
Learning Orbitally Stable Systems for Diagrammatic Teaching

Weiming Zhi1,∗ Kangni Liu1 Tianyi Zhang1 Matthew Johnson-Roberson1

Abstract— Diagrammatic Teaching is a paradigm for robots
to acquire novel skills, whereby the user provides 2D sketches
over images of the scene to shape the robot’s motion. In this
work, we tackle the problem of teaching a robot to approach a
surface and then follow cyclic motion on it, where the cycle of
the motion can be arbitrarily specified by a single user-provided
sketch over an image from the robot’s camera. Accordingly,
we introduce the Stable Diffeomorphic Diagrammatic Teaching
(SDDT) framework. SDDT models the robot’s motion as an
Orbitally Asymptotically Stable (O.A.S.) dynamical system that
learns to follow the user-specified sketch. This is achieved by
applying a diffeomorphism, i.e. a differentiable and invertible
function, to morph a known O.A.S. system. The parameterised
diffeomorphism is then optimised with respect to the Hausdorff
distance between the limit cycle of our modelled system and
the sketch, to produce the desired robot motion. We provide
theoretical insight into the behaviour of the optimised system
and also empirically evaluate SDDT, both in simulation and
on a quadruped with a mounted 6-DOF manipulator. Results
show that we can diagrammatically teach complex cyclic motion
patterns with a high degree of accuracy.

I. INTRODUCTION

Specifying the desired behaviour for a robot has tradi-
tionally involved crafting a cost function and solving an
optimisation problem. This process can often be compli-
cated and require trial and error. Another way to generate
desired robot motion has been Learning from Demonstration
(LfD) [1], where an expert demonstrates the movement to the
robot. The demonstrations are often provided by Kinesthetic
Teaching, where the user physically handles the robot, or via
teleoperation, which requires an additional remote controller.
Both approaches face challenges when operating on robots
with high degrees of freedom. Diagrammatic Teaching [2]
is a recently introduced paradigm that circumvents physical
contact and teleoperation, where the user specifies robot
skills by sketching examples of the robot’s end-effector
motion on images of the scene. Correspondingly, in this
paper, we seek to use user sketches as a medium for the
user to shape the motion of the robot.

We focus on generating robot end-effector motion that
approaches a flat surface and converges to a continuous
periodic motion on it. This motion pattern arises in many
tasks, such as painting, wiping or sanding a surface. We rep-
resent the robot’s end-effector motion as a dynamical system
where trajectories of this system will eventually converge to
the limit cycle. Dynamical systems with this convergence
property are known to be Orbitally Asymptotically