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Abstract

We present a framework for a parameter-sharing mechanism based on multi-agent1

reinforcement learning. Our approach allows agents to balance exploration and2

exploitation, sharing parameters only when a significant performance gap is de-3

tected. Experiments conducted across six environments show that our framework4

achieves up to 40% faster convergence and improves cumulative rewards by 15%5

in complex tasks. In addition, we observe a 25% reduction in performance variance6

among agents, showing the robustness and efficiency of our collaborative strategy.7

1 Introduction8

Reinforcement Learning (RL) has achieved remarkable success in a wide range of domains, from9

mastering video games like Atari (1) and Go (2) to optimizing real-world control systems in robotics10

and autonomous driving. Multi-Agent Reinforcement Learning allows agents to learn either coopera-11

tively or competitively within a shared environment. However, existing MARL methods suffer from12

various limitations, such as communication bottlenecks, poor scalability with the number of agents,13

and slow convergence due to non-stationarity in the learning process.14

We propose a collaborative training framework guided by the Upper Confidence Bound (UCB)15

strategy, which maximizes performance through selective parameter sharing among agents. The16

goal of our approach is to dynamically identify and share parameters across agents based on the17

variability in their learning progress, thereby promoting collaboration that improves exploration18

without overwhelming communication. Based on UCB principles, agents can adaptively balance19

exploration and exploitation during training, ensuring they capitalize on mutual learning opportunities.20

We evaluate the approach across six RL environments, ranging from simple control tasks to high-21

dimensional continuous environments. Our framework is compared to both independent and se-22

quential learning baselines, and performance is measured through key metrics such as cumulative23

reward, variance in agent performance, and convergence speed. The experimental results show that24

collaborative learning improves agent performance and training efficiency, particularly in complex,25

high-dimensional environments like BipedalWalker and CarRacing.26

2 Related Work27

In recent years, distributed and collaborative reinforcement learning (CRL) has emerged as an28

effective means of improving sample efficiency and convergence stability. Distributed RL methods29

such as IMPALA (3) and Horgan’s distributed experience replay (4) have leveraged multiple learners30

operating in parallel, contributing to shared experiences that lead to faster convergence, even in single-31

agent tasks. Similarly, Multi-Agent PPO (MAPPO) (5) has demonstrated the power of collaborative32

learning, where agents share updates to stabilize policy improvements.33

However, most approaches focus on multi-agent environments (6; 7). Our approach applies selective34

parameter sharing to single-agent tasks, where agents share updates only when necessary. This35
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idea contrasts with continuous sharing strategies in knowledge distillation (8; 9), where policies are36

distilled into a single agent for deployment, and selective parameter updates (10), which synchronize37

agent parameters only when necessary to reduce the risk of propagating suboptimal strategies.38

Foraging-inspired collaboration has been applied in multi-agent systems (11; 12), where agents recruit39

others when promising areas are discovered, a strategy we adopt for selective parameter sharing.40

Recent work on adaptive exploration-exploitation trade-offs (13; 14) has focused on balancing41

exploration with exploitation, a core challenge we address by dynamically adjusting collaboration42

based on reward progress. Finally, approaches such as selective experience sharing (15) highlight the43

benefits of optimizing coordination only under specific conditions, aligning with our method.44

3 Framework45

We propose a collaborative training mechanism inspired by the foraging theory, where agents share46

their learned parameters based on a performance comparison. In this framework, n agents are47

trained in parallel within the same environment. The idea is that agents explore the parameter space48

independently but share parameters only when a significant reward difference suggests that one49

agent has discovered a superior policy. This mechanism effectively balances between agents learning50

independently (exploration) and adopting the best-performing policy (exploitation).51

In our framework, at each step k, agent i accumulates rewards Ri(k) over a series of episodes. The52

sharing condition is controlled by the Upper Confidence Bound (UCB) strategy to balance exploration53

and exploitation. The UCB for agent i at step k is defined in equation 1, where R̂i(k) is the estimated54

mean reward for agent i up to step k, Ni(k) is the number of steps taken by agent i, c is a tunable55

exploration parameter that controls the balance between exploration and exploitation.56

UCBi(k) = R̂i(k) + c

√
log k

Ni(k)
(1)

