), and ProPETL-Adapter (Zeng
et al., 2023). Similarly, LoRA (Hu et al., 2022) injects trainable low-rank matrices into each trans-
former layer, and BitFit (Ben Zaken et al., 2022) updates only the bias terms. Another line of
research identifies sparse subnetworks within the model to tune (Ansell et al., 2022; Guo et al.,
2021; Hauzenberger et al., 2023), while He et al. (2022) and Mao et al. (2022) propose to merge
various distinct modules. We refer to Pfeiffer et al. (2023) for a full survey on this topic.

Learning by scaling. Besides the common approach of learning a feed-forward layer for a (non–)
linear transformation of an input vector, several recent methods explore the merit of learning a scal-
ing vector applied to the input vector in various scenarios. Liu et al. (2022) learn a modular network
for STL that rescales PLM vectors through element-wise multiplication. Ilharco et al. (2023) and
Ortiz-Jiménez et al. (2023) introduce task arithmetic to control PLM behavior by extracting task
vectors from pre- and post-fine-tuning model weights, then scaling and combining them to improve
MTL performance. Masoudian et al. (2023) learn a gating adapter that adjusts the scaling of repre-
sentations to control the behavior of the model at inference time. Finally, Lian et al. (2022) learn to
shift and scale the output vectors of a vision transformer in an STL setting. Our work contributes to
this line of research by leveraging scaling for highly parameter-efficient and effective MTL.

Joint MTL. Interference and imbalance between tasks have been shown to impede performance
in joint MTL (Kirkpatrick et al., 2017; Kendall et al., 2018; Pfeiffer et al., 2023). Several studies
have aimed to address these issues and improve generalization. For example, Liu et al. (2019a)
learn representations across multiple NLU tasks using context from a semantic similarity model,
and Pilault et al. (2021) introduce a parameter-efficient model that uses modules facilitating weight
sharing. Moreover, Stickland & Murray (2019) use an adapter for each task while also updating the
PLM parameters. Zhang et al. (2022) further focus on modularity by only activating a subset of task-
specific modules at once; however, tasks must be mapped a priori to a given high-level skill. Ponti
et al. (2023) and Caccia et al. (2022) loosen this constraint by learning a task-skill allocation matrix
for cross-task generalization, but rely on a multi-task pre-training stage. Finally, Mahabadi et al.
(2021b) leverage a hypernetwork (Ha et al., 2017) that generates modular task-specific parameters.

Two-stage MTL. Various methods have been proposed to extract task-specific information and com-
pose this knowledge. Chronopoulou et al. (2023) studies transfer learning in generative PLMs by
first selecting source adapters based on different heuristics and merging their weights to create a new
combined adapter. Huang et al. (2023) introduce LoraHub with the aim of composing LoRA (Hu
et al., 2022) modules for cross-task generalization using black-box optimization and an additional
pre-filtering stage. Asai et al. (2022) and Wang et al. (2023) leverage continuous prompts learned
on large-scale source tasks, leading to competitive performance in MTL benchmarks, although both
methods depend on the selection of typically high-resource source tasks. In contrast to the men-
tioned methods that highly depend on the selection of tasks and/or apply the combination to the
weights, Pfeiffer et al. (2021) combines the output representations of several independent source
adapters through an attention mechanism. Our work is directly related to this line of research and
introduces a novel highly parameter-efficient transfer layer applied to the output representation.

8 CONCLUSION

We propose SCALEARN, a highly parameter-efficient and effective two-stage MTL method lever-
aging simple scaling of output vectors. Based on an initial analysis of the effect of scaling adapter
output representations, our proposed approach directly learns the coefficients that scale the repre-
sentations of source adapters and combines them by simply taking the sum. We conduct extensive
transfer learning experiments using encoder PLMs on the three benchmarks of GLUE, SuperGLUE,
and HumSet, consisting of a diverse set of tasks, domains, and languages. Our evaluation results
show that SCALEARN and even its extremely parameter-efficient variants, such as SCALEARNUNI-
FORM++, obtain strong improvement over existing MTL methods without any negative cross-task
effects. We further show that these improvements are also present in few-shot transfer learning.

9



Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

The nature of our work is manifold, and so are the ethical aspects touched by our research. First, we
acknowledge the potential of NLP datasets and models for encoding unfair stereotypical (Blodgett
et al., 2020) and exclusive (Dev et al., 2021) biases that may lead to representational and alloca-
tional harms (Barocas et al., 2017). This potential is a general property of PLMs, and the mod-
els and datasets we use in this research are no exception to this danger. We thus strongly advise
practitioners to carefully consider the sociotechnical context before deploying any models (with or
without SCALEARN), and, aligned with the specific deployment scenario, to take measures against
unfair discrimination. Examples of such measures include the use of bias measurement (Nangia
et al., 2020) and mitigation (Bordia & Bowman, 2019) approaches. Second, the core of this work
deals with efficiency aspects. On the one hand, given the well-known relationship between model
training (and inference) effort and potential CO2 emissions (Strubell et al., 2019), our work directly
contributes to reaching the goals of Green AI by making parameter-efficient MTL more environ-
mentally sustainable. On the other hand, since PLM training often comes with high infrastructure
requirements exclusive to certain user groups (Bender et al., 2021), we hope that our work also con-
tributes to the ongoing democratization of language technology by reducing resource-related usage
barriers.

REPRODUCIBILITY STATEMENT

For all our experiments, we use PLM configurations that are publicly available and can be down-
loaded from the Huggingface transformers library (Wolf et al., 2020). Sufficient details to repro-
duce our results, including hyperparameter settings and seeds used in training, and information about
the datasets we use for training, including splits, can be found in Section 5 and in Appendix A.1.
All datasets we use in our experiments are commonly used in the MTL literature and publicly avail-
able to ensure comparability and reproducibility. We also release our code under the MIT License,
ensuring open access to the community for further development.
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A APPENDIX

A.1 COMPLETE EXPERIMENT DETAILS

Name Category Task Domain Metric

MNLI GLUE NLI various accuracy
QQP GLUE paraphrase detection social QA accuracy & F1
QNLI GLUE NLI Wikipedia accuracy
SST-2 GLUE sentiment analysis Movie Reviews accuracy
STS-B GLUE sentence similarity various Pearson & Spearman corr.
MRPC GLUE paraphrase detection news accuracy & F1
RTE GLUE NLI News, Wikipedia accuracy
CoLA GLUE acceptability various Matthews’ corr.

ReCoRD SuperGLUE cloze-style QA news (CNN, Daily Mail) F1 & EM
MultiRC SuperGLUE QA various F1 & EM
BoolQ SuperGLUE boolean QA Wikipedia accuracy
WiC SuperGLUE word sense disambiguation lexical databases accuracy
WSC SuperGLUE coreference / commonsense fiction books accuracy
COPA SuperGLUE commonsense reasoning various accuracy
CB SuperGLUE NLI various accuracy

Sectors HumSet classification humanitarian crisis response F1 & precision
Pillars 1D HumSet classification humanitarian crisis response F1 & precision
Subpillars 1D HumSet classification humanitarian crisis response F1 & precision
Pillars 2D HumSet classification humanitarian crisis response F1 & precision
Subpillars 2D HumSet classification humanitarian crisis response F1 & precision

Table 5: Details of all datasets. Lexical databases for WiC include WordNet, VerbNet, Wiktionary. For
datasets where two metrics are officially used, we use the underlined metric as our main metric. (Top) GLUE
tasks. (Middle) SuperGLUE tasks. (Bottom) HumSet tasks.

