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ABSTRACT

Multi-task learning (MTL) has shown considerable practical benefits, particu-
larly when using pre-trained language models (PLMs). While this is commonly
achieved by simultaneously learning n tasks under a joint optimization proce-
dure, recent methods such as AdapterFusion structure the problem into two dis-
tinct stages: (i) task learning, where knowledge specific to a task is encapsulated
within sets of parameters (e.g., adapters), and (ii) transfer, where this already
learned knowledge is leveraged for a target task. This separation of concerns
provides numerous benefits, such as promoting reusability, and addressing cases
involving data privacy and societal concerns; on the flip side, current two-stage
MTL methods come with the cost of introducing a substantial number of addi-
tional parameters. In this work, we address this issue by leveraging the usefulness
of linearly scaling the output representations of source adapters for transfer learn-
ing. We introduce SCALEARN, a simple and highly parameter-efficient two-stage
MTL method that capitalizes on the knowledge of the source tasks by learning
a minimal set of scaling parameters that enable effective knowledge transfer to
a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and
HumsSet) show that our SCALEARN, in addition to facilitating the benefits of two-
stage MTL, consistently outperforms strong baselines with only a small number
of transfer parameters — roughly 0.35% of those of AdapterFusion. Remarkably,
we observe that SCALEARN maintains its strong abilities even when further re-
ducing parameters through uniform scaling and layer-sharing, achieving similarly
competitive results with only 8 transfer parameters for each target task. Our pro-
posed approach thus demonstrates the power of simple scaling as a promise for
more efficient task transfer[T]

1 INTRODUCTION

With the wide availability of pre-trained language models (PLMs) as the backbone of language pro-
cessing, multi-task learning (MTL) has shown significant benefits, especially for tasks with possible
conceptual commonalities (Ruder, 2017; Zhang & Yang, |[2022; Raffel et al., 2020). The traditional
paradigm in MTL is to formulate a joint optimization objective based on a set of tasks and train a sin-
gle model to simultaneously learn and transfer the knowledge relevant to the tasks. This joint MTL
approach can be realized by fine-tuning a PLM (Liu et al., |2019a; |Stickland & Murray, [2019)), or,
more recently, by using parameter-efficient, often modularized, MTL approaches (Mahabadi et al.,
2021b;[Zeng et al., 2023} Pilault et al., 2021} |Asai et al.,2022; |Ponti et al.| [2023} |Caccia et al.}[2022)).

As an alternative to the joint MTL paradigm, some works such as ADAPTERFUSION (Pfeiffer et al.,
2021)) clearly distinguish task training from transfer learning, assigning dedicated parameters to each
of these aspects. In this paradigm, referred to as two-stage MTL, first each source task is trained
separately and stored into a separate module like an adapter (Houlsby et al., 2019), and then a task
transfer layer is trained for a given target task using information from an arbitrary set of source
tasks. This separation of concerns between task and transfer learning offers valuable benefits: (1)
Learning a separate transfer layer for each target task in a two-stage MTL approach reduces the
potentially destructive effects of transfer learning on specific tasks, as the transfer layer parameters
corresponding to each target task can independently decide what information should be used from
the available source tasks. As shown in our experiments, this supports the effectiveness of transfer
learning, making it less sensitive to task selection. (2) Since the source tasks can simply be taken
from already trained modules (no need for re-training), two-stage approaches particularly promote

'Our code is available at URL upon deanonymization.
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Figure 1: Performance and parameter-efficiency of single task learning (STL), and joint/two-stage MTL meth-
ods, evaluated on GLUE (Wang et al.l 2019b) and SuperGLUE (Wang et al.| |2019a)) using RoOBERTagasg (Liu
et al.,2019b). The reported values for the two-stage MTL methods only consider the ones in the respective
transfer layers. The full details of the learnable parameters and performance results are provided in Section@

reusability — a principle of Green Al (Scells et al., 2022} |Schwartz et al.,2020)). Further, they provide
a practical solution to cases involving issues such as data privacy and/or fairness constraints, as a
pre-trained module can readily provide the (e.g., already debiased) functionality of the source task
even without the need to have access to its training data (Lauscher et al.| 2021} Kumar et al., [2023)).

Despite these benefits, current two-stage MTL solutions introduce significantly more learnable pa-
rameters in comparison with recent joint MTL ones, exacerbated by the fact that the number of
parameters in two-stage methods increases linearly with the number of target tasks. As an example,
in our experiment setup with eight target tasks using ROBERTagasg (Liu et al., 2019b), ADAPTER-
FUSION introduces ~ 134% new parameters for transfer learning, while HYPERFORMER++ (Ma-
habadi et al., 2021b) conducts joint MTL by adding ~ 4% (around 5 Million) trainable parameters
(details in Table[I|and Section[6). To date, this high number of parameters requiring optimization is
in stark contrast to the promise of green Al given by the modularized nature of two-stage MTL.

In this work, we propose a highly parameter-efficient and effective two-stage MTL method by scal-
ing the output representations of source adapters using encoder PLMs. Learning scaling vectors
applied to input representations has recently been introduced to fulfill various objectives such as
task learning, domain adaptation, and bias mitigation (Liu et al., 2022; [Ilharco et al., |2023; Ma-
soudian et al., 2023). In the work at hand, we first analyze the effect of scaling output vectors of
source adapters on transfer learning, examined by linearly probing the performance on a given target
task. We observe that (1) the degree of scaling of source adapter representations is not necessarily
linearly correlated with the transfer learning performance on a target task; (2) when summing two
scaled adapter representations, the optimal scaling coefficients often do not sum up to 1. Building
on these findings, we introduce SCALEARN, a novel two-stage MTL method that learns to transfer
the knowledge of the source adapters using a small set of scaling parameters. For a given target
task, SCALEARN introduces a set of parameters that scale the output representation of each source
adapter and combine the resulting scaled representations by simply taking the element-wise sum.
SCALEARN learns to apply a (linear) scaling transformation without imposing any constraint on the
relation of the scaling coefficients across source tasks, where the parameters are optimized using
common gradient descent methods. This approach results in high parameter-efficiency, such that —
following the mentioned experiment setting — SCALEARN only adds ~ 0.47% (around 0.5 million)
new parameters. We further introduce an even more parameter-efficient variation through uniform
scaling (SCALEARNUNIFORM), where each scaling vector is reduced to a single scaling parame-
ter. Finally, by sharing the parameters across the layers, we achieve our most parameter-efficient
variation (SCALEARNUNIFORM++), only containing 64 parameters for transfer learning.

We conduct a large set of transfer learning experiments on the GLUE (Wang et al., 2019b)), Super-
GLUE (Wang et al., 2019a), and HumSet (Fekih et al.,[2022) benchmarks using the RoOBERTa model
(BASE and LARGE) (Liu et al.| 2019b), and compare the parameter-efficiency and performance of
SCALEARN with strong joint and two-stage MTL baselines. Figure |1| summarizes our results on
GLUE and SuperGLUE. Our results show that SCALEARN, while providing high efficiency and the
benefits of the two-stage MTL paradigm, consistently outperforms the baselines. Interestingly, the
overall performance of SCALEARN remains highly competitive and only marginally different in its
more parameter-efficient variations. Our results also show the advantage of two-stage models in
avoiding destructive effects during transfer learning, particularly on the SuperGLUE and HumSet
benchmarks (cf. Section[6). Finally, SCALEARN exhibits strong performance in few-shot settings,
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outperforming both regular adapters and ADAPTERFUSION when trained only on a handful of data
points. Overall, with SCALEARN we leverage the power of scaling as a viable, non-destructive,
simple-to-implement, and highly parameter-efficient solution to the current shortcomings of two-
stage and joint MTL methods, paving the future for more effective and efficient task transfer.

2 BACKGROUND

In task transfer learning, we consider a PLM as well as two sets S and 7', representing the source and
target tasks, respectively. The aim of MTL is to leverage the information of tasks in S to improve
the generalization on tasks in 7.

Single Task Learning (STL). In this basic setting, a separate set of parameters is optimized on each
task (S = T') without any knowledge transfer between tasks. STL can be done by fine-tuning the
PLM parameters or by introducing more parameter-efficient modules into the model, such as adapter
modules (Pfeiffer adapters (Houlsby et al.,|2019; |Pfeiffer et al.,2021), PROPETL (Zeng et al.,|2023)),
or COMPACTER++ (Mahabadi et al., [2021a)), (I A)® (Liu et al., 2022), prefix-tuning (Li & Liang}
2021)), or LoRA (Hu et al.,[2022), each with O, parameters for each task s.

Joint MTL. This approach is commonly done by having a unified model for all tasks (S = T,
and a joint optimization objective that simultaneously optimizes the model using samples from all

tasks (Ruder, 2017). The general joint MTL objective can be formulated as Lioine = ELS:ll oL,
where o 1s the sampling weight of task s. This optimization objective can be used to fine-tune the
parameters of a PLM (Liu et al.,|2019a} |Stickland & Murray, 2019} Raffel et al.|[2020), or those of a
modularized architecture (Mahabadi et al., 202 1b; Pilault et al.,[202 1} [Ponti et al., 2023)). Despite the
benefit of having one unified model, the joint loss often causes tasks to compete with each other for
learning capacity, leading to the fask interference problem (Xin et al,[2022; McCloskey & Cohen,
1989; [Kirkpatrick et al.l [2017). This makes the joint MTL paradigm particularly sensitive to the
selection of tasks (Xin et al.l 2022)), while various methods in the literature have aimed to address
this issue (e.g., Kendall et al.|(2018)); |[Pilault et al.|(2021)); a brief review is provided in Section .

Two-stage MTL. In contrast to joint MTL, two-stage MTL methods optimize each target task in-
dependently, bypassing the issue of task interference (Pfeiffer et al., [2021). Similarly to STL, a
parameter-efficient module is first learned for each source task s with parameters O;. In principle,
two-stage MTL methods can simply use already pre-trained modules (such as adapters), saving the
costs of re-training modules on each task. This facilitates the re-use of existing parameter-efficient
modules for each source taskﬂ which may vary in performance and/or take into account additional
constraints such as fairness and bias mitigation (Pfeiffer et al., |2023}; [Kumar et al., 2023} |Lauscher,
et al |2021). Moreover, it also removes the need for accessing the training data of the source tasks
(e.g., due to data privacy), so far as the source task’s functionality is solely provided via parameter-
efficient modules. Next, given |S| (pre-trained and frozen) source task modules, two-stage MTL
methods define and optimize a transfer layer for each target task to leverage the knowledge of source
tasks to solve the target task. This stage introduces {2, new parameters for each target task ¢.

ADAPTERFUSION (Pfeiffer et al.| [2021) introduces an implementation of the two-stage approach
with strong MTL performance (Pfeiffer et al.,|2023). It uses an attention mechanism as its transfer
layer, inserted into each layer of the PLM, after the source adapters. More specifically, given the
output vector of each source adapter s in each layer [, referred to as o, the attention layer (with
target task ¢ as query and source tasks S as keys and values) learns to assign a weight w' to each
source task. The final output of the target task ¢ in this layer is calculated as:

IS S|
o, = Zwioi, whereZwi =1 (N
s=1 s=1
Regardless of how the weights are calculated, the method can be seen as a weighted summation of
source output vectors, where the weights form a categorical probability distribution. In the following
section, we provide an analysis on the effect of these weights in transfer learning.

