Under review as a conference paper at ICLR 2024

SCALEARN: SIMPLE AND HIGHLY PARAMETER-
EFFICIENT TASK TRANSFER BY LEARNING TO SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task learning (MTL) has shown considerable practical benefits, particu-
larly when using pre-trained language models (PLMs). While this is commonly
achieved by simultaneously learning n tasks under a joint optimization proce-
dure, recent methods such as AdapterFusion structure the problem into two dis-
tinct stages: (i) task learning, where knowledge specific to a task is encapsulated
within sets of parameters (e.g., adapters), and (ii) transfer, where this already
learned knowledge is leveraged for a target task. This separation of concerns
provides numerous benefits, such as promoting reusability, and addressing cases
involving data privacy and societal concerns; on the flip side, current two-stage
MTL methods come with the cost of introducing a substantial number of addi-
tional parameters. In this work, we address this issue by leveraging the usefulness
of linearly scaling the output representations of source adapters for transfer learn-
ing. We introduce SCALEARN, a simple and highly parameter-efficient two-stage
MTL method that capitalizes on the knowledge of the source tasks by learning
a minimal set of scaling parameters that enable effective knowledge transfer to
a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and
HumsSet) show that our SCALEARN, in addition to facilitating the benefits of two-
stage MTL, consistently outperforms strong baselines with only a small number
of transfer parameters — roughly 0.35% of those of AdapterFusion. Remarkably,
we observe that SCALEARN maintains its strong abilities even when further re-
ducing parameters through uniform scaling and layer-sharing, achieving similarly
competitive results with only 8 transfer parameters for each target task. Our pro-
posed approach thus demonstrates the power of simple scaling as a promise for
more efficient task transfer[T]

1 INTRODUCTION

With the wide availability of pre-trained language models (PLMs) as the backbone of language pro-
cessing, multi-task learning (MTL) has shown significant benefits, especially for tasks with possible
conceptual commonalities (Ruder, 2017; Zhang & Yang, |[2022; Raffel et al., 2020). The traditional
paradigm in MTL is to formulate a joint optimization objective based on a set of tasks and train a sin-
gle model to simultaneously learn and transfer the knowledge relevant to the tasks. This joint MTL
approach can be realized by fine-tuning a PLM (Liu et al., |2019a; |Stickland & Murray, [2019)), or,
more recently, by using parameter-efficient, often modularized, MTL approaches (Mahabadi et al.,
2021b;[Zeng et al., 2023} Pilault et al., 2021} |Asai et al.,2022; |Ponti et al.| [2023} |Caccia et al.}[2022)).

As an alternative to the joint MTL paradigm, some works such as ADAPTERFUSION (Pfeiffer et al.,
2021)) clearly distinguish task training from transfer learning, assigning dedicated parameters to each
of these aspects. In this paradigm, referred to as two-stage MTL, first each source task is trained
separately and stored into a separate module like an adapter (Houlsby et al., 2019), and then a task
transfer layer is trained for a given target task using information from an arbitrary set of source
tasks. This separation of concerns between task and transfer learning offers valuable benefits: (1)
Learning a separate transfer layer for each target task in a two-stage MTL approach reduces the
potentially destructive effects of transfer learning on specific tasks, as the transfer layer parameters
corresponding to each target task can independently decide what information should be used from
the available source tasks. As shown in our experiments, this supports the effectiveness of transfer
learning, making it less sensitive to task selection. (2) Since the source tasks can simply be taken
from already trained modules (no need for re-training), two-stage approaches particularly promote

'Our code is available at URL upon deanonymization.

Under review as a conference paper at ICLR 2024

GLUE SuperGLUE
85.5 76 S * Adapter
T R PRl e) ProPETL 0
85.0 * *’ 75 *'_ gl Compacter++ rj
Q g b (1A)
Ygss O 74 * i
3 7 : FineTune-m -
= : Adapter-m =20
84.01 FineTune __________ = ﬁ P 5
o ‘ 7206 @ ProPETL-m 42
Z ineTune Q@ HyperFormer
83.5 p @| O HyperFormer++
" o | — 2
83.0 $3 AdapterFusion -3
70 o Y% Scalearn =?
10° 107* 1072 10° 107 106 10% 102 10° 102 V¢ ScalearnUniform ,:| 0\
o % ScaLearn++ 2
% of parameters updated * ScalLearnUniform++ [}

Figure 1: Performance and parameter-efficiency of single task learning (STL), and joint/two-stage MTL meth-
ods, evaluated on GLUE (Wang et al.l 2019b) and SuperGLUE (Wang et al.| |2019a)) using RoOBERTagasg (Liu
et al.,2019b). The reported values for the two-stage MTL methods only consider the ones in the respective
transfer layers. The full details of the learnable parameters and performance results are provided in Section@

reusability — a principle of Green Al (Scells et al., 2022} |Schwartz et al.,2020)). Further, they provide
a practical solution to cases involving issues such as data privacy and/or fairness constraints, as a
pre-trained module can readily provide the (e.g., already debiased) functionality of the source task
even without the need to have access to its training data (Lauscher et al.| 2021} Kumar et al., [2023)).

Despite these benefits, current two-stage MTL solutions introduce significantly more learnable pa-
rameters in comparison with recent joint MTL ones, exacerbated by the fact that the number of
parameters in two-stage methods increases linearly with the number of target tasks. As an example,
in our experiment setup with eight target tasks using ROBERTagasg (Liu et al., 2019b), ADAPTER-
FUSION introduces ~ 134% new parameters for transfer learning, while HYPERFORMER++ (Ma-
habadi et al., 2021b) conducts joint MTL by adding ~ 4% (around 5 Million) trainable parameters
(details in Table[I|and Section[6). To date, this high number of parameters requiring optimization is
in stark contrast to the promise of green Al given by the modularized nature of two-stage MTL.

In this work, we propose a highly parameter-efficient and effective two-stage MTL method by scal-
ing the output representations of source adapters using encoder PLMs. Learning scaling vectors
applied to input representations has recently been introduced to fulfill various objectives such as
task learning, domain adaptation, and bias mitigation (Liu et al., 2022; [Ilharco et al., |2023; Ma-
soudian et al., 2023). In the work at hand, we first analyze the effect of scaling output vectors of
source adapters on transfer learning, examined by linearly probing the performance on a given target
task. We observe that (1) the degree of scaling of source adapter representations is not necessarily
linearly correlated with the transfer learning performance on a target task; (2) when summing two
scaled adapter representations, the optimal scaling coefficients often do not sum up to 1. Building
on these findings, we introduce SCALEARN, a novel two-stage MTL method that learns to transfer
the knowledge of the source adapters using a small set of scaling parameters. For a given target
task, SCALEARN introduces a set of parameters that scale the output representation of each source
adapter and combine the resulting scaled representations by simply taking the element-wise sum.
SCALEARN learns to apply a (linear) scaling transformation without imposing any constraint on the
relation of the scaling coefficients across source tasks, where the parameters are optimized using
common gradient descent methods. This approach results in high parameter-efficiency, such that —
following the mentioned experiment setting — SCALEARN only adds ~ 0.47% (around 0.5 million)
new parameters. We further introduce an even more parameter-efficient variation through uniform
scaling (SCALEARNUNIFORM), where each scaling vector is reduced to a single scaling parame-
ter. Finally, by sharing the parameters across the layers, we achieve our most parameter-efficient
variation (SCALEARNUNIFORM++), only containing 64 parameters for transfer learning.

We conduct a large set of transfer learning experiments on the GLUE (Wang et al., 2019b)), Super-
GLUE (Wang et al., 2019a), and HumSet (Fekih et al.,[2022) benchmarks using the RoOBERTa model
(BASE and LARGE) (Liu et al.| 2019b), and compare the parameter-efficiency and performance of
SCALEARN with strong joint and two-stage MTL baselines. Figure |1| summarizes our results on
GLUE and SuperGLUE. Our results show that SCALEARN, while providing high efficiency and the
benefits of the two-stage MTL paradigm, consistently outperforms the baselines. Interestingly, the
overall performance of SCALEARN remains highly competitive and only marginally different in its
more parameter-efficient variations. Our results also show the advantage of two-stage models in
avoiding destructive effects during transfer learning, particularly on the SuperGLUE and HumSet
benchmarks (cf. Section[6). Finally, SCALEARN exhibits strong performance in few-shot settings,

Under review as a conference paper at ICLR 2024

outperforming both regular adapters and ADAPTERFUSION when trained only on a handful of data
points. Overall, with SCALEARN we leverage the power of scaling as a viable, non-destructive,
simple-to-implement, and highly parameter-efficient solution to the current shortcomings of two-
stage and joint MTL methods, paving the future for more effective and efficient task transfer.

2 BACKGROUND

In task transfer learning, we consider a PLM as well as two sets S and 7', representing the source and
target tasks, respectively. The aim of MTL is to leverage the information of tasks in S to improve
the generalization on tasks in 7.

Single Task Learning (STL). In this basic setting, a separate set of parameters is optimized on each
task (S = T') without any knowledge transfer between tasks. STL can be done by fine-tuning the
PLM parameters or by introducing more parameter-efficient modules into the model, such as adapter
modules (Pfeiffer adapters (Houlsby et al.,|2019; |Pfeiffer et al.,2021), PROPETL (Zeng et al.,|2023)),
or COMPACTER++ (Mahabadi et al., [2021a)), (I A)® (Liu et al., 2022), prefix-tuning (Li & Liang}
2021)), or LoRA (Hu et al.,[2022), each with O, parameters for each task s.

Joint MTL. This approach is commonly done by having a unified model for all tasks (S = T,
and a joint optimization objective that simultaneously optimizes the model using samples from all

tasks (Ruder, 2017). The general joint MTL objective can be formulated as Lioine = ELS:ll oL,
where o 1s the sampling weight of task s. This optimization objective can be used to fine-tune the
parameters of a PLM (Liu et al.,|2019a} |Stickland & Murray, 2019} Raffel et al.|[2020), or those of a
modularized architecture (Mahabadi et al., 202 1b; Pilault et al.,[202 1} [Ponti et al., 2023)). Despite the
benefit of having one unified model, the joint loss often causes tasks to compete with each other for
learning capacity, leading to the fask interference problem (Xin et al,[2022; McCloskey & Cohen,
1989; [Kirkpatrick et al.l [2017). This makes the joint MTL paradigm particularly sensitive to the
selection of tasks (Xin et al.l 2022)), while various methods in the literature have aimed to address
this issue (e.g., Kendall et al.|(2018)); |[Pilault et al.|(2021)); a brief review is provided in Section .

Two-stage MTL. In contrast to joint MTL, two-stage MTL methods optimize each target task in-
dependently, bypassing the issue of task interference (Pfeiffer et al., [2021). Similarly to STL, a
parameter-efficient module is first learned for each source task s with parameters O;. In principle,
two-stage MTL methods can simply use already pre-trained modules (such as adapters), saving the
costs of re-training modules on each task. This facilitates the re-use of existing parameter-efficient
modules for each source taskﬂ which may vary in performance and/or take into account additional
constraints such as fairness and bias mitigation (Pfeiffer et al., |2023}; [Kumar et al., 2023} |Lauscher,
et al |2021). Moreover, it also removes the need for accessing the training data of the source tasks
(e.g., due to data privacy), so far as the source task’s functionality is solely provided via parameter-
efficient modules. Next, given |S| (pre-trained and frozen) source task modules, two-stage MTL
methods define and optimize a transfer layer for each target task to leverage the knowledge of source
tasks to solve the target task. This stage introduces {2, new parameters for each target task ¢.

ADAPTERFUSION (Pfeiffer et al.| [2021) introduces an implementation of the two-stage approach
with strong MTL performance (Pfeiffer et al.,|2023). It uses an attention mechanism as its transfer
layer, inserted into each layer of the PLM, after the source adapters. More specifically, given the
output vector of each source adapter s in each layer [, referred to as o, the attention layer (with
target task ¢ as query and source tasks S as keys and values) learns to assign a weight w' to each
source task. The final output of the target task ¢ in this layer is calculated as:

IS S|
o, = Zwioi, whereZwi =1 (N
s=1 s=1
Regardless of how the weights are calculated, the method can be seen as a weighted summation of
source output vectors, where the weights form a categorical probability distribution. In the following
section, we provide an analysis on the effect of these weights in transfer learning.

3 ANALYSIS ON SCALING OUTPUT REPRESENTATIONS

We seek to leverage simple scaling as a novel composition method in transfer learning. To under-
stand the effect of scaling, we now conduct preliminary experiments in which we scale the output

2E.g., through sharing platforms such as AdapterHub (https://adapterhub.ml/) (Pfeiffer et al.,|2020).

https://adapterhub.ml/

Under review as a conference paper at ICLR 2024

representations of adapters — in isolation and combining two of them each. We use the popular
GLUE (Wang et al.,[2019b) and SuperGLUE (Wang et al., | 2019a)) benchmarks, utilizing a selection
of their tasks (owing to the high number of possible combinations), including entailment, paraphrase
detection, sentiment analysis, question answering, and commonsense reasoning tasks. We train
a Pfeiffer adapter (Pfeiffer et al., |2021) on each task using the encoder PLM RoBERTagasg (Liu
et al.l 2019b). In our probing-like setup (Tenney et al., 2019), we freeze both the PLM and adapter
weights and train a new task head on target task ¢ each time we change the scaling factor. Complete
descriptions of the datasets, hyperparameters, and training procedure are provided in Section [5]and
Appendix [A.T] Additional experiments and results on further tasks are provided in Appendix [A.2]

0.95 0.8 0.9 0.8 S T |
0ol 07 MNU —e- MNLI —e- MNLI o —e- MNLI T~
R Yl —_—— L —-
-4- QNU —e—q o75{ ~*- QN —e T | oss +- QNLI _— 0.751 —4- QNLI i o—d
20.854 —x - MultiRC -#- /== —%=- MultiRC .~ 4 —x - MultiRC ./:__ == MultiRC /x__
I P cB P T it P COPA " *—q P MRPC & ~+=9 077 _e— RTE /'/,/ *
S 0. . e . o7 . - s x
o / x / 065 / w
o / 7/ . / 7
075 / 1 / 02,
; _ 06571 4 Xemmox 0.75 R e i
0.7 BTy gy R LT 061 gf=~ MR
R A SN % 4
|
0.65 0.6 0.7 0.55
0.001 03 05 07 0910 0001 03 05 07 0910 0001 03 05 07 0910 0001 03 05 07 0910
Ws Ws Ws
0.8 0.9 (R oy vy
______________ 4 I SeaE=Iogsa
,,,,,,,,,, =71 075

0.75 e ATTIIEIITASN 085 | o4
[SSp £ Il [2l _—*

8 —o= Wi = 0.0 —o— Wit = 0.0 d == ey =00 07 —o— W = 0.0
g o8 way =03 | 07 oy =03 | 08 W =03 | Wy =03
o075 / Wy = 0.5 wWune = 0.5 Wy = 0.5 : W = 0.5
=» = wyny =07 0.65 =»= Wy =07 0.75 =»= Wy = 0.7 0.6 =»= wyyy = 0.7

0.7 9—e" o L o by X o

W = 1.0 | = W = 1.0 s = 1.0
0.65

0.6 0.7 0.55
0.001 03 05 0.7 0910 0.00.1 0.3 0.5 0.7 0.91.0 0.00.1 0.3 0.5 0.7 0.91.0 0.00.1 0.3 0.5 0.7 0.91.0
Wee Wcora WmRrpPC WRTE

(a) CB (b) COPA (c) MRPC (d) RTE
Figure 2: Probing results of 4 target tasks in various transfer learning conditions. (Top) Effect of scaling the
output representations of adapters by weight ws using different source adapters. (Bottom) Effect of combining
independently scaled output representations of two adapters trained on the target task and MNLI, respectively.
Each point shows the mean over 5 seeds. Full results are reported in Appendix@

We start by analyzing the performance change of a target task when scaling the output representa-
tions of the adapter of one given source task. We define w; as the scaling value in the range of [0, 1}],
multiplied by the output representations o, of the source task s in all layers, such that o} = w,o’.
Figure [2] (Top) shows the probing results on four target tasks (each column), given various scaling
weights applied to four source tasks (one of which is the respective target task). The results show
that, while increasing the scaling weights generally improves the performance, the optimal value
is not necessarily at ws = 1. In particular, there exist instances with 0 < w,; < 1 reaching better
performance than ws; = 1. This suggests that partial knowledge transfer of tasks may be more
beneficial. Notably, and as also reported in previous studies (Poth et al., [202 1} |Pruksachatkun et al.,
2020), some source tasks such as MNLI show strong transfer learning abilities.

Next, we go one step further by assessing the scaled combination of the output vectors of two
adapters. We focus on MNLI as one of the source tasks given its observed benefit in transfer learning,
and set the second source adapter (denoted by s) to the one corresponding to the target task. We use
two scaling parameters wyNr1 and w, to scale o{v[and oi, respectively. The resulting output vector
is defined as: o} = w,0! + wmnL10 - Figure [2] (Bottom) shows the results for various values of
wmnL and wg. Combining the information encapsulated within multiple adapters through scaling
can result in improved performance. Interestingly, in some cases, the best combination of wynr and
ws does not add up to 1, i.e., w; + w, # 1. This finding stands in contrast to the established practice
of forcing the scaling coefficients to sum up to 1 (e.g., as in ADAPTERFUSION, as shown in Eq.[I).

These initial experiments — while only covering a simple combination of up to two source tasks —
provide insights into the benefits of scaling representations for transfer learning: (1) scaling out-
put vectors is an effective method for controlling the (partial or full) activation of the knowledge
contained in an adapter module; (2) an optimal configuration of the scaling parameter will, in many
cases, lead to superior results on the target task; (3) the optimal weights do not necessarily sum up to
1. These observations provide strong motivation for designing a method to combine representations
from several adapters by scaling their output vectors, presented in the next section.

4 SCALEARN — LEARNING TO SCALE FOR KNOWLEDGE TRANSFER

Building on our findings from Section [3] we present SCALEARN, a novel two-stage transfer learn-
ing method to combine the knowledge of source adapters by scaling their output representations.

Under review as a conference paper at ICLR 2024

Our core contribution regards the transfer layer, built on the output of the tasks’ modular net-
works. Similar to |Pfeiffer et al.| (2021), we utilize adapter modules for the task learning layer.
In particular, the output representation of the adapter of source task s at layer [is defined as:
ol = U!(ReLU(D!(z))) + ., where z! is the input vector, and U! and D' denote the up- and
down-projection parameter matrices, respectively.

Our introduced SCALEARN linearly scales and combines the output representations of the source
adapters, o', . . ., of spto achieve the objective of target task ¢. We define two variations of the scal-
ing operation: non-uniform which applies a scaling vector to each output vector using the element-
wise product (SCALEARN), and the more parameter-efficient uniform that scales each vector only
with a scalar parameter (SCALEARNUNIFORM). These variations are formulated below:
S| S|
SCALEARN: of = » w! ® o SCALEARNUNIFORM : o} = » w0}, 2)
s=1 s=1
where © denotes the Hadamard product, and wé and wé are learnable vector and scalar parameters,
respectively. Inspired by previous studies (Mahabadi et al.,[2021a;|Zeng et al.,[2023}; Bai et al.,2022;
Goldberg, 2019; Jawahar et al., 2019), we further increase parameter-efficiency by learning shared
scaling parameters among all layers, formulated as follows:

|S] |S]
SCALEARN++: 0f = ¥ w,®0, SCALEARNUNIFORM++: 0} = Y w0}, (3)

where, similarly, w, and wy are lelarnable vector and scalar parameters, but shared afm%)ng all layers.
In all the mentioned methods, to optimize the transfer parameters €2, we use gradient descent as an
easy-to-implement and straightforward solution. On the basis of our experiments, we find that our
approach provides highly competitive results on a wide range of tasks (cf. Section[6)). Furthermore,
we emphasize that SCALEARN models do not force any distributional properties on the w values, as
commonly imposed in previous work [Pfeiffer et al.| (2021)); |Chronopoulou et al.| (2023)); [Xin et al.
(2022) through functions such as softmax and average.