Dataset Details. As has been mentioned, we are using the GLUE, SuperGLUE, and HumSet bench-
marks for our experiments. Table 5 summarizes the tasks contained in each of the datasets. We use
the datasets library (Lhoest et al., 2021) to load each dataset for our experiments. We set the
maximum length of the input sequence to 128 tokens for all tasks in GLUE, SuperGLUE, and Hum-
Set. However, for MultiRC and ReCoRD, we set the maximum length to 324 and 256, respectively,
due to their significantly longer context lengths. Note that we treat HumSet as five separate tasks,
following (Fekih et al., 2022). The GLUE and SuperGLUE benchmarks only contain the training
and validation split publicly, so we follow Chen et al. (2022) and use 10% of the training samples
from the training split as the validation set and the remaining 90% for training. We split the datasets
with the datasets library (Lhoest et al., 2021) using seed 42 and shuffle the samples. Then, the
original validation split is taken as the test set on which we report the performance of all models.
For HumSet, we use the original train/validation/test splits, as all of them are publicly available,
including labels. Details about the train/validation/test splits can be found in Table 6.

Computing Infrastructure. We run all experiments with RoBERTaBASE and XLM-RBASE on a
single Nvidia GTX1080Ti GPU and Intel Xeon CPU E5-2640 v4 CPUs, and the experiments with
RoBERTaLARGE and XLM-RLARGE on a single Nvidia RTX5000 GPU and Intel Xeon Silver 4216
CPUs.

Implementation Details. We use PyTorch (Paszke et al., 2019) for all experiments. For the joint
multi-task learning methods, we adapt the codebase of Karimi Mahabadi et al. (2021) and Zeng et al.
(2023), both of which rely on the transformers (Wolf et al., 2020) library. For all other models,
we make use of the adapter-transformers library (Pfeiffer et al., 2020) library, a wrapper around
the transformers library.

Training and optimization. We train all methods with a batch size of 32. All STL and two-stage
MTL methods are trained for a maximum of 30 epochs with early stopping and patience of 5. 4 We
use 10 seeds for low-resource and 3 seeds for high-resource tasks when using RoBERTaBASE, and
on 5 and 2 seeds for low- and high-resource tasks, respectively, when using RoBERTaLARGE. We
define tasks with more than 10k training samples as high-resource and as low-resource otherwise.
All joint MTL models are trained on 3 seeds. We report the mean and standard deviations across all

4The exception is ReCoRD, which we train on 3 epochs due to its size.
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Name |Train| |Validation| |Test|
MNLI 353,431 39,270 9,815
QQP 327,461 36,384 40,430
QNLI 94,268 10,474 5,463
SST-2 60,614 6,734 872
STS-B 5,174 574 1,500
MRPC 3,301 366 408
RTE 2,241 249 277
CoLA 7,695 855 1,043

ReCoRD 100,730 10,000 10,000
MultiRC 24,518 2,724 4,848
BoolQ 8,484 942 3,270
WiC 4,885 542 638
WSC 498 55 104
COPA 360 40 100
CB 225 25 56

Sectors 117,435 16,039 15,147
Pillars 1D 117,435 16,039 15,147
Subpillars 1D 117,435 16,039 15,147
Pillars 2D 117,435 16,039 15,147
Subpillars 2D 117,435 16,039 15,147

Table 6: Number of used samples for each dataset and used split. (Top) GLUE tasks. (Middle) SuperGLUE
tasks. (Bottom) HumSet tasks.

runs. We use the AdamW (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) optimizer with default
PyTorch hyperparameters (weight decay = 0.01, β1 = 0.9, β2 = 0.99, ϵ = 1 · 10−6). We use seeds
{0,1} for instances with two seeds, {0,1,2} for instances with three seeds, seeds {0,1,2,3,4} for
instances with five seeds, and {0,1,2,3,4,5,6,7,8,9} for instances with ten seeds.

Single-task learning hyperparameters. We train FINETUNE with a learning rate of 2e-5,
ADAPTER with a learning rate of 3e-4, COMPACTER++ with a learning rate of 3e-3, and PROPETL
with a learning rate of 1e-3, a mask learning rate of 5e-3, a sparsity rate of 0.5, and a weight decay of
0.1, which we found to be the most suitable for our setup. Moreover, we train (IA)3 with a learning
rate of 5e-3. Each of them is trained with a linear learning rate decay. For RoBERTaLARGE, we add a
linear learning rate warmup for the first 10% of training, as we notice it improves stability. For early
stopping, we use the loss on the validation set, except for HumSet, where we use the F1-score, and
in the few-shot setting, where we use the main metric for the respective dataset, as shown in Table 5.
In the few-shot setting, we train for a maximum of 1,000 steps, apply an early stopping patience of
20, and use a maximum of 5,000 samples for validation. Note that, while the PLM layer normaliza-
tion parameters have also been updated (Mahabadi et al., 2021a;b), following Pfeiffer et al. (2021),
we keep them frozen. This approach improves modularity, while still allowing PLMs to efficiently
adapt to new tasks. Note that the same hyperparameters as outlined here are also used for ADAPTER
in our probing analyses (cf. Section 3).

Joint MTL hyperparameters. In all joint multi-task learning methods, we sample tasks with con-
ventional temperature-based sampling with temperature τ = 10, following Mahabadi et al. (2021b)
and Zeng et al. (2023). Specifically, a task is sampled with probability p

1/τ
t , where pt =

Nt∑τ
i=1 Nt

,
Nt the number of training samples of task t, and τ = 10. Using this sampling strategy, we train
each model for a total of 375,000 steps to ensure convergence and evaluate every 7,500 steps. We
train each model with early stopping and patience of 10. In the end, the model checkpoint with the
lowest average validation loss is loaded and evaluated on the test set. We train FINETUNE-M with a
learning rate of 2e-5, ADAPTER-M, HYPERFORMER, and HYPERFORMER++ with a learning rate
of 3e-4, and PROPETL-M with a learning rate of 3e-4 and a mask learning rate of 3e-3, a sparsity
rate of 0.3, and no weight decay. We train each of them with a linear learning rate warmup for
the first 10% of training, followed by a linear learning rate decay. For the remaining hyperparame-
ters of PROPETL-M, HYPERFORMER, and HYPERFORMER++, we follow the respective original
implementations, but always use a reduction factor of 16 for a fair comparison.
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Two-stage MTL hyperparameters. We train each variant of SCALEARN * with a learning rate
of 6e-3 and train ADAPTERFUSION with a learning rate of 5e-5, following Pfeiffer et al. (2021).
Both SCALEARN * and ADAPTERFUSION are trained with a linear learning rate decay and no
warmup. Early stopping is the same as in the single-task learning setting. We initialize the parame-
ters of SCALEARN* with N