3  ANALYSIS ON SCALING OUTPUT REPRESENTATIONS

We seek to leverage simple scaling as a novel composition method in transfer learning. To under-
stand the effect of scaling, we now conduct preliminary experiments in which we scale the output

2E.g., through sharing platforms such as AdapterHub (https://adapterhub.ml/) (Pfeiffer et al.,|2020).
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representations of adapters — in isolation and combining two of them each. We use the popular
GLUE (Wang et al.,[2019b) and SuperGLUE (Wang et al., | 2019a)) benchmarks, utilizing a selection
of their tasks (owing to the high number of possible combinations), including entailment, paraphrase
detection, sentiment analysis, question answering, and commonsense reasoning tasks. We train
a Pfeiffer adapter (Pfeiffer et al., |2021) on each task using the encoder PLM RoBERTagasg (Liu
et al.l 2019b). In our probing-like setup (Tenney et al., 2019), we freeze both the PLM and adapter
weights and train a new task head on target task ¢ each time we change the scaling factor. Complete
descriptions of the datasets, hyperparameters, and training procedure are provided in Section [5]and
Appendix [A.T] Additional experiments and results on further tasks are provided in Appendix [A.2]
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Figure 2: Probing results of 4 target tasks in various transfer learning conditions. (Top) Effect of scaling the
output representations of adapters by weight ws using different source adapters. (Bottom) Effect of combining
independently scaled output representations of two adapters trained on the target task and MNLI, respectively.
Each point shows the mean over 5 seeds. Full results are reported in Appendix@

We start by analyzing the performance change of a target task when scaling the output representa-
tions of the adapter of one given source task. We define w; as the scaling value in the range of [0, 1}],
multiplied by the output representations o, of the source task s in all layers, such that o} = w,o’.
Figure [2] (Top) shows the probing results on four target tasks (each column), given various scaling
weights applied to four source tasks (one of which is the respective target task). The results show
that, while increasing the scaling weights generally improves the performance, the optimal value
is not necessarily at ws = 1. In particular, there exist instances with 0 < w,; < 1 reaching better
performance than ws; = 1. This suggests that partial knowledge transfer of tasks may be more
beneficial. Notably, and as also reported in previous studies (Poth et al., [202 1} |Pruksachatkun et al.,
2020), some source tasks such as MNLI show strong transfer learning abilities.

Next, we go one step further by assessing the scaled combination of the output vectors of two
adapters. We focus on MNLI as one of the source tasks given its observed benefit in transfer learning,
and set the second source adapter (denoted by s) to the one corresponding to the target task. We use
two scaling parameters wyNr1 and w, to scale o{v[ and oi, respectively. The resulting output vector
is defined as: o} = w,0! + wmnL10 - Figure [2] (Bottom) shows the results for various values of
wmnL and wg. Combining the information encapsulated within multiple adapters through scaling
can result in improved performance. Interestingly, in some cases, the best combination of wynr and
ws does not add up to 1, i.e., w; + w, # 1. This finding stands in contrast to the established practice
of forcing the scaling coefficients to sum up to 1 (e.g., as in ADAPTERFUSION, as shown in Eq.[I).

These initial experiments — while only covering a simple combination of up to two source tasks —
provide insights into the benefits of scaling representations for transfer learning: (1) scaling out-
put vectors is an effective method for controlling the (partial or full) activation of the knowledge
contained in an adapter module; (2) an optimal configuration of the scaling parameter will, in many
cases, lead to superior results on the target task; (3) the optimal weights do not necessarily sum up to
1. These observations provide strong motivation for designing a method to combine representations
from several adapters by scaling their output vectors, presented in the next section.

4 SCALEARN — LEARNING TO SCALE FOR KNOWLEDGE TRANSFER

Building on our findings from Section [3] we present SCALEARN, a novel two-stage transfer learn-
ing method to combine the knowledge of source adapters by scaling their output representations.
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Our core contribution regards the transfer layer, built on the output of the tasks’ modular net-
works. Similar to |Pfeiffer et al.| (2021), we utilize adapter modules for the task learning layer.
In particular, the output representation of the adapter of source task s at layer [ is defined as:
ol = U!(ReLU(D!(z))) + ., where z! is the input vector, and U! and D' denote the up- and
down-projection parameter matrices, respectively.

Our introduced SCALEARN linearly scales and combines the output representations of the source
adapters, o', . . ., of spto achieve the objective of target task ¢. We define two variations of the scal-
ing operation: non-uniform which applies a scaling vector to each output vector using the element-
wise product (SCALEARN), and the more parameter-efficient uniform that scales each vector only
with a scalar parameter (SCALEARNUNIFORM). These variations are formulated below:
S| S|
SCALEARN: of = » w! ® o SCALEARNUNIFORM : o} = » w0}, 2)
s=1 s=1
where © denotes the Hadamard product, and wé and wé are learnable vector and scalar parameters,
respectively. Inspired by previous studies (Mahabadi et al.,[2021a;|Zeng et al.,[2023}; Bai et al.,2022;
Goldberg, 2019; Jawahar et al., 2019), we further increase parameter-efficiency by learning shared
scaling parameters among all layers, formulated as follows:

|S] |S]
SCALEARN++: 0f = ¥ w,®0,  SCALEARNUNIFORM++: 0} = Y w0}, (3)

where, similarly, w, and wy are lelarnable vector and scalar parameters, but shared afm%)ng all layers.
In all the mentioned methods, to optimize the transfer parameters €2, we use gradient descent as an
easy-to-implement and straightforward solution. On the basis of our experiments, we find that our
approach provides highly competitive results on a wide range of tasks (cf. Section[6)). Furthermore,
we emphasize that SCALEARN models do not force any distributional properties on the w values, as
commonly imposed in previous work [Pfeiffer et al.| (2021)); |Chronopoulou et al.| (2023)); [ Xin et al.
(2022) through functions such as softmax and average.

Parameter-efficiency of SCALEARN. To have a clear view of the parameter-efficiency of the in-
troduced models, we continue by analyzing the number of learnable parameters in the transfer layer.
The SCALEARN variant introduces d x L x |\S| transfer parameters for a single target task, where d
is the embedding size and L denotes the number of layers. The overall number of parameters for all
target tasks then becomes d x L x | S| x |T'|. Moving to SCALEARNUNIFORM, this number reduces
to Lx|S|x|T|. The SCALEARN++ spares the L term and has d x | S| x |T'| transfer parameters. Fi-
nally, the most parameter-efficient variant SCALEARNUNIFORM++ only adds | S| x |7T'| parameters.
Note that the new task head parameters are learned jointly with the transfer parameters for each task.

As a point of comparison, the number of transfer parameters of ADAPTERFUSION is 3xd?x Lx|T|
(discarding bias and task head parameters), corresponding to the query, key, and value matrices of the
attention mechanism. Comparing the formulas, we observe that our methods are far more parameter-
efficient, since in practice |S| < d, and hence the d x L term in SCALEARN becomes much smaller
than d? in ADAPTERFUSION. Compared to the joint MTL paradigm, despite the linear increase of
parameters with |T'|, our SCALEARN * models still provide high parameter-efficiency. This stems
from the fact that |T'| < d, and hence reducing the effect of d — which is fully eliminated in the
uniform variants — leaves a more significant impact on parameter-efficiency.

5 EXPERIMENT SETUP

Tasks and datasets. We conduct our experiments on the GLUE and SuperGLUE benchmarks,
respectively, each consisting of 8 tasks, as well as on the HumSet (Fekih et al., [2022) benchmark.
HumSet is a multilingual classification dataset for humanitarian crisis response consisting of 5 tasks.
Additionally, we use a combination of all GLUE and SuperGLUE tasks resulting in 15 datasetﬂ

PLM backbones. We use RoOBERTagasg and RoBERTa; argg (Liu et al., 2019b) on GLUE and Su-
perGLUE. For the experiments on HumSet, following (Fekih et al.,[2022) we utilize the multilingual
XLM-Rpasg and XLM-Ry arge (Conneau et al.L[2020) as this dataset consists of multiple languages.

Models and baselines. We conduct experiments on four variants of our model, namely SCALEARN,
SCALEARNUNIFORM, SCALEARN++, and SCALEARNUNIFORM++. As a direct baseline, we

3The RTE task is contained in both GLUE and SuperGLUE.
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Table 1: Percentage and number of trainable parameters per model (excluding task head parameters), when
training on 8 tasks (as in GLUE/SuperGLUE) using RoOBERTagasg. For two-stage MTL, source and target tasks
are the same (|.S|=|T"| =8), and the task parameters consist of |S| adapters, thus © = 8 x 0.72% = 5.74%.

Parameters Parameters
Category Model (one task) (all tasks)
FINETUNE 100.00% (125M)  800.00% (125M)
STL ADAPTER 0.72% (895K) 5.74% (TM)
PROPETL 0.77% (959K) 6.16% (8M)
COMPACTER++ 0.02% (29K) 0.19% (235K)
(1A)3 0.05% (57K) 0.37% (455K)
FINETUNE-M 100.00% (125M)
ADAPTER-M 0.72% (895K)
Joint MTL PROPETL-M 1.24% (1.5M)
HYPERFORMER 47.67% (59M)
HYPERFORMER++ 4.09% (5M)
Transfer (2+) Transfer (2) Task (©) + Transfer (£2)
(target task t) (all target tasks) (source adapters + transfer layers)
ADAPTERFUSION 17.05% (21M) 136.40% (170M)  5.74% + 136.40% =142.14% (177TM)
SCALEARN 0.06% (74K) 0.47% (590K) 5.74% + 0.47% =6.21% (8M)
Two-Stage MTL ~ SCALEARNUNIFORM 0.00% (96) 0.00% (768) 5.74% + 0.00% =5.74% (TM)
SCALEARN++ 0.00% (6K) 0.04% (49K) 5.74% + 0.04% =5.79% (TM)
SCALEARNUNIFORM++ 0.00% (8) 0.00% (64) 5.74% + 0.00% =5.74% (TM)

compare our models with ADAPTERFUSION, a common two-stage MTL method that shares the
same conceptual properties. We also compare our models with ADAPTERSOUP (Chronopoulou
et al., 2023), performing weight-space averaging over adapter weights of the 5 most similar tasks
according to their sentence similarity. We adapt their approach to our setup (cf. Appendix [AT).
In all two-stage MTL methods, source and target tasks are the same, containing the tasks of the
underlying benchmark. For each target task, they learn a transfer layer (except for ADAPTERSOUP)
and a new task head.

We select a set of strong STL baselines: FINETUNE, fully fine-tuning the PLM, ADAPTER Houlsby
et al.| (2019) learning an adapter module for each task, PROPETL (Zeng et al., 2023) a more
memory-efficient variation based on parameter sparsification and COMPACTER++ (Mahabadi et al.,
2021a) a highly parameter-efficient variation that leverages parameter-sharing between layers. As
another STL baseline, we train (IA)3 (Liu et al., [2022), which learns scaling vectors applied to the
key and value matrices and intermediate activations in the feed-forward layer of the PLM.

Furthermore, we conduct experiments on several joint MTL baselines, namely FINETUNE-M,
ADAPTER-M, and PROPETL-M, the fully fine-tuned, adapter-based, and ProPETL-based joint
MTL variants, respectively; and, finally, HYPERFORMER and HYPERFORMER++ (Karimi Ma-
habadi et al.;,|2021). FINETUNE-M updates all PLM parameters, ADAPTER-M adds a single adapter
module shared for all tasks, and PROPETL-M combines sparse layer- and task-specific masks
through a logical OR operation. Based on task-specific embeddings, HYPERFORMER and HYPER-
FORMER++ generate module parameters by a shared hypernetwork. In all adapter-based models,
we use a reduction factor of 16, and, following [Pfeiffer et al.| (2021)), insert the modules after the
feed-forward layer of the PLM. Furthermore, to allow a fair comparison, we adapt PROPETL-M,
HYPERFORMER, and HYPERFORMER++ to this setting by inserting the adapter modules only after
the feed-forward block of the PLM. To accommodate possible variations in performance, we train
each model on multiple seeds, and report the mean and standard deviation over multiple runs.