Parameter-efficiency of SCALEARN. To have a clear view of the parameter-efficiency of the in-
troduced models, we continue by analyzing the number of learnable parameters in the transfer layer.
The SCALEARN variant introduces d x L x |\S| transfer parameters for a single target task, where d
is the embedding size and L denotes the number of layers. The overall number of parameters for all
target tasks then becomes d x L x | S| x |T'|. Moving to SCALEARNUNIFORM, this number reduces
to Lx|S|x|T|. The SCALEARN++ spares the L term and has d x | S| x |T'| transfer parameters. Fi-
nally, the most parameter-efficient variant SCALEARNUNIFORM++ only adds | S| x |7T'| parameters.
Note that the new task head parameters are learned jointly with the transfer parameters for each task.

As a point of comparison, the number of transfer parameters of ADAPTERFUSION is 3xd?x Lx|T|
(discarding bias and task head parameters), corresponding to the query, key, and value matrices of the
attention mechanism. Comparing the formulas, we observe that our methods are far more parameter-
efficient, since in practice |S| < d, and hence the d x L term in SCALEARN becomes much smaller
than d? in ADAPTERFUSION. Compared to the joint MTL paradigm, despite the linear increase of
parameters with |T'|, our SCALEARN * models still provide high parameter-efficiency. This stems
from the fact that |T'| < d, and hence reducing the effect of d — which is fully eliminated in the
uniform variants — leaves a more significant impact on parameter-efficiency.

5 EXPERIMENT SETUP

Tasks and datasets. We conduct our experiments on the GLUE and SuperGLUE benchmarks,
respectively, each consisting of 8 tasks, as well as on the HumSet (Fekih et al., [2022) benchmark.
HumSet is a multilingual classification dataset for humanitarian crisis response consisting of 5 tasks.
Additionally, we use a combination of all GLUE and SuperGLUE tasks resulting in 15 datasetﬂ

PLM backbones. We use RoOBERTagasg and RoBERTa; argg (Liu et al., 2019b) on GLUE and Su-
perGLUE. For the experiments on HumSet, following (Fekih et al.,[2022) we utilize the multilingual
XLM-Rpasg and XLM-Ry arge (Conneau et al.L[2020) as this dataset consists of multiple languages.

Models and baselines. We conduct experiments on four variants of our model, namely SCALEARN,
SCALEARNUNIFORM, SCALEARN++, and SCALEARNUNIFORM++. As a direct baseline, we

3The RTE task is contained in both GLUE and SuperGLUE.

Under review as a conference paper at ICLR 2024

Table 1: Percentage and number of trainable parameters per model (excluding task head parameters), when
training on 8 tasks (as in GLUE/SuperGLUE) using RoOBERTagasg. For two-stage MTL, source and target tasks
are the same (|.S|=|T"| =8), and the task parameters consist of |S| adapters, thus © = 8 x 0.72% = 5.74%.

Parameters Parameters
Category Model (one task) (all tasks)
FINETUNE 100.00% (125M) 800.00% (125M)
STL ADAPTER 0.72% (895K) 5.74% (TM)
PROPETL 0.77% (959K) 6.16% (8M)
COMPACTER++ 0.02% (29K) 0.19% (235K)
(1A)3 0.05% (57K) 0.37% (455K)
FINETUNE-M 100.00% (125M)
ADAPTER-M 0.72% (895K)
Joint MTL PROPETL-M 1.24% (1.5M)
HYPERFORMER 47.67% (59M)
HYPERFORMER++ 4.09% (5M)
Transfer (2+) Transfer (2) Task (©) + Transfer (£2)
(target task t) (all target tasks) (source adapters + transfer layers)
ADAPTERFUSION 17.05% (21M) 136.40% (170M) 5.74% + 136.40% =142.14% (177TM)
SCALEARN 0.06% (74K) 0.47% (590K) 5.74% + 0.47% =6.21% (8M)
Two-Stage MTL ~ SCALEARNUNIFORM 0.00% (96) 0.00% (768) 5.74% + 0.00% =5.74% (TM)
SCALEARN++ 0.00% (6K) 0.04% (49K) 5.74% + 0.04% =5.79% (TM)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64) 5.74% + 0.00% =5.74% (TM)

compare our models with ADAPTERFUSION, a common two-stage MTL method that shares the
same conceptual properties. We also compare our models with ADAPTERSOUP (Chronopoulou
et al., 2023), performing weight-space averaging over adapter weights of the 5 most similar tasks
according to their sentence similarity. We adapt their approach to our setup (cf. Appendix [AT).
In all two-stage MTL methods, source and target tasks are the same, containing the tasks of the
underlying benchmark. For each target task, they learn a transfer layer (except for ADAPTERSOUP)
and a new task head.

We select a set of strong STL baselines: FINETUNE, fully fine-tuning the PLM, ADAPTER Houlsby
et al.| (2019) learning an adapter module for each task, PROPETL (Zeng et al., 2023) a more
memory-efficient variation based on parameter sparsification and COMPACTER++ (Mahabadi et al.,
2021a) a highly parameter-efficient variation that leverages parameter-sharing between layers. As
another STL baseline, we train (IA)3 (Liu et al., [2022), which learns scaling vectors applied to the
key and value matrices and intermediate activations in the feed-forward layer of the PLM.

Furthermore, we conduct experiments on several joint MTL baselines, namely FINETUNE-M,
ADAPTER-M, and PROPETL-M, the fully fine-tuned, adapter-based, and ProPETL-based joint
MTL variants, respectively; and, finally, HYPERFORMER and HYPERFORMER++ (Karimi Ma-
habadi et al.;,|2021). FINETUNE-M updates all PLM parameters, ADAPTER-M adds a single adapter
module shared for all tasks, and PROPETL-M combines sparse layer- and task-specific masks
through a logical OR operation. Based on task-specific embeddings, HYPERFORMER and HYPER-
FORMER++ generate module parameters by a shared hypernetwork. In all adapter-based models,
we use a reduction factor of 16, and, following [Pfeiffer et al.| (2021)), insert the modules after the
feed-forward layer of the PLM. Furthermore, to allow a fair comparison, we adapt PROPETL-M,
HYPERFORMER, and HYPERFORMER++ to this setting by inserting the adapter modules only after
the feed-forward block of the PLM. To accommodate possible variations in performance, we train
each model on multiple seeds, and report the mean and standard deviation over multiple runs.

The full details of the experiment setup regarding the benchmarks and their splits, infrastructure,
training, and hyperparameters are provided in Appendix [A.I] To further enable the reproducibility
of our results, our code, including documentation, is available at URL upon deanonymization.

6 RESULTS
6.1 PARAMETER-EFFICIENCY ANALYSIS

Table[T] provides a comprehensive overview of the number of learnable parameters of the models in
our experiment setting on GLUE and SuperGLUE: RoBERTagasg as the backbone PLM, 8 source
tasks, and the same 8 tasks as target tasks (|.S| = |T'| = 8). Starting from the STL models, the first
and middle columns report the number of trainable parameters for one and all tasks, respectively.
The joint MTL models learn all tasks simultaneously, and hence only contain values in the mid-
dle column. For the two-stage MTL models, we report the number of trainable parameters of the

Under review as a conference paper at ICLR 2024

Table 2: Evaluation results on GLUE using RoOBERTagasg. (Top) STL models, only learning a single task at
a time. (Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods,
composing the knowledge of several source adapters. The overall best results are underlined, and the best
results among the two-stage MTL models are shown in bold.

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 86.610.51 90.320.15 91.78p.28 93.330.48 90.53p.22 86.94152 73.47205 58.464.03 83.930.60
ADAPTER 86.500.33 90.180.11 92.250.19 93.650.71 90.23p.41 86.641.07 72.89254 58.28250 | 83.830.4s
PROPETL 86.190.25 88.88p.48 92.05080 93.81p72 90.030.35 85.93122 74.19303 59.29207 | 83.800.42
COMPACTER++ 85.620.42 88.840.70 91.79039 93.580.34 89.67g51 87.21g61 72.02221 58.49258 | 83.400.45
(14)3 83.78p.8s 88.37p.20 90.57p35 93.35030 89.930.30 87.11114 72.56223 56.575.39 82.781 36
FINETUNE-M 84.950.36 89.76¢.12 90.91¢.07 92.580.76 86.14¢.53 83.42¢ .50 80.992. 54 49.121 74 82.230.41
ADAPTER-M 86.03p.18 89.699.01 91.58p30 93.350.41 88.7lp4g 86.7609.92 80.26196 51.791.23 83.520.32
PROPETL-M 85.230.45 87.820.16 91.37052 93.880.44 90.27022 86.361.82 78.580.90 54.711.12 83.530.31
HYPERFORMER 86.08p.46 89.13p.23 91.81p07 93.160.99 90.630.32 87.0lgs7 82.79168 57.302.21 84.74¢.39
HYPERFORMER++ 86.38p.18 88.81p29 91.99917 93.270.11 90.809.12 87.831.42 83.7507s 54.053.30 | 84.61¢.46
ADAPTERFUSION 86.820.04 90.23p.01 9248915 93.230.95 90.37Tg20 88.41p49 79.4959; 59.044 69 85.01p.37
ADAPTERSOUP 6347937 81.630.23 78.000.20 90.7509.24 80.17p18 75.00118 62.099.64 41.061 68 71.52¢. 59
SCALEARN 86.970.00 90.32010 9251017 93.88018 90.96,,; 87.75053 82.06137 5847176 | 85.36, 55
SCALEARNUNIFORM 86.930.10 90.38, 1, 92.53;,5 93.580.20 90.080.07 87.57p.86 80.071.18 59.041 05 85.020.49
SCALEARN++ 87.06),; 90.0d012 92.03110 94.15030 90.62013 88.21g63 80.87105 59.82 75 | 85.350.52
SCALEARNUNIFORM++ 86.98).17 90.38;, 92.53,,5 94.11007 90.180.19 87.430.63 80.040.99 59.45067 | 85.14¢.38

Table 3: Evaluation results on SuperGLUE using ROBERTagask.

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.
FINETUNE T1.619.84 71.64115 76.80134 66.38208 63.46000 68.60674 81.96433 73.47205 | 71.742.32
ADAPTER 79.020.62 72.84p4s T6.71138 65.58156 63.46000 70.20413 84.82318 72.89254 | 73.19174
PROPETL 80.29024 73.07949 76.58p78 66.601¢65 63.460.00 70.60344 84.46386 74.19203 | 73.691 .53
COMPACTER++ 7769267 70.44p57 7588096 66.46163 63.46000 68.30s00 87.68362 72.02291 | 72.741.96
(14)3 7527005 70.32049 T76.31g79 67.07168 63.35032 69.30337 87.32457 72.56203 | 72.691 71
FINETUNE-M 7221908 T2.1lp6s 76.393.07 5219111 63.46000 74.333.40 84.52084 T4.857.42 | 71.265.19
ADAPTER-M 7243064 7246043 75.32278 5199174 59.94597 T1.67340 86.31165 76.531.06 | 70.83184
PROPETL-M 7314019 72.07058 7391327 50.730.99 59.62544 74.00327 82.14146 73.65383 | 69.91533
HYPERFORMER 65.93447 33543354 T74.01110 5549172 52.881058 55.50250 7143714 61.73903 | 58.81s.76
HYPERFORMER++ 24.508.13 19472753 62.17000 50.00000 63.46000 54.33330 49.400.84 49.09256 | 46.555.30
ADAPTERFUSION 78.82049 T1.79167 76.72055 66.57124 63.460.00 73.1045 82.32285 76.03238 | 73.601.71
ADAPTERSOUP 64.260.13 33.62408 08.84p31 5853060 63.46000 52.40241 70.89086 57.830.93 | 58.731.19
SCALEARN 79.520.06 73.22044 TT7.27p6s 066.35120 63.460.00 74.802.15 90.89259 78.88214 | 75.55116
SCALEARNUNIFORM 80.13p.38 71.91p60 76.06041 67.37T1020 62.50127 71.20323 89.11y97 75.31g.90 | 74.201.00
SCALEARN++ 80.130.09 72.7lgs7 7644053 67.13104 62.26208 75.20193 93.04514 79.03095 | 75.741.90
SCALEARNUNIFORM++ 79.79914 71.75038 76.13052 67.870s9 63.46000 74.001.70 91.6la53 74.84158 | 74.930.97

transfer layer for one target task (€2;) in the first column, the same for all target tasks in the mid-
dle (£2), and the sum of the number of transfer (£2) and source adapter parameters (©) in the last
column. We deliberately organize the transfer parameters of the two-stage models (£2) under the
corresponding numbers of other models in the middle column since the two-stage paradigm benefits
from already trained adapters and only needs to learn the transfer layer. The last column is provided
for completeness in the case that the adapters should also be trained.

Comparing the results of the two-stage MTL methods in the transfer layer, ADAPTERFUSION is
expectedly far less parameter-efficient than SCALEARN models, where SCALEARNUNIFORM++
only requires 64 parameters. The variants of SCALEARN add considerably fewer transfer parameters
compared to the overall parameters of the particularly efficient joint MTL methods. Moreover,
the SCALEARN models still remain comparable when also taking into account the source adapter
parameters. Considering these results, in the following we report and discuss the evaluation results
in transfer learning and few-shot learning on the respective benchmarks.

6.2 TRANSFER LEARNING PERFORMANCE

Results on GLUE. Table [2] shows the evaluation results on the GLUE benchmark using
RoBERTagasg. The evaluation metrics are Pearson’s correlation for STS-B, Matthews’ correlation
for CoLLA, and accuracy for the rest. We average the results over several runs and report the cor-
responding standard deviation in the subscripts. Overall, the two-stage models obtain strong gains,
outperforming STL and joint MTL models. Remarkably, all variants of SCALEARN, including the
highly parameter-efficient SCALEARNUNIFORM++ achieve similarly good results with only a frac-
tion of the parameters of ADAPTERFUSION. Comparing the different variations of our method,
while SCALEARN shows the best results, the other models also perform highly competitively.

Results on SuperGLUE. Table [3] shows the results on SuperGLUE for all methods considered.
The evaluation metrics are F1 for MultiRC and ReCoRD and accuracy for other tasks. We observe
similar patterns on this benchmark: two-stage models generally outperform other baselines. In

Under review as a conference paper at ICLR 2024

Table 4: Evaluation results on HumSet using XL.M-Rpask.

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
FINETUNE 71.99¢.32 50.40¢.24 43.760.67 61.04¢ .26 41.680.62 53.770.42
ADAPTER 71.380.28 51.021 23 43.260.82 61.43¢.01 42.46¢. 51 53.91¢.75
PROPETL 71.690.86 49.691.30 41.630.84 60.580.91 39.851.10 52.691.00
COMPACTER++ 69.971 .89 37.377.99 37.762.14 58.131 64 33.109.00 47.264 53
(IA)3 70.22¢.97 45.553 43 40.053.15 58.541 38 39.271.01 50.731.99
FINETUNE-M 51.753.62 22.6512.88 13.54¢.06 33.2721.23 12.423 39 26.739.44
ADAPTER-M 56.202 72 28.5314.56 16.539 46 35.9017 .36 18.892 64 31.219 35
PROPETL-M 59.8010.09 26.1014.36 29.577.40 37.5312.08 30.355.91 36.679.97
HYPERFORMER 71.081.04 40.656.93 34.163.37 46.2214.11 32.474.46 44.925 98
HYPERFORMER++ 60.429 79 22.077.45 20.357 .04 30.5519.83 18.9010.84 30.4610.99
ADAPTERFUSION 72.050.12 49.630.53 43.15¢.38 60.68¢.23 42.140.46 53.530.35
ADAPTERSOUP 56.811 90 30.09¢.40 21.84¢.55 40.71p.98 17.895 02 33.471.17
SCALEARN 72.360.05 51.630.61 44.060.37 61.520.11 42.81 4, 54.48 ..
SCALEARNUNIFORM 72.200.14 50.08¢.79 42.970.70 60.62¢.16 41.95¢.60 53.560.48
SCALEARN++ 72.38, ,, 51.66,,, 44.23, . 61.66, ,, 42.210.21 54.430 25
SCALEARNUNIFORM++ 72.02¢.32 50.780.41 42.600.85 60.820.14 42.14¢9.72 53.670.49

this benchmark, SCALEARN and SCALEARN++ improve upon ADAPTERFUSION by 2 percentage
points of the average results. Notably, we observe performance drops for various joint MTL models
in comparison to other models (up to —27% when comparing HYPERFORMER++ and ADAPTER).
This may be a signal of the sensitivity of these models to the selection of tasks. Furthermore, the
subpar performance of AdapterSoup suggests that calculating weights using sentence similarity is
not appropriate for our specific problem setup. In contrast, the other two-stage MTL models (and,
in particular, our SCALEARN models) do not show any considerable performance decreases.

Results on HumSet. TableE| shows the results on HumSet using XLM-Rgasg with the Fl-score as
the evaluation metric. Similarly, SCALEARN performs the best among all the methods, whereas the
more parameter-efficient variants of SCALEARN are only marginally weaker in performance. On
this benchmark, in particular, all joint MTL methods show poor performance, highlighting the sen-
sitivity of these methods to task selection (up to —27% for STL and MTL versions of FINETUNE).

We conduct an ablation study on the effect on different combinatorial operators in SCALEARN,
reported in Appendix [A.3] In Appendix [A.4] we provide further experiments and analyses of the
results along with the results of GLUE and SuperGLUE using RoBERTa; arge, HumSet using
XLM-Ry arGE, and for the combination of all tasks from GLUE and SuperGLUE. Finally, we pro-
vide an analysis of the scaling coefficients of SCALEARNUNIFORM and SCALEARNUNIFORM++
in Appendix[A.3] revealing the effect of various source adapters on a target task.

6.3 FEW-SHOT TRANSFER LEARNING

0.90 0.80 0.60
0.851 —e— Adapter x| 0.75 x| 0.55 *
0.801 —ms— AdapterFusion ' = 050

%) 0.70 0.45

= 0759 —— Scalearn 0.40

© 0.70 0.657 1 0.35

= 0.65 — 0.60 0.30

©0.60 /;:./- 0551 . */_ 025 /

Z 055 * " / — _/ 020 y

" o 0.501 i 0.15 o
0.50 e —_— 0.10 1 m——t_, =
0.45 {-4——""" 0451w 0.05 1 * —
0.40 0.40 0.00
4 16 32 100 Al 4 16 32 100 Al 4 16 32 100 All
of Training Samples
(a) GLUE (b) SuperGLUE (¢) HumSet

Figure 3: Few-shot transfer learning results with k = {4,16,32,100} training samples for each target task using
the BASE models of ROBERTa and XLLM-R. Full results over several runs are provided in Appendix@

We further assess the applicability of SCALEARN in a few-shot setting, where we assume that only
k = {4,16,32,100} training samples are available for a given target task. For two-stage MTL
methods, for a given benchmark, we use the source adapters of all tasks except the one corresponding
to the target task, where we use a source adapter trained on only k& samples. On the basis of this set
of source adapters, we then train a transfer layer on the target task using & data points.