(
2
T , 0.001

)
,5 and apply a dropout rate of 0.3 to increase robustness for

SCALEARN and SCALEARN++. For AdapterSoup, we first calculate the cosine similarity of sen-
tence embeddings for each task from the training set using the sentence-transformers (Reimers
& Gurevych, 2019) library and the all-mpnet-base-v2 model. In contrast to Chronopoulou et al.
(2023), who only select 100 samples for each domain, we select 10000 samples for each task, as
our sequences corresponding to tasks are meaningfully shorter than the sequences corresponding to
domains. Using these similarities, we select the top 5 most similar tasks to the target task, normal-
ize the similarity scores to obtain the weights, and perform weight-space averaging of the adapter
parameters, following Chronopoulou et al. (2023). Note that we also include the corpus of the target
task when calculating the similarities for weight-space averaging, and hence also the target adapter
during weight-space averaging, and train a new task head on the target task to allow a more fair
comparison to other two-stage MTL methods. We use a learning rate of 3e-4 when training the
target task head with ADAPTERSOUP.

A.2 ADDITIONAL PROBING ANALYSES

We show the single-task probing results using the remaining GLUE and SuperGLUE source tasks
not shown in Section 3 in Figure 4. For the probing experiments when using two task adapters (the
target task t and MNLI), we show the remaining tasks from GLUE and SuperGLUE with fewer than
10k samples as target tasks in Figure 5.

5We also test out {N
(

1
T
, 0.001

)
, N

(
3
T
, 0.001

)
, N (1, 0.001)}.
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A.3 ABLATION STUDY

Table 7 shows the effect of adding constraints on the distributional values of scaling coefficient
in SCALEARN, evaluated on GLUE using RoBERTaBASE. In particular, we change the original
SCALEARN model by adding the constraints mean and softmax over the source task dimension, thus
enforcing

∑|S|
s=1 ω

l
s = 1. The results indicate that both constraints reduce average performance

compared to those having no constraints, confirming our choice of directly learning the scaling
coefficients without imposing any restrictions.

Table 7: Effect of adding various constraints to the scaling values of SCALEARN, evaluated on GLUE
using RoBERTaBASE. The constraints mean and softmax are applied over the task dimension, enforcing∑|S|

s=1 ω
l
s = 1. The best results are shown in bold.

Model Constraint MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.
SCALEARN None (original) 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55

SCALEARN Mean 87.030.01 90.360.30 92.340.09 92.601.38 90.620.25 87.110.79 79.211.82 59.872.95 84.890.95
SCALEARN Softmax 86.850.05 90.600.05 92.740.22 93.750.08 90.660.10 85.831.09 79.281.04 58.431.98 84.770.58

A.4 ADDITIONAL RESULTS

More results using RoBERTaBASE. Table 11 shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in a total of 15 tasks.

Results using RoBERTaLARGE. We further validate our method and its variations on the encoder-
based PLM RoBERTaLARGE. Table 8 shows the corresponding results, including all baselines, on
the GLUE benchmark. Table 9 shows the results on SuperGLUE. Table 10 shows the results on
HumSet. Finally, Table 12 shows the results when training on the combination of all GLUE and
SuperGLUE tasks, resulting in a total of 15 tasks.
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Table 8: Evaluation results on GLUE using RoBERTaLARGE. (Top) STL models, only learning a single task at
a time. (Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods,
composing the knowledge of several source adapters. The overall best results are underlined, and the best
results among the two-stage MTL models are shown in bold.

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.
FINETUNE 89.570.36 89.751.03 93.910.43 95.300.65 91.890.35 86.271.15 81.523.19 60.152.89 86.041.26
ADAPTER 89.620.18 89.870.67 94.130.06 95.240.08 91.810.29 87.822.11 81.232.92 64.071.97 86.721.04
PROPETL 89.780.24 89.230.77 94.320.09 95.410.00 91.450.39 87.650.73 84.552.14 65.852.10 87.280.81
COMPACTER++ 89.150.67 87.332.39 92.931.42 95.410.00 91.460.35 87.841.23 79.714.58 65.662.08 86.191.59
(IA)3 88.690.61 87.790.72 91.720.79 94.950.16 91.390.45 86.371.65 80.793.16 64.703.20 85.801.34

FINETUNE-M 87.950.39 89.820.77 92.580.32 94.880.94 87.040.68 81.371.00 84.361.19 55.320.78 84.160.76
ADAPTER-M 89.100.36 89.350.09 93.640.05 94.900.17 88.400.32 83.090.25 86.640.00 56.380.79 85.190.25
PROPETL-M 88.980.33 89.030.15 94.140.11 95.150.05 91.560.23 87.831.10 88.450.29 60.991.03 87.010.41
HYPERFORMER 89.660.40 90.150.63 93.950.13 95.800.62 91.680.35 86.601.22 86.280.29 61.184.76 86.911.05
HYPERFORMER++ 89.790.21 89.540.43 93.950.54 95.220.11 91.620.29 88.071.86 86.281.06 65.160.61 87.450.64

ADAPTERFUSION 89.570.17 90.880.06 94.150.04 95.870.00 91.860.15 88.970.78 85.701.13 66.391.83 87.930.52
ADAPTERSOUP 65.830.51 82.370.00 74.061.01 93.980.24 81.671.63 73.370.51 67.271.63 43.701.62 72.780.89
SCALEARN 90.090.09 90.510.26 94.180.03 95.410.16 92.320.15 88.090.82 87.080.54 65.402.62 87.910.55
SCALEARNUNIFORM 90.110.04 90.050.28 94.230.08 95.410.16 92.110.06 88.631.72 84.403.93 66.980.58 87.740.86
SCALEARN++ 90.310.10 90.590.03 94.050.03 95.930.24 92.480.15 88.481.26 86.281.05 67.130.59 88.160.43

SCALEARNUNIFORM++ 90.080.01 90.490.02 94.120.16 95.180.16 92.120.09 90.050.54 84.981.32 64.970.85 87.750.39

Table 9: Evaluation results on SuperGLUE using RoBERTaLARGE.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.
FINETUNE 81.601.25 79.030.02 81.650.30 69.722.16 63.460.00 52.008.28 90.362.99 81.523.19 74.922.27
ADAPTER 88.520.09 80.730.69 82.360.72 69.161.31 63.250.64 71.9013.63 92.681.78 81.232.92 78.732.72
PROPETL 87.862.59 81.190.99 81.610.86 69.622.16 63.460.00 69.0018.96 94.114.04 84.552.14 78.923.97
COMPACTER++ 88.340.97 79.180.29 79.536.13 69.261.51 62.261.43 79.009.74 87.507.48 79.714.58 78.104.02
(IA)3 87.470.21 77.910.43 80.970.75 68.652.55 60.580.00 77.000.00 90.003.91 80.793.16 77.931.35