The full details of the experiment setup regarding the benchmarks and their splits, infrastructure,
training, and hyperparameters are provided in Appendix [A.I] To further enable the reproducibility
of our results, our code, including documentation, is available at URL upon deanonymization.

6 RESULTS
6.1 PARAMETER-EFFICIENCY ANALYSIS

Table[T] provides a comprehensive overview of the number of learnable parameters of the models in
our experiment setting on GLUE and SuperGLUE: RoBERTagasg as the backbone PLM, 8 source
tasks, and the same 8 tasks as target tasks (|.S| = |T'| = 8). Starting from the STL models, the first
and middle columns report the number of trainable parameters for one and all tasks, respectively.
The joint MTL models learn all tasks simultaneously, and hence only contain values in the mid-
dle column. For the two-stage MTL models, we report the number of trainable parameters of the
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Table 2: Evaluation results on GLUE using RoOBERTagasg. (Top) STL models, only learning a single task at
a time. (Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods,
composing the knowledge of several source adapters. The overall best results are underlined, and the best
results among the two-stage MTL models are shown in bold.

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 86.610.51 90.320.15  91.78p.28  93.330.48  90.53p.22  86.94152  73.47205  58.464.03 83.930.60
ADAPTER 86.500.33  90.180.11  92.250.19  93.650.71  90.23p.41  86.641.07  72.89254  58.28250 | 83.830.4s
PROPETL 86.190.25 88.88p.48 92.05080 93.81p72  90.030.35 85.93122  74.19303  59.29207 | 83.800.42
COMPACTER++ 85.620.42  88.840.70  91.79039  93.580.34  89.67g51 87.21g61  72.02221  58.49258 | 83.400.45
(14)3 83.78p.8s  88.37p.20 90.57p35  93.35030 89.930.30 87.11114  72.56223  56.575.39 82.781 36
FINETUNE-M 84.950.36 89.76¢.12 90.91¢.07 92.580.76 86.14¢.53 83.42¢ .50 80.992. 54 49.121 74 82.230.41
ADAPTER-M 86.03p.18  89.699.01  91.58p30 93.350.41  88.7lp4g  86.7609.92  80.26196  51.791.23 83.520.32
PROPETL-M 85.230.45  87.820.16  91.37052  93.880.44  90.27022  86.361.82  78.580.90  54.711.12 83.530.31
HYPERFORMER 86.08p.46 89.13p.23 91.81p07 93.160.99 90.630.32 87.0lgs7 82.79168 57.302.21 84.74¢.39
HYPERFORMER++ 86.38p.18  88.81p29 91.99917  93.270.11 90.809.12 87.831.42 83.7507s  54.053.30 | 84.61¢.46
ADAPTERFUSION 86.820.04  90.23p.01 9248915 93.230.95 90.37Tg20 88.41p49 79.4959; 59.044 69 85.01p.37
ADAPTERSOUP 6347937  81.630.23 78.000.20 90.7509.24  80.17p18  75.00118  62.099.64  41.061 68 71.52¢. 59
SCALEARN 86.970.00 90.32010 9251017 93.88018 90.96,,; 87.75053 82.06137 5847176 | 85.36, 55
SCALEARNUNIFORM 86.930.10 90.38, 1, 92.53;,5 93.580.20 90.080.07 87.57p.86  80.071.18  59.041 05 85.020.49
SCALEARN++ 87.06),; 90.0d012 92.03110 94.15030 90.62013 88.21g63 80.87105 59.82 75 | 85.350.52
SCALEARNUNIFORM++  86.98).17  90.38;, 92.53,,5 94.11007 90.180.19  87.430.63 80.040.99  59.45067 | 85.14¢.38

Table 3: Evaluation results on SuperGLUE using ROBERTagask.

Model ReCoRD  MultiRC BoolQ WiC WSC COPA CB RTE Avg.
FINETUNE T1.619.84 71.64115 76.80134 66.38208 63.46000 68.60674 81.96433 73.47205 | 71.742.32
ADAPTER 79.020.62 72.84p4s  T6.71138  65.58156 63.46000 70.20413 84.82318  72.89254 | 73.19174
PROPETL 80.29024  73.07949  76.58p78 66.601¢65 63.460.00 70.60344 84.46386  74.19203 | 73.691 .53
COMPACTER++ 7769267 70.44p57 7588096 66.46163 63.46000 68.30s00 87.68362  72.02291 | 72.741.96
(14)3 7527005 70.32049  T76.31g79 67.07168 63.35032  69.30337 87.32457  72.56203 | 72.691 71
FINETUNE-M 7221908 T2.1lp6s  76.393.07 5219111  63.46000 74.333.40 84.52084  T4.857.42 | 71.265.19
ADAPTER-M 7243064 7246043 75.32278 5199174  59.94597  T1.67340 86.31165  76.531.06 | 70.83184
PROPETL-M 7314019  72.07058 7391327  50.730.99  59.62544  74.00327 82.14146  73.65383 | 69.91533
HYPERFORMER 65.93447 33543354 T74.01110 5549172  52.881058 55.50250 7143714  61.73903 | 58.81s.76
HYPERFORMER++ 24.508.13 19472753 62.17000  50.00000 63.46000 54.33330 49.400.84  49.09256 | 46.555.30
ADAPTERFUSION 78.82049 T1.79167  76.72055 66.57124 63.460.00 73.1045  82.32285  76.03238 | 73.601.71
ADAPTERSOUP 64.260.13  33.62408  08.84p31 5853060 63.46000 52.40241 70.89086 57.830.93 | 58.731.19
SCALEARN 79.520.06 73.22044 TT7.27p6s 066.35120 63.460.00 74.802.15 90.89259  78.88214 | 75.55116
SCALEARNUNIFORM 80.13p.38 71.91p60 76.06041 67.37T1020  62.50127 71.20323 89.11y97  75.31g.90 | 74.201.00
SCALEARN++ 80.130.09 72.7lgs7 7644053 67.13104 62.26208  75.20193 93.04514 79.03095 | 75.741.90
SCALEARNUNIFORM++  79.79914  71.75038  76.13052 67.870s9 63.46000 74.001.70 91.6la53  74.84158 | 74.930.97

transfer layer for one target task (€2;) in the first column, the same for all target tasks in the mid-
dle (£2), and the sum of the number of transfer (£2) and source adapter parameters (©) in the last
column. We deliberately organize the transfer parameters of the two-stage models (£2) under the
corresponding numbers of other models in the middle column since the two-stage paradigm benefits
from already trained adapters and only needs to learn the transfer layer. The last column is provided
for completeness in the case that the adapters should also be trained.

Comparing the results of the two-stage MTL methods in the transfer layer, ADAPTERFUSION is
expectedly far less parameter-efficient than SCALEARN models, where SCALEARNUNIFORM++
only requires 64 parameters. The variants of SCALEARN add considerably fewer transfer parameters
compared to the overall parameters of the particularly efficient joint MTL methods. Moreover,
the SCALEARN models still remain comparable when also taking into account the source adapter
parameters. Considering these results, in the following we report and discuss the evaluation results
in transfer learning and few-shot learning on the respective benchmarks.

6.2 TRANSFER LEARNING PERFORMANCE

Results on GLUE. Table [2] shows the evaluation results on the GLUE benchmark using
RoBERTagasg. The evaluation metrics are Pearson’s correlation for STS-B, Matthews’ correlation
for CoLLA, and accuracy for the rest. We average the results over several runs and report the cor-
responding standard deviation in the subscripts. Overall, the two-stage models obtain strong gains,
outperforming STL and joint MTL models. Remarkably, all variants of SCALEARN, including the
highly parameter-efficient SCALEARNUNIFORM++ achieve similarly good results with only a frac-
tion of the parameters of ADAPTERFUSION. Comparing the different variations of our method,
while SCALEARN shows the best results, the other models also perform highly competitively.

Results on SuperGLUE. Table [3] shows the results on SuperGLUE for all methods considered.
The evaluation metrics are F1 for MultiRC and ReCoRD and accuracy for other tasks. We observe
similar patterns on this benchmark: two-stage models generally outperform other baselines. In
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Table 4: Evaluation results on HumSet using XL.M-Rpask.

Model Sectors Pillars 1D Subpillars 1D Pillars 2D Subpillars 2D Avg.
FINETUNE 71.99¢.32 50.40¢.24 43.760.67 61.04¢ .26 41.680.62 53.770.42
ADAPTER 71.380.28 51.021 23 43.260.82 61.43¢.01 42.46¢. 51 53.91¢.75
PROPETL 71.690.86 49.691.30 41.630.84 60.580.91 39.851.10 52.691.00
COMPACTER++ 69.971 .89 37.377.99 37.762.14 58.131 64 33.109.00 47.264 53
(IA)3 70.22¢.97 45.553 43 40.053.15 58.541 38 39.271.01 50.731.99
FINETUNE-M 51.753.62 22.6512.88 13.54¢.06 33.2721.23 12.423 39 26.739.44
ADAPTER-M 56.202 72 28.5314.56 16.539 46 35.9017 .36 18.892 64 31.219 35
PROPETL-M 59.8010.09 26.1014.36 29.577.40 37.5312.08 30.355.91 36.679.97
HYPERFORMER 71.081.04 40.656.93 34.163.37 46.2214.11 32.474.46 44.925 98
HYPERFORMER++ 60.429 79 22.077.45 20.357 .04 30.5519.83 18.9010.84 30.4610.99
ADAPTERFUSION 72.050.12 49.630.53 43.15¢.38 60.68¢.23 42.140.46 53.530.35
ADAPTERSOUP 56.811 90 30.09¢.40 21.84¢.55 40.71p.98 17.895 02 33.471.17
SCALEARN 72.360.05  51.630.61  44.060.37 61.520.11  42.81 4, 54.48 ..
SCALEARNUNIFORM 72.200.14 50.08¢.79 42.970.70 60.62¢.16 41.95¢.60 53.560.48
SCALEARN++ 72.38, ,, 51.66,,, 44.23, . 61.66, ,, 42.210.21 54.430 25
SCALEARNUNIFORM++ 72.02¢.32 50.780.41 42.600.85 60.820.14 42.14¢9.72 53.670.49

this benchmark, SCALEARN and SCALEARN++ improve upon ADAPTERFUSION by 2 percentage
points of the average results. Notably, we observe performance drops for various joint MTL models
in comparison to other models (up to —27% when comparing HYPERFORMER++ and ADAPTER).
This may be a signal of the sensitivity of these models to the selection of tasks. Furthermore, the
subpar performance of AdapterSoup suggests that calculating weights using sentence similarity is
not appropriate for our specific problem setup. In contrast, the other two-stage MTL models (and,
in particular, our SCALEARN models) do not show any considerable performance decreases.

Results on HumSet. TableE| shows the results on HumSet using XLM-Rgasg with the Fl-score as
the evaluation metric. Similarly, SCALEARN performs the best among all the methods, whereas the
more parameter-efficient variants of SCALEARN are only marginally weaker in performance. On
this benchmark, in particular, all joint MTL methods show poor performance, highlighting the sen-
sitivity of these methods to task selection (up to —27% for STL and MTL versions of FINETUNE).

We conduct an ablation study on the effect on different combinatorial operators in SCALEARN,
reported in Appendix [A.3] In Appendix [A.4] we provide further experiments and analyses of the
results along with the results of GLUE and SuperGLUE using RoBERTa; arge, HumSet using
XLM-Ry arGE, and for the combination of all tasks from GLUE and SuperGLUE. Finally, we pro-
vide an analysis of the scaling coefficients of SCALEARNUNIFORM and SCALEARNUNIFORM++
in Appendix[A.3] revealing the effect of various source adapters on a target task.