Table [3] shows the performance of ADAPTER, ADAPTERFUSION, and SCALEARN on the GLUE,
SuperGLUE, and HumSet benchmarks, averaged over 5 runs. We observe that SCALEARN consis-
tently outperforms ADAPTER and ADAPTERFUSION in all benchmarks and values of k (except for
k = 4 on HumSet) pointing to the strength of our method for data-lean settings. We provide the full
results, including per-dataset ones, other variations of SCALEARN, and on RoOBERTay argg in @

Under review as a conference paper at ICLR 2024

7 RELATED WORK

Parameter-efficient task learning in NLP. Various parameter-efficient methods have emerged as
a more sustainable alternative to full fine-tuning, enabling modularization, efficient sharing, and
reusability of knowledge. A common modularization approach is to introduce a small number of
additional parameters into a PLM, realized by various methods such as Adapters (Rebuffi et al.,
2017; Houlsby et al. [2019), Compacter (Mahabadi et al., 2021a), and ProPETL-Adapter (Zeng
et al} 2023). Similarly, LoRA (Hu et al., |2022) injects trainable low-rank matrices into each trans-
former layer, and BitFit (Ben Zaken et al., 2022) updates only the bias terms. Another line of
research identifies sparse subnetworks within the model to tune (Ansell et al.l 2022} |Guo et al.,
2021} [Hauzenberger et al.l [2023), while He et al.| (2022)) and Mao et al.| (2022) propose to merge
various distinct modules. We refer to |Pfeiffer et al.[(2023) for a full survey on this topic.

Learning by scaling. Besides the common approach of learning a feed-forward layer for a (non-)
linear transformation of an input vector, several recent methods explore the merit of learning a scal-
ing vector applied to the input vector in various scenarios. [Liu et al.|(2022) learn a modular network
for STL that rescales PLM vectors through element-wise multiplication. |[lharco et al.| (2023 and
Ortiz-Jiménez et al.| (2023)) introduce task arithmetic to control PLM behavior by extracting task
vectors from pre- and post-fine-tuning model weights, then scaling and combining them to improve
MTL performance. Masoudian et al|(2023)) learn a gating adapter that adjusts the scaling of repre-
sentations to control the behavior of the model at inference time. Finally, |Lian et al.|(2022) learn to
shift and scale the output vectors of a vision transformer in an STL setting. Our work contributes to
this line of research by leveraging scaling for highly parameter-efficient and effective MTL.

Joint MTL. Interference and imbalance between tasks have been shown to impede performance
in joint MTL (Kirkpatrick et al.l [2017; [Kendall et al., 2018; |Pfeiffer et al., 2023). Several studies
have aimed to address these issues and improve generalization. For example, [Liu et al.| (2019a)
learn representations across multiple NLU tasks using context from a semantic similarity model,
and [Pilault et al.|(2021)) introduce a parameter-efficient model that uses modules facilitating weight
sharing. Moreover, |Stickland & Murray| (2019) use an adapter for each task while also updating the
PLM parameters. [Zhang et al.|(2022) further focus on modularity by only activating a subset of task-
specific modules at once; however, tasks must be mapped a priori to a given high-level skill. |Ponti
et al.| (2023) and|Caccia et al.|(2022) loosen this constraint by learning a task-skill allocation matrix
for cross-task generalization, but rely on a multi-task pre-training stage. Finally, Mahabadi et al.
(2021b) leverage a hypernetwork (Ha et al.,|2017) that generates modular task-specific parameters.

Two-stage MTL. Various methods have been proposed to extract task-specific information and com-
pose this knowledge. [Chronopoulou et al. (2023) studies transfer learning in generative PLMs by
first selecting source adapters based on different heuristics and merging their weights to create a new
combined adapter. [Huang et al.| (2023) introduce LoraHub with the aim of composing LoRA (Hu
et al., [2022) modules for cross-task generalization using black-box optimization and an additional
pre-filtering stage. |Asai et al.| (2022) and |Wang et al.| (2023) leverage continuous prompts learned
on large-scale source tasks, leading to competitive performance in MTL benchmarks, although both
methods depend on the selection of typically high-resource source tasks. In contrast to the men-
tioned methods that highly depend on the selection of tasks and/or apply the combination to the
weights, [Pfeiffer et al.| (2021) combines the output representations of several independent source
adapters through an attention mechanism. Our work is directly related to this line of research and
introduces a novel highly parameter-efficient transfer layer applied to the output representation.

8 CONCLUSION

We propose SCALEARN, a highly parameter-efficient and effective two-stage MTL method lever-
aging simple scaling of output vectors. Based on an initial analysis of the effect of scaling adapter
output representations, our proposed approach directly learns the coefficients that scale the repre-
sentations of source adapters and combines them by simply taking the sum. We conduct extensive
transfer learning experiments using encoder PLMs on the three benchmarks of GLUE, SuperGLUE,
and HumSet, consisting of a diverse set of tasks, domains, and languages. Our evaluation results
show that SCALEARN and even its extremely parameter-efficient variants, such as SCALEARNUNI-
FORM++, obtain strong improvement over existing MTL methods without any negative cross-task
effects. We further show that these improvements are also present in few-shot transfer learning.

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

The nature of our work is manifold, and so are the ethical aspects touched by our research. First, we
acknowledge the potential of NLP datasets and models for encoding unfair stereotypical (Blodgett
et al.| [2020) and exclusive (Dev et al., 2021) biases that may lead to representational and alloca-
tional harms (Barocas et al., 2017). This potential is a general property of PLMs, and the mod-
els and datasets we use in this research are no exception to this danger. We thus strongly advise
practitioners to carefully consider the sociotechnical context before deploying any models (with or
without SCALEARN), and, aligned with the specific deployment scenario, to take measures against
unfair discrimination. Examples of such measures include the use of bias measurement (Nangia
et al., 2020) and mitigation (Bordia & Bowman, 2019)) approaches. Second, the core of this work
deals with efficiency aspects. On the one hand, given the well-known relationship between model
training (and inference) effort and potential CO4 emissions (Strubell et al., [2019)), our work directly
contributes to reaching the goals of Green Al by making parameter-efficient MTL more environ-
mentally sustainable. On the other hand, since PLM training often comes with high infrastructure
requirements exclusive to certain user groups (Bender et al., 2021)), we hope that our work also con-
tributes to the ongoing democratization of language technology by reducing resource-related usage
barriers.

REPRODUCIBILITY STATEMENT

For all our experiments, we use PLM configurations that are publicly available and can be down-
loaded from the Huggingface transformers library (Wolf et al|2020). Sufficient details to repro-
duce our results, including hyperparameter settings and seeds used in training, and information about
the datasets we use for training, including splits, can be found in Section [5] and in Appendix [A.T]
All datasets we use in our experiments are commonly used in the MTL literature and publicly avail-
able to ensure comparability and reproducibility. We also release our code under the MIT License,
ensuring open access to the community for further development.

REFERENCES

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulié. Composable sparse fine-tuning
for cross-lingual transfer. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1778-1796, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.125. URL
https://aclanthology.org/2022.acl-1long.125.

Akari Asai, Mohammadreza Salehi, Matthew E. Peters, and Hannaneh Hajishirzi. ATTEMPT:
parameter-efficient multi-task tuning via attentional mixtures of soft prompts. In Yoav Gold-
berg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pp. 6655-6672. Association for Computational Linguistics, 2022. URL
https://aclanthology.org/2022.emnlp-main.446.

Yue Bai, Huan Wang, Xu Ma, Yitian Zhang, Zhigiang Tao, and Yun Fu. Parameter-efficient masking
networks. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
427048354ac2db22d43149c51346bafd-Abstract-Conference.html.

Solon Barocas, Kate Crawford, Aaron Shapiro, and Hanna Wallach. The problem with bias: Alloca-
tive versus representational harms in machine learning. In 9th Annual Conference of the Special
Interest Group for Computing, Information and Society, 2017.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1-9, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.
1. URL https://aclanthology.org/2022.acl-short.1.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM

10

https://aclanthology.org/2022.acl-long.125
https://aclanthology.org/2022.emnlp-main.446
http://papers.nips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
https://aclanthology.org/2022.acl-short.1

Under review as a conference paper at ICLR 2024

Conference on Fairness, Accountability, and Transparency, FAccT *21, pp. 610-623, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/
3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology) is
power: A critical survey of “bias” in NLP. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 5454-5476, Online, 2020. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.acl-main.485. URL https://www.aclweb.org/
anthology/2020@.acl-main. 485,

Shikha Bordia and Samuel R. Bowman. Identifying and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Student Research Workshop, pp. 7-15, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-3002. URL https:
//aclanthology.org/N19-3002.

Lucas Caccia, Edoardo Ponti, Lucas Liu, Matheus Pereira, Nicolas Le Roux, and Alessandro Sor-
doni. Multi-head adapter routing for data-efficient fine-tuning. arXiv preprint arXiv:2211.03831,
2022.

Guanzheng Chen, Fangyu Liu, Zaigiao Meng, and Shangsong Liang. Revisiting parameter-efficient
tuning: Are we really there yet? In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 2612-2626, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.168. URL
https://aclanthology.org/2022.emnlp-main.168.

Alexandra Chronopoulou, Matthew Peters, Alexander Fraser, and Jesse Dodge. AdapterSoup:
Weight averaging to improve generalization of pretrained language models. In Findings of the
Association for Computational Linguistics: EACL 2023, pp. 2054-2063, Dubrovnik, Croatia,
2023. Association for Computational Linguistics. URL https://aclanthology.org/2023.
findings-eacl.153.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 8440-8451, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.747. URL https:
//aclanthology.org/2020.acl-main.747.

Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Arjun Subramonian, Jeff Phillips, and Kai-Wei
Chang. Harms of gender exclusivity and challenges in non-binary representation in language tech-
nologies. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1968—1994, Online and Punta Cana, Dominican Republic, November 2021. Associa-
tion for Computational Linguistics. URL|https://aclanthology.org/2021.emnlp-main.150.

Selim Fekih, Nicolo’ Tamagnone, Benjamin Minixhofer, Ranjan Shrestha, Ximena Contla, Ewan
Oglethorpe, and Navid Rekabsaz. HumSet: Dataset of multilingual information extraction and
classification for humanitarian crises response. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 4379—4389, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.321. URL
https://aclanthology.org/2022.findings-emnlp.321.

Yoav Goldberg. Assessing bert’s syntactic abilities. CoRR, abs/1901.05287, 2019. URL http:
//arxiv.org/abs/1901.05287.

Demi Guo, Alexander Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 4884—4896, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.378. URL https://aclanthology.org/2021.acl-long.378.

11

https://doi.org/10.1145/3442188.3445922
https://www.aclweb.org/anthology/2020.acl-main.485
https://www.aclweb.org/anthology/2020.acl-main.485
https://aclanthology.org/N19-3002
https://aclanthology.org/N19-3002
https://aclanthology.org/2022.emnlp-main.168
https://aclanthology.org/2023.findings-eacl.153
https://aclanthology.org/2023.findings-eacl.153
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2021.emnlp-main.150
https://aclanthology.org/2022.findings-emnlp.321
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://aclanthology.org/2021.acl-long.378

Under review as a conference paper at ICLR 2024

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=rkpACellx.

Lukas Hauzenberger, Shahed Masoudian, Deepak Kumar, Markus Schedl, and Navid Rekabsaz.
Modular and On-demand Bias Mitigation with Attribute-Removal Subnetworks. In Findings of
the Association for Computational Linguistics: ACL (Findings of ACL), 2023.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=0RDcd5Axok.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pp. 2790-2799. PMLR, 2019.
URL http://proceedings.mlr.press/v97/houlsby19a.html.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
nZeVKeeFYf9.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. CoRR, abs/2307.13269, 2023.
doi: 10.48550/arXiv.2307.13269. URL https://doi.org/10.48550/arXiv.2307.13269,

Gabriel Ilharco, Marco Tilio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=6t0Kwf8-jrj.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah. What does BERT learn about the structure of
language? In Anna Korhonen, David R. Traum, and Lluis Marquez (eds.), Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28-
August 2, 2019, Volume 1: Long Papers, pp. 3651-3657. Association for Computational Linguis-
tics, 2019. doi: 10.18653/v1/p19-1356. URL https://doi.org/10.18653/v1/p19-1356.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 565-576, On-
line, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
47. URL https://aclanthology.org/2021.acl-long.47.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482-7491, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forget-
ting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521-3526,
2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1611835114.

12

https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=0RDcd5Axok
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2307.13269
https://openreview.net/pdf?id=6t0Kwf8-jrj
https://doi.org/10.18653/v1/p19-1356
https://aclanthology.org/2021.acl-long.47
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114

Under review as a conference paper at ICLR 2024

Deepak Kumar, Oleg Lesota, George Zerveas, Daniel Cohen, Carsten Eickhoff, Markus Schedl,
and Navid Rekabsaz. Parameter-efficient modularised bias mitigation via AdapterFusion. In
Proceedings of the 17th Conference of the European Chapter of the Association for Computa-
tional Linguistics, pp. 2738-2751, Dubrovnik, Croatia, May 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.eacl-main.201. URL https://aclanthology.org/2023.
eacl-main.201.

Anne Lauscher, Tobias Lueken, and Goran Glavas. Sustainable modular debiasing of language
models. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4782—
4797, Punta Cana, Dominican Republic, November 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.findings-emnlp.411. URL https://aclanthology.org/2021.
findings-emnlp.411.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
gaéko, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément
Delangue, Théo Matussiere, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, Francois Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A commu-
nity library for natural language processing. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing: System Demonstrations, pp. 175184, Online
and Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-demo.21. URL https://aclanthology.org/2021.emnlp-demo. 21.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 4582—-4597, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-1long.353.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling &
shifting your features: A new baseline for efficient model tuning. In
NeurlIPS, 2022. URL |http://papers.nips.cc/paper_files/paper/2022/hash/

00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
0cde695b83bd186c1fd456302888454c-Abstract-Conference.html.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for
natural language understanding. In Anna Korhonen, David R. Traum, and Lluis Marquez (eds.),
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4487-4496. Association for
Computational Linguistics, 2019a. doi: 10.18653/v1/p19-1441. URL https://doi.org/10.
18653/v1/p19-1441.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019b. URL http://arxiv.org/abs/1907.11692.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. In Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 1022—-1035, 2021a. URL https://proceedings.neurips.
cc/paper/2021/hash/081be9fdffo7f3bc8081935906ef70c@-Abstract.html.

13

https://aclanthology.org/2023.eacl-main.201
https://aclanthology.org/2023.eacl-main.201
https://aclanthology.org/2021.findings-emnlp.411
https://aclanthology.org/2021.findings-emnlp.411
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.acl-long.353
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/p19-1441
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html

Under review as a conference paper at ICLR 2024

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 1 1th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pp. 565-576. Association for Computational Linguistics, 2021b. doi: 10.18653/v1/2021.
acl-long.47. URL https://doi.org/10.18653/v1/2021.acl-long.47.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Scott Yih, and
Madian Khabsa. UniPELT: A unified framework for parameter-efficient language model tuning.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6253-6264, Dublin, Ireland, 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.433. URL fhttps://aclanthology.org/2022.
acl-long.433.

Shahed Masoudian, Khaled Koutini, Markus Schedl, Gerhard Widmer, and Navid Rekab-
saz. Domain information control at inference time for acoustic scene classification. CoRR,
abs/2306.08010, 2023. doi: 10.48550/arXiv.2306.08010. URL https://doi.org/10.48550/
arxXiv.2306.08010.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. CrowS-pairs: A challenge
dataset for measuring social biases in masked language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1953-1967,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.154. URL https://www.aclweb.org/anthology/2020.emnlp-main. 154l

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. CoRR, abs/2305.12827, 2023. doi: 10.48550/
arXiv.2305.12827. URL |https://doi.org/10.48550/arXiv.2305.12827.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An impera-
tive style, high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 8024-8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfadf7012727740-Abstract.html.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya Kamath, Ivan Vulic, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. In
Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, EMNLP 2020 - Demos, Online,
November 16-20, 2020, pp. 46-54. Association for Computational Linguistics, 2020. doi: 10.
18653/v1/2020.emnlp-demos.7. URL https://doi.org/10.18653/v1/2020.emnlp-demos.7,

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 487-503, Online, April 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.eacl-main.39. URL https://aclanthology.org/2021.eacl-main. 39.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulic, and Edoardo Maria Ponti. Modular deep learning.
CoRR, abs/2302.11529, 2023. doi: 10.48550/arXiv.2302.11529. URL https://doi.org/10.
48550/arXiv.2302.11529.

14

https://doi.org/10.18653/v1/2021.acl-long.47
https://aclanthology.org/2022.acl-long.433
https://aclanthology.org/2022.acl-long.433
https://doi.org/10.48550/arXiv.2306.08010
https://doi.org/10.48550/arXiv.2306.08010
https://www.aclweb.org/anthology/2020.emnlp-main.154
https://doi.org/10.48550/arXiv.2305.12827
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://aclanthology.org/2021.eacl-main.39
https://doi.org/10.48550/arXiv.2302.11529
https://doi.org/10.48550/arXiv.2302.11529

Under review as a conference paper at ICLR 2024

Jonathan Pilault, Amine Elhattami, and Christopher J. Pal. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in NLP using fewer parameters & less data. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=de11dbHzAMF.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining parameter-
efficient modules for task-level generalisation. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics, pp. 687-702, Dubrovnik,
Croatia, May 2023. Association for Computational Linguistics. URL https://aclanthology.
org/2023.eacl-main.49.

Clifton Poth, Jonas Pfeiffer, Andreas Riicklé, and Iryna Gurevych. What to pre-train on? ef-
ficient intermediate task selection. In Marie-Francine Moens, Xuanjing Huang, Lucia Spe-
cia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021, pp. 10585-10605. Association for Computational Linguistics,
2021. doi: 10.18653/v1/2021.emnlp-main.827. URL https://doi.org/10.18653/v1/2021.
emnlp-main.827.

Yada Pruksachatkun, Jason Phang, Haokun Liu, Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R. Bowman. Intermediate-task transfer learning
with pretrained language models: When and why does it work? In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 5231-5247, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.467. URL
https://aclanthology.org/2020.acl-main. 467.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1-140:67, 2020. URL http://jmlr.org/papers/
v21/20-074.html.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 506516, 2017. URL |https://proceedings.
neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6cale-Abstract.html.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982-3992, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. CoRR,
abs/1706.05098, 2017. URL http://arxiv.org/abs/1706.05098.

Harrisen Scells, Shengyao Zhuang, and Guido Zuccon. Reduce, reuse, recycle: Green information
retrieval research. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR *22, pp. 2825-2837, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.
3531766. URL https://doi.org/10.1145/3477495.3531766.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Commun. ACM, 63(12):
54-63, nov 2020. ISSN 0001-0782. doi: 10.1145/3381831. URL https://doi.org/10.1145/
3381831.

Asa Cooper Stickland and Iain Murray. BERT and pals: Projected attention layers for efficient adap-
tation in multi-task learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceed-
ings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp.
5986-5995. PMLR, 2019. URL http://proceedings.mlr.press/v97/sticklandi9a.html.