FINETUNE-M 83.570.81 78.080.55 81.700.65 53.030.37 49.369.50 86.672.36 82.142.92 83.872.01 74.802.39
ADAPTER-M 86.760.32 75.150.24 77.182.22 51.571.12 53.219.75 67.671.25 80.951.68 77.381.36 71.232.24
PROPETL-M 84.830.40 79.600.37 82.021.11 55.330.46 59.629.05 86.674.03 88.102.23 85.560.29 77.712.24
HYPERFORMER 84.381.00 79.680.97 81.870.97 53.812.48 63.468.64 82.336.94 83.932.53 86.880.90 77.043.05
HYPERFORMER++ 13.660.00 40.2140.21 71.509.33 49.140.86 62.980.48 54.003.00 67.8617.86 66.9719.68 53.2911.43

ADAPTERFUSION 89.210.17 80.520.24 82.210.30 69.091.68 63.460.68 81.2016.07 95.710.98 86.061.07 80.932.65
ADAPTERSOUP 70.330.28 38.4212.42 73.200.16 62.231.17 63.460.00 54.505.74 68.751.03 61.373.97 61.533.06
SCALEARN 87.850.01 78.400.70 80.292.52 68.561.68 62.980.68 85.403.78 92.861.79 84.910.59 80.161.47
SCALEARNUNIFORM 88.850.22 80.420.06 81.850.21 69.911.15 61.540.00 82.003.08 90.001.60 84.041.66 79.831.00
SCALEARN++ 88.280.23 80.760.58 83.080.31 69.591.89 62.980.68 87.801.10 91.071.79 85.700.32 81.160.86

SCALEARNUNIFORM++ 88.850.22 80.700.04 82.130.21 70.190.26 62.980.68 83.602.88 91.072.82 84.841.02 80.541.02

Table 10: Evluation results on HumSet using XLM-RLARGE.

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
FINETUNE 72.990.17 51.380.39 44.840.89 61.900.20 43.490.86 54.920.50
ADAPTER 72.290.59 49.311.27 45.250.03 62.580.67 44.360.66 54.760.65
PROPETL 73.200.32 51.580.40 45.100.92 61.522.29 41.980.70 54.680.92
COMPACTER++ 61.7712.63 8.175.92 6.3711.00 20.3924.91 15.362.71 22.4111.43
(IA)3 64.721.83 38.267.27 26.772.79 55.571.48 31.112.53 43.293.18

FINETUNE-M 59.047.86 22.9512.78 10.755.31 29.7621.25 9.651.25 26.439.69
ADAPTER-M 65.667.13 37.6511.25 28.517.80 43.4016.06 27.441.68 40.538.78
PROPETL-M 70.561.06 41.586.27 35.913.46 42.2014.55 29.676.92 43.986.45
HYPERFORMER 47.7420.72 29.0611.76 22.168.44 35.9217.37 22.5810.58 31.4913.77
HYPERFORMER++ 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00

ADAPTERFUSION 72.530.45 51.330.23 43.750.52 62.310.25 42.782.11 54.540.71
ADAPTERSOUP 52.541.61 24.072.18 20.620.28 31.161.40 12.840.49 28.251.19
SCALEARN 73.320.08 53.940.13 44.140.75 63.890.16 44.750.47 56.010.32

SCALEARNUNIFORM 72.560.20 50.590.10 44.620.00 62.660.00 45.160.00 55.120.06
SCALEARN++ 73.180.04 51.410.36 44.100.09 63.370.02 45.430.24 55.500.15
SCALEARNUNIFORM++ 73.020.20 50.840.30 44.880.39 62.870.01 44.450.02 55.210.18
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A.5 SCALING COEFFICIENT VISUALIZATIONS

SCALEARNUNIFORM and SCALEARNUNIFORM++ utilize uniform scaling and learn coefficients
that are directly used to scale the output representations of the source adapters. In the following,
we leverage this characteristic to provide an analysis of the potential degrees of effects of source
tasks on target tasks. We present the adapter weights learned using RoBERTaBASE for GLUE and
SuperGLUE, and using XLM-RBASE for HumSet with the random seed set to 0.

The learned coefficients of each PLM layer on GLUE, SuperGLUE, and HumSet of SCALEAR-
NUNIFORM are shown in Figure 6, Figure 7, and Figure 8, respectively. The weights reveal that in
most cases, the actual target task adapter is activated most strongly across the layers. Among the
source tasks, most weights are close to 0, while some source tasks also show high values, partic-
ularly in some of the higher layers of the PLM. Interestingly, some of the scaling coefficients go
beyond or even below 1, which would not have been possible in the traditional paradigm where
scaling coefficients combining multiple vectors are restricted to sum up to 1.

The learned weights on GLUE, SuperGLUE, and HumSet of SCALEARNUNIFORM++ are shown
in Figure 9. SCALEARNUNIFORM++ also mostly activates the actual target task adapter, whereas
this effect is comparatively weaker in SuperGLUE and stronger in HumSet. As is the case with
SCALEARNUNIFORM, many scaling coefficients exceed or go below 1.
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Figure 6: SCALEARNUNIFORM scaling coefficients on GLUE using RoBERTaBASE on seed 0. Target tasks
are shown in the last index of each heatmap.
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Figure 7: SCALEARNUNIFORM scaling coefficients on SuperGLUE using RoBERTaBASE on seed 0. Target
tasks are shown in the last index of each heatmap.
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Figure 8: SCALEARNUNIFORM scaling coefficients on HumSet using XLM-RBASE on seed 0. Target tasks are
shown in the last index of each heatmap.
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Figure 9: SCALEARNUNIFORM++ scaling coefficients on GLUE, SuperGLUE, and HumSet using
RoBERTaBASE for GLUE and SuperGLUE and XLM-RBASE for HumSet on seed 0.
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A.6 COMPLETE FEW-SHOT RESULTS

To obtain a more complete understanding of the few-shot capabilities of ADAPTER, ADAPTERFU-
SION, and SCALEARN, we show few-shot transfer learning results for each dataset, as well as for
every variant of SCALEARN (cf. Section 6.3).

Few-shot results using RoBERTaBASE. Table 13 shows the few-shot transfer learning performance
of the methods on the GLUE benchmark using k = {4,16,32,100} samples. Table 14 shows the
performance of the methods on SuperGLUE. Table 15 shows the performance of the methods on
HumSet (on XLM-R)BASE. Finally, Table 16 shows the results when training on the combination of
all GLUE and SuperGLUE tasks, resulting in |S| = 15 source tasks.

Few-shot results using RoBERTaLARGE. Figure 10 provides an overview, comparing the
few-shot learning capabilities of ADAPTER, ADAPTERFUSION, and SCALEARN when using
RoBERTaLARGE. Moreover, Table 17 shows the few-shot learning performance of the methods
on the GLUE benchmark using k = {4,16,32,100} samples. Table 18 shows the performance
of the methods on SuperGLUE. Table 19 shows the performance of the methods on HumSet (on
XLM-RLARGE). Finally, Table 20 shows the results when training on the combination of all GLUE
and SuperGLUE tasks.
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Figure 10: Few-shot learning results (k = {4,16,32,100}) comparing ADAPTER, ADAPTERFUSION, and
SCALEARN using RoBERTaLARGE on three benchmarks. We show the mean across 5 seeds. For ADAPTERFU-
SION and SCALEARN, we assume that there is a Pfeiffer adapter trained on the target task on k samples and a
Pfeiffer adapter trained on all samples for all other tasks available.
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Table 13: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for
each target task using RoBERTaBASE.

Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.
ADAPTER 4 33.651.39 63.270.11 50.530.04 50.920.00 32.129.28 68.380.00 52.710.00 2.933.88 44.311.84
ADAPTER 16 34.780.58 63.180.00 50.460.20 57.181.23 55.5310.12 68.380.00 53.721.29 0.250.56 47.941.75
ADAPTER 32 33.560.66 63.180.00 51.860.33 70.462.25 73.781.30 68.380.00 54.581.81 0.000.00 51.980.80
ADAPTER 100 40.712.67 71.740.50 58.774.13 85.002.25 82.511.21 73.091.27 56.171.95 21.693.94 61.212.24
ADAPTER All 86.500.33 90.180.11 92.250.19 93.650.71 90.230.41 86.641.07 72.892.54 58.282.50 83.830.98

ADAPTERFUSION 4 33.942.09 72.015.39 52.362.75 50.920.00 77.172.44 72.994.28 52.780.16 2.793.54 51.872.58
ADAPTERFUSION 16 49.122.76 76.261.20 61.9511.04 59.296.12 83.511.79 78.280.37 60.652.27 0.921.82 58.753.42
ADAPTERFUSION 32 43.893.17 76.450.83 78.350.75 68.265.11 70.7230.12 78.871.63 60.874.48 1.914.27 59.916.30
ADAPTERFUSION 100 47.225.48 77.231.74 77.805.43 85.282.42 85.811.64 78.431.34 70.041.17 13.957.80 66.973.38
ADAPTERFUSION All 86.820.04 90.230.01 92.480.15 93.230.95 90.370.20 88.410.49 79.492.21 59.041.69 85.010.72

SCALEARN 4 35.592.13 76.240.38 62.304.58 52.680.66 85.340.98 75.001.59 52.710.00 4.250.83 55.511.39
SCALEARN 16 51.210.84 76.850.19 65.031.37 64.010.90 86.180.38 79.070.68 62.741.74 7.512.36 61.581.06
SCALEARN 32 51.910.36 76.190.18 73.630.46 69.563.25 86.340.44 75.980.39 65.421.50 8.561.70 63.451.03
SCALEARN 100 57.880.34 77.250.39 73.970.73 83.971.76 87.810.28 78.381.36 69.171.70 13.311.71 67.721.03
SCALEARN All 86.970.09 90.320.10 92.510.17 93.880.18 90.960.16 87.750.58 82.061.37 58.471.76 85.360.55

SCALEARN++ 4 34.051.78 75.500.56 59.884.74 52.250.70 85.200.80 72.991.46 52.710.00 3.872.20 54.551.53
SCALEARN++ 16 50.521.42 76.300.60 60.403.04 62.201.99 85.960.30 78.041.58 61.590.98 9.002.05 60.501.49
SCALEARN++ 32 52.301.35 75.710.65 72.012.62 71.902.37 86.040.37 76.181.07 63.680.94 7.543.03 63.171.55
SCALEARN++ 100 56.160.83 76.600.76 61.665.15 83.071.92 87.240.20 77.891.19 65.052.95 11.501.47 64.901.81
SCALEARN++ All 87.060.03 90.040.12 92.031.10 94.150.30 90.620.13 88.210.63 80.871.05 59.820.78 85.350.52

SCALEARNUNIFORM 4 34.171.67 76.620.62 55.252.01 52.481.37 84.470.97 75.441.75 52.710.00 5.091.50 54.531.24
SCALEARNUNIFORM 16 49.551.21 76.600.32 66.691.07 65.052.42 85.830.40 77.651.09 61.811.95 10.962.45 61.771.36
SCALEARNUNIFORM 32 51.501.92 76.280.56 72.840.54 71.492.38 86.010.43 75.881.03 63.751.16 11.152.18 63.611.28
SCALEARNUNIFORM 100 55.061.23 76.940.38 70.422.28 81.630.90 86.220.45 75.931.54 64.621.02 15.542.95 65.791.35
SCALEARNUNIFORM All 86.930.10 90.370.11 92.430.36 93.580.20 90.080.07 87.570.86 80.071.18 59.041.05 85.010.49

SCALEARNUNIFORM++ 4 34.862.18 76.080.38 53.363.84 51.791.09 83.121.63 74.801.05 52.710.00 4.342.15 53.881.54
SCALEARNUNIFORM++ 16 50.090.81 76.130.25 61.353.09 62.591.52 85.550.40 76.420.72 62.600.70 11.943.04 60.831.32
SCALEARNUNIFORM++ 32 50.961.64 76.150.47 70.240.96 71.972.06 85.670.41 74.410.66 62.240.66 12.852.49 63.061.17
SCALEARNUNIFORM++ 100 48.961.99 76.770.34 60.643.67 81.900.67 85.660.63 75.691.17 63.541.53 15.902.99 63.631.62
SCALEARNUNIFORM++ All 86.980.17 90.380.01 92.530.28 94.110.07 90.180.19 87.430.63 80.040.99 59.450.67 85.140.38

Table 14: Complete few-shot transfer learning results on SuperGLUE with k = {4,16,32,100} training sam-
ples for each target task using RoBERTaBASE.

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.
ADAPTER 4 9.652.79 24.926.71 62.050.27 49.441.26 41.9212.04 50.203.63 62.148.12 52.710.00 44.134.35
ADAPTER 16 13.826.06 37.488.48 62.170.00 50.531.18 42.505.46 53.005.48 69.292.93 53.721.29 47.813.86
ADAPTER 32 17.6412.76 38.553.74 62.160.03 52.261.78 36.540.00 51.202.39 70.711.60 54.581.81 47.953.01
ADAPTER 100 37.692.61 51.563.89 61.511.27 54.041.01 50.3810.12 58.405.18 73.934.11 56.171.95 55.463.77
ADAPTER All 79.020.62 72.840.48 76.711.38 65.581.56 63.460.00 70.204.13 84.823.18 72.892.54 73.191.74

ADAPTERFUSION 4 8.512.73 44.5024.40 62.160.03 50.311.04 38.083.44 50.402.19 51.072.40 52.641.31 44.714.69
ADAPTERFUSION 16 13.7110.75 48.8614.98 62.120.27 50.161.84 38.464.30 56.807.22 67.863.99 52.923.71 48.865.88
ADAPTERFUSION 32 26.7914.35 46.3916.63 62.030.34 52.230.87 37.121.29 59.605.86 68.932.71 54.662.35 50.975.55
ADAPTERFUSION 100 34.0213.55 43.524.01 61.831.45 54.611.07 43.858.78 64.203.83 74.643.43 59.711.63 54.554.72
ADAPTERFUSION All 78.820.49 71.791.67 76.720.55 66.571.24 63.460.00 73.104.51 82.322.85 76.032.38 73.601.71