6.3 FEW-SHOT TRANSFER LEARNING
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Figure 3: Few-shot transfer learning results with k = {4,16,32,100} training samples for each target task using
the BASE models of ROBERTa and XLLM-R. Full results over several runs are provided in Appendix@

We further assess the applicability of SCALEARN in a few-shot setting, where we assume that only
k = {4,16,32,100} training samples are available for a given target task. For two-stage MTL
methods, for a given benchmark, we use the source adapters of all tasks except the one corresponding
to the target task, where we use a source adapter trained on only k& samples. On the basis of this set
of source adapters, we then train a transfer layer on the target task using & data points.

Table [3] shows the performance of ADAPTER, ADAPTERFUSION, and SCALEARN on the GLUE,
SuperGLUE, and HumSet benchmarks, averaged over 5 runs. We observe that SCALEARN consis-
tently outperforms ADAPTER and ADAPTERFUSION in all benchmarks and values of k (except for
k = 4 on HumSet) pointing to the strength of our method for data-lean settings. We provide the full
results, including per-dataset ones, other variations of SCALEARN, and on RoOBERTay argg in @
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7 RELATED WORK

Parameter-efficient task learning in NLP. Various parameter-efficient methods have emerged as
a more sustainable alternative to full fine-tuning, enabling modularization, efficient sharing, and
reusability of knowledge. A common modularization approach is to introduce a small number of
additional parameters into a PLM, realized by various methods such as Adapters (Rebuffi et al.,
2017; Houlsby et al. [2019), Compacter (Mahabadi et al., 2021a), and ProPETL-Adapter (Zeng
et al} 2023). Similarly, LoRA (Hu et al., |2022) injects trainable low-rank matrices into each trans-
former layer, and BitFit (Ben Zaken et al., 2022) updates only the bias terms. Another line of
research identifies sparse subnetworks within the model to tune (Ansell et al.l 2022} |Guo et al.,
2021} [Hauzenberger et al.l [2023), while He et al.| (2022)) and Mao et al.| (2022) propose to merge
various distinct modules. We refer to |Pfeiffer et al.[(2023) for a full survey on this topic.

Learning by scaling. Besides the common approach of learning a feed-forward layer for a (non-)
linear transformation of an input vector, several recent methods explore the merit of learning a scal-
ing vector applied to the input vector in various scenarios. [Liu et al.|(2022) learn a modular network
for STL that rescales PLM vectors through element-wise multiplication. |[lharco et al.| (2023 and
Ortiz-Jiménez et al.| (2023)) introduce task arithmetic to control PLM behavior by extracting task
vectors from pre- and post-fine-tuning model weights, then scaling and combining them to improve
MTL performance. Masoudian et al|(2023)) learn a gating adapter that adjusts the scaling of repre-
sentations to control the behavior of the model at inference time. Finally, |Lian et al.|(2022) learn to
shift and scale the output vectors of a vision transformer in an STL setting. Our work contributes to
this line of research by leveraging scaling for highly parameter-efficient and effective MTL.

Joint MTL. Interference and imbalance between tasks have been shown to impede performance
in joint MTL (Kirkpatrick et al.l [2017; [Kendall et al., 2018; |Pfeiffer et al., 2023). Several studies
have aimed to address these issues and improve generalization. For example, [Liu et al.| (2019a)
learn representations across multiple NLU tasks using context from a semantic similarity model,
and [Pilault et al.|(2021)) introduce a parameter-efficient model that uses modules facilitating weight
sharing. Moreover, |Stickland & Murray| (2019) use an adapter for each task while also updating the
PLM parameters. [Zhang et al.|(2022) further focus on modularity by only activating a subset of task-
specific modules at once; however, tasks must be mapped a priori to a given high-level skill. |Ponti
et al.| (2023) and|Caccia et al.|(2022) loosen this constraint by learning a task-skill allocation matrix
for cross-task generalization, but rely on a multi-task pre-training stage. Finally, Mahabadi et al.
(2021b) leverage a hypernetwork (Ha et al.,|2017) that generates modular task-specific parameters.

Two-stage MTL. Various methods have been proposed to extract task-specific information and com-
pose this knowledge. [Chronopoulou et al. (2023) studies transfer learning in generative PLMs by
first selecting source adapters based on different heuristics and merging their weights to create a new
combined adapter. [Huang et al.| (2023) introduce LoraHub with the aim of composing LoRA (Hu
et al., [2022) modules for cross-task generalization using black-box optimization and an additional
pre-filtering stage. |Asai et al.| (2022) and |Wang et al.| (2023) leverage continuous prompts learned
on large-scale source tasks, leading to competitive performance in MTL benchmarks, although both
methods depend on the selection of typically high-resource source tasks. In contrast to the men-
tioned methods that highly depend on the selection of tasks and/or apply the combination to the
weights, [Pfeiffer et al.| (2021) combines the output representations of several independent source
adapters through an attention mechanism. Our work is directly related to this line of research and
introduces a novel highly parameter-efficient transfer layer applied to the output representation.

8 CONCLUSION

We propose SCALEARN, a highly parameter-efficient and effective two-stage MTL method lever-
aging simple scaling of output vectors. Based on an initial analysis of the effect of scaling adapter
output representations, our proposed approach directly learns the coefficients that scale the repre-
sentations of source adapters and combines them by simply taking the sum. We conduct extensive
transfer learning experiments using encoder PLMs on the three benchmarks of GLUE, SuperGLUE,
and HumSet, consisting of a diverse set of tasks, domains, and languages. Our evaluation results
show that SCALEARN and even its extremely parameter-efficient variants, such as SCALEARNUNI-
FORM++, obtain strong improvement over existing MTL methods without any negative cross-task
effects. We further show that these improvements are also present in few-shot transfer learning.
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ETHICS STATEMENT

The nature of our work is manifold, and so are the ethical aspects touched by our research. First, we
acknowledge the potential of NLP datasets and models for encoding unfair stereotypical (Blodgett
et al.| [2020) and exclusive (Dev et al., 2021) biases that may lead to representational and alloca-
tional harms (Barocas et al., 2017). This potential is a general property of PLMs, and the mod-
els and datasets we use in this research are no exception to this danger. We thus strongly advise
practitioners to carefully consider the sociotechnical context before deploying any models (with or
without SCALEARN), and, aligned with the specific deployment scenario, to take measures against
unfair discrimination. Examples of such measures include the use of bias measurement (Nangia
et al., 2020) and mitigation (Bordia & Bowman, 2019)) approaches. Second, the core of this work
deals with efficiency aspects. On the one hand, given the well-known relationship between model
training (and inference) effort and potential CO4 emissions (Strubell et al., [2019)), our work directly
contributes to reaching the goals of Green Al by making parameter-efficient MTL more environ-
mentally sustainable. On the other hand, since PLM training often comes with high infrastructure
requirements exclusive to certain user groups (Bender et al., 2021)), we hope that our work also con-
tributes to the ongoing democratization of language technology by reducing resource-related usage
barriers.

REPRODUCIBILITY STATEMENT

For all our experiments, we use PLM configurations that are publicly available and can be down-
loaded from the Huggingface transformers library (Wolf et al|2020). Sufficient details to repro-
duce our results, including hyperparameter settings and seeds used in training, and information about
the datasets we use for training, including splits, can be found in Section [5] and in Appendix [A.T]
All datasets we use in our experiments are commonly used in the MTL literature and publicly avail-
able to ensure comparability and reproducibility. We also release our code under the MIT License,
ensuring open access to the community for further development.
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A APPENDIX

A.1 COMPLETE EXPERIMENT DETAILS

Name Category Task Domain Metric

MNLI GLUE NLI various accuracy

QQP GLUE paraphrase detection social QA accuracy & F1
QNLI GLUE NLI Wikipedia accuracy
SST-2 GLUE sentiment analysis Movie Reviews accuracy
STS-B GLUE sentence similarity various Pearson & Spearman corr.
MRPC GLUE paraphrase detection news accuracy & F1
RTE GLUE NLI News, Wikipedia accuracy
CoLA GLUE acceptability various Matthews’ corr.
ReCoRD SuperGLUE  cloze-style QA news (CNN, Daily Mail) Fl & EM
MultiRC SuperGLUE QA various F1 & EM
BoolQ SuperGLUE  boolean QA Wikipedia accuracy

WiC SuperGLUE  word sense disambiguation  lexical databases accuracy

WSC SuperGLUE  coreference / commonsense  fiction books accuracy
COPA SuperGLUE  commonsense reasoning various accuracy

CB SuperGLUE NLI various accuracy
Sectors HumSet classification humanitarian crisis response  F1 & precision
Pillars 1D HumSet classification humanitarian crisis response  F1 & precision
Subpillars 1D | HumSet classification humanitarian crisis response  F1 & precision
Pillars 2D HumSet classification humanitarian crisis response  F1 & precision
Subpillars 2D | HumSet classification humanitarian crisis response  F1 & precision

Table 5: Details of all datasets. Lexical databases for WiC include WordNet, VerbNet, Wiktionary. For
datasets where two metrics are officially used, we use the underlined metric as our main metric. (Top) GLUE
tasks. (Middle) SuperGLUE tasks. (Bottom) HumSet tasks.

Dataset Details. As has been mentioned, we are using the GLUE, SuperGLUE, and HumSet bench-
marks for our experiments. Table [5| summarizes the tasks contained in each of the datasets. We use
the datasets library (Lhoest et al.l [2021) to load each dataset for our experiments. We set the
maximum length of the input sequence to 128 tokens for all tasks in GLUE, SuperGLUE, and Hum-
Set. However, for MultiRC and ReCoRD, we set the maximum length to 324 and 256, respectively,
due to their significantly longer context lengths. Note that we treat HumSet as five separate tasks,
following (Fekih et al.,[2022)). The GLUE and SuperGLUE benchmarks only contain the training
and validation split publicly, so we follow |Chen et al.| (2022)) and use 10% of the training samples
from the training split as the validation set and the remaining 90% for training. We split the datasets
with the datasets library (Lhoest et al.l 2021) using seed 42 and shuffle the samples. Then, the
original validation split is taken as the test set on which we report the performance of all models.
For HumSet, we use the original train/validation/test splits, as all of them are publicly available,
including labels. Details about the train/validation/test splits can be found in Table [f]

Computing Infrastructure. We run all experiments with ROBERTagasg and XLM-Rgasg on a
single Nvidia GTX1080Ti GPU and Intel Xeon CPU E5-2640 v4 CPUs, and the experiments with
RoBERTay arge and XLM-Ry argg on a single Nvidia RTX5000 GPU and Intel Xeon Silver 4216
CPUs.

Implementation Details. We use PyTorch (Paszke et al., 2019) for all experiments. For the joint
multi-task learning methods, we adapt the codebase of Karimi Mahabadi et al.|(2021)) and|Zeng et al.
(2023)), both of which rely on the transformers (Wolf et al., [2020) library. For all other models,
we make use of the adapter-transformers library (Pfeiffer et al.| 2020) library, a wrapper around
the transformers library.