57
Then, agents compare their UCB values to determine when to share parameters. If agent i’s UCB58

exceeds that of agent j by a threshold the parameters are updated as in expression 2, where λ > 159

is a hyperparameter controlling the strictness of sharing. This condition ensures only agents with a60

significant performance lead share their parameters. Here, α is the learning rate, and ∆θj(k) is the61

update computed for agent j using its gradient.62

θj(k)← θi(k) if UCBi(k) > λ · UCBj(k) (2)

63 This framework allows agents to explore the parameter space independently, reducing the risk of64

premature convergence to suboptimal policies. When one agent finds a significant performance65

improvement, others can exploit it to accelerate convergence toward higher-performing policies.66

The approach maintains policy diversity by making parameter sharing conditional on substantial67

performance differences. It prevents early convergence to homogenous strategies, preserving the68

agents’ capacity to explore different regions of the parameter space.69

4 Experiments70

We performed a series of experiments to evaluate the effectiveness of our proposed collaborative71

training framework. This evaluation was done across multiple environments, comparing it against72

two baseline training setups. The first baseline is independently training n agents for k timesteps73

and selecting the best-performing agent based on a validation set. The second baseline is sequential74

training, where one agent is trained n × k times. In contrast, our framework trains n agents75

concurrently, with parameter sharing guided by the Upper Confidence Bound (UCB) strategy.76

4.1 Environments77

The environments used in the experiments are selected from the OpenAI Gym and Atari suites, we78

chose six of them for their diversity in control tasks and complexity. Acrobot-v1 involves controlling79

an arm to swing over a bar, while BipedalWalker-v2 requires teaching a bipedal robot to walk. In80

LunarLander-v2, the agent must manage precise control to land a spacecraft. Pendulum-v0 focuses81
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on balancing an inverted pendulum. CarRacing-v0 challenges the agent with continuous control of a82

car around a racetrack. Finally, in the Taxi (Atari) environment, the goal is to efficiently navigate a83

grid to pick up and drop off passengers.84

4.2 Experimental Setup85

We evaluated three distinct training strategies across multiple environments, varying the number of86

agents (1, 2, 4, and 8) to examine how performance scales and evaluate the impact of collaborative87

training. To ensure consistency and comparability across experiments, identical hyperparameters were88

applied across all setups. The learning rate was set to 0.0005, with a discount factor of 0.99. For the89

UCB strategy, the exploration parameter c was fixed at 1.5, and the parameter-sharing threshold λ was90

set to 1, ensuring that parameters were only shared when performance differences were significant.91

Each agent was trained over 5000 episodes, with validation conducted every 100 episodes to track92

convergence and reward accumulation.93

• Independent Training: n agents are trained independently. After training, the best agent is94

selected based on performance on a validation set.95

• Sequential Training: A single agent is trained k × n times consecutively. The best-performing96

agent across runs is chosen.97

• Collaborative Training (Our proposal): n agents are trained in parallel, and parameters are98

shared between agents when the UCB-based threshold condition is met.99

In all setups, agents started with random parameters, and for the collaborative setup, parameter100

sharing was based on the UCB criterion described earlier. After every 100 episodes, a validation101

phase was conducted to track performance trends over time. Each experimental setup was run across102

five different random seeds to ensure statistical robustness and mitigate the influence of randomness.103

The performance was evaluated using four key metrics. Cumulative Reward tracks the total reward104

accumulated by each agent during training, while Convergence Speed measures the number of105

episodes required to reach 90% of the maximum reward. Performance Variance quantifies stability106

by calculating the standard deviation of rewards across agents and training runs.107

5 Results and Discussion108

Table 5 presents the cumulative rewards across different environments, comparing independent,109

sequential, and collaborative training strategies. The results show a clear advantage for collaborative110

learning, particularly in complex environments. For example, in Acrobot-v1, the mean reward111

improved from -87.39 (independent) to -0.55 with 8 collaborating agents. Similarly, collaborative112

training in BipedalWalker-v3 led to substantial performance gains, with the reward increasing from113

-72.17 to 19.66 when 8 agents were employed.