SCALEARN 4 28.376.53 31.5311.93 61.630.22 49.720.39 49.625.34 71.804.49 66.7911.48 52.710.00 51.525.05
SCALEARN 16 31.076.24 49.977.42 60.921.21 51.500.49 51.355.25 69.005.24 72.862.33 54.221.31 55.113.69
SCALEARN 32 34.806.48 44.283.71 61.700.22 50.530.94 48.088.68 68.609.34 76.072.04 56.751.18 55.104.07
SCALEARN 100 40.821.25 58.922.28 62.111.16 53.890.99 61.922.21 69.002.74 86.791.60 61.371.71 61.851.74
SCALEARN All 79.520.06 73.220.44 77.270.68 66.351.20 63.460.00 74.802.15 90.892.59 78.882.14 75.551.16

SCALEARNUNIFORM 4 22.646.41 29.696.54 61.720.25 49.840.86 44.625.71 70.602.30 70.364.48 52.710.00 50.273.32
SCALEARNUNIFORM 16 30.011.08 50.327.20 61.721.03 52.480.70 49.817.24 66.802.17 73.933.70 54.512.75 54.953.23
SCALEARNUNIFORM 32 30.845.74 45.755.47 61.410.32 51.570.73 48.276.61 71.402.30 75.710.98 55.380.75 55.042.86
SCALEARNUNIFORM 100 35.501.94 58.742.59 61.360.99 52.790.58 56.977.98 65.002.00 82.863.24 59.211.28 59.052.58
SCALEARNUNIFORM All 80.130.38 71.910.60 76.060.41 67.371.22 62.501.27 71.201.23 89.111.97 75.310.90 74.201.00

SCALEARN++ 4 27.534.00 11.116.18 60.921.59 49.940.50 44.625.71 70.002.24 62.508.28 52.710.00 47.423.56
SCALEARN++ 16 25.782.80 49.4310.93 59.862.01 52.010.62 49.428.62 71.801.10 74.643.43 56.681.17 54.953.83
SCALEARN++ 32 34.002.31 39.995.10 59.800.63 52.040.53 42.503.99 73.604.56 75.711.60 56.390.86 54.252.45
SCALEARN++ 100 37.323.39 58.721.28 60.432.22 53.230.61 62.121.87 66.201.30 85.712.19 59.061.89 60.351.84
SCALEARN++ All 80.130.09 72.710.57 76.440.53 67.131.24 62.262.28 75.201.93 93.042.14 79.030.95 75.741.22

SCALEARNUNIFORM++ 4 23.048.12 29.112.02 61.020.41 49.621.41 46.734.54 67.605.68 66.438.60 52.710.00 49.533.85
SCALEARNUNIFORM++ 16 26.674.91 53.008.69 61.061.41 52.160.67 50.967.10 67.402.97 74.294.66 54.802.74 55.044.14
SCALEARNUNIFORM++ 32 30.621.27 49.466.35 59.881.47 51.690.70 44.623.70 67.201.64 78.210.80 56.901.07 54.822.13
SCALEARNUNIFORM++ 100 29.779.96 58.402.35 60.770.91 53.261.87 61.153.76 63.202.77 80.000.80 57.181.74 57.973.02
SCALEARNUNIFORM++ All 79.790.14 71.750.38 76.130.52 67.870.89 63.460.00 74.001.70 91.612.53 74.841.58 74.930.97
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Table 15: Complete few-shot transfer learning results on HumSet with k = {4,16,32,100} training samples
for each target task using XLM-RBASE.

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
ADAPTER 4 5.782.05 4.211.16 0.690.34 11.072.07 3.580.49 5.071.22
ADAPTER 16 8.226.21 2.592.28 0.780.42 8.424.12 2.591.34 4.522.87
ADAPTER 32 4.651.88 2.302.71 0.820.15 5.967.43 2.971.52 3.342.74
ADAPTER 100 44.261.22 10.599.70 0.000.00 25.261.36 0.010.02 16.022.46
ADAPTER All 71.380.28 51.021.23 43.260.82 61.430.91 42.460.51 53.910.75

ADAPTERFUSION 4 13.601.29 7.202.19 2.450.37 16.242.77 8.161.00 9.531.53
ADAPTERFUSION 16 13.271.27 8.380.99 2.170.67 15.982.41 7.630.73 9.481.21
ADAPTERFUSION 32 12.591.91 6.411.79 2.240.25 13.673.94 7.121.00 8.401.78
ADAPTERFUSION 100 8.031.36 4.232.75 1.770.54 32.024.30 5.071.32 10.222.05
ADAPTERFUSION All 72.050.12 49.630.53 43.150.38 60.680.23 42.140.46 53.530.35

SCALEARN 4 5.561.27 4.540.57 1.120.23 12.990.26 3.950.85 5.630.64
SCALEARN 16 13.210.74 8.900.41 3.680.16 18.300.60 7.400.53 10.300.49
SCALEARN 32 16.640.43 16.480.74 7.230.37 26.390.34 11.110.47 15.570.47
SCALEARN 100 34.041.36 26.310.67 13.271.06 30.681.20 14.430.39 23.750.94
SCALEARN All 72.360.05 51.630.61 44.060.37 61.520.11 42.810.63 54.480.35

SCALEARNUNIFORM 4 5.351.09 4.320.17 1.030.20 13.240.43 3.780.64 5.540.50
SCALEARNUNIFORM 16 13.650.47 8.690.59 3.640.13 17.511.23 7.590.13 10.220.51
SCALEARNUNIFORM 32 15.340.52 16.721.09 6.980.34 25.750.48 10.580.19 15.070.52
SCALEARNUNIFORM 100 33.400.63 25.480.71 13.430.64 29.440.78 14.920.62 23.330.68
SCALEARNUNIFORM All 72.200.14 50.080.79 42.970.70 60.620.16 41.950.60 53.560.48

SCALEARN++ 4 5.421.47 4.660.45 1.160.33 13.170.17 3.621.24 5.610.73
SCALEARN++ 16 13.550.71 8.890.16 3.620.09 18.621.10 7.730.28 10.480.47
SCALEARN++ 32 16.270.82 16.351.62 7.270.13 26.080.51 10.700.28 15.330.67
SCALEARN++ 100 33.760.49 25.830.74 13.270.66 30.110.51 14.370.61 23.470.60
SCALEARN++ All 72.380.27 51.660.27 44.230.50 61.660.13 42.210.21 54.430.28

SCALEARNUNIFORM++ 4 5.271.18 4.370.14 1.080.09 13.200.50 3.561.15 5.500.61
SCALEARNUNIFORM++ 16 13.470.77 9.040.58 3.600.10 17.410.59 7.500.33 10.200.47
SCALEARNUNIFORM++ 32 15.240.35 16.750.72 7.310.28 26.230.83 10.610.27 15.230.49
SCALEARNUNIFORM++ 100 39.222.98 26.220.74 13.761.11 30.340.63 14.560.59 24.821.21
SCALEARNUNIFORM++ All 72.020.32 50.780.41 42.600.85 60.820.14 42.140.72 53.670.49
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Table 17: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for
each target task using RoBERTaLARGE.

Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.
ADAPTER 4 34.090.48 62.002.54 50.461.12 50.920.00 10.022.34 68.330.11 51.482.74 3.473.01 41.351.54
ADAPTER 16 35.121.00 63.110.18 49.590.24 59.383.42 12.415.51 68.380.00 52.641.06 2.553.07 42.901.81
ADAPTER 32 34.050.94 63.881.40 51.300.98 74.702.59 27.1613.89 68.770.71 51.621.75 7.4710.36 47.374.08
ADAPTER 100 41.392.59 71.350.81 53.751.18 83.672.22 76.844.07 69.071.48 56.972.30 30.965.72 60.502.55
ADAPTER All 89.620.18 89.870.67 94.130.06 95.240.08 91.810.29 87.822.11 81.232.92 64.071.97 86.721.04

ADAPTERFUSION 4 39.266.48 79.280.71 65.1311.67 51.030.23 76.4012.07 69.952.76 54.083.07 4.931.85 55.014.85
ADAPTERFUSION 16 49.948.89 80.370.13 78.853.67 56.653.82 83.960.85 77.501.62 70.474.04 16.083.34 64.233.29
ADAPTERFUSION 32 56.1210.53 80.010.25 80.551.30 75.297.71 85.360.87 77.114.44 78.703.54 6.778.63 67.494.66
ADAPTERFUSION 100 60.8413.22 78.863.07 85.090.80 85.441.87 88.090.39 81.861.63 84.402.62 34.692.72 74.913.29
ADAPTERFUSION All 89.570.17 90.880.06 94.150.04 95.870.00 91.860.15 88.970.78 85.701.13 66.391.83 87.930.52

SCALEARN 4 45.654.75 79.590.24 66.973.83 52.061.12 81.942.17 72.062.37 52.710.00 3.141.31 56.771.97
SCALEARN 16 57.541.50 80.040.58 77.240.85 62.592.91 85.081.83 76.422.70 69.752.56 4.233.10 64.112.00
SCALEARN 32 60.951.59 79.950.34 77.720.94 74.131.58 88.500.27 76.911.69 77.911.83 5.142.00 67.651.28
SCALEARN 100 69.181.32 80.800.21 83.642.26 84.200.98 89.250.40 77.601.78 82.960.93 10.801.43 72.301.17
SCALEARN All 90.090.09 90.510.26 94.180.03 95.410.16 92.320.15 88.090.82 87.080.54 65.402.62 87.910.55

SCALEARNUNIFORM 4 45.735.20 79.740.34 67.953.57 52.411.39 81.591.89 72.212.26 52.710.00 3.251.02 56.951.96
SCALEARNUNIFORM 16 57.611.01 79.810.31 74.551.75 57.432.44 85.320.85 75.341.10 68.811.21 1.922.57 62.601.41
SCALEARNUNIFORM 32 58.861.71 80.060.14 75.861.12 73.601.06 86.610.33 74.661.16 77.911.12 5.664.15 66.651.35
SCALEARNUNIFORM 100 63.511.39 80.340.21 74.982.50 81.441.48 87.360.24 76.471.26 81.371.87 14.981.27 70.061.28
SCALEARNUNIFORM All 90.110.04 90.050.28 94.230.08 95.410.16 92.110.06 88.631.72 84.403.93 66.980.58 87.740.86

SCALEARN++ 4 44.544.16 79.580.41 66.902.38 51.700.75 80.803.59 71.861.54 52.710.00 3.780.89 56.481.72
SCALEARN++ 16 56.711.57 80.110.37 73.801.36 60.163.41 85.171.14 75.203.15 69.822.07 2.853.64 62.982.09
SCALEARN++ 32 58.871.51 79.090.49 75.920.89 73.123.27 87.450.32 75.691.18 77.330.90 5.474.01 66.611.57
SCALEARN++ 100 65.071.14 80.230.33 78.820.81 82.001.89 88.010.84 76.621.16 81.812.60 12.112.78 70.581.44
SCALEARN++ All 90.310.10 90.590.03 94.050.03 95.930.24 92.480.15 88.481.26 86.281.05 67.130.59 88.160.43

SCALEARNUNIFORM++ 4 44.484.38 79.420.58 66.594.06 51.460.57 82.151.17 73.221.12 52.710.00 2.340.52 56.551.55
SCALEARNUNIFORM++ 16 56.631.44 79.530.45 72.952.27 56.941.01 85.140.66 75.612.09 68.861.85 0.802.46 62.061.53
SCALEARNUNIFORM++ 32 57.683.31 79.470.42 73.781.89 75.150.96 86.640.56 76.651.49 78.340.66 1.782.84 66.191.52
SCALEARNUNIFORM++ 100 56.721.49 78.910.82 66.112.51 83.750.58 85.530.82 74.332.49 81.682.51 20.843.14 68.481.79
SCALEARNUNIFORM++ All 90.080.01 90.490.02 94.120.16 95.180.16 92.120.09 90.050.54 84.981.32 64.970.85 87.750.39

Table 18: Complete few-shot transfer learning results on SuperGLUE with k = {4,16,32,100} training sam-
ples for each target task using RoBERTaLARGE.

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.
ADAPTER 4 15.583.93 31.7815.80 61.830.58 49.750.56 50.388.93 49.605.59 53.934.96 51.482.74 45.545.39
ADAPTER 16 17.427.21 40.463.08 61.640.54 51.381.37 54.042.30 53.605.46 61.073.19 52.641.06 49.033.03
ADAPTER 32 22.0414.70 41.115.21 62.170.01 52.881.91 47.693.76 66.207.60 67.502.33 51.621.75 51.404.66
ADAPTER 100 31.0119.22 51.934.94 62.170.00 55.962.03 52.885.81 65.2013.86 82.145.65 56.972.30 57.286.73
ADAPTER All 88.520.09 80.730.69 82.360.72 69.161.31 63.250.64 71.9013.63 92.681.78 81.232.92 78.732.72

ADAPTERFUSION 4 19.214.17 24.0720.35 61.770.18 50.631.49 43.2712.03 57.007.42 61.4311.75 52.710.00 46.267.17
ADAPTERFUSION 16 14.285.34 28.094.31 61.510.35 51.103.13 47.319.26 66.2012.44 77.864.48 53.211.37 49.955.09
ADAPTERFUSION 32 18.8211.93 37.6810.93 64.973.64 52.821.39 44.423.36 62.4010.24 78.214.45 58.054.21 52.176.27
ADAPTERFUSION 100 55.421.38 59.980.03 71.062.02 56.021.25 55.585.33 76.4013.22 84.644.11 57.622.71 64.593.75
ADAPTERFUSION All 89.210.17 80.520.24 82.210.30 69.091.68 63.460.68 81.2016.07 95.710.98 86.061.07 80.932.65