Training and optimization. We train all methods with a batch size of 32. All STL and two-stage
MTL methods are trained for a maximum of 30 epochs with early stopping and patience of 5. ['| We
use 10 seeds for low-resource and 3 seeds for high-resource tasks when using RoOBERTagsg, and
on 5 and 2 seeds for low- and high-resource tasks, respectively, when using ROBERTa; arge. We
define tasks with more than 10k training samples as high-resource and as low-resource otherwise.
All joint MTL models are trained on 3 seeds. We report the mean and standard deviations across all

*The exception is ReCoRD, which we train on 3 epochs due to its size.
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Name |Train|  |Validation|  |Test|
MNLI 353,431 39,270 9,815
QQP 327461 36384 40,430
QNLI 94,268 10,474 5,463
SST-2 60,614 6,734 872
STS-B 5,174 574 1,500
MRPC 3,301 366 408
RTE 2,241 249 277
CoLA 7,695 855 1,043
ReCoRD 100,730 10,000 10,000
MultiRC 24,518 2,724 4,848
BoolQ 8,484 942 3,270
WiC 4,885 542 638
WSC 498 55 104
COPA 360 40 100
CB 225 25 56
Sectors 117,435 16,039 15,147
Pillars 1D 117,435 16,039 15,147
Subpillars 1D | 117,435 16,039 15,147
Pillars 2D 117,435 16,039 15,147
Subpillars 2D | 117,435 16,039 15,147

Table 6: Number of used samples for each dataset and used split. (Top) GLUE tasks. (Middle) SuperGLUE
tasks. (Bottom) HumSet tasks.

runs. We use the AdamW (Kingma & Ba, |2015; Loshchilov & Hutter, |2019) optimizer with default
PyTorch hyperparameters (weight decay = 0.01, 31 = 0.9, B2 = 0.99, € = 1 - 1075). We use seeds
{0, 1} for instances with two seeds, {@, 1,2} for instances with three seeds, seeds {0,1,2,3,4} for
instances with five seeds, and {0,1,2,3,4,5,6,7,8,9} for instances with ten seeds.

Single-task learning hyperparameters. We train FINETUNE with a learning rate of 2e-5,
ADAPTER with a learning rate of 3e-4, COMPACTER++ with a learning rate of 3e-3, and PROPETL
with a learning rate of 1e-3, a mask learning rate of 5Se-3, a sparsity rate of 0.5, and a weight decay of
0.1, which we found to be the most suitable for our setup. Moreover, we train (1 A)3 with a learning
rate of Se-3. Each of them is trained with a linear learning rate decay. For ROBERTay argg, we add a
linear learning rate warmup for the first 10% of training, as we notice it improves stability. For early
stopping, we use the loss on the validation set, except for HumSet, where we use the F1-score, and
in the few-shot setting, where we use the main metric for the respective dataset, as shown in Table[5]
In the few-shot setting, we train for a maximum of 1,000 steps, apply an early stopping patience of
20, and use a maximum of 5,000 samples for validation. Note that, while the PLM layer normaliza-
tion parameters have also been updated (Mahabadi et al., [2021agb), following Pfeiffer et al.| (2021)),
we keep them frozen. This approach improves modularity, while still allowing PLMs to efficiently
adapt to new tasks. Note that the same hyperparameters as outlined here are also used for ADAPTER
in our probing analyses (cf. Section [3).

Joint MTL hyperparameters. In all joint multi-task learning methods, we sample tasks with con-

ventional temperature-based sampling with temperature 7 = 10, following [Mahabadi et al.| (2021b)
/T where Py = %,
N; the number of training samples of task ¢, and 7 = 10. Using this sampling strategy, we train
each model for a total of 375,000 steps to ensure convergence and evaluate every 7,500 steps. We
train each model with early stopping and patience of 10. In the end, the model checkpoint with the
lowest average validation loss is loaded and evaluated on the test set. We train FINETUNE-M with a
learning rate of 2e-5, ADAPTER-M, HYPERFORMER, and HYPERFORMER++ with a learning rate
of 3e-4, and PROPETL-M with a learning rate of 3e-4 and a mask learning rate of 3e-3, a sparsity
rate of 0.3, and no weight decay. We train each of them with a linear learning rate warmup for
the first 10% of training, followed by a linear learning rate decay. For the remaining hyperparame-
ters of PROPETL-M, HYPERFORMER, and HYPERFORMER++, we follow the respective original

implementations, but always use a reduction factor of 16 for a fair comparison.

and |Zeng et al.[(2023). Specifically, a task is sampled with probability p:
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Two-stage MTL hyperparameters. We train each variant of SCALEARN * with a learning rate
of 6e-3 and train ADAPTERFUSION with a learning rate of 5e-5, following |Pfeiffer et al.[ (2021).
Both SCALEARN * and ADAPTERFUSION are trained with a linear learning rate decay and no
warmup. Early stopping is the same as in the single-task learning setting. We initialize the parame-
ters of SCALEARN* with A (Z,0.001) P|and apply a dropout rate of 0.3 to increase robustness for
SCALEARN and SCALEARN++. For AdapterSoup, we first calculate the cosine similarity of sen-
tence embeddings for each task from the training set using the sentence-transformers (Reimers
library and the all-mpnet-base-v2 model. In contrast to [Chronopoulou et al.
(2023)), who only select 100 samples for each domain, we select 10000 samples for each task, as
our sequences corresponding to tasks are meaningfully shorter than the sequences corresponding to
domains. Using these similarities, we select the top 5 most similar tasks to the target task, normal-
ize the similarity scores to obtain the weights, and perform weight-space averaging of the adapter
parameters, following [Chronopoulou et al.| (2023)). Note that we also include the corpus of the target
task when calculating the similarities for weight-space averaging, and hence also the target adapter
during weight-space averaging, and train a new task head on the target task to allow a more fair
comparison to other two-stage MTL methods. We use a learning rate of 3e-4 when training the
target task head with ADAPTERSOUP.

A.2 ADDITIONAL PROBING ANALYSES

We show the single-task probing results using the remaining GLUE and SuperGLUE source tasks
not shown in Section[3]in Figure[d For the probing experiments when using two task adapters (the
target task ¢ and MNLI), we show the remaining tasks from GLUE and SuperGLUE with fewer than
10k samples as target tasks in Figure 5]

>We also test out {\ (%,0.001), N (Z,0.001), N (1,0.001)}.
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Figure 4: Effect of scaling the output representations o’ of adapters by weight w, using different source
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A.3 ABLATION STUDY

Table [/] shows the effect of adding constraints on the distributional values of scaling coefficient
in SCALEARN, evaluated on GLUE using RoBERTagasg. In particular, we change the original

SCALEARN model by adding the constraints mean and softmax over the source task dimension, thus

enforcing ZISSZ‘I w! = 1. The results indicate that both constraints reduce average performance

compared to those having no constraints, confirming our choice of directly learning the scaling
coefficients without imposing any restrictions.

Table 7: Effect of adding various constraints to the scaling values of SCALEARN, evaluated on GLUE
using RoBERTagase. The constraints mean and softmax are applied over the task dimension, enforcing

Z‘Sill w! = 1. The best results are shown in bold.

Model Constraint MNLI QQpP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

SCALEARN  None (original) 86.979.09  90.320.10  92.51p.17 93.88015 90.96016 87.75055 82.06137 5847176 | 85.36¢.55
SCALEARN  Mean 87.03p.01 90.360.30 92.340.09  92.601.35 90.62025 87.11p79  79.21; 50  59.87395 | 84.89¢.95
SCALEARN  Softmax 86.850.05 90.60005 92.74022  93.750.0s 90.660.10 85.831.00 79.28104 5843195 | 84.77¢.5s

A.4 ADDITIONAL RESULTS

More results using ROBERTagagg. Table (11| shows the results when training on the combination
of all GLUE and SuperGLUE tasks, resulting in a total of 15 tasks.

Results using ROBERTay srge. We further validate our method and its variations on the encoder-
based PLM RoBERTa; srge. Table [8| shows the corresponding results, including all baselines, on
the GLUE benchmark. Table [9] shows the results on SuperGLUE. Table [I0] shows the results on
HumSet. Finally, Table [I2] shows the results when training on the combination of all GLUE and
SuperGLUE tasks, resulting in a total of 15 tasks.
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Table 8: Evaluation results on GLUE using RoBERTa; arce. (Top) STL models, only learning a single task at
a time. (Middle) Joint MTL methods, learning all tasks simultaneously. (Bottom) Two-stage MTL methods,
composing the knowledge of several source adapters. The overall best results are underlined, and the best
results among the two-stage MTL models are shown in bold.

Model MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

FINETUNE 89.57036  89.751.03 9391043 95.30065 91.89035 86.271.15 81.52319  60.15259 | 86.041 26
ADAPTER 89.620.18  89.870.67  94.130.06  95.2400s 91.81po9  87.82311  81.23292  64.071.97 | 86.72104
PROPETL 89.780.24  89.230.77  94.32000 9541000 91.45039 87.65073 84.55214  65.85210 | 87.28)s1
COMPACTER++ 89.150.67 87.332.39  92.93142  95.41p00 91.46035 87.84123 79.71458 65.66208 | 86.191 .59
(1A)* 88.690.61  87.79%.72  91.72079  94.95016  91.39945 86.37165 80.793.16  64.703.90 | 85.80;.34
FINETUNE-M 87.950.39 89.820.77  92.58p32  94.880914 87.04p6s 81.371.00 84.361.19 5532078 | 84.160.76
ADAPTER-M 89.100.36  89.350.09  93.640.05 9490017 88.400.32  83.09925 86.649.00 56.380.79 | 85.190.25
PROPETL-M 88.980p.33  89.030.15 94.140.11  95.150.05  91.560.23 87.831.10 88.4B029  60.991.03 | 87.01p.41
HYPERFORMER 89.660.40  90.150.63  93.950.13  95.80062  91.680.35 86.601.22  86.280.29 61.18476 | 86.911,05
HYPERFORMER++ 89.79.21  89.54043 93.95054  95.22011  91.62029 88.07186 86.28;06 65.16061 | 87.450.64
ADAPTERFUSION 89.570.17 90.880.06 94.150.04  95.87p.00 91.860.15 8897978  85.701.13  66.391.83 | 87.930.52
ADAPTERSOUP 65.830.51  82.370.00 74.06101  93.98024 81.67163 7337051  67.2T163 43.70162 | 72.780.89
SCALEARN 90.090.00 90.51p26 94.180p.03 9541916 92.320.15 88.099s2 87.08p51 6540262 | 87.91g55
SCALEARNUNIFORM 90.11p.04  90.050.2s 94.2300s 9541016 92.11p06 88.63170 84.40393 66.98058 | 87.740.86
SCALEARN++ 90.31010 90.590.03 9405003 95.9302s 92.48015 8848195 86.28105 67.13050 | 88.160.43
SCALEARNUNIFORM++  90.080.01  90.490.02  94.12016  95.180.16  92.120.09 90.05054 84.98;132  64.970s5 | 87.750.39

Table 9: Evaluation results on SuperGLUE using RoOBERTa argE.-

Model ReCoRD  MultiRC  BoolQ WiC WSC COPA CB RTE Avg.