15

https://openreview.net/forum?id=de11dbHzAMF
https://aclanthology.org/2023.eacl-main.49
https://aclanthology.org/2023.eacl-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://aclanthology.org/2020.acl-main.467
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://aclanthology.org/D19-1410
http://arxiv.org/abs/1706.05098
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
http://proceedings.mlr.press/v97/stickland19a.html

Under review as a conference paper at ICLR 2024

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 3645-3650, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1355. URL |https://aclanthology.org/P19-1355,

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4593-4601, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1452. URL |https://aclanthology.org/P19-1452.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for
general-purpose language understanding systems. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 3261-3275,2019a. URL https://proceedings.neurips.cc/paper/2019/hash/
4496bf24afe7fab6f@46bf4923da8de6-Abstract.htmll

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7¢th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019b. URL https://openreview.net/forum?id=rJ4km2R5t7.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogério Feris, Huan Sun, and Yoon Kim. Mul-
titask prompt tuning enables parameter-efficient transfer learning. CoRR, abs/2303.02861, 2023.
doi: 10.48550/arXiv.2303.02861. URL https://doi.org/10.48550/arXiv.2303.02861.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38—45, Online, October 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL |https://www.
aclweb.org/anthology/2020.emnlp-demos. 6.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat.
Do current multi-task optimization methods in deep learning even help? In
NeurIPS, 2022. URL |http://papers.nips.cc/paper_files/paper/2022/hash/
580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html.

Guangtao Zeng, Peiyuan Zhang, and Wei Lu. One network, many masks: Towards more parameter-
efficient transfer learning. In Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7564-7580, Toronto, Canada, July 2023. As-
sociation for Computational Linguistics. URL |https://aclanthology.org/2023.acl-1long.
418.

Fan Zhang, Duyu Tang, Yong Dai, Cong Zhou, Shuangzhi Wu, and Shuming Shi. Skillnet-nlu: A
sparsely activated model for general-purpose natural language understanding. 2022.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586-5609, 2022. doi: 10.1109/TKDE.2021.3070203.

16

https://aclanthology.org/P19-1355
https://aclanthology.org/P19-1452
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.48550/arXiv.2303.02861
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
https://aclanthology.org/2023.acl-long.418
https://aclanthology.org/2023.acl-long.418

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 COMPLETE EXPERIMENT DETAILS

Name Category Task Domain Metric

MNLI GLUE NLI various accuracy

QQP GLUE paraphrase detection social QA accuracy & F1
QNLI GLUE NLI Wikipedia accuracy
SST-2 GLUE sentiment analysis Movie Reviews accuracy
STS-B GLUE sentence similarity various Pearson & Spearman corr.
MRPC GLUE paraphrase detection news accuracy & F1
RTE GLUE NLI News, Wikipedia accuracy
CoLA GLUE acceptability various Matthews’ corr.
ReCoRD SuperGLUE cloze-style QA news (CNN, Daily Mail) Fl & EM
MultiRC SuperGLUE QA various F1 & EM
BoolQ SuperGLUE boolean QA Wikipedia accuracy

WiC SuperGLUE word sense disambiguation lexical databases accuracy

WSC SuperGLUE coreference / commonsense fiction books accuracy
COPA SuperGLUE commonsense reasoning various accuracy

CB SuperGLUE NLI various accuracy
Sectors HumSet classification humanitarian crisis response F1 & precision
Pillars 1D HumSet classification humanitarian crisis response F1 & precision
Subpillars 1D | HumSet classification humanitarian crisis response F1 & precision
Pillars 2D HumSet classification humanitarian crisis response F1 & precision
Subpillars 2D | HumSet classification humanitarian crisis response F1 & precision

Table 5: Details of all datasets. Lexical databases for WiC include WordNet, VerbNet, Wiktionary. For
datasets where two metrics are officially used, we use the underlined metric as our main metric. (Top) GLUE
tasks. (Middle) SuperGLUE tasks. (Bottom) HumSet tasks.

Dataset Details. As has been mentioned, we are using the GLUE, SuperGLUE, and HumSet bench-
marks for our experiments. Table [5| summarizes the tasks contained in each of the datasets. We use
the datasets library (Lhoest et al.l [2021) to load each dataset for our experiments. We set the
maximum length of the input sequence to 128 tokens for all tasks in GLUE, SuperGLUE, and Hum-
Set. However, for MultiRC and ReCoRD, we set the maximum length to 324 and 256, respectively,
due to their significantly longer context lengths. Note that we treat HumSet as five separate tasks,
following (Fekih et al.,[2022)). The GLUE and SuperGLUE benchmarks only contain the training
and validation split publicly, so we follow |Chen et al.| (2022)) and use 10% of the training samples
from the training split as the validation set and the remaining 90% for training. We split the datasets
with the datasets library (Lhoest et al.l 2021) using seed 42 and shuffle the samples. Then, the
original validation split is taken as the test set on which we report the performance of all models.
For HumSet, we use the original train/validation/test splits, as all of them are publicly available,
including labels. Details about the train/validation/test splits can be found in Table [f]

Computing Infrastructure. We run all experiments with ROBERTagasg and XLM-Rgasg on a
single Nvidia GTX1080Ti GPU and Intel Xeon CPU E5-2640 v4 CPUs, and the experiments with
RoBERTay arge and XLM-Ry argg on a single Nvidia RTX5000 GPU and Intel Xeon Silver 4216
CPUs.

Implementation Details. We use PyTorch (Paszke et al., 2019) for all experiments. For the joint
multi-task learning methods, we adapt the codebase of Karimi Mahabadi et al.|(2021)) and|Zeng et al.
(2023)), both of which rely on the transformers (Wolf et al., [2020) library. For all other models,
we make use of the adapter-transformers library (Pfeiffer et al.| 2020) library, a wrapper around
the transformers library.

Training and optimization. We train all methods with a batch size of 32. All STL and two-stage
MTL methods are trained for a maximum of 30 epochs with early stopping and patience of 5. ['| We
use 10 seeds for low-resource and 3 seeds for high-resource tasks when using RoOBERTagsg, and
on 5 and 2 seeds for low- and high-resource tasks, respectively, when using ROBERTa; arge. We
define tasks with more than 10k training samples as high-resource and as low-resource otherwise.
All joint MTL models are trained on 3 seeds. We report the mean and standard deviations across all

*The exception is ReCoRD, which we train on 3 epochs due to its size.

17

Under review as a conference paper at ICLR 2024

Name |Train| |Validation| |Test|
MNLI 353,431 39,270 9,815
QQP 327461 36384 40,430
QNLI 94,268 10,474 5,463
SST-2 60,614 6,734 872
STS-B 5,174 574 1,500
MRPC 3,301 366 408
RTE 2,241 249 277
CoLA 7,695 855 1,043
ReCoRD 100,730 10,000 10,000
MultiRC 24,518 2,724 4,848
BoolQ 8,484 942 3,270
WiC 4,885 542 638
WSC 498 55 104
COPA 360 40 100
CB 225 25 56
Sectors 117,435 16,039 15,147
Pillars 1D 117,435 16,039 15,147
Subpillars 1D | 117,435 16,039 15,147
Pillars 2D 117,435 16,039 15,147
Subpillars 2D | 117,435 16,039 15,147

Table 6: Number of used samples for each dataset and used split. (Top) GLUE tasks. (Middle) SuperGLUE
tasks. (Bottom) HumSet tasks.

runs. We use the AdamW (Kingma & Ba, |2015; Loshchilov & Hutter, |2019) optimizer with default
PyTorch hyperparameters (weight decay = 0.01, 31 = 0.9, B2 = 0.99, € = 1 - 1075). We use seeds
{0, 1} for instances with two seeds, {@, 1,2} for instances with three seeds, seeds {0,1,2,3,4} for
instances with five seeds, and {0,1,2,3,4,5,6,7,8,9} for instances with ten seeds.

Single-task learning hyperparameters. We train FINETUNE with a learning rate of 2e-5,
ADAPTER with a learning rate of 3e-4, COMPACTER++ with a learning rate of 3e-3, and PROPETL
with a learning rate of 1e-3, a mask learning rate of 5Se-3, a sparsity rate of 0.5, and a weight decay of
0.1, which we found to be the most suitable for our setup. Moreover, we train (1 A)3 with a learning
rate of Se-3. Each of them is trained with a linear learning rate decay. For ROBERTay argg, we add a
linear learning rate warmup for the first 10% of training, as we notice it improves stability. For early
stopping, we use the loss on the validation set, except for HumSet, where we use the F1-score, and
in the few-shot setting, where we use the main metric for the respective dataset, as shown in Table[5]
In the few-shot setting, we train for a maximum of 1,000 steps, apply an early stopping patience of
20, and use a maximum of 5,000 samples for validation. Note that, while the PLM layer normaliza-
tion parameters have also been updated (Mahabadi et al., [2021agb), following Pfeiffer et al.| (2021)),
we keep them frozen. This approach improves modularity, while still allowing PLMs to efficiently
adapt to new tasks. Note that the same hyperparameters as outlined here are also used for ADAPTER
in our probing analyses (cf. Section [3).

Joint MTL hyperparameters. In all joint multi-task learning methods, we sample tasks with con-

ventional temperature-based sampling with temperature 7 = 10, following [Mahabadi et al.| (2021b)
/T where Py = %,
N; the number of training samples of task ¢, and 7 = 10. Using this sampling strategy, we train
each model for a total of 375,000 steps to ensure convergence and evaluate every 7,500 steps. We
train each model with early stopping and patience of 10. In the end, the model checkpoint with the
lowest average validation loss is loaded and evaluated on the test set. We train FINETUNE-M with a
learning rate of 2e-5, ADAPTER-M, HYPERFORMER, and HYPERFORMER++ with a learning rate
of 3e-4, and PROPETL-M with a learning rate of 3e-4 and a mask learning rate of 3e-3, a sparsity
rate of 0.3, and no weight decay. We train each of them with a linear learning rate warmup for
the first 10% of training, followed by a linear learning rate decay. For the remaining hyperparame-
ters of PROPETL-M, HYPERFORMER, and HYPERFORMER++, we follow the respective original

implementations, but always use a reduction factor of 16 for a fair comparison.

and |Zeng et al.[(2023). Specifically, a task is sampled with probability p:

18

Under review as a conference paper at ICLR 2024

Two-stage MTL hyperparameters. We train each variant of SCALEARN * with a learning rate
of 6e-3 and train ADAPTERFUSION with a learning rate of 5e-5, following |Pfeiffer et al.[(2021).
Both SCALEARN * and ADAPTERFUSION are trained with a linear learning rate decay and no
warmup. Early stopping is the same as in the single-task learning setting. We initialize the parame-
ters of SCALEARN* with A (Z,0.001) P|and apply a dropout rate of 0.3 to increase robustness for
SCALEARN and SCALEARN++. For AdapterSoup, we first calculate the cosine similarity of sen-
tence embeddings for each task from the training set using the sentence-transformers (Reimers
library and the all-mpnet-base-v2 model. In contrast to [Chronopoulou et al.
(2023)), who only select 100 samples for each domain, we select 10000 samples for each task, as
our sequences corresponding to tasks are meaningfully shorter than the sequences corresponding to
domains. Using these similarities, we select the top 5 most similar tasks to the target task, normal-
ize the similarity scores to obtain the weights, and perform weight-space averaging of the adapter
parameters, following [Chronopoulou et al.| (2023)). Note that we also include the corpus of the target
task when calculating the similarities for weight-space averaging, and hence also the target adapter
during weight-space averaging, and train a new task head on the target task to allow a more fair
comparison to other two-stage MTL methods. We use a learning rate of 3e-4 when training the
target task head with ADAPTERSOUP.

A.2 ADDITIONAL PROBING ANALYSES

We show the single-task probing results using the remaining GLUE and SuperGLUE source tasks
not shown in Section[3]in Figure[d For the probing experiments when using two task adapters (the
target task ¢ and MNLI), we show the remaining tasks from GLUE and SuperGLUE with fewer than
10k samples as target tasks in Figure 5]

>We also test out {\ (%,0.001), N (Z,0.001), N (1,0.001)}.

19

Under review as a conference paper at ICLR 2024

-4

.
-9 -

-4

— -

COPA
WSsC
RTE
MRPC
CoLA

- WiC

STS-B
BoolQ
SST-2
QQpP
ReCoRD
CB

CcB
COPA
wsC
RTE
ColLA

- WiC

STS-B

- SST-2

QQpP

= QNLI

MultiRC
ReCoRD
MRPC

- WiC

- MRPC

- WiC

CB
WsC
RTE
MRPC
CoLA

STS-B
BoolQ
SST-2
QQp
ReCoRD
COPA

Accuracy

CcB

- COPA

wsC

ColLA

STS-B

e
N
T

©
S o @
o oy

0.55 1

0

S5
0.00.1

03

(b) COPA

o
N
ol

0.91.0

°
g

- BoolQ

Accuracy

o
)
o]

o
o

SST-2
QQP
ReCoRD
RTE

0.55 1

0.5

0.00.1

0.95
0.91
0.85 | =4
> 0.81
8 0.751 -t
—
s 0.74 -
S 0.651 M
S o.
< 061 .-
0.55
0.51 -e-
45 +—
0.00.1 -o—
0.9
.’C
0.85 { - -+
> ./ —
@ 0.81 _—
—_
2 . S IR
5 0.751 R .|
< -
071
—.-
0.65 *—] ; ; ;
0.00.1 03 05 0.7 0.91.0 =-e-
Ws
(¢) MRPC
0.65
CoPA
-4-- CB o6
RTE .61
—+- MRPC O
Co,A (@
-&- WiC 5 0.55]
sTs8 - 9
-o - BoolQ]
SST-2 0.5
-e-- QQP
ReCoRD 454 — ;
—-e— WSC 0.00.1 0.3
(e) WSC

05
Ws

0.7

03

07 0910

Figure 4: Effect of scaling the output representations o’ of adapters by weight w, using different source
adapters from all other tasks from GLUE and SuperGLUE. Each point shows the mean over 5 seeds.

0657 s 06 —= 0.7
f~_~r._-_-_—_jr s e o -% 0.55 /./0
SRR ettt I 0.5 . R wim =k
> A maal | Eoas P =" 2 0.651
® Vme— Wy =00 | § 04] FC7 "7 —e= wuy =004 B Wiy = 0.0
3 06 Wy = 0.3 T 0.35 ,.” wyny = 0.3 8 Wune = 0.3
g Wy = 0.5 5 0.3{// AT W =05 | & 0.6 Wy = 0.5
=» = wuny = 0.7 £ 025 i ,/ =» = wuny = 0.7 wuny = 0.7
=a= wuyy = 1.0 © 0.2 %" == wun = 1.0 =a= wuyy = 1.0
0.55 +— : : : — = 0.15+— : : : — 0.55 +— : : : —
0.00. 0.3 05 0.7 0910 0.00.1 03 05 0.7 0.91.0 0.00.1 03 05 0.7 0.91.0
Wwsc WcoLa Wwic
(a) WSC (b) CoLA (c) WiC
< 0.95 p———— 0.8
5 09 > .}/r-" o
D 0.85 tamm=m=RITN . 0751 e
S 0.8 —o— wyny = 0.0 —o— wyny = 0.0 E 071 ./—.— Wy = 0.0 4
n 0.75 Wy = 0.3 wune = 0.3 o 8 wuner = 0.3
-g 0.7 o wyny = 0.5 wwny = 0.5 % "] wmny = 0.5
o / =>= wun = 0.7 =»= wun = 0.7 0.65 7, > = wuny = 0.7
8 0.65 1 —a= Wyny = 1.0 —a= wyyy = 1.0 -a=- wuny = 1.0
& 064— ; ; ; — $; ; ; — 0.6 ; ; ; —
0.00.1 03 05 0.7 091.0 0.00.1 03 05 0.7 0.910 0.001 03 05 0.7 0910
WsTs-B Wmultire WBoolQ
(d) STS-B (e) MultiRC (f) BoolQ

Figure 5: Effect of combining independently scaled output representations of two adapters trained on the target
task and MNLI, respectively, on additional tasks from GLUE and SuperGLUE. Each point shows the mean over

5 seeds.

20

Under review as a conference paper at ICLR 2024

A.3 ABLATION STUDY

Table [/] shows the effect of adding constraints on the distributional values of scaling coefficient
in SCALEARN, evaluated on GLUE using RoBERTagasg. In particular, we change the original

SCALEARN model by adding the constraints mean and softmax over the source task dimension, thus

enforcing ZISSZ‘I w! = 1. The results indicate that both constraints reduce average performance

compared to those having no constraints, confirming our choice of directly learning the scaling
coefficients without imposing any restrictions.

Table 7: Effect of adding various constraints to the scaling values of SCALEARN, evaluated on GLUE
using RoBERTagase. The constraints mean and softmax are applied over the task dimension, enforcing

Z‘Sill w! = 1. The best results are shown in bold.

Model Constraint MNLI QQpP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

SCALEARN None (original) 86.979.09 90.320.10 92.51p.17 93.88015 90.96016 87.75055 82.06137 5847176 | 85.36¢.55
SCALEARN Mean 87.03p.01 90.360.30 92.340.09 92.601.35 90.62025 87.11p79 79.21; 50 59.87395 | 84.89¢.95
SCALEARN Softmax 86.850.05 90.60005 92.74022 93.750.0s 90.660.10 85.831.00 79.28104 5843195 | 84.77¢.5s

A.4 ADDITIONAL RESULTS

More results using ROBERTagagg. Table (11| shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in a total of 15 tasks.

Results using ROBERTay srge. We further validate our method and its variations on the encoder-
based PLM RoBERTa; srge. Table [8| shows the corresponding results, including all baselines, on
the GLUE benchmark. Table [9] shows the results on SuperGLUE. Table [I0] shows the results on
HumSet. Finally, Table [I2] shows the results when training on the combination of all GLUE and
SuperGLUE tasks, resulting in a total of 15 tasks.

21

Under review as a conference paper at ICLR 2024

Table 8: Evaluation results on GLUE using RoBERTa; arce. (Top) STL models, only learning a single task at
a time. (Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods,
composing the knowledge of several source adapters. The overall best results are underlined, and the best
results among the two-stage MTL models are shown in bold.