SCALEARN 4 32.723.66 58.491.59 61.900.30 51.661.61 55.588.66 71.006.36 77.502.04 52.710.00 57.693.03
SCALEARN 16 36.713.11 53.373.76 61.820.56 53.511.09 50.195.54 77.407.13 77.864.11 55.883.01 58.343.54
SCALEARN 32 36.723.37 57.304.03 61.470.75 53.262.28 49.045.73 80.603.05 80.001.49 57.625.12 59.503.23
SCALEARN 100 54.2112.46 59.790.30 68.783.12 51.881.84 57.121.87 81.805.97 85.002.04 65.343.44 65.493.88
SCALEARN All 87.850.01 78.400.70 80.292.52 68.561.68 62.980.68 85.403.78 92.861.79 84.910.59 80.161.47

SCALEARNUNIFORM 4 33.125.16 59.470.94 61.511.01 50.911.64 63.460.00 68.003.08 78.932.33 52.710.00 58.511.77
SCALEARNUNIFORM 16 32.752.12 54.657.16 62.110.15 52.260.85 52.123.49 72.001.87 81.792.65 54.443.40 57.762.71
SCALEARNUNIFORM 32 35.303.67 58.223.85 61.760.61 54.672.40 51.926.04 76.402.97 80.002.93 58.925.58 59.653.51
SCALEARNUNIFORM 100 41.505.85 60.010.10 61.960.76 51.851.21 58.271.75 72.405.37 85.002.04 60.651.05 61.452.27
SCALEARNUNIFORM All 88.850.22 80.420.06 81.850.21 69.911.15 61.540.00 82.003.08 90.001.60 84.041.66 79.831.00

SCALEARN++ 4 33.871.90 56.113.47 61.750.21 51.321.66 60.583.96 68.006.04 78.212.33 52.710.00 57.822.45
SCALEARN++ 16 35.360.48 53.715.41 61.930.39 52.790.17 50.772.99 71.403.78 80.004.07 55.232.75 57.652.51
SCALEARN++ 32 38.871.77 59.950.00 61.940.81 54.612.06 46.923.22 78.602.30 79.642.71 53.143.49 59.212.05
SCALEARN++ 100 43.154.43 59.950.00 63.360.98 52.010.73 57.123.23 75.204.15 86.792.04 62.242.68 62.482.28
SCALEARN++ All 88.280.23 80.760.58 83.080.31 69.591.89 62.980.68 87.801.10 91.071.79 85.700.32 81.160.86

SCALEARNUNIFORM++ 4 33.871.90 56.113.47 61.750.21 51.321.66 60.583.96 68.006.04 78.212.33 52.710.00 57.822.45
SCALEARNUNIFORM++ 16 35.360.48 53.715.41 61.930.39 52.790.17 50.772.99 71.403.78 80.004.07 55.232.75 57.652.51
SCALEARNUNIFORM++ 32 38.871.77 59.950.00 61.940.81 54.612.06 46.923.22 78.602.30 79.642.71 53.143.49 59.212.05
SCALEARNUNIFORM++ 100 43.154.43 59.950.00 63.360.98 52.010.73 57.123.23 75.204.15 86.792.04 62.242.68 62.482.28
SCALEARNUNIFORM++ All 88.850.22 80.700.04 82.130.21 70.190.26 62.980.68 83.602.88 91.072.82 84.841.02 80.541.02
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Table 19: Complete few-shot transfer learning results on HumSet with k = {4,16,32,100} training samples
for each target task using XLM-RLARGE.

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
ADAPTER 4 4.800.60 4.330.18 0.600.08 10.871.72 2.560.56 4.630.63
ADAPTER 16 7.122.11 1.351.85 0.450.32 11.080.59 2.820.82 4.561.14
ADAPTER 32 6.603.21 0.580.54 0.520.24 11.821.44 2.400.92 4.391.27
ADAPTER 100 24.6613.33 12.383.57 0.000.00 16.211.14 3.132.91 11.274.19
ADAPTER All 72.290.59 49.311.27 45.250.03 62.580.67 44.360.66 54.760.65

ADAPTERFUSION 4 12.432.84 7.580.95 2.110.12 14.590.57 7.101.13 8.761.12
ADAPTERFUSION 16 11.062.41 6.492.35 2.300.26 13.081.04 6.331.79 7.851.57
ADAPTERFUSION 32 11.903.19 6.402.61 2.500.60 13.230.90 6.161.54 8.041.77
ADAPTERFUSION 100 31.925.40 17.742.59 1.940.42 31.442.30 8.083.78 18.222.90
ADAPTERFUSION All 72.530.45 51.330.23 43.750.52 62.310.25 42.782.11 54.540.71

SCALEARN 4 5.520.93 4.940.21 1.300.26 13.590.46 3.810.90 5.830.55
SCALEARN 16 12.050.80 7.780.31 3.240.09 20.101.33 6.190.30 9.870.57
SCALEARN 32 16.340.63 15.740.95 6.540.29 24.920.40 10.540.33 14.820.52
SCALEARN 100 24.600.97 24.361.80 11.370.40 34.262.54 15.630.64 22.051.27
SCALEARN All 73.320.08 53.940.13 44.140.75 63.890.16 44.750.47 56.010.32

SCALEARNUNIFORM 4 4.920.61 4.840.26 1.250.30 13.050.48 3.410.11 5.490.35
SCALEARNUNIFORM 16 11.580.45 7.780.53 3.150.19 20.110.32 5.790.16 9.680.33
SCALEARNUNIFORM 32 15.450.00 15.480.64 6.540.52 24.220.16 9.700.17 14.280.30
SCALEARNUNIFORM 100 21.910.00 23.312.49 10.600.22 36.442.05 15.270.13 21.510.98
SCALEARNUNIFORM All 72.560.20 50.590.10 44.620.00 62.660.00 45.160.00 55.120.06

SCALEARN++ 4 4.900.40 4.950.20 1.450.26 13.480.52 3.370.50 5.630.38
SCALEARN++ 16 12.450.65 8.470.77 3.290.13 21.011.12 6.550.37 10.350.61
SCALEARN++ 32 16.610.57 15.801.00 6.710.29 24.760.32 10.310.36 14.840.51
SCALEARN++ 100 24.440.95 23.950.40 11.360.65 35.181.28 15.770.77 22.140.81
SCALEARN++ All 73.180.04 51.410.36 44.100.09 63.370.02 45.430.24 55.500.15

SCALEARNUNIFORM++ 4 4.920.61 4.840.26 1.250.30 13.050.48 3.410.11 5.490.35
SCALEARNUNIFORM++ 16 11.580.45 7.780.53 3.150.19 20.110.32 5.790.16 9.680.33
SCALEARNUNIFORM++ 32 15.450.00 15.480.64 6.540.52 24.220.16 9.700.17 14.280.30
SCALEARNUNIFORM++ 100 21.910.00 23.312.49 10.600.22 36.442.05 15.270.13 21.510.98
SCALEARNUNIFORM++ All 73.020.20 50.840.30 44.880.39 62.870.01 44.450.02 55.210.18
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