FINETUNE 81.60105 79.030.02 81.650.30 69.722.16 6346000 52.00s25  90.362.00 8152519 | 74.92507
ADAPTER 88.520.00  80.730.60 8236072  69.16151  63.2506s 71.901363 92.68175  81.235.92 | 78.735.7
PROPETL 87.86250 8119090 81.61p.ss  69.622.16  63.46000 69.001506 9411401 8455214 | 78.92507
COMPACTER++ 88.340.07  79.18020  79.53g13  69.26151 6226143 79.00074  87.507.45  79.Tlyss | 78.104.0
(1A)® 8747001  T7.91o43 8097075 68.65255 60.58000 77.000.00 90.005091  80.79316 | 77.931.35
FINETUNE-M 83.57051  78.08055 81.700.65 53.030.57 49.36950 86.67235 82.140097  83.87201 | 74.802.30
ADAPTER-M 86.760.50 7515024 7718590 5157115 53.2lgrs  67.67T105 8095165  77.381.36 | 71.235.04
PROPETL-M 84.83040  79.600.37  82.021.11  55.33046  59.62005 86.67403 88.102.03 8556020 | 77.712.24
HYPERFORMER 84.38100 79.68097 81.87g97 53.8laus  63.46364 82.336.94 8393253  86.88000 | 77.04305
HYPERFORMER++ 13.660.00 40.214091 71.50933 49.14956 62.98045 54.00500 67.8617.86 66.9710.6s | 53.2911.43
ADAPTERFUSION 89.21017 80.52024 822130 69.0916s 63.4606s 81.201607 95.71o0s 86.06107 | 80.93565
ADAPTERSOUP 70.330.08 38421940  73.20016 62.23117 63.46000 5450574  68.75103 6137597 | 61.533.06
SCALEARN 87.850.01 7840070 8029550  68.56165 62.9806s 85.40375 92.86170  84.91g50 | 80.1647
SCALEARNUNIFORM 88.85022 8042005 81.85021 69.91515 6154900  82.00s0s  90.001.60 84.04166 | 79.831.00
SCALEARN++ 88.28025 80.7605s 83.0803 69.59;g9 6298065 87.80110 91.071.70 85.70p32 | 81.160 56
SCALEARNUNIFORM++  88.85020  80.70p.04 82.13p.21 70.19056 62.9806s 83.60285 91.07252  84.8410 | 80.541 02

Table 10: Evluation results on HumSet using XL M-Ry arcE-

Model Sectors  Pillars 1D  Subpillars 1D Pillars 2D  Subpillars 2D Avg.
FINETUNE 72.99.17 51.380.39 44.84 89 61.900.20 43.49¢ 86 54.92¢ 50
ADAPTER 72.299 .59 49.311 o7 45.250.03 62.580.67 44.360.66 54.760.65
PROPETL 73.200.32 51.580.40 45.100.92 61.525 99 41.980.70 54.680.92
COMPACTER++ 61.7712.63 8.175.92 6.3711.00 20.3924.091 15.362.71 22.4111 43
(IA)? 64.721 55 38.267.97 26.775 79 55.571 48 31110 53 43.295 1
FINETUNE-M 59.047 g6 22.9519.78 10.755.31 29.7621 25 9.651 25 26.439.69
ADAPTER-M 65.667‘13 37.6511‘25 28.517‘80 434016‘06 27441‘68 40-538.78
PROPETL-M 70.561_06 41.586_27 35-913.46 42.2014_55 29.676_92 43.986_45
HYPERFORMER 47. 745070 29.0611.7¢ 22.16g 44 35.9217.37 22.5810.58 31.4913.77
HYPERFORMER++ 0.009.00 0.009.00 0.009.090 0.009.00 0.009.00 0.009.00
ADAPTERFUSION 72.530.45 51.330.23 43.750.52 62.31¢.25 42.785 11 54.54¢0.71
ADAPTERSOUP 52.541 61 24.075.18 20.62¢.28 31.164 49 12.84¢.49 28.251 19
SCALEARN 73.320.08 53.94¢ 13 44140 75 63.89¢.16 44.75¢ 47 56.01¢ 32
SCALEARNUNIFORM 72.560.20 50.590.10 44.620.00 62.66¢.00 45.160.00 55.129.06
SCALEARN++ 73.180_04 5141036 44.100_09 63.370_02 45-430_24 55.500_15
SCALEARNUNIFORM++ 73.02¢.20 50.84¢.30 44.88 39 62.879.01 44.45¢ o2 55.210.18
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A.5 SCALING COEFFICIENT VISUALIZATIONS

SCALEARNUNIFORM and SCALEARNUNIFORM++ utilize uniform scaling and learn coefficients
that are directly used to scale the output representations of the source adapters. In the following,
we leverage this characteristic to provide an analysis of the potential degrees of effects of source
tasks on target tasks. We present the adapter weights learned using RoBERTagasg for GLUE and
SuperGLUE, and using XLM-Rgasg for HumSet with the random seed set to .

The learned coefficients of each PLM layer on GLUE, SuperGLUE, and HumSet of SCALEAR-
NUNIFORM are shown in Figure[6] Figure[7] and Figure [§] respectively. The weights reveal that in
most cases, the actual target task adapter is activated most strongly across the layers. Among the
source tasks, most weights are close to 0, while some source tasks also show high values, partic-
ularly in some of the higher layers of the PLM. Interestingly, some of the scaling coefficients go
beyond or even below 1, which would not have been possible in the traditional paradigm where
scaling coefficients combining multiple vectors are restricted to sum up to 1.

The learned weights on GLUE, SuperGLUE, and HumSet of SCALEARNUNIFORM++ are shown
in Figure 0] SCALEARNUNIFORM++ also mostly activates the actual target task adapter, whereas
this effect is comparatively weaker in SuperGLUE and stronger in HumSet. As is the case with
SCALEARNUNIFORM, many scaling coefficients exceed or go below 1.
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Figure 6: SCALEARNUNIFORM scaling coefficients
are shown in the last index of each heatmap.

on GLUE using RoBERTagase on seed 0. Target tasks
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Figure 7: SCALEARNUNIFORM scaling coefficients on SuperGLUE using RoBERTagase on seed @. Target

tasks are shown in the last index of each heatmap.
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Figure 8: SCALEARNUNIFORM scaling coefficients on HumSet using XLM-Rgasg on seed 0. Target tasks are
shown in the last index of each heatmap.
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Figure 9: SCALEARNUNIFORM++ scaling coefficients on GLUE, SuperGLUE, and HumSet using
RoBERTagase for GLUE and SuperGLUE and XLM-Rgase for HumSet on seed 0.
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A.6 COMPLETE FEW-SHOT RESULTS

To obtain a more complete understanding of the few-shot capabilities of ADAPTER, ADAPTERFU-
SION, and SCALEARN, we show few-shot transfer learning results for each dataset, as well as for
every variant of SCALEARN (cf. Section[6.3).

Few-shot results using ROBERTagagg. Table[I3]|shows the few-shot transfer learning performance
of the methods on the GLUE benchmark using k£ = {4,16,32,100} samples. Table shows the
performance of the methods on SuperGLUE. Table [15] shows the performance of the methods on
HumSet (on XLM-R)gasg. Finally, Table @ shows the results when training on the combination of
all GLUE and SuperGLUE tasks, resulting in |S| = 15 source tasks.

Few-shot results using ROBERTaysrge. Figure @l provides an overview, comparing the
few-shot learning capabilities of ADAPTER, ADAPTERFUSION, and SCALEARN when using
RoBERTa; srge. Moreover, Table E] shows the few-shot learning performance of the methods
on the GLUE benchmark using £ = {4,16,32,100} samples. Table shows the performance
of the methods on SuperGLUE. Table [T9] shows the performance of the methods on HumSet (on
XLM-Ry argg)- Finally, Table @l shows the results when training on the combination of all GLUE
and SuperGLUE tasks.
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Figure 10: Few-shot learning results (¢ = {4,16,32,100}) comparing ADAPTER, ADAPTERFUSION, and
SCALEARN using RoBERTa; arge 0n three benchmarks. We show the mean across 5 seeds. For ADAPTERFU-
SION and SCALEARN, we assume that there is a Pfeiffer adapter trained on the target task on k£ samples and a
Pfeiffer adapter trained on all samples for all other tasks available.
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Table 13: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for
each target task using ROBERTagasE.

Model Samples  MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 33.651.39 63.27911  50.53p.04 50.920.00 32.12908 68.380.00 52.7lpo0 2.9338s 44.31184
ADAPTER 16 3478058 63.180.00 50.46020 57.18123 55.5310.12 68.380.00 53.721.29 0.25056 | 47.941 75
ADAPTER 32 33.560.66 63.180.00 51.860.33 70.46225 73.78130 68.38000 54.581.81 0.000.00 | 51.980.50
ADAPTER 100 40.71567 T1.7T4050 58.77413 85.00225 82.51191 73.09127 56.171.95 21.69394 | 61.21594
ADAPTER All 86.500.33 90.18p.11  92.250.19 93.650.71  90.230.41 86.64107 72.89354 5828250 | 83.830.08
ADAPTERFUSION 4 33.94509 T72.01539 52.36275 50.920.00 7717244 7299408 52.78p.16 2.79354 | 51.87258
ADAPTERFUSION 16 4912976  76.26120 61.9511.04 59.29612 83.51179 7828037 60.65297 0.92;520 | 58.753 42
ADAPTERFUSION 32 43.89317 T76.45083 7835075 68.26511 70.723012 T78.87163 60.87448 1.91497 | 59.91630
ADAPTERFUSION 100 4722548 7723174 77.80543 85.28242 85.811614 7843134 70.04117 13.95750 | 66.973 38
ADAPTERFUSION All 86.820.04 90.23p.01  92.48p.15 93.230.95 90.37p.20 88.41p49 79.49292; 59.041.69 | 85.010.72
SCALEARN 4 35.50513 76.24038  62.30458 52.68066 85.340.98 75.00159 52.71g.00 4.250.83 | 55.511.39
SCALEARN 16 51.21p84 76.85919 65.03137 64.01990 86.180p.38 79.0796s 62.74174 7.5laze | 61.58; 06
SCALEARN 32 5191936 76.190.18 73.63046 69.56325 86.34044 7598039 6542150 8.56170 | 63.451 03
SCALEARN 100 57.880.34 7725039 7397073 8397176 87.8lpos 7838136 69.171.70 13.311.71 | 67.721.03
SCALEARN All 86.97p.00 90.320.10 92.51p17 93.880.1s  90.969.16 87.75058 82.06137 5847176 | 85.360.55
SCALEARN++ 4 34.051.78  75.500.56 59.88474 5225070 85.200.80 72.99146 52.7lgo0  3.872.20 | 54.551.53
SCALEARN++ 16 50.521.42 76.300.60 60.40304 62.20799 85.96930 78.04155 61.5999s8 9.00205 | 60.501 49
SCALEARN++ 32 5230135 75.7lpes 72.0la62 71.90237; 86.04037 76.181 97 63.68094 7.54303 | 63.171 55
SCALEARN++ 100 56.160.83 76.600.76 61.665.15 83.071.92 87.240.20 77.89119 65.05295 11.50147 | 64.901 .81
SCALEARN++ All 87.060.03 90.04p.12  92.031.10 94.150.30 90.62p.13 88.21p63 80.871.05 59.820.75 | 85.350.52
SCALEARNUNIFORM 4 3417167 T76.62962 5525201 5248137 84.47Tg97 7544175 52.Tlp00  5.09150 | 54.531 24
SCALEARNUNIFORM 16 49.551 91 T76.60p32 66.69107 65.052.42 85.830.40 T7.65109 61.81195 10.96545 | 61.77 36
SCALEARNUNIFORM 32 51.501.92 76.28056 72.84p54 7149235 86.01p43 75.88103 63.751.16 11.15238 | 63.61; 28
SCALEARNUNIFORM 100 55.061.23 76.94038 70.42298 81.630.90 86.22045 75.931514 64.62102 15.54295 | 65.791 35
SCALEARNUNIFORM All 86.930.10 90.370.11 9243036  93.58020 90.080.07 87.570.8¢ 80.071.18 59.04105 | 85.010.49
SCALEARNUNIFORM++ 4 34.862.18 76.08p38 53.363.84 51.79100 83.12163 T4.80105 52.7lpo0 4.342.15 | 53.88154
SCALEARNUNIFORM++ 16 50.090.81 T76.13025 61.35309 62.59150 85.55040 76.42972 62.600.70 11.94304 | 60.831 32
SCALEARNUNIFORM++ 32 50.961.64 76.150.47  70.240.06 7197206 85.670.41 T4.41lp66 62.240.66 12.852.49 | 63.061.17
SCALEARNUNIFORM++ 100 48.961.99 T76.77934 60.64367 81.90067 85.66063 75.69117 63.54153 15.902.99 | 63.63; 62
SCALEARNUNIFORM++ All 86.980.17 90.38p.01  92.53p.28 94.11p07 90.180p.19 87.430p63 80.04p99 59.45067 | 85.14¢.38

Table 14: Complete few-shot transfer learning results on SuperGLUE with k£ = {4,16,32,100} training sam-
ples for each target task using ROBERTagask.