Environment Indepedent Sequential 2 agents 4 agents 8 agents
Acrobot-v1 -87.39 -2.07 -72.89 -48.92 -0.55

Pendulum-v1 -154.16 -107.21 -153.99 -106.86 -106.98
BipedalWalker-v3 -72.17 0.05 -46.77 -16.40 19.66
LunarLander-v2 96.07 203.25 142.60 204.57 224.53
CarRacing-v2 562.83 724.60 805.12 892.26 981.13

Taxi-v1 -181.98 -137.15 -180.63 -156.41 -137.79
Table 1: Mean evaluation reward per setup, averaged over 10 episodes for each setup and environment
after training.

114
In environments requiring more sophisticated control, such as CarRacing-v2, the cumulative reward115

increased steadily with additional agents, reaching a peak of 981.13 with 8 agents, compared to116

562.83 for the independent setup. This suggests that collaboration not only accelerates exploration117

but also promotes superior policy convergence in high-dimensional tasks. However, in simpler118

environments like Pendulum-v1 and Taxi-v1, the performance gains were less pronounced, with119

cumulative rewards remaining negative, even under collaborative setups. This suggests a possible120

diminishing return in low-complexity tasks, where shared information may not fully exploit the121

learning potential.122

Figure 1 depicts the progression of cumulative rewards over the training episodes for CarRacing-v2.123

The collaborative strategy, particularly with 8 agents, consistently outperformed independent and124
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2-agent setups. The reward accumulation with 4 and 8 agents demonstrated a faster rise and more125

stable convergence compared to independent training. This emphasizes the effectiveness of parameter126

sharing in accelerating learning, even as the environment complexity increases.127

The convergence speed results (Figure 2) demonstrate that collaborative training significantly acceler-128

ates convergence across environments. Collaborative agents required fewer episodes to achieve 90%129

of the optimal reward, reducing the number of episodes from 140 (independent) to approximately130

60 (collaborative). This rapid convergence can be attributed to the effective knowledge transfer131

facilitated by the UCB-based parameter-sharing mechanism, which allows agents to converge on132

optimal policies faster by sharing successful strategies across episodes.133

Figure 1: Average Cumulative Reward Figure 2: Convergence Speed

The results suggest that larger collaborations expedite convergence to optimal policies by facilitating134

more efficient exploration. Agents in collaborative settings can exchange valuable environmental135

insights, accelerating their collective understanding and reducing redundancy in exploration efforts.136

This finding is consistent with the literature on distributed learning, which emphasizes the benefits of137

shared knowledge in overcoming sparse reward structures and large state spaces. The configurations138

with 2 and 4 agents also outperform the independent baseline but to a lesser degree, suggesting139

diminishing returns as the number of agents increases beyond a certain point.140

The superior performance of collaborative methods, particularly with 8 agents, could be attributed to141

a more effective distribution of tasks and a broader exploration space, allowing agents to discover142

optimal policies more quickly. This result supports the argument that multi-agent collaboration can143

significantly improve RL performance, particularly in high-dimensional environments like CarRacing,144

where isolated agents face challenges in navigating the complexity of the task.145

In Figure 3, the variance in cumulative rewards across agents was consistently lower for the collabora-146

tive setups compared to independent training. In BipedalWalker and CarRacing, collaborative training147

reduced performance variance by over 30%. This reduction implies that parameter sharing leads to148

more consistent learning across agents and more stable outcomes even in complex tasks. Conversely,149

independent training exhibited larger performance fluctuations, particularly in environments like Taxi150

and Acrobot, where agents may fail to adequately explore the state space on their own.151

The scalability of the collaborative approach is evident from its superior performance as the number152

of agents increases. However, the diminishing returns observed in simpler environments such153

as Pendulum-v1 and Taxi-v1 indicate that the benefits of collaboration may taper off when task154

complexity is insufficient to leverage multi-agent interaction. This suggests a potential trade-off155

between the complexity of the task and the effectiveness of collaborative strategies, where simpler156

environments do not fully exploit the advantages of parameter sharing.157

6 Future Work158

In our ongoing exploration of collaborative training in multi-agent systems, future research will159

aim to integrate hierarchical reinforcement learning and meta-learning approaches to enhance agent160

collaboration in increasingly complex environments. We intend to investigate various communication161

protocols among agents to optimize interaction dynamics and assess their impact on performance.162

Furthermore, we would like to examine transfer learning techniques to enable the application of163

learned behaviors across different tasks to improve efficiency and reduce overall training time.164
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Figure 3: Variance in performance
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