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 89.57036 89.751.03 9391043 95.30065 91.89035 86.271.15 81.52319 60.15259 | 86.041 26
ADAPTER 89.620.18 89.870.67 94.130.06 95.2400s 91.81po9 87.82311 81.23292 64.071.97 | 86.72104
PROPETL 89.780.24 89.230.77 94.32000 9541000 91.45039 87.65073 84.55214 65.85210 | 87.28)s1
COMPACTER++ 89.150.67 87.332.39 92.93142 95.41p00 91.46035 87.84123 79.71458 65.66208 | 86.191 .59
(1A)* 88.690.61 87.79%.72 91.72079 94.95016 91.39945 86.37165 80.793.16 64.703.90 | 85.80;.34
FINETUNE-M 87.950.39 89.820.77 92.58p32 94.880914 87.04p6s 81.371.00 84.361.19 5532078 | 84.160.76
ADAPTER-M 89.100.36 89.350.09 93.640.05 9490017 88.400.32 83.09925 86.649.00 56.380.79 | 85.190.25
PROPETL-M 88.980p.33 89.030.15 94.140.11 95.150.05 91.560.23 87.831.10 88.4B029 60.991.03 | 87.01p.41
HYPERFORMER 89.660.40 90.150.63 93.950.13 95.80062 91.680.35 86.601.22 86.280.29 61.18476 | 86.911,05
HYPERFORMER++ 89.79.21 89.54043 93.95054 95.22011 91.62029 88.07186 86.28;06 65.16061 | 87.450.64
ADAPTERFUSION 89.570.17 90.880.06 94.150.04 95.87p.00 91.860.15 8897978 85.701.13 66.391.83 | 87.930.52
ADAPTERSOUP 65.830.51 82.370.00 74.06101 93.98024 81.67163 7337051 67.2T163 43.70162 | 72.780.89
SCALEARN 90.090.00 90.51p26 94.180p.03 9541916 92.320.15 88.099s2 87.08p51 6540262 | 87.91g55
SCALEARNUNIFORM 90.11p.04 90.050.2s 94.2300s 9541016 92.11p06 88.63170 84.40393 66.98058 | 87.740.86
SCALEARN++ 90.31010 90.590.03 9405003 95.9302s 92.48015 8848195 86.28105 67.13050 | 88.160.43
SCALEARNUNIFORM++ 90.080.01 90.490.02 94.12016 95.180.16 92.120.09 90.05054 84.98;132 64.970s5 | 87.750.39

Table 9: Evaluation results on SuperGLUE using RoOBERTa argE.-

Model ReCoRD MultiRC BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 81.60105 79.030.02 81.650.30 69.722.16 6346000 52.00s25 90.362.00 8152519 | 74.92507
ADAPTER 88.520.00 80.730.60 8236072 69.16151 63.2506s 71.901363 92.68175 81.235.92 | 78.735.7
PROPETL 87.86250 8119090 81.61p.ss 69.622.16 63.46000 69.001506 9411401 8455214 | 78.92507
COMPACTER++ 88.340.07 79.18020 79.53g13 69.26151 6226143 79.00074 87.507.45 79.Tlyss | 78.104.0
(1A)® 8747001 T7.91o43 8097075 68.65255 60.58000 77.000.00 90.005091 80.79316 | 77.931.35
FINETUNE-M 83.57051 78.08055 81.700.65 53.030.57 49.36950 86.67235 82.140097 83.87201 | 74.802.30
ADAPTER-M 86.760.50 7515024 7718590 5157115 53.2lgrs 67.67T105 8095165 77.381.36 | 71.235.04
PROPETL-M 84.83040 79.600.37 82.021.11 55.33046 59.62005 86.67403 88.102.03 8556020 | 77.712.24
HYPERFORMER 84.38100 79.68097 81.87g97 53.8laus 63.46364 82.336.94 8393253 86.88000 | 77.04305
HYPERFORMER++ 13.660.00 40.214091 71.50933 49.14956 62.98045 54.00500 67.8617.86 66.9710.6s | 53.2911.43
ADAPTERFUSION 89.21017 80.52024 822130 69.0916s 63.4606s 81.201607 95.71o0s 86.06107 | 80.93565
ADAPTERSOUP 70.330.08 38421940 73.20016 62.23117 63.46000 5450574 68.75103 6137597 | 61.533.06
SCALEARN 87.850.01 7840070 8029550 68.56165 62.9806s 85.40375 92.86170 84.91g50 | 80.1647
SCALEARNUNIFORM 88.85022 8042005 81.85021 69.91515 6154900 82.00s0s 90.001.60 84.04166 | 79.831.00
SCALEARN++ 88.28025 80.7605s 83.0803 69.59;g9 6298065 87.80110 91.071.70 85.70p32 | 81.160 56
SCALEARNUNIFORM++ 88.85020 80.70p.04 82.13p.21 70.19056 62.9806s 83.60285 91.07252 84.8410 | 80.541 02

Table 10: Evluation results on HumSet using XL M-Ry arcE-

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
FINETUNE 72.99.17 51.380.39 44.84 89 61.900.20 43.49¢ 86 54.92¢ 50
ADAPTER 72.299 .59 49.311 o7 45.250.03 62.580.67 44.360.66 54.760.65
PROPETL 73.200.32 51.580.40 45.100.92 61.525 99 41.980.70 54.680.92
COMPACTER++ 61.7712.63 8.175.92 6.3711.00 20.3924.091 15.362.71 22.4111 43
(IA)? 64.721 55 38.267.97 26.775 79 55.571 48 31110 53 43.295 1
FINETUNE-M 59.047 g6 22.9519.78 10.755.31 29.7621 25 9.651 25 26.439.69
ADAPTER-M 65.667‘13 37.6511‘25 28.517‘80 434016‘06 27441‘68 40-538.78
PROPETL-M 70.561_06 41.586_27 35-913.46 42.2014_55 29.676_92 43.986_45
HYPERFORMER 47. 745070 29.0611.7¢ 22.16g 44 35.9217.37 22.5810.58 31.4913.77
HYPERFORMER++ 0.009.00 0.009.00 0.009.090 0.009.00 0.009.00 0.009.00
ADAPTERFUSION 72.530.45 51.330.23 43.750.52 62.31¢.25 42.785 11 54.54¢0.71
ADAPTERSOUP 52.541 61 24.075.18 20.62¢.28 31.164 49 12.84¢.49 28.251 19
SCALEARN 73.320.08 53.94¢ 13 44140 75 63.89¢.16 44.75¢ 47 56.01¢ 32
SCALEARNUNIFORM 72.560.20 50.590.10 44.620.00 62.66¢.00 45.160.00 55.129.06
SCALEARN++ 73.180_04 5141036 44.100_09 63.370_02 45-430_24 55.500_15
SCALEARNUNIFORM++ 73.02¢.20 50.84¢.30 44.88 39 62.879.01 44.45¢ o2 55.210.18

22

Under review as a conference paper at ICLR 2024

L90gppg | 86°09g7G6 OFTog'68 8900109 %6060°0L %0egT8 FEO09F08 990878 | OMegicg PETL PR S¥OLET88 CTOzIe6 9000g¢6 00166 OTOGH'06 FTOOT'06 ++WAOLINONAVATYOS
£60e9p8 | 08067 p6 OTTOR'68 'TTeg9 fUNOp69 OTTIGE8 GUOpT08 ETOggrug | SETEZTLY 0T1grgg 9000pLL8 0T0GETEe MTYI9WE FYUBT e F900r06 LCOET06 ++NAVATVOS
08°0e9'p8 | ¥8C00°66 CYTOP06 09079'6G “PC8Z0L YTOp0e8 L000gt08 00pgeg | 0Teglgg 6Feggrgg cllggrgy “00grge 80002766 00pR'e6 S00pG06 0960°06 INOAINONAVATYIS
SUIO8FR | '0%66'e6 “CTO0T6 OLTEL99 80C9T 0L 6L0gprgg 09080°08 MPOgpaR | BETOgL9 9TTRLG’ fETTREe] f106gg6 L909e'G6 1E0R6¢6 8900L'68 £10L9'68 NAVATVOS
60Tzp g9 | THIRRTL OGS 8908679 Y0Tpgr9 tORpgL MOgete 00060'89 | fftrrey 09fpgreg FEOTGL 9O9TYL 000p0pe 0007 ¢y 0008 00067 LG dNOSYALIVAY
OToppe | 6629¢06 960988 eXT69T9 CTTOG69 9O0pE8 0%0¢gieL 0009ZTE8 | g9 STegigg e0gTe8 TTO80'T6 000p9'66 OOpTY6 LC0E8T06 °M06L°68 NOISNJYHLIVAY
8UIGzge | 891ggp8 0070068 L2989 09TeeIg I809Tgg L808u06L PTO9T'GR | ®lpggg PL0G9RE VPI9L9’ TE00R 16 080scce TTOLEHE CE0¢006 PEOGL68 YANAOJAAdAH
TETeT08 | 9VTogL8 60fee0p LPeleggy 9900g1g 68Tggg) 6109y LT0ggreg | E8EgR G PLOpprgg TVOTT9] 090pjr06 6T0gge 99069'¢6 90°0cz88 080g6'gR N-T1LHd0o¥d
SOTpp 08 | $CC608 TO0gEe’ TETETI6G L0069'ge B0gg08 90T L CHIIRIR | Tggr g OUlggrgg 98Tgpgg TEOTReR TEORT'GE PTOpG'e6 OF0p006 '¥00€'68 W-YELdVAY
E21Qp7 L) | A9fGg T OVEL9T)) TALTORG 0L00pgg BL0G6'8L 660L0°GL FORppL | 09fQpTTG T0gTR8 90fegieL S0TRrg8 9400gie6 S08Fg6 S0018'68 010¢T'ss IN-ENNLANI
102e) 18 | 10F00°06 SXTTO0TL 00086109 99CGOR9 L0608 EVOTETLL TEOLpLR | 0FFQLR9 9TEGL08 0TLe9’ VOGEI6 OTOC6T6 640gL 16 L06LL8 T9069'88 (V1)
6920e g8 | SVL0G L8 THO00°6L €VTOT9 U969 FTOEG6L OPORT6L L00peg] | 80P99'qy SETIL6L FETpRL8 FO9p 16 000Tpee CVle6e6 SFCeels 2906168 ++AALIVANOD
eIe’ | OTITR6 96810069 0009F'e9 9Teg969 9801918 GOOBTTIR 09%9g.g | 0TPeggy PTeggyg £20ggug 680gyg 000Tprge 600gepe L0g7e8 TEORL°68 11ddodd
I8TeRg8 | 84189¢6 FUEl06'TL T90¢ze9 TETQT69 CL09ggg 690gL08 600ggey | 6T 0p9 6CepT8 TTeggrig 6C01R'T6 S00pgige 00eTE6 490.8'68 8107968 yALdVAY
1508 | 0629706 $2800ce 0009p°e9 OTegL 69 0F0GYIR Y00gp6L SCTT09 I8 | 6%Tcro9 OTErerg ST g9g 06816 “9000gc6 EVOIEE6 SOTGL'68 980,668 ANNLANIA

8ay a0 VdOD JSM JM Oloog DUBINIA @YD V10D ARt o i 14 4-SLS T-LSS I'INO 400 I'ININ PPOIN

SHAVIRNHGOY mﬁww: syse) MDAO.SQSW pue N TO [[e JO uoneurquiod ayj uo sjnsar uonenfeAy | IjqelL,

vL06g08 | 40TZ'e6 “FTogpL S6TRLT9 TOTgeL9 690gzrgL T909L gL 99008'6L | 06°0gereg 96°06L°08 9%0L6L8 PTO0ZEe'06 TTOT9F6 TE0ce6 TEO9T'06 “10g8'98 ++WMOAINONAVATYOS

209018 | €T T6 90T06°6L C009FT€9 SUleprl9 LEOpgLL LEO9TL TP0RGTGL | 90TGOT6G 0600F'08 OTIZ'88 9T0GL 06 FOR0F6 S0008°T6 LPT9G68 T0076°98 ++NAVATVOS
R0 608 | BATe6'e6 OTC0gEL 980gge9 440L0T89 “U0gp9L 9006 1L ST0GOT08 | BROL6'RG 60TL8'08 660L6L8 TMO9T06 0f08¢¥6 C6010'c6 °'109Z'06 L00TOLS INHOAINNNAVETVIS
9806E I8 | "'IL0°96 09708 09FTe9 0419L99 SCOBGTRL TVOL9gL 8VO0cgL | 8TlgereG 096G I8 “L0TZ'88 6U0ZGT06 “COGOT6 £008L76 60°08L68 £00g6 98 NAVATVOS
660pg'gg | E20eT L STTOGEe 19Tpgg9 0%098'8¢ TEORGRg 99Tg0ce eT0g0g9 | TAeeg9e §90g0'6g OPOLGTTL f80gag9 9109016 99090°LL FO0Z0'E8 90R0°8G dNOSYALIVAY
0Tz9°6L | 0X9Lge’ OfpgpL 0009ETEg PEggrg9 TA0ggrgL TAOTL gL PE099'g) | TMTL9RG E9TpgrgL 00TRLg TEO9p06 090z9e6 9T0¢e6 TTORT06 0%0%g¢r98 NOISNAYALIVAY
E60TEpRL | MITLGR ¥000'9L L0609 CTg0es 9006'9L 690RT'TL OVOegTL | EUEQprgg S60GTER TOITRR] SM0pg'06 690Tgre6 STOTLT6 9P0p0'68 410ge 98 ++IINIOJ¥HdAH
90T LL | VIILGR PEOTL9H9 9E9.6'8¢ S€leRTTG E9TQgrgL L0Te L BLOQTI[L | TATIT9G 60TegiIg 180cRigg 2006668 TEOIREE 90.8'16 970888 V0g(9] YANIOJHHdAH
08T LL | 9VTOG L8 APO0ge) TVTI9GRe 9TTeQIpG 980Qurg) B90gergy 280gergL | BITEeey TRERL'6L S90eR'98 STOTE06 SE00ce6 LP09G'T6 SEOTT88 Y001 gR N-TLHd0o¥d
W0e69L | BIpTE’ OkTegrgL 0TIRTR9 80geeg 0%0gogL 6T00T'gL VEOGL69 | SEIRR'Rp FUTL808 9L0gegg TF0L9'8R SVO0Lzies e0geTe ATO0L'68 POpT'OR W-YELdVAY
09T06°GL | E9TpT e’ EYTO0'EL 9%LG0LG PEloeTg OM098'9L WOREIL 60T0F9 | S0Fegey @9T66'08 10T99'e’ 980gggg E80gpreg STOperle 90106 %P07R'GR IN-ENNLANIA
SVITTQL | L9TgeL8 LEEOE69 COcereg 89T 009 6X0TggL £2°0)7:G) | 089L6'9¢ BETggL VEIITLR 0B 0gi6R 080ceeq SE0LG06 020.¢'8] ORI (V1)
erIgygL | ©9RYL8 00TQgrgg 000gFTEg €9Tgprgg 96°08G) L969°L) | S9TeTRG eCgogL MOTZL8 TY0L9'68 TEORG'e6 GE0GL 16 0LOpRR] ©V079'GR ++4ALIVANOD
gL | 9SEIYE8 PPE090L 0009FEg 900999 8L08¢rg) VEORZTOR | L0%6T6G FOCRTVL CPTeaG8 F0g006 C4018'€6 9%0cog6 STO8R'R] 9COGT'98 T11ddodd
Selgg'gL | Stggpg EFlTOgioL 0U09PE9 991RGgg SEITL'g) @0z06L | 09%8z'8G TETegTL L0Tpgiog M0gzio6 140cog6 ST0gzge I1081°06 £00g'98 dALIVAY
STZTRL | FETOGTIR PA909'89 0009FTEg 80Tgergg VETOR'9L SSOTYTL | EOTQRRG S0TLpeL ETRE9R T0gcr06 S0geee SCO0RL 16 STOZED6 EO19'98 ANNLANIA

8ay o) VdOD JSM oM Oloog DUBINIA - @YD A (o) ARt or:b: 14 g-SLS T-LSS I'INO 400 I'INI PPON

"PIOq UI UMOYS QI8 S[OpOW T LJA 9581s-0M] 9y} SUOWE $)|NSAI 159q Y} pue
‘POUTIOPUN Ik SINSAI J$9q [[BIGA0 Y, ‘sId)depe 90In0s [BI9AdS Jo oFpajmouy oy Fursodwod ‘spoyrour TLIA 98e1s-om], (Wonog) "A[snosueinwiis syse) [[¢ SuruIes] ‘spoylowt LA
Jutof (S[PPHA) “dwn e 1 yse} 9[3urs e Surures] A[uo ‘sapow LS (dol) -dsvaeygggoy Suisn sysel g 1HIedng pue O [JO UOHBUIqUOD 9} UO S}[NSAI uonen[eay I dqel,

23

Under review as a conference paper at ICLR 2024

A.5 SCALING COEFFICIENT VISUALIZATIONS

SCALEARNUNIFORM and SCALEARNUNIFORM++ utilize uniform scaling and learn coefficients
that are directly used to scale the output representations of the source adapters. In the following,
we leverage this characteristic to provide an analysis of the potential degrees of effects of source
tasks on target tasks. We present the adapter weights learned using RoBERTagasg for GLUE and
SuperGLUE, and using XLM-Rgasg for HumSet with the random seed set to .

The learned coefficients of each PLM layer on GLUE, SuperGLUE, and HumSet of SCALEAR-
NUNIFORM are shown in Figure[6] Figure[7] and Figure [§] respectively. The weights reveal that in
most cases, the actual target task adapter is activated most strongly across the layers. Among the
source tasks, most weights are close to 0, while some source tasks also show high values, partic-
ularly in some of the higher layers of the PLM. Interestingly, some of the scaling coefficients go
beyond or even below 1, which would not have been possible in the traditional paradigm where
scaling coefficients combining multiple vectors are restricted to sum up to 1.

The learned weights on GLUE, SuperGLUE, and HumSet of SCALEARNUNIFORM++ are shown
in Figure 0] SCALEARNUNIFORM++ also mostly activates the actual target task adapter, whereas
this effect is comparatively weaker in SuperGLUE and stronger in HumSet. As is the case with
SCALEARNUNIFORM, many scaling coefficients exceed or go below 1.

24

Under review as a conference paper at ICLR 2024

§-0.2 5-0.06-0.01-0.24-0.39-0.090.03-0.19-0.21-0.020.09|
1.0
£-0.11-0.00-0.040.32-0.110.34 0.38-0.080.04 0.16 0.05 0.23
0.8
v 0.360.470.690.460.710.33 0.640.67.0.35 40|
wn
w ﬁ 0.16 0.04 0.100.180.11-0.07-0.160.26-0.07-0.000.32/0.62 0.6
=)
o &
o = 0.100.12/0.150.09 0.10 0.24 0.21 0.06 0.28 0.17 0.13(0:74)
8 0.4
n 0.310.21-0.04-0.080.17 0.20-0.050.04 0.16 0.14-0.000.17
0.2
£0.080.150.16-0.03-0.07-0.270.04-0.010.23-0.120.26 0.04
0.650.29 0.2610.60 0.38 0.42 0.44 0.15 0.25 0.17 0.28| 0.0
2 345 6 7 8 91011 01 2 3 456 7 8 91011
Layer Layer
£-0.30-0.210.03-0.51-0.200.23-0. 0.180.12-0.06-0.110.25 0.21-0.10-0.000.52-0.44{sX=340.31
Q’$<° 0.23 0.2 0.52 0.91 (0]
¢ 1.0
@Qg 10.150.06-0.190.54-0.130.04-0.240.02 0.02(0475/0.480.17 0.14-0.01-0.190.07-0.04-0.10-0.06-0.25-0.51-0.37-0.68-0.69
O 0.8
™ 0$ 0.300.02/0.050.15 0.020.09 0.08 0.01-0.080.08/0.62 0.54 £0.09-0.060.140.04-0.160.13-0.20-0.03-0.220.24-0.21-0.4
S
w Odz 0.000.08/0.21-0.09-0.05-0.020.18 0.13 0.17 0.27 0.00 0:72} 0.010.06 0.06 0.07 0.05 0.08-0.03-0.070.14 0 0.6
2
a5 o &
0.070.100.08-0.030.13 0.000.14-0.140.030.13 0.100% 0.040.07 0.04-0.000.01-0.04-0.06-0.020.04-0.110.16 0.00
0 5 & 0.74)
3° 0.4
Q
n é\") £0.03-0.050.100.01 0.02/0.14 0.14 0.14-0.010.12-0.250.43| 0.06-0.00-0.090.04-0.06-0.170. 0.020.18 0.11-0.39-0.1
N 0.2
£-0.17-0.21-0. .06-0.01-0.270.33-0.27-0. .22-0.49-0. §-0.12-0.140. B .050.050.04-1 o
\‘\\/ 0.17-0.21-0.290.06-0.01-0.270.33-0.27-0.09-0.22-0.49-0.0 0.12:0.140.06 0.00-0.02-0.220.12 0.05 0.05 0.04-1.06-0.2
(},\y -1.141.351.311.52 1.53 1.40 1.47 1.47 1.18 (LIP3 -0.971.101.091.001.131.00 1.16 1.06 0.90 1.13 1.07 t}{] 0.0
01 2 3 45 6 7 8 91011 01 2 3 456 7 8 91011
Layer Layer
£-0.10-0.010.03-0.06-0.170.07-0.110.20 0.100.23-1.36-0.12
1.0
£-0.04-0.08-0.090.2. 00-0.020.01-0.20-0.36-0.19-0.05-0.44
0.8
™ 0.030.04/0.04 0.02/0.02-0.050.14-0.320.320.44-0.07-1.6 0.130.32-0.070.04-0.330.13-0.21-0.000.40 0.24-0.41-0.1
<
w 0.020.09/0.020.05 0.01 0.04 0.06 0.01-0.15-0.030.15-1.34 60.01-0.01-0.020.08-0.020.03 oo&oommﬁo 15 0.6
2
3 9 &
(O] = 0.050.04-0.040.02 0.01-0.050.03 0.04 0.11-0.24-0.040.28} 0.050.04 0.05 0.01-0.08-0.20-0.07-0.190.00 0.15 0.33 0.33
8 0.4
n 0.08-0.090.040.050.01-0.010.03 0.13-0.100.15-0.090.18 -0.090.05-0.020.07-0.160.66|
0.2
0.07 0.01-0.020.01-0.00-0.040.00-0.090.12 0.29 [0.2 0.030.02-0.080.01 0.02 0.05 0.01-0.110.09 0.06 0.05 0.11
v 0.0
-1.040.98 0.99 0.98 0.94 1.02 1.01 0.95 0.93 1.10 0.96 U1 -1.091.061.161.021.101.351.130.95 1.23[1/:511.24 1.33
01 2 3 45 6 7 8 91011 01 2 3 456 7 8 91011
Layer Layer
Q’S((/ 0.00-0.11-0.110.01 0.06-0.42-0.000.16-0.170.100.33 0.11 Q‘S((’ 0.16:0.020.04-0.110.10-0.340.27-0.19-0.27-1.2008e¥40. 26
< < o
& 0.08-0.31-0.07-0.030.10-0.15-0.030.24-0.46-0.3 00. X
N N
~ (,0\? 0.04-0.15-0.170.02-0.200.07-0.330.07 0.14-0.10-0.390.17 (}3\? 08
) L
© > N
w O$V 0.070.10/0.10-0.050.120.13 0.00 0.25 0.100:72/0.32 0.40, oeV 0.08-0.05-0.02-0.000.05 0.00 0.02 0.07 0.03-0.050.45 f¥EE3 0.6
2
2 8 Q &
(O] [=RKONIE 0.07-0.080.04-0.04- 01-0.08-0.02-0.120.16 0.14 0.57, Qo
g < (& 0.4
0o <V
(;7 0.110.080.01-0.020.08 0.150.02 0.03 0.07 0.39 0.59 0.70 c)(o
N s 0.2
Q\é\/ 2-0.070.06-0.110.10 0.33 0.06 0.40| 6\‘9’ -
2) 0.0
é{o -1.120.951.331.231.27 1.00 1.19 0.89 0.88 L PSK: P31 Q\é -0.981.010.991.001.000.961.01 1.091.021.11 1.17(}
01 2 3 456 7 8 91011 01 2 3 45 6 7 8 9 1011
Layer Layer

Figure 6: SCALEARNUNIFORM scaling coefficients
are shown in the last index of each heatmap.

on GLUE using RoBERTagase on seed 0. Target tasks

25

Under review as a conference paper at ICLR 2024

£0.210.130.230.360.290.190.340.380.270.230.21 0.3

2|

0.320.230.220.220.220.230.290.220.210.210.22|

SuperGLUE
Source Task

012 3 456 7 8 91011

Layer
(3’ 0.420.380.02-0.040.160.100.220.260.210.190.050.19|
o
&6
XS
\)
oy
Qo
3 L
= 8 Y
QQJ_ S QQ\Q’ 0.000.140.09-0.170.310.290.240.010.290.350.340.20
3 9
2] 2] QQSJ
S
Yo
Q.
(JO
(4
&
62?‘
C

0123456 78 91011
Layer

SuperGLUE
Source Task

Layer

S
C
.12 0.18.0.050.250.11-0.130.06-0.260.21:0.420,62.0.1
W ¥ N
3 © O
(IR 0. 06-0.170.04 0.05:0.070.010.070.09-0.620.9 1
Q o
o P O
o S 00 B0 B E k 020.18-0.160.120.45-0.440.09
a3 8 °
0 Q’S@ 0.020.05-0.110.02-0.020.090.12-0.170.38-0.29-0.330.26
&
@)
<E O

\)\'i) -1.190.981.091.041.131.031.171.051.181.03 0.89(0N%]
01234567 8 91011
Layer

Figure 7: SCALEARNUNIFORM scaling coefficients on SuperGLUE using RoBERTagase on seed @. Target

tasks are shown in the last index of each heatmap.

26

£0.280.650.200.27-0.390.010.010.34-0.00-0.130.060.16|
0.53-0.530.050.380.08-0.340.07-0.000.160.070.150.11
£0.480.020.350.490.330.11-:0.020 0.160.100.320.02
£0.010.060.070.070.030.02-0.030.000.270.17-0.170.07|
£0.01-0.050.080.150.48 0 180.37 .44 0.460.140.26
0.190 470.480.460.420.460.460.250.280.01 0.66)
0.120.550.290.130.210.220.250.180.040.470.160.42
0123456 7 8 91011
Layer
0.260.140.130.190.150.130.200.180.190.170.180.17|
0.210.190.120.110.130.130.100.110.090.080.04 0.31]
0.120.130.270.180.110.130.150.160.160.100.03-0.0
0.210.240.130.400.270.220.260.200.260.160.07-0.0Q
0.040.080.080.060.170.240.310.150.300.240.150.24
0.220.160.160.150.180.260.430.280.300.180.06 0.45
0.190.240.200.210.310.300.230.200.200.480.37 0.39

0.430.320.150.290.360.350.380.410.490.470.58 0.06

01234586 7 8 91011
Layer

0.00-0.490.16-0.30:0.080.530.050.230.130.43 0.10-0.29

§-0.020.04-0.050.120.090.14-0.22-0.41-0.240.21-0.22-0.0Q

§0.21-0.030.24-0.17-0.30:0.230.220.22-0.050.13-0.31-0.02

§0.330.16-0.170.110.17-0.4

£-0.190.040.03-0.140.010.110

0.15-0.11-0.030. 0.07-0.050.16:0.140.02-0.19-0.1 1wk}

§-0.060.02-0.10:0.040.05-0.040.000.040.01 0.

0.931.440.961.681.081.341.081.231.11
01234567 891011
Layer

0.01-0.030.110.07-0.070.080.07-0.060.16-0.3%ME¥0.02

0.090.11-0.030.030.010.050.070.120.030.14-0.270.50

§0.020.07-0.100.01-0.110.000.04 0.09-0.01-0. 1 ChScyA R]

0.42-0.31-0.130.01-0.17:0.050.01-0.200.40-0. 347Rch Mel:)

0.860.960.940.950.940.92

0.910.87 0.94[&}
0123465678 91011
Layer

0.8
0.6
0.4
0.2

0.0

1.0
0.8

0.6

0.4
0.2
0.0
1.0
0.8
0.6
0.4

0.2

0.0

1.0
0.8
0.6
0.4
0.2

0.0

1.0

5

€
«w

Sm

Sm

Under review as a conference paper at ICLR 2024

1.4
0.02 0.06-0.030.02 0.02 0.04-0.010.01-0.00-0.03-0.050.17| 0.04-0.04-0.090.02-0.06-0.06-0.04-0.04-0.04-0.090.05 0.01
1.2
0.05 0.03-0.000.03-0.00-0.000.03/0.01-0.010.09 0.04-0.12) 10.03-0.02-0.01-0.01-0.02-0.02-0.07-0.04-0.01-0.020.07 0.01, 1.0
X
[}
.
©
g = 0.8
E 8 0.08 0.030.010.02 0.04 0.00 0.02-0.000.02 0.02 0.07 0.38| 0.17 0.14 0.16 0.16 0.08 0.12 0.10 0.08 0.07 0.07 0.130.83| £
o w
2 3 06
%]
01-0.04-0.050.02-0.050.02-0.03-0.02-0.03-0.020.06| 0.4
0.2
J 1.45
| || | | 0.0
01 2 3 45 6 7 8 91011
Layer
1.2
0.03-0.030.01-0.03-0.010.01-0.020.01-0.04-0.05-0.040.02 10.070.02-0.00-0.11-0.050.00-0.03-0.000.04-0.030.06-0.19
1.0
0.110.09 0.13 0.06 0.05 0.07 0.06 0.03 0.03-0.020.07 0.50 0.01-0.020.02-0.030.03-0.02-0.060.00-0.010.03 0.01 0.14] 0.8
~ .
[}
o
g e
0.6
E 8 -0.02-0.00-0.00-0.05-0.01-0.00-0. 0.000.02-0.020.02-0.01-0.000.02-0.05-0.03-0.010.04 0.57 [
S5 £ M
T 3 04
]
0.02-0.05-0.03-0.03-0.000.01-0.02-0.02-0.02-0.040.01 0.31 0.07 0.12 0.01 0.04/0.06 0.02 0.05 0.04 0.00 0.01-0.050.04]
0.2
v
N -1.011.011.011.031.040.991.021.041.051.07 1.19 1.22 \,5\‘1 -0.951.05 0.96 1.07 1.07 0.99 1.13 1.07 1.06 1.05 1.06 1.24 0.0
» >
01 2 3 4 5 6 7 8 9 1011
Layer
£0.02-0.010.05-0.17-0.10-0.02-0.03 0.03-0.05-0.04-0.13 0.16 [HIEHERY
1.25
0.01 0.01-0.04-0.01-0.01-0.03-0.06-0.010.01-0.04-0.03 0.20
1.00
0.19 0.19 0.22 0.210.22 0.14/0.08 0.02 0.08 0.09 0.06 0.21 0.75 lns

HumSet
Source Task
Ky

0.02 0.03-0.02-0.03-0.07 0.02-0.05-0.03-0.02-0.04-0.01 0.23

0.98 1.02 1.00 0.99 1.05 0.89 1.04 0.94 1.10 1.01 1. 0.00

012 34056 7 8 9 1011
Layer

Figure 8: SCALEARNUNIFORM scaling coefficients on HumSet using XLM-Rgasg on seed 0. Target tasks are
shown in the last index of each heatmap.

0.38-0.20-0.08-0.06 0.05 0.00-0.06-0.05] 0:74 0.29 0.09 0.18-0.12-0.08-0.050.04
1.0
0.010.00-0.06-0.02 0.03-0.08] 0.13/0.59 0.29 0.05 0.07-0.010.00 0.04
V4
% 0.06-0.00] 0.03-0.11-0.030.06-0.11] -0 010.24‘0.16-0.06003-Ov01-0.00 0.8
: 0.60 0.04 0.10 0.08 0.02 0.01 0.05) -0.090.18-0.030.43-0.07-0.09-0.02-0.07 0.6
€
E 0.03-0.030.01 0.01 gK¢k}-0.00-0.01-0.02] ©w
> 0.4
o 0.16 0.05 0.06 0.04 -0.00[¢X=E] 0.01 0.06
2] 0.2
0.10 0.17 0.07 0.02-0.000.02 pMeEN0.12
.07-0.09-0.05-0.05-0.00-0.0 1 ek 0.0
&
& LTS OV & FEY L& &L
TEIT T IS & W€ S
GLUE e
SuperGLUE
Target Task

Figure 9: SCALEARNUNIFORM++ scaling coefficients on GLUE, SuperGLUE, and HumSet using
RoBERTagase for GLUE and SuperGLUE and XLM-Rgase for HumSet on seed 0.

27

Under review as a conference paper at ICLR 2024

A.6 COMPLETE FEW-SHOT RESULTS

To obtain a more complete understanding of the few-shot capabilities of ADAPTER, ADAPTERFU-
SION, and SCALEARN, we show few-shot transfer learning results for each dataset, as well as for
every variant of SCALEARN (cf. Section[6.3).

Few-shot results using ROBERTagagg. Table[I3]|shows the few-shot transfer learning performance
of the methods on the GLUE benchmark using k£ = {4,16,32,100} samples. Table shows the
performance of the methods on SuperGLUE. Table [15] shows the performance of the methods on
HumSet (on XLM-R)gasg. Finally, Table @ shows the results when training on the combination of
all GLUE and SuperGLUE tasks, resulting in |S| = 15 source tasks.

Few-shot results using ROBERTaysrge. Figure @l provides an overview, comparing the
few-shot learning capabilities of ADAPTER, ADAPTERFUSION, and SCALEARN when using
RoBERTa; srge. Moreover, Table E] shows the few-shot learning performance of the methods
on the GLUE benchmark using £ = {4,16,32,100} samples. Table shows the performance
of the methods on SuperGLUE. Table [T9] shows the performance of the methods on HumSet (on
XLM-Ry argg)- Finally, Table @l shows the results when training on the combination of all GLUE
and SuperGLUE tasks.

0.90 —1 085 0.60
0.851 —e— Adapter) ~ | 0.80 * 828: X
o ggg: —m— AdapterFusion 0.751 0.45 1
s 0-707 —*— Scalearn g 0.701 0.404
2 065 — 0.65 £ 030]
. 1 K .] - . 7]
5 0.60 ¢ i 7 0.25 1
o 1 0.601 — 7 051 <
Z 0557 055 S 0151 —
0.5 - 0501 e QL0 gt "
401 : T 1 %
0.40 L8 ey ‘ Joasle— ‘ 986 H— ‘ |
4 16 32 100 Al 4 16 32 100 Al 4 16 32 100 All
of Training Samples
(a) GLUE (b) SuperGLUE (¢) HumSet

Figure 10: Few-shot learning results (¢ = {4,16,32,100}) comparing ADAPTER, ADAPTERFUSION, and
SCALEARN using RoBERTa; arge 0n three benchmarks. We show the mean across 5 seeds. For ADAPTERFU-
SION and SCALEARN, we assume that there is a Pfeiffer adapter trained on the target task on k£ samples and a
Pfeiffer adapter trained on all samples for all other tasks available.

28

Under review as a conference paper at ICLR 2024

Table 13: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for
each target task using ROBERTagasE.

Model Samples MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 33.651.39 63.27911 50.53p.04 50.920.00 32.12908 68.380.00 52.7lpo0 2.9338s 44.31184
ADAPTER 16 3478058 63.180.00 50.46020 57.18123 55.5310.12 68.380.00 53.721.29 0.25056 | 47.941 75
ADAPTER 32 33.560.66 63.180.00 51.860.33 70.46225 73.78130 68.38000 54.581.81 0.000.00 | 51.980.50
ADAPTER 100 40.71567 T1.7T4050 58.77413 85.00225 82.51191 73.09127 56.171.95 21.69394 | 61.21594
ADAPTER All 86.500.33 90.18p.11 92.250.19 93.650.71 90.230.41 86.64107 72.89354 5828250 | 83.830.08
ADAPTERFUSION 4 33.94509 T72.01539 52.36275 50.920.00 7717244 7299408 52.78p.16 2.79354 | 51.87258
ADAPTERFUSION 16 4912976 76.26120 61.9511.04 59.29612 83.51179 7828037 60.65297 0.92;520 | 58.753 42
ADAPTERFUSION 32 43.89317 T76.45083 7835075 68.26511 70.723012 T78.87163 60.87448 1.91497 | 59.91630
ADAPTERFUSION 100 4722548 7723174 77.80543 85.28242 85.811614 7843134 70.04117 13.95750 | 66.973 38
ADAPTERFUSION All 86.820.04 90.23p.01 92.48p.15 93.230.95 90.37p.20 88.41p49 79.49292; 59.041.69 | 85.010.72
SCALEARN 4 35.50513 76.24038 62.30458 52.68066 85.340.98 75.00159 52.71g.00 4.250.83 | 55.511.39
SCALEARN 16 51.21p84 76.85919 65.03137 64.01990 86.180p.38 79.0796s 62.74174 7.5laze | 61.58; 06
SCALEARN 32 5191936 76.190.18 73.63046 69.56325 86.34044 7598039 6542150 8.56170 | 63.451 03
SCALEARN 100 57.880.34 7725039 7397073 8397176 87.8lpos 7838136 69.171.70 13.311.71 | 67.721.03
SCALEARN All 86.97p.00 90.320.10 92.51p17 93.880.1s 90.969.16 87.75058 82.06137 5847176 | 85.360.55
SCALEARN++ 4 34.051.78 75.500.56 59.88474 5225070 85.200.80 72.99146 52.7lgo0 3.872.20 | 54.551.53
SCALEARN++ 16 50.521.42 76.300.60 60.40304 62.20799 85.96930 78.04155 61.5999s8 9.00205 | 60.501 49
SCALEARN++ 32 5230135 75.7lpes 72.0la62 71.90237; 86.04037 76.181 97 63.68094 7.54303 | 63.171 55
SCALEARN++ 100 56.160.83 76.600.76 61.665.15 83.071.92 87.240.20 77.89119 65.05295 11.50147 | 64.901 .81
SCALEARN++ All 87.060.03 90.04p.12 92.031.10 94.150.30 90.62p.13 88.21p63 80.871.05 59.820.75 | 85.350.52
SCALEARNUNIFORM 4 3417167 T76.62962 5525201 5248137 84.47Tg97 7544175 52.Tlp00 5.09150 | 54.531 24
SCALEARNUNIFORM 16 49.551 91 T76.60p32 66.69107 65.052.42 85.830.40 T7.65109 61.81195 10.96545 | 61.77 36
SCALEARNUNIFORM 32 51.501.92 76.28056 72.84p54 7149235 86.01p43 75.88103 63.751.16 11.15238 | 63.61; 28
SCALEARNUNIFORM 100 55.061.23 76.94038 70.42298 81.630.90 86.22045 75.931514 64.62102 15.54295 | 65.791 35
SCALEARNUNIFORM All 86.930.10 90.370.11 9243036 93.58020 90.080.07 87.570.8¢ 80.071.18 59.04105 | 85.010.49
SCALEARNUNIFORM++ 4 34.862.18 76.08p38 53.363.84 51.79100 83.12163 T4.80105 52.7lpo0 4.342.15 | 53.88154
SCALEARNUNIFORM++ 16 50.090.81 T76.13025 61.35309 62.59150 85.55040 76.42972 62.600.70 11.94304 | 60.831 32
SCALEARNUNIFORM++ 32 50.961.64 76.150.47 70.240.06 7197206 85.670.41 T4.41lp66 62.240.66 12.852.49 | 63.061.17
SCALEARNUNIFORM++ 100 48.961.99 T76.77934 60.64367 81.90067 85.66063 75.69117 63.54153 15.902.99 | 63.63; 62
SCALEARNUNIFORM++ All 86.980.17 90.38p.01 92.53p.28 94.11p07 90.180p.19 87.430p63 80.04p99 59.45067 | 85.14¢.38

Table 14: Complete few-shot transfer learning results on SuperGLUE with k£ = {4,16,32,100} training sam-
ples for each target task using ROBERTagask.

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 9.652.79 24.926.71 62.050.07 49.44196 41.921004 50.20363 62.14512 52.71p.00 44.13435
ADAPTER 16 13.826.06 37.4834s 62.17p00 50.53118 42.50546 53.00545 69.29293 53.721.29 | 47.813.56
ADAPTER 32 17.64127¢ 38.553.74 62.16003 52.26178 36.540.00 51.20239 70.71160 54.581.81 | 47.953.01
ADAPTER 100 37.692 61 51.563.89 61.51127 54.041.01 50.3810.12 5840518 73.93411 56.171.95 | 55.463.77
ADAPTER All 79.020.62 72.8404s T76.71135 65.58156 63.460.00 70.20513 84.82318 72.899.54 | 73.191.74
ADAPTERFUSION 4 8.512.73 44.5024.40 62.160.03 5031104 38.083.44 50.40219 51.07240 52.641.31 | 44.T14.69
ADAPTERFUSION 16 13.7110.75 48.8614.08 62.12927 50.161.84 3846430 56.80722 67.86399 52.92371 | 48.8658s
ADAPTERFUSION 32 26.7914.35 46.3916.63 62.030.34 52.23087 37.12129 59.60586 68.93271 54.662.35 | 50.975.55
ADAPTERFUSION 100 34.021355 43.52401 61.83145 54.61y07 43.85378 64.20383 74.64343 59.71163 | 54.554.72
ADAPTERFUSION All 7882049 TL.79167 T76.72055 66.57104 63.46000 73.10451 82.32285 76.032.38 | 73.601.71
SCALEARN 4 2837653 31.5311.03 61.63002 49.72030 49.62534 71.80449 66.7911.48 52.710.00 | 51.525.05
SCALEARN 16 31.076.24 4997742 60.921 21 51.500.49 51.355.25 69.00524 72.86233 54.221.31 | 55.113.69
SCALEARN 32 34.806.48 4428371 61.70022 50.530.94 48.08g68 68.60934 76.07204 56.751.18 | 55.10407
SCALEARN 100 40.821 25 58.929 98 62.11116 53.890.99 61.92991 69.00274 86.79160 61.371.71 | 61.851 74
SCALEARN All 79.520.06 7322044 7727068 0635120 63.460.00 74.802.15 90.89259 78.885.14 | 75.551.16
SCALEARNUNIFORM 4 22.64¢.41 29.69¢.54 61.72905 49.84p986 44.62571 70.602.30 70.3644s 52.710.00 | 50.275.32
SCALEARNUNIFORM 16 30.011 08 50.32790 61.72y 93 5248970 49.81794 66.802.17 7393370 54.51275 | 54.953.93
SCALEARNUNIFORM 32 30.84574 45.75547 61.41g32 51.57g73 48.27g¢1 71.40230 75.7lpos 55.380.75 | 55.042.86
SCALEARNUNIFORM 100 35.501.94 58.Td259 61.360.99 52.79058 56.97798 65.00200 82.86324 59.211 28 | 59.052 58
SCALEARNUNIFORM All 80.130.38 71.91960 76.06041 67.37100 6250707 71.20123 89.11397 75.310.00 | 74.201.00
SCALEARN++ 4 27.534.00 1111618 60.92159 49.94050 44.62571 70.00224 62.50898 52.71g.00 | 4742356
SCALEARN++ 16 25.78280 49.4310.93 59.862.01 52.01p¢2 49.42g62 71.801.10 74.64343 56.681.17 | 54.953.83
SCALEARN++ 32 34.002.31 39.99510 59.800.63 52.04053 42.503.99 73.60456 75.7l160 56.390.86 | 54.252.45
SCALEARN++ 100 37.323.39 58.721.08 6043220 53.23061 6212787 66.201.30 85.71a19 59.061 .89 | 60.351 84
SCALEARN++ All 80.130.09 72.71057 7644053 67.13104 6226008 75.20193 93.042.14 79.030.95 | 75.741.22
SCALEARNUNIFORM++ 4 23.04g.12 2911202 61.02941 49.62141 46.73451 67.60568 66.43560 52.710.00 | 49.533.85
SCALEARNUNIFORM++ 16 26.674.91 53.008.69 61.061.41 52.160.67 50.967.10 67.402.97 74.29466 54.802.74 | 55.044.14
SCALEARNUNIFORM++ 32 30.62197 49.466.35 59.88147 51.69970 44.62370 67.20164 7821pg0 56.90107 | 54.822.13
SCALEARNUNIFORM++ 100 29.779.96 5840235 60.770.91 53.261.87 61.1537¢ 63.202.77 80.000.80 57.181.74 | 57.973.02
SCALEARNUNIFORM++ All 79.790.14 T1.75038 76.13050 67.87p89 63.460.00 74.001.70 91.61253 74.84158 | 74.930.97

29

Under review as a conference paper at ICLR 2024

Table 15: Complete few-shot transfer learning results on HumSet with k¥ = {4,16,32,100} training samples
for each target task using XLM-Rgask.

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 5.782.05 4-211416 0.69¢.34 11.072,07 3.580.49 5.071(22
ADAPTER 16 8.22¢.291 2.599 98 0.780.42 8.424 12 2.591 .34 4.529 g7
ADAPTER 32 4'651.88 2.302_71 0.820_15 5.967_43 2.971_52 3.342_74
ADAPTER 100 44.264 2 10.599.70 0.00¢.00 25.261 36 0.01¢.02 16.025 46
ADAPTER All 71.380.08 51.021 03 43.26¢.82 61.430.91 42.46¢ 51 53.91¢.75
ADAPTERFUSION 4 13.601 .29 7.205.19 2.45¢.37 16.245 77 8.161.00 9.531.53
ADAPTERFUSION 16 13.271 .07 8.380.99 2.170.67 15.985 41 7.630.73 9.481 21
ADAPTERFUSION 32 12.591.91 6.411 79 2.24¢9.25 13.675.94 7.121.00 8.401 78
ADAPTERFUSION 100 8.031.36 4.235 75 1.770.54 32.024.30 5.071.32 10.225.05
ADAPTERFUSION All 72.050.12 49.63¢.53 43.15¢.38 60.68¢.23 42.140.46 53.530.35
SCALEARN 4 5.561 .27 4.540‘57 1.129.23 12.99¢.26 3.950.85 5.630.64
SCALEARN 16 13.219.74 8.900.41 3.680.16 18.300.60 7.400.53 10.300.49
SCALEARN 32 16.64¢.43 16.480.74 7.230.37 26.390.34 11.119.47 15.570.47
SCALEARN 100 34.041 36 26.31¢.67 13.271.06 30.681 20 14.43¢.39 23.750.94
SCALEARN All 72.360.05 51.630.61 44.06¢.37 61.52¢0.11 42.81¢.63 54.48¢ 35
SCALEARNUNIFORM 4 5.351.09 4.320.17 1.030.20 13.24¢ 43 3.780.64 5.540.50
SCALEARNUNIFORM 16 13.650.47 8.690.59 3.640.13 17.511 23 7.590.13 10.22¢ 51
SCALEARNUNIFORM 32 15.34050 16.721.09 6.980.34 25.750.48 10.58¢.19 15.079.52
SCALEARNUNIFORM 100 33.400.63 25.480.71 13.430.64 29.44¢ 78 14.92¢ 62 23.330.68
SCALEARNUNIFORM All 72.200.14 50.08¢.79 42.970.70 60.62¢ .16 41.95¢.60 53.560.48
SCALEARN++ 4 5.421 47 4.66¢ 45 1.16¢.33 13.179.17 3.621 24 5.610.73
SCALEARN++ 16 13.550.71 8.899.16 3.620.09 18.621 .19 7.730.28 10.480(47
SCALEARN++ 32 16.27¢.82 16.351 62 7.270.13 26.08¢.51 10.700.28 15.330.67
SCALEARN++ 100 33.760.49 25.830.74 13.270.66 30.11¢.51 14.379.61 23.470.60
SCALEARN++ All 72.380.27 51.66¢.27 44.230 50 61.66¢.13 42.219.21 54.43¢ 08
SCALEARNUNIFORM++ 4 5.271.18 4.370.14 1.08¢.09 13.200.50 3.561 15 5.500.61
SCALEARNUNIFORM++ 16 13.470.77 9.04¢ 58 3.600.10 17.41¢.59 7.500.33 10.200.47
SCALEARNUNIFORM++ 32 15.240.35 16.750‘72 7-310.28 26.230.83 10.61¢.27 15.230.49
SCALEARNUNIFORM++ 100 39.229. 98 26.220.74 13.761.11 30.340.63 14.56¢ 59 24.821 21
SCALEARNUNIFORM++ All 72.029.32 50.780.41 42.600 85 60.820.14 42.140.72 53.670.49

30

Under review as a conference paper at ICLR 2024

TL0ger0g | 40Tge6 CTogTL SOTRLT9 TOTge L9 690gzigL T909LgL 99008'6L 000ge6g 9006708 980L67L8 P1Oge06 TTOTOTE TEOGeg6 TEO9T'06 41028798 v ++IWIOAINONIVATYIS
S0TOTE9 | L8EL098 98T0ZGY L9L9PRG TETGRGG TEO0Lg9 060zeree SEELzee L07gp9T FUTegeg TWTggeL 8€009g’ f0Tpagg L900L°09 890gz9L TTLpEg 001 ++WAOAINNIVATVOS
S0T)7°09 | €0%9g08 TETOP0L 00CCT TG TPTQLeG TEOpTgg €6T6gLg BOTogige GEORTT FO0LTg9 ¥089'¢L 9606608 9900¢FL TOTIRE'GY 600LqL OFTRG6Y 43 ++WAOAININIVATVOS
LR | SOSTgIEL $9T09°69 00Cerey EOTL0RG SYOeR 19 OVELETG 999097 ATee® SUT6L09 MTTIGTWL BLTLZ9L FUYR0R9 TH0goeg 690ggrg) S9Tpgg 91 ++WAOAINONAVATVOS
LVGE0C | FVEGLTL 9TOZIL 008ggey TOTe’'1G STTI609 060TIgrog 649G T SETLRY 0007 gg SVOGR0L BATILERG TETEETIG EEeERpe 0TopeL £9Tepge ¥ ++IWNIOAINNIVATVOS
9090 18 | SETETT6 99T06°6L 0009pe9 SYTEpL9 LEOpgr L LEOQTTL TE0RG6L 90Tgyieg 0600p08 S0TIgg8 9T0GL 06 R Op0T6 %0008'T6 LCT9G 68 T00F6°98 v +HNAVATVOS
STg9F9 | YOC6LT6 OFTozGL OFERO6G BLOTT'OG 9%Teg09 SSELELG OLfcoee OVEREreT STP6GR9 LE0p9'gL TWOGH9g TROReEg 9lg0R9 980Gp'9L TeTgggg 001 +HNAVATYIS
Tegg)e | BVEGLIR STTOR L TRELLOV VOgpeg SSTOg 19 STSgLar OTIope TEP0ETT YETRT9 APeel 9401608 YAPee L YO00TL9 FTIETL 09%06¥ 43 ++HNAVATVOS
998G | ep96L EopeL MOy 09T6geg LETET09 f8LTog0e OtTepcr SST9eTl LVHRRG PMIpIEL PHIRY08 0%0g6G A9Te’'es FO06eGL 0IRR6Y 91 +HNAVATYOS
TRegeTe | SYPrgeL VOlogigL VEYRLZEy A0TRE0g 60z0g9 90T9g6r SOTTIO6c 00fRe'g 000TLgg 449969 OVEgLOL TE096'0G 99CLyEe ATEE6TTL TS0ghog ¥ ++NAVATVOS
TEOpe08 | BATee6 0TToeeL 9¥0gre9 240089 90gF9L 680067 TL STOGO08 BROL6'RG O0TLg08 060.67.8 THO9T06 OFOReH6 T60T0E6 ©T09g'06 L0070°L8 nv INJOLININIVETYOS
€07tg g9 | V0?0006 O8O0FTL Y000GgE MGG 0900zg9 CVRIEG GOfRege VETRGAT M9Tgag9 MOpergL LE0a6 8 SOtegrg EVlpTL9 MOQTTLL PHOIRLG 001 INJOLININIVETYOS
0Te6'6¢ | L8ETT8L 64C09'89 08Cgeoy TILTRG 9900919 £eTpgrge SOFerge OTPIeer OVOL6¢9 OLTTppL @eygy) 960gpr99 OTOpTgL 9VleL|p 43 WAOAINONAVETVIS
EUEQE LG | ¥6Le6'gL OXCOpTL FOSgpeg A906T°gg 60¢T 9 THAL9'6p 649zog A9TeeT “OTIgo9 68pgieL FEE16'79 L0TpRige EEO0ggL ©60L6°0¢ 91 WAOAINONAVETVIS
6L TG | 99F00 0L S6TORT0L TOTTGRRR FR0gegg ¥0LG09 BAOTggee 9VAG9T BETETTL 000TLEg OF06T0L ®lgg g L0%1gge WOp9pL STTRT6E ¥ IWAOAINONAVETVIS
BOGET IR | L0906 L2E09°08 U099 04T9rr99 8U0GGRL V0L 9@ 8V0pgRL Tgereg 69T6GTI8 CA0Tge 6004606 SF0coHe £008ug6 60081768 £00g698 v NAVATVOS
06121°99 | 420006 SfOFTL SE969LG TOCRELg YSTgpeg CEOTL6G BOTIEOR COCeERT S0CGo Tl 9TgegL ELOGTL8 0loprgg LOTrgreL P09yl 10709 001 NAVATVIS
L0Tpg 19 | 8600068 : Le)Te 6lgepe 9V09TEg ECG Ly : LregegT S4ToTe9 fTTGoGL 6eTggreg T9%g L) 990ppRY TE0ETgL TLees 43 NAVATVOS
98%9'g¢ | 07CTgER EU9g6'9p 860Qpge 0600LT9 069z Ly TETETT TeEQer09 6TTTgRL OTTeo'e’ 49°fger99 TeR' LG <80gerg) 09L°1G 91 NIVETVOS
TEECY S | 967G €L vLogerey 640Qpge EEORYT9 TOPIRRy 099ppe TWeogy 98TLTe 8S0TgemL PRT9egL BLTRLEG A8ERT09 LETOT'EL TETLGLE ¥ NAVATVOS
Clg96L | 0+9Lge’ 000959 TETge g9 TX0gg'g) TLOTLEL PEO099'R) TV 9'RG E9TpgigL 00TgRTuR TE09p06 690g9e6 OT0gerg6 TTORT'06 090gg98 v NOISNAYILIVAY
EEEOP 9 | TT9e6'8L TUTOVRTL TA969°0S TOC90'8G TRO9pg9 TPIRR0G 9916ce FLOLTGT GUCRLRY PTG LL A€TGpgR 99TgRre] FTgorsL LTLL9L 6P0T9R 001 NOISNAAILIVAY
TOYSGTIGE | TREGLTL E800gG9 TOCLzee OTCOTRG L4080c9 LOSpOTTG ELTORRT LETGET S496L°09 869GYTL SATLTRR 9992189 Q0L 089¢9°0L LTEved 43 NOISNAAILIVAY
TUSQTPG | LF0T0¢TL9 09908'89 SSOpGTR OSTGEHG PPOL0'9 ©9090'eg EOL9VT OYFIop LTTYReg TONerTL BO0pLeg 90Tgpeg e0Ugprge OATegg) LTEGGof 91 NOISNJ¥ILdVAY
LVEg0e | P9800009 080899 9TeeRe Megrgg 000L1g9 A¥OTIoTg OYfeTLT TRELEy 90%gLeg TeGL69 THepgLL 9T0g0Tg ETOpIG EETILop9 STTgpee ¥ NOISNJ¥ILdVAY
827IQR'g) | STEERFR EUTOZ0L 0009peg 99TRGGy SETTLgL 8VOpgEL W90go6L 978G TEEERTL L0TH998 TMOgzo6 T40¢9'e6 6T0Gg6 TTORT06 FEO0GT98 v YALIVAY
LRG| TETeergL STUOP'RG CTOIRer0g TOTpOpE LOTIeT9 O8'f9grg 19%G9tLe VOERQTE COTLT9G LTGOEL TETIGE8 €T00e] FTPLLRG 09OpLYL A9TrL(f 001 YALIVAY
T99°6y | 09TTL0L 6FP0gIg 000pgrog SiTrgg FO09Tgg PAEGERe 94TIpgiAT 00000 ISTIRGpg 000gegg 0€TIg)te) gL EE0gRTYg 000gTgg 990g¢ige 43 YALIVAY
6egp Ly | E66g69 STE00'eg VC0geh STTecog 000119 SVERpLe 09ggel 990¢rg 68Tgueg 00°0gergg ElOlggigg 2R G 0T0gprge 000879 8€0Q) pe 91 YALIVAY
£E99'ey CUSpIg9 FOP0g0g YOCEe Ty CWEer 4°0c0T9 96T 64PG96 $MEeen 0001Lgg 000e'g9 SeOprge 000gg0g O0geroe TROLZe9 OfTlgyee ¥ YALIVAY
“Bay i) \Z: (0)0) JSM oM Oloog Dy agoddy v CAR:| OdIN 4-SLS LSS I'INO 400 I'ININ sdjdweg PPOIN
“Asvde g0

Sursn yse) 1951e) yoes 10y sopdures Sururen {QQ17E 9Ty} = ¥ Ym syse) gnIoIedng pue g TO [[E JO UONBUIQUIOD) UO SI[NSAT SUTUILd] IoJsuer) Joys-maJ 2)oidwo)) 97 Jqel,

31

Under review as a conference paper at ICLR 2024

Table 17: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for
each target task using ROBERTay ArGE.

Model Samples MNLI QQpP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 34.090.45 62.00254 50.461.12 50.92000 10.02234 68.330.11 5148274 347301 41.35154
ADAPTER 16 35.121.00 63.110.1s 49.59024 59.38342 124155 68.38000 52.641.06 2.553.07 | 42.901 81
ADAPTER 32 34.050.94 63.881.40 51.300.08 T4.70259 27.161389 68.770.71 51.621.75 7.4710.36 | 47.374.08
ADAPTER 100 41.39259 71.35081 53.751.18 83.672.20 76.84407 69.07145 56.97230 30.96572 | 60.502.55
ADAPTER All 89.620.15 89.870.67 9413006 95.24008 91.8lg29 87.82071 81.23292 64.071.97 | 86.721.04
ADAPTERFUSION 4 39.266.48 79.28071 65.131167 51.030.23 76.401207 69.95276 54.08507 4.93185 | 55.01485
ADAPTERFUSION 16 49.94g339 80.37p.13 78.85367 56.65352 83.960.85 77.501.62 70.47404 16.08334 | 64.233.29
ADAPTERFUSION 32 56.1219.53 80.01p25 80.55130 75.29771 8536087 77.11444 78.70354 6.77563 | 67.49466
ADAPTERFUSION 100 60.8413.20 78.86307 85.090.80 85.44157 88.099.390 81.861.63 84.40262 34.692.72 | 74.913.99
ADAPTERFUSION All 89.570.17 90.880.06 94.150.04 95.870.00 91.86015 88.970.7s 85.701.13 66.391.83 | 87.93¢.52
SCALEARN 4 45.654.75 79.590.24 66.97383 52.061.12 81.94547 72.06237 52.7lg00 3.14131 | 56.771.97
SCALEARN 16 57.54150 80.0d058 7724085 62.592091 85.08183 76.42570 69.75256 4.23510 | 64.1150
SCALEARN 32 60.95150 79.95034 T7.72094 7413158 88.500.27 7691160 7791183 5.14p00 | 67.651.08
SCALEARN 100 69.18132 80.800.21 83.64226 84.20095 89.25049 77.601.78 82.960.93 10.80143 | 72.301.17
SCALEARN All 90.090.09 90.51p.26 94.180.03 9541016 92.32015 88.090.s2 87.080.54 65.40262 | 87.910.55
SCALEARNUNIFORM 4 45.735.00 79.740.34 67.95357 5241139 81.59189 72.21096 52.71o00 3.251.02 | 56.951.96
SCALEARNUNIFORM 16 57.611.01 79.81931 74.55175 5743244 8532085 75.34110 68.81121 192557 | 62.60; 41
SCALEARNUNIFORM 32 58.861.71 80.06p.14 75.861.12 73.601.06 86.61p33 T74.66116 T77.911.12 5.66415 | 66.651.35
SCALEARNUNIFORM 100 63.511.39 80.34001 T4.98250 81.44y45 87.36p24 7647196 81.37187 14.981 97 | 70.061 28
SCALEARNUNIFORM All 90.119.04 90.050.28 9423008 9541916 92.11g0s 88.631.72 84.40393 66.98058 | 87.740.86
SCALEARN++ 4 44.54416 79.580p.41 66.90238 51.70075 80.80359 71.86154 52.71p00 3.780.89 | 56.481.72
SCALEARN++ 16 56.711.57 80.11g37 73.801.36 60.16341 85.171.14 7520315 69.82207 2.85364 | 62.985.09
SCALEARN++ 32 5887151 79.090.49 7592080 7312327 8745032 75.69118 77.330.90 5.47401 | 66.611 57
SCALEARN++ 100 65.071.14 80.230.33 78.82081 82.001.89 88.01ps4 76.62116 81.81a60 12.11575 | 70.581 44
SCALEARN++ All 90.319.10 90.590.03 94.050.03 95.930.24 9248015 88.48126 86.281.05 67.130.59 | 88.160.43
SCALEARNUNIFORM++ 4 4448, 35 7942058 66.59406 5146057 82.15117 73.22112 52.71lgo0 2.340.52 | 56.551.55
SCALEARNUNIFORM++ 16 56.631.44 79.53045 72.952927 56.941.01 85.14p66 75.61209 68.86155 0.80246 | 62.06753
SCALEARNUNIFORM++ 32 57.68331 7947042 73.78189 75.150.96 86.64056 76.651.49 78.34066 1.78284 | 66.19; 52
SCALEARNUNIFORM++ 100 56.721.49 78.91ps2 66.11251 83.75058 85.53p.82 74.332.49 81.6825 20.84314 | 68.48; 79
SCALEARNUNIFORM++ All 90.08p.01 90.49002 94.120.16 95.180.16 92.120.09 90.05054 84.98132 64.97985 | 87.750.39

Table 18: Complete few-shot transfer learning results on SuperGLUE with k& = {4,16,32,100} training sam-
ples for each target task using ROBERTay arGE-

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 15.583.93 31.781580 61.83058 49.75056 50.385.93 49.60550 53.9349¢ 51.48274 45.54539
ADAPTER 16 1742797 4046305 61.649514 51.38137 54.0d030 53.60546 61.073.19 52.641.06 | 49.033.03
ADAPTER 32 22.041470 4111521 6217001 52.881.91 47.69376 66.207.60 67.50233 51.62175 | 51.404.66
ADAPTER 100 31.0119.20 51.934014 62.170.00 5596203 52.88551 65.2013.86 82.14565 56.972.30 | 57.286.73
ADAPTER All 88.520.00 80.730.69 82.36p.72 69.161.31 63.25061 71.901363 92.68175 81.23292 | 78.732.72
ADAPTERFUSION 4 1921417 24.073035 61.779.18 50.631.49 43.27T1203 57.00742 61431175 52.71g.00 | 46.267.17
ADAPTERFUSION 16 14.285314 28.09431 6151035 51.10313 47.3lg26 66.2012.44 77.8644s 53.21137 | 49.955.00
ADAPTERFUSION 32 18.8211.93 37.6810.03 04.97T364 52.82139 4442336 62.401004 78.21445 58.05421 | 52.176.27
ADAPTERFUSION 100 5542138 59.98003 71.062.02 56.02195 55.58533 76.401320 84.64411 57.62271 | 64.593.75
ADAPTERFUSION All 89.21p.17 80.520.04 82.21p30 69.09;65 6346065 81.2016.07 95.71p.9s 86.061 07 | 80.932.65
SCALEARN 4 32.72366 58.49159 6190030 51.66161 55.58s66 71.006.36 77.50204 52.71g.00 | 57.693.03
SCALEARN 16 36.71311 53.3T376 61.82056 53.511.09 50.19554 7740713 77.86411 55.883.01 | 58.343.54
SCALEARN 32 36.723.37 57.30403 6147075 53.26205 49.04573 80.603.05 80.001.49 57.62512 | 59.503.23
SCALEARN 100 54211246 59.790.30 068.783.12 51.88181s 57.12157 81.80597 85.002.04 65.34344 | 65.49335
SCALEARN All 87.850.01 7840070 80.29252 6856168 62.9806s 8540378 92.86179 849159 | 80.161.47
SCALEARNUNIFORM 4 3312516 59.479914 6151101 5091364 63.46000 68.003.0s 78.93233 52.7lgoo | 58.511.77
SCALEARNUNIFORM 16 3275212 54.65716 6211015 5226085 52.12349 72.00187 81.79265 54.443.40 | 57.762.71
SCALEARNUNIFORM 32 35.303.67 58.22385 61.76p061 54.67240 51.92604 76.40297 80.002.93 58.92558 | 59.653.51
SCALEARNUNIFORM 100 41.50585 60.01p10 61.96p7¢ 51.85121 58.27175 7240537 85.00204 60.651.05 | 61.459 27
SCALEARNUNIFORM All 88.850.22 80.42006 81.850.21 69.91715 61.54900 82.003.0s 90.001.60 84.04166 | 79.831.00
SCALEARN++ 4 3387190 56.11347 61.750.21 5132166 60.58395 68.006.04 78.21233 52.7Tlgoo | 57.822.45
SCALEARN++ 16 35.360.45 53.715.41 61.930.39 52.799.17 50.772.99 7140378 80.00407 55.232.75 | 57.652.51
SCALEARN++ 32 38.87177 59.95000 61.94051 54.61305 46.92305 78.60230 79.64571 53.14349 | 59.215.05
SCALEARN++ 100 43.15443 59.950.00 63.360.0s 52.01g73 57.12323 75.20415 86.79204 62.24565 | 62.485 98
SCALEARN++ All 88.280.235 80.7605s 83.080.31 69.59189 62.9806s 87.801.10 91.071.79 85.70p.32 | 81.160.56
SCALEARNUNIFORM++ 4 33.87T190 56.11347 61.750.21 51.32166 60.583.96 68.006.04 7821533 52.71g.00 | 57.822.45
SCALEARNUNIFORM++ 16 35.360.48 53.715.41 61.93039 52.799.17 50.77299 71.40378 80.00407 55.232.75 | 57.652.51
SCALEARNUNIFORM++ 32 38.871.77 59.950.00 61.94081 54.61a0s 46.92390 78.60230 79.64271 53.143.49 | 59.21505
SCALEARNUNIFORM++ 100 43.15443 59.950.00 63.360.9s 52.01g73 57.12323 75.20415 86.79204 62.24565 | 62.485 98
SCALEARNUNIFORM++ All 88.850.02 80.700.01 82.13p.21 70.199.26 62.9806s 83.60285 91.072.50 84.841 02 | 80.541.02

32

Under review as a conference paper at ICLR 2024

Table 19: Complete few-shot transfer learning results on HumSet with & = {4,16,32,100} training samples
for each target task using XLM-Rpargk.-

Model Samples Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.

ADAPTER 4 4.800.60 4.330.18 0.600.08 10.871.72 2.560.56 4.630.63
ADAPTER 16 7129 11 1.351.85 0.45¢.32 11.08¢.59 2.820 .82 4.561.14
ADAPTER 32 6.603 21 0.580.54 0.52¢.24 11.821 44 2.400.92 4.391 .07
ADAPTER 100 24.6613 33 12.383 57 0.009.00 16.215 14 3.132.01 11.274.19
ADAPTER All 72.290.59 49.311 57 45.250.03 62.580 .67 44.36¢ 66 54.760,65
ADAPTERFUSION 4 12.435.84 7.580.95 2.11p.12 14.59¢.57 7.101.13 8.761.12
ADAPTERFUSION 16 11.062.41 6.495 35 2.300.26 13.081.04 6.331.79 7.851.57
ADAPTERFUSION 32 11.903.19 6.405.61 2.500.60 13.23¢.90 6.161 54 8.04; 77
ADAPTERFUSION 100 31.925 40 17.745 59 1.94¢.42 31.445 3¢ 8.083.78 18.225 99
ADAPTERFUSION All 72.530.45 51.330.23 43.750.52 62.31¢.25 42.782.11 54.540.71
SCALEARN 4 5.520.03 4.940.21 1.300.26 13.590.46 3.810.90 5.830.55
SCALEARN 16 12.05¢.80 7.780.31 3.24¢.09 20.101 33 6.199.30 9.870.57
SCALEARN 32 16.34¢.63 15.74¢9.95 6.549.29 24.92¢ 40 10.54¢.33 14.82 52
SCALEARN 100 24.600,97 24.361,80 11.370,40 34.264 54 15.630.64 22.051 97
SCALEARN All 73.320.08 53.94¢.13 44.14¢ 75 63.890.16 44.75¢ 47 56.01¢.32
SCALEARNUNIFORM 4 4.92¢ 61 4.84¢ 26 1.25¢.30 13.05¢ .48 3.410.11 5.49¢.35
SCALEARNUNIFORM 16 11.580.45 7.780.53 3.150.19 20.11¢.32 5.790.16 9.680.33
SCALEARNUNIFORM 32 15.450.00 15.480.64 6.54¢ 52 24.22¢ 16 9.700.17 14.28¢.30
SCALEARNUNIFORM 100 21.91¢.00 23.312.49 10.609.22 36.445 o5 15.279.13 21.51¢.08
SCALEARNUNIFORM All 72.560.20 50.590.10 44.629.00 62.660.00 45.160.00 55.129.06
SCALEARN++ 4 4.900.40 4.950.20 1»450.26 13.480,52 3.370,50 5.630.38
SCALEARN++ 16 12-450.65 8.470,77 3.290.13 21.011.12 6.550.37 10.35¢.61
SCALEARN++ 32 16.610.57 15.801.00 6.719.29 24.76¢.32 10.31¢.36 14.84¢ .51
SCALEARN++ 100 24.44 95 23.950.40 11.36¢.65 35.181 08 15.770.77 22.149.81
SCALEARN++ All 73.180.04 51.410.36 44.100.09 63.370,02 45.430.24 55.500.15
SCALEARNUNIFORM++ 4 4.92¢ 61 4.84¢ 26 1.25¢.30 13.05¢ .48 3.410.11 5.49¢.35
SCALEARNUNIFORM++ 16 11.580.45 7.780.53 3.150.19 20.11¢.32 5.790.16 9.680.33
SCALEARNUNIFORM++ 32 15.450.00 15.480.64 6.54¢ 52 24.22¢ 16 9.700.17 14.28¢.30
SCALEARNUNIFORM++ 100 21.91¢.00 23.312 49 10.609.22 36.445 o5 15.279.13 21.51p.08
SCALEARNUNIFORM++ All 73.02¢.20 50.84¢ .30 44.88.39 62.870.01 44.45¢ 02 55.21p.18

33

Under review as a conference paper at ICLR 2024

LE0gp g | 86°09g g6 OFToge8 8900T'09 9F060°0L % 0ege8 £9091°08 67lggrgg TETL PR 880.698 TT0gTge 0000gee 60016'¢6 OT0¢H06 FTOOT 06 v ++WAOAINONIVATYIS
89Tp6U99 | E0TL9T6 OTTLY08 TCEL9G L00peg 09TrL99 0900F°09 0Tz “CrIge8 TYO0TPL 6%TRRe] OORTeg T9TGER9 6%O09gigL SEIRTIRC 001 ++NAOAINONAVETYOS
0ee) 19 | 020698 LE900C8 SEEICGy 2070 90pgr9 SeTRercg 0Tpre VIRTL) L9699, OVEERpL 0FpII99 90LL'8) SVTGLRGC 43 ++WAOAINNAVATVOS
9069 '8¢ | ClTgeypg 9TL96L 10QY6y VICT9ge TSIgg09 FACIgILG eitggrg 08Tger0L STOp0'69 64T96'89 TEO68'09 CLTpegy SSOTOLL 6650709 91 ++WIOAINNIVATYOS
69eQgpg | L9EpT g 00T°Q0gL SEE9Z09 TETggTe 99%6gee TUTRGIGS EleTe 0fpg g f60p0'69 Y6996y 690LR' TG TEOR9T9 T€TRL69 PRELOLY ¥ ++WAOAINONIVATYIS
£60¢9'78 | 0806zp6 OTT08'68 g9 069 “T1gEs 6UOpT08 8elegrLg 00Trgrgg 9600L L8 OT0gerze TTCI9W6 FUO6TR6 F602506 LCOLT 06 nv ++NYVATVOS
L9T91°69 | STTY'RY] ' repree 04Tgprge WEIggreL 80g9°g9 62T96'LT 16006°6L OVOpOgL OFTELG] L9Terp] 6TTI99L SETeggL 9TTEGIGY 001 ++NAVATVOS
621g9°g9 | 000768 EgTey 900ggrgg V600069 000661 6G BTGy, SeTgprgL OTeg oL 09T06'LL OFEE0'EL SOTRE'89 TEOp0'8L ELT09'9¢ 43 ++NAVATVOS
T RRG | 90701 £6900°0G FUEIRES SVOpE09 88°08'9¢ 16egerg 29148709 EOIpRI69 O8TOGL9 89TER09 TY0gpg9 TE0eg9L TYEI00g 91 +HNAVATVOS
19'626gg | 6V66'08 v6Tg00p L90ggTe TETEE09 STSTI6E 1erggg 0001Lge ©V0Re'Rg 908gg TG L0096'0¢ 04FGRgg 64Cgo 1L 9TTGYRY 14 ++NAVATVOS
0806978 200°¢6 000z9'6¢ +7e8z'0L TOp0g8 L000g08 000pgreg S0Tegrgg 6FPggrgg Cllgegy 00g1ge 8000Le6 6U0pR'€6 S00pG06 Y0060°06 nv WIOAINONIVETVOS
B1p0'89 | £0'l9z'g6 002g LG BLORTHG Veloggg 90086'6¢ CEOp9 R SMILe6T 9UTeE'08 SETpEEL “0¢prag AVleggg SLTogTL FTOTR6L $£129'T9 001 INIOAINONIVATYOS
erereg9 | f0T1gr98 £299Q°gG Wogprge 199 SEEGrrge w0gereg 69Tgprg 160Tprg) 90TgQL f0T9grgL E60Ggg) THeggrgg ©60go'gL SOTTRrGE 43 INIOJININIVATYOS
E6TRT°6G | CLE06°98 WYLy L0%epge 9LT66'09 SUERILG 9TLIpree 080gTg OLEQIQL 2900gi69 ASTETL9 SEECoe9 OVEIL9 L€0gGLL LS00 TS 91 INJOJININIVATVYOS
TOEO9FG | 9498€TLL 00710'8¢ 960p'0¢ €8Tge09 CTggLg 0Tggoe 66Tgge MTpTIG 06LR9 0LpTGy 89gegg F0CRTT9 1€CRp69 S4T6E6V ¥ WAOHINONAVATVOS
SUTORPR | M0%e6e6 €006 64TeL 99 80P9T0L 6L0gpgg 09080°08 MPOgpre’ EETOZL9 9TRLGR LETIREe] FlO6gT6 290966 'FOR6'€6 8900L°68 £10L9'68 v NAVATYOS
69TQQTL | 64110716 80CgereR 6975,09¢ SOTeppL B809gF9 T0TeY9g TUOG0g TE0gL 08 PTOTggL 90Tepeg €6101)°08 ¢5'0p6'08 ¢ 001 NAVATVOS
regpRg | TTIEg] 890ge g 8ETITLe 10T 069 SYEIRGG L9Teepe BTg9p ESTepL TTTgo0L $806LE8 TVeGYiGL 68Te0'08 £6102L°8 43 NAVETVOS
LUEQGTY | CHTOGL8 TETLYLR eTgeg L8Ce9 19 OTTRoRe MATgepe f9Tegg E9T0R'69 SC0L8R9 0%YegL BLeOgEL 10,08, 0P TS 91 NAVATVOS
OVer G | BYVIRET L STleeT) EETp TG OVERQ09 89PggrLg SOTgege OVERG'0 MCRpIIG PRO0gR9 L9LLgiAe 19PGLEe [38 VAN o 4 14 NAVATYOS
WIppg | 662906 9F€09°88 ¢T69'T9 CTT0G69 TYO0FE8 0%0cr6L 9009z'68 'EgGr99 8Veggrgy OrI68 PTOR0'c6 C00p9c6 OOpT6 L¢0e8'06 °TO6L 68 nv NOISNAYALAVAY
L8TGTTL | 49Fg6e’8 1920068 Y90P6°6S ' 68°06z'¢L 818099 LUETOPH 'eLge LYTITIR 04P86'6L 6809978 9FlTgrgR 00IpTigR TPgegL 4892679 001 NOISNJ¥ALVAY
107G pg | 90Ty eg STTegp’ 96°669°LG ©e1gr99 T0TeT Ly 0LITOE TEEQ Rl YYTLL9L TEERE'GL OXTeTpR T9%ge6L SCTLieL OVTTLSL “6679igg (43 NOISNA¥ILAVAY
£9°5eL°09 £9L°6L €09.9'08 TETITPIOG 0S99 1LeRey IS9T0RTE VEEGE 6T M0P0L SCY6gTL ATTRGER TOSpTRg 080Gy gy TOOperg) 60Tz 91 NOISNJ¥d1dVAY
09EQY g | EATIREL FU9L9°6L EBGY'RC 00eT 9 0Tepop $90Tegr CUERE® 000TLgg 0008¢'R9 00.g08 OLTGE'TS 29P¢0Te 0%9RT'L9 06°€Rp6E 14 NOISNJ¥dL1dVAY
0878 | %4T89T6 FUEI6'TL L9T6LT9 TETITE9 S 09gg’ 690g 08 000zge] LT 09 OTErI8 THeg’ L8 SEOIRIE S00pges 00eTH6 L00.8°68 S10g968 v ALIVAY
62720'6G | O9pTE8 9%Flog'G9 189RRee F0C96'ge 000LT'g9 VOTeeTg CeOlIoIE 99608 0FCLE'9¢ SVTL069 LOTPRr9L STLg9e’ STIgLeg 80getL 69%Ge Ty 001 ¥ALdVAY
TPy | €8000L9 09%0g'99 9XEEQ Ly 16TIRRge T00LT9 WETTTR OXTIpQggg 90T pL SXTggrTe T40L.°9 OSEIgTug 69°0LL 8600gTg OVIgReg O0gope [43 YALIVAY
Teeggey | O6TEL0T9 TE09ee ORTpQ G LETIRETG TYORgT9 SOEgpop TelgprLT f0fegg 90Tpgige 00°0gergg TEETRRT ATEQEe TEOgG6r STOTT'R9 00TgTige 91 YALIVAY
EGTy 907ee'eg 0990967 FOSRET0e 990GL6F SY0ggT9 089Igie BOERerGT TOELpre PRERprIG THOgergg TETZOOL 0006 0g CHTOR0S PEC00C9 SV060°TE 14 ALIVAY

‘8ay o) VdOD JSM om Oloog DINA agoddd viIed AR OdIN 4-SLS T-LSS I'INO 400 I'ININ sojdweg PPOIN

*dDUVTp ARSICES (O

Sursn yse) 1951e) yoes 10y sopdwres Sururen {QQ17E 9Ty} = ¥ YIm syse) g TOIedng pue g TO [[e JO UONBUIQUIOD) UO SI[NST SUTUIed] IoJsuer) Joys-maJ a)oidwo) :¢g qeL

34

	Introduction
	Background
	Analysis on Scaling Output Representations
	ScaLearn – Learning to Scale for Knowledge Transfer
	Experiment Setup
	Results
	Parameter-efficiency analysis
	Transfer Learning Performance
	Few-shot Transfer Learning

	Related Work
	Conclusion
	Appendix
	Complete Experiment Details
	Additional Probing Analyses
	Ablation Study
	Additional Results
	Scaling Coefficient Visualizations
	Complete Few-Shot Results