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 9.652.79 24.926.71  62.050.07 49.44196 41.921004 50.20363 62.14512  52.71p.00 44.13435
ADAPTER 16 13.826.06 37.4834s 62.17p00 50.53118 42.50546 53.00545 69.29293  53.721.29 | 47.813.56
ADAPTER 32 17.64127¢  38.553.74  62.16003 52.26178 36.540.00 51.20239 70.71160 54.581.81 | 47.953.01
ADAPTER 100 37.692 61 51.563.89 61.51127 54.041.01 50.3810.12 5840518  73.93411  56.171.95 | 55.463.77
ADAPTER All 79.020.62  72.8404s T76.71135 65.58156 63.460.00 70.20513 84.82318 72.899.54 | 73.191.74
ADAPTERFUSION 4 8.512.73 44.5024.40 62.160.03 5031104 38.083.44 50.40219 51.07240 52.641.31 | 44.T14.69
ADAPTERFUSION 16 13.7110.75 48.8614.08 62.12927 50.161.84 3846430 56.80722 67.86399 52.92371 | 48.8658s
ADAPTERFUSION 32 26.7914.35 46.3916.63 62.030.34 52.23087 37.12129 59.60586 68.93271  54.662.35 | 50.975.55
ADAPTERFUSION 100 34.021355 43.52401 61.83145 54.61y07 43.85378 64.20383 74.64343 59.71163 | 54.554.72
ADAPTERFUSION All 7882049 TL.79167 T76.72055 66.57104 63.46000 73.10451  82.32285 76.032.38 | 73.601.71
SCALEARN 4 2837653 31.5311.03 61.63002 49.72030 49.62534 71.80449 66.7911.48 52.710.00 | 51.525.05
SCALEARN 16 31.076.24 4997742 60.921 21 51.500.49 51.355.25 69.00524 72.86233 54.221.31 | 55.113.69
SCALEARN 32 34.806.48 4428371  61.70022 50.530.94 48.08g68 68.60934 76.07204 56.751.18 | 55.10407
SCALEARN 100 40.821 25 58.929 98  62.11116 53.890.99 61.92991  69.00274 86.79160 61.371.71 | 61.851 74
SCALEARN All 79.520.06 7322044 7727068 0635120 63.460.00 74.802.15 90.89259 78.885.14 | 75.551.16
SCALEARNUNIFORM 4 22.64¢.41 29.69¢.54 61.72905 49.84p986 44.62571 70.602.30 70.3644s 52.710.00 | 50.275.32
SCALEARNUNIFORM 16 30.011 08  50.32790 61.72y 93 5248970 49.81794 66.802.17 7393370 54.51275 | 54.953.93
SCALEARNUNIFORM 32 30.84574  45.75547 61.41g32 51.57g73 48.27g¢1 71.40230 75.7lpos  55.380.75 | 55.042.86
SCALEARNUNIFORM 100 35.501.94 58.Td259 61.360.99 52.79058 56.97798 65.00200 82.86324 59.211 28 | 59.052 58
SCALEARNUNIFORM All 80.130.38 71.91960 76.06041 67.37100 6250707 71.20123 89.11397  75.310.00 | 74.201.00
SCALEARN++ 4 27.534.00 1111618 60.92159 49.94050 44.62571  70.00224 62.50898 52.71g.00 | 4742356
SCALEARN++ 16 25.78280 49.4310.93 59.862.01 52.01p¢2 49.42g62 71.801.10 74.64343 56.681.17 | 54.953.83
SCALEARN++ 32 34.002.31 39.99510 59.800.63 52.04053 42.503.99 73.60456 75.7l160 56.390.86 | 54.252.45
SCALEARN++ 100 37.323.39 58.721.08 6043220 53.23061 6212787  66.201.30 85.71a19  59.061 .89 | 60.351 84
SCALEARN++ All 80.130.09 72.71057 7644053 67.13104 6226008 75.20193 93.042.14  79.030.95 | 75.741.22
SCALEARNUNIFORM++ 4 23.04g.12 2911202  61.02941 49.62141 46.73451 67.60568 66.43560 52.710.00 | 49.533.85
SCALEARNUNIFORM++ 16 26.674.91 53.008.69 61.061.41 52.160.67 50.967.10 67.402.97 74.29466 54.802.74 | 55.044.14
SCALEARNUNIFORM++ 32 30.62197  49.466.35 59.88147 51.69970 44.62370 67.20164 7821pg0 56.90107 | 54.822.13
SCALEARNUNIFORM++ 100 29.779.96 5840235 60.770.91 53.261.87 61.1537¢ 63.202.77  80.000.80  57.181.74 | 57.973.02
SCALEARNUNIFORM++ All 79.790.14 T1.75038 76.13050 67.87p89 63.460.00 74.001.70 91.61253 74.84158 | 74.930.97
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Table 15: Complete few-shot transfer learning results on HumSet with k¥ = {4,16,32,100} training samples
for each target task using XLM-Rgask.

Model Samples Sectors Pillars 1D Subpillars 1D  Pillars 2D  Subpillars 2D Avg.

ADAPTER 4 5.782.05 4-211416 0.69¢.34 11.072,07 3.580.49 5.071(22
ADAPTER 16 8.22¢.291 2.599 98 0.780.42 8.424 12 2.591 .34 4.529 g7
ADAPTER 32 4'651.88 2.302_71 0.820_15 5.967_43 2.971_52 3.342_74
ADAPTER 100 44.264 2 10.599.70 0.00¢.00 25.261 36 0.01¢.02 16.025 46
ADAPTER All 71.380.08 51.021 03 43.26¢.82 61.430.91 42.46¢ 51 53.91¢.75
ADAPTERFUSION 4 13.601 .29 7.205.19 2.45¢.37 16.245 77 8.161.00 9.531.53
ADAPTERFUSION 16 13.271 .07 8.380.99 2.170.67 15.985 41 7.630.73 9.481 21
ADAPTERFUSION 32 12.591.91 6.411 79 2.24¢9.25 13.675.94 7.121.00 8.401 78
ADAPTERFUSION 100 8.031.36 4.235 75 1.770.54 32.024.30 5.071.32 10.225.05
ADAPTERFUSION All 72.050.12  49.63¢.53 43.15¢.38 60.68¢.23 42.140.46 53.530.35
SCALEARN 4 5.561 .27 4.540‘57 1.129.23 12.99¢.26 3.950.85 5.630.64
SCALEARN 16 13.219.74 8.900.41 3.680.16 18.300.60 7.400.53 10.300.49
SCALEARN 32 16.64¢.43 16.480.74 7.230.37 26.390.34 11.119.47 15.570.47
SCALEARN 100 34.041 36 26.31¢.67 13.271.06 30.681 20 14.43¢.39 23.750.94
SCALEARN All 72.360.05 51.630.61 44.06¢.37 61.52¢0.11 42.81¢.63 54.48¢ 35
SCALEARNUNIFORM 4 5.351.09 4.320.17 1.030.20 13.24¢ 43 3.780.64 5.540.50
SCALEARNUNIFORM 16 13.650.47 8.690.59 3.640.13 17.511 23 7.590.13 10.22¢ 51
SCALEARNUNIFORM 32 15.34050  16.721.09 6.980.34 25.750.48 10.58¢.19 15.079.52
SCALEARNUNIFORM 100 33.400.63 25.480.71 13.430.64 29.44¢ 78 14.92¢ 62 23.330.68
SCALEARNUNIFORM All 72.200.14 50.08¢.79 42.970.70 60.62¢ .16 41.95¢.60 53.560.48
SCALEARN++ 4 5.421 47 4.66¢ 45 1.16¢.33 13.179.17 3.621 24 5.610.73
SCALEARN++ 16 13.550.71 8.899.16 3.620.09 18.621 .19 7.730.28 10.480(47
SCALEARN++ 32 16.27¢.82 16.351 62 7.270.13 26.08¢.51 10.700.28 15.330.67
SCALEARN++ 100 33.760.49 25.830.74 13.270.66 30.11¢.51 14.379.61 23.470.60
SCALEARN++ All 72.380.27 51.66¢.27 44.230 50 61.66¢.13 42.219.21 54.43¢ 08
SCALEARNUNIFORM++ 4 5.271.18 4.370.14 1.08¢.09 13.200.50 3.561 15 5.500.61
SCALEARNUNIFORM++ 16 13.470.77 9.04¢ 58 3.600.10 17.41¢.59 7.500.33 10.200.47
SCALEARNUNIFORM++ 32 15.240.35 16.750‘72 7-310.28 26.230.83 10.61¢.27 15.230.49
SCALEARNUNIFORM++ 100 39.229. 98  26.220.74 13.761.11 30.340.63 14.56¢ 59 24.821 21
SCALEARNUNIFORM++ All 72.029.32  50.780.41 42.600 85 60.820.14 42.140.72 53.670.49
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Table 17: Complete few-shot transfer learning results on GLUE with k = {4,16,32,100} training samples for
each target task using ROBERTay ArGE.

Model Samples  MNLI QQpP QNLI SST-2 STS-B MRPC RTE CoLA Avg.

ADAPTER 4 34.090.45 62.00254 50.461.12  50.92000 10.02234 68.330.11 5148274 347301  41.35154
ADAPTER 16 35.121.00  63.110.1s  49.59024 59.38342 124155  68.38000 52.641.06 2.553.07 | 42.901 81
ADAPTER 32 34.050.94 63.881.40 51.300.08 T4.70259 27.161389 68.770.71 51.621.75 7.4710.36 | 47.374.08
ADAPTER 100 41.39259 71.35081 53.751.18 83.672.20 76.84407 69.07145 56.97230 30.96572 | 60.502.55
ADAPTER All 89.620.15 89.870.67 9413006 95.24008 91.8lg29 87.82071 81.23292 64.071.97 | 86.721.04
ADAPTERFUSION 4 39.266.48 79.28071 65.131167 51.030.23 76.401207 69.95276 54.08507 4.93185 | 55.01485
ADAPTERFUSION 16 49.94g339  80.37p.13 78.85367 56.65352 83.960.85 77.501.62 70.47404 16.08334 | 64.233.29
ADAPTERFUSION 32 56.1219.53 80.01p25 80.55130 75.29771 8536087 77.11444 78.70354 6.77563 | 67.49466
ADAPTERFUSION 100 60.8413.20 78.86307 85.090.80 85.44157 88.099.390 81.861.63 84.40262 34.692.72 | 74.913.99
ADAPTERFUSION All 89.570.17  90.880.06 94.150.04 95.870.00 91.86015 88.970.7s 85.701.13 66.391.83 | 87.93¢.52
SCALEARN 4 45.654.75  79.590.24 66.97383 52.061.12 81.94547 72.06237 52.7lg00 3.14131 | 56.771.97
SCALEARN 16 57.54150 80.0d058 7724085 62.592091 85.08183 76.42570 69.75256 4.23510 | 64.1150
SCALEARN 32 60.95150 79.95034 T7.72094 7413158 88.500.27 7691160 7791183 5.14p00 | 67.651.08
SCALEARN 100 69.18132  80.800.21 83.64226 84.20095 89.25049 77.601.78 82.960.93 10.80143 | 72.301.17
SCALEARN All 90.090.09 90.51p.26 94.180.03 9541016 92.32015 88.090.s2 87.080.54 65.40262 | 87.910.55
SCALEARNUNIFORM 4 45.735.00  79.740.34  67.95357 5241139 81.59189 72.21096 52.71o00  3.251.02 | 56.951.96
SCALEARNUNIFORM 16 57.611.01 79.81931 74.55175 5743244 8532085 75.34110 68.81121 192557 | 62.60; 41
SCALEARNUNIFORM 32 58.861.71 80.06p.14 75.861.12 73.601.06 86.61p33 T74.66116 T77.911.12 5.66415 | 66.651.35
SCALEARNUNIFORM 100 63.511.39 80.34001 T4.98250 81.44y45 87.36p24 7647196 81.37187 14.981 97 | 70.061 28
SCALEARNUNIFORM All 90.119.04  90.050.28 9423008 9541916 92.11g0s 88.631.72 84.40393 66.98058 | 87.740.86
SCALEARN++ 4 44.54416  79.580p.41 66.90238 51.70075 80.80359 71.86154 52.71p00 3.780.89 | 56.481.72
SCALEARN++ 16 56.711.57 80.11g37 73.801.36 60.16341 85.171.14 7520315 69.82207  2.85364 | 62.985.09
SCALEARN++ 32 5887151  79.090.49 7592080 7312327 8745032 75.69118 77.330.90 5.47401 | 66.611 57
SCALEARN++ 100 65.071.14  80.230.33 78.82081 82.001.89 88.01ps4 76.62116 81.81a60 12.11575 | 70.581 44
SCALEARN++ All 90.319.10  90.590.03  94.050.03  95.930.24 9248015 88.48126 86.281.05 67.130.59 | 88.160.43
SCALEARNUNIFORM++ 4 4448, 35 7942058 66.59406 5146057 82.15117  73.22112  52.71lgo0  2.340.52 | 56.551.55
SCALEARNUNIFORM++ 16 56.631.44  79.53045 72.952927 56.941.01 85.14p66 75.61209 68.86155 0.80246 | 62.06753
SCALEARNUNIFORM++ 32 57.68331 7947042 73.78189 75.150.96 86.64056 76.651.49 78.34066 1.78284 | 66.19; 52
SCALEARNUNIFORM++ 100 56.721.49 78.91ps2 66.11251  83.75058 85.53p.82 74.332.49 81.6825 20.84314 | 68.48; 79
SCALEARNUNIFORM++ All 90.08p.01  90.49002 94.120.16 95.180.16  92.120.09 90.05054 84.98132 64.97985 | 87.750.39

Table 18: Complete few-shot transfer learning results on SuperGLUE with k& = {4,16,32,100} training sam-
ples for each target task using ROBERTay arGE-

Model Samples ReCoRD Multi BoolQ WiC WSC COPA CB RTE Avg.

ADAPTER 4 15.583.93 31.781580 61.83058 49.75056 50.385.93  49.60550  53.9349¢ 51.48274 45.54539
ADAPTER 16 1742797 4046305 61.649514 51.38137 54.0d030  53.60546 61.073.19  52.641.06 | 49.033.03
ADAPTER 32 22.041470 4111521 6217001 52.881.91 47.69376  66.207.60  67.50233 51.62175 | 51.404.66
ADAPTER 100 31.0119.20  51.934014 62.170.00 5596203 52.88551 65.2013.86 82.14565 56.972.30 | 57.286.73
ADAPTER All 88.520.00 80.730.69 82.36p.72 69.161.31 63.25061 71.901363 92.68175 81.23292 | 78.732.72
ADAPTERFUSION 4 1921417 24.073035 61.779.18 50.631.49 43.27T1203 57.00742 61431175 52.71g.00 | 46.267.17
ADAPTERFUSION 16 14.285314  28.09431 6151035 51.10313 47.3lg26 66.2012.44 77.8644s 53.21137 | 49.955.00
ADAPTERFUSION 32 18.8211.93 37.6810.03 04.97T364 52.82139 4442336 62.401004 78.21445 58.05421 | 52.176.27
ADAPTERFUSION 100 5542138  59.98003 71.062.02 56.02195 55.58533 76.401320 84.64411 57.62271 | 64.593.75
ADAPTERFUSION All 89.21p.17 80.520.04 82.21p30 69.09;65 6346065 81.2016.07 95.71p.9s  86.061 07 | 80.932.65
SCALEARN 4 32.72366  58.49159 6190030 51.66161 55.58s66  71.006.36  77.50204 52.71g.00 | 57.693.03
SCALEARN 16 36.71311  53.3T376  61.82056  53.511.09 50.19554 7740713  77.86411  55.883.01 | 58.343.54
SCALEARN 32 36.723.37  57.30403 6147075 53.26205 49.04573  80.603.05  80.001.49 57.62512 | 59.503.23
SCALEARN 100 54211246 59.790.30 068.783.12 51.88181s 57.12157  81.80597  85.002.04 65.34344 | 65.49335
SCALEARN All 87.850.01 7840070 80.29252 6856168 62.9806s 8540378  92.86179 849159 | 80.161.47
SCALEARNUNIFORM 4 3312516  59.479914 6151101 5091364 63.46000 68.003.0s 78.93233 52.7lgoo | 58.511.77
SCALEARNUNIFORM 16 3275212 54.65716 6211015 5226085 52.12349  72.00187  81.79265 54.443.40 | 57.762.71
SCALEARNUNIFORM 32 35.303.67  58.22385 61.76p061 54.67240 51.92604  76.40297  80.002.93 58.92558 | 59.653.51
SCALEARNUNIFORM 100 41.50585  60.01p10 61.96p7¢ 51.85121 58.27175 7240537  85.00204 60.651.05 | 61.459 27
SCALEARNUNIFORM All 88.850.22  80.42006 81.850.21 69.91715 61.54900 82.003.0s 90.001.60 84.04166 | 79.831.00
SCALEARN++ 4 3387190 56.11347 61.750.21 5132166 60.58395 68.006.04  78.21233 52.7Tlgoo | 57.822.45
SCALEARN++ 16 35.360.45  53.715.41  61.930.39 52.799.17 50.772.99 7140378  80.00407 55.232.75 | 57.652.51
SCALEARN++ 32 38.87177  59.95000 61.94051 54.61305 46.92305  78.60230 79.64571  53.14349 | 59.215.05
SCALEARN++ 100 43.15443  59.950.00 63.360.0s 52.01g73 57.12323  75.20415  86.79204 62.24565 | 62.485 98
SCALEARN++ All 88.280.235  80.7605s 83.080.31 69.59189 62.9806s 87.801.10 91.071.79 85.70p.32 | 81.160.56
SCALEARNUNIFORM++ 4 33.87T190  56.11347 61.750.21 51.32166 60.583.96  68.006.04 7821533  52.71g.00 | 57.822.45
SCALEARNUNIFORM++ 16 35.360.48  53.715.41  61.93039 52.799.17 50.77299  71.40378  80.00407 55.232.75 | 57.652.51
SCALEARNUNIFORM++ 32 38.871.77  59.950.00 61.94081 54.61a0s 46.92390  78.60230  79.64271  53.143.49 | 59.21505
SCALEARNUNIFORM++ 100 43.15443  59.950.00 63.360.9s 52.01g73 57.12323  75.20415  86.79204 62.24565 | 62.485 98
SCALEARNUNIFORM++ All 88.850.02  80.700.01 82.13p.21 70.199.26 62.9806s  83.60285 91.072.50 84.841 02 | 80.541.02
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Table 19: Complete few-shot transfer learning results on HumSet with & = {4,16,32,100} training samples
for each target task using XLM-Rpargk.-

Model Samples  Sectors  Pillars 1D  Subpillars 1D  Pillars 2D  Subpillars 2D Avg.

ADAPTER 4 4.800.60 4.330.18 0.600.08 10.871.72 2.560.56 4.630.63
ADAPTER 16 7129 11 1.351.85 0.45¢.32 11.08¢.59 2.820 .82 4.561.14
ADAPTER 32 6.603 21 0.580.54 0.52¢.24 11.821 44 2.400.92 4.391 .07
ADAPTER 100 24.6613 33 12.383 57 0.009.00 16.215 14 3.132.01 11.274.19
ADAPTER All 72.290.59 49.311 57 45.250.03 62.580 .67 44.36¢ 66 54.760,65
ADAPTERFUSION 4 12.435.84 7.580.95 2.11p.12 14.59¢.57 7.101.13 8.761.12
ADAPTERFUSION 16 11.062.41 6.495 35 2.300.26 13.081.04 6.331.79 7.851.57
ADAPTERFUSION 32 11.903.19 6.405.61 2.500.60 13.23¢.90 6.161 54 8.04; 77
ADAPTERFUSION 100 31.925 40 17.745 59 1.94¢.42 31.445 3¢ 8.083.78 18.225 99
ADAPTERFUSION All 72.530.45 51.330.23 43.750.52 62.31¢.25 42.782.11 54.540.71
SCALEARN 4 5.520.03 4.940.21 1.300.26 13.590.46 3.810.90 5.830.55
SCALEARN 16 12.05¢.80 7.780.31 3.24¢.09 20.101 33 6.199.30 9.870.57
SCALEARN 32 16.34¢.63 15.74¢9.95 6.549.29 24.92¢ 40 10.54¢.33 14.82 52
SCALEARN 100 24.600,97 24.361,80 11.370,40 34.264 54 15.630.64 22.051 97
SCALEARN All 73.320.08 53.94¢.13 44.14¢ 75 63.890.16 44.75¢ 47 56.01¢.32
SCALEARNUNIFORM 4 4.92¢ 61 4.84¢ 26 1.25¢.30 13.05¢ .48 3.410.11 5.49¢.35
SCALEARNUNIFORM 16 11.580.45 7.780.53 3.150.19 20.11¢.32 5.790.16 9.680.33
SCALEARNUNIFORM 32 15.450.00 15.480.64 6.54¢ 52 24.22¢ 16 9.700.17 14.28¢.30
SCALEARNUNIFORM 100 21.91¢.00 23.312.49 10.609.22 36.445 o5 15.279.13 21.51¢.08
SCALEARNUNIFORM All 72.560.20  50.590.10 44.629.00 62.660.00 45.160.00 55.129.06
SCALEARN++ 4 4.900.40 4.950.20 1»450.26 13.480,52 3.370,50 5.630.38
SCALEARN++ 16 12-450.65 8.470,77 3.290.13 21.011.12 6.550.37 10.35¢.61
SCALEARN++ 32 16.610.57 15.801.00 6.719.29 24.76¢.32 10.31¢.36 14.84¢ .51
SCALEARN++ 100 24.44 95 23.950.40 11.36¢.65 35.181 08 15.770.77 22.149.81
SCALEARN++ All 73.180.04 51.410.36 44.100.09 63.370,02 45.430.24 55.500.15
SCALEARNUNIFORM++ 4 4.92¢ 61 4.84¢ 26 1.25¢.30 13.05¢ .48 3.410.11 5.49¢.35
SCALEARNUNIFORM++ 16 11.580.45 7.780.53 3.150.19 20.11¢.32 5.790.16 9.680.33
SCALEARNUNIFORM++ 32 15.450.00 15.480.64 6.54¢ 52 24.22¢ 16 9.700.17 14.28¢.30
SCALEARNUNIFORM++ 100 21.91¢.00 23.312 49 10.609.22 36.445 o5 15.279.13 21.51p.08
SCALEARNUNIFORM++ All 73.02¢.20 50.84¢ .30 44.88.39 62.870.01 44.45¢ 02 55.21p.18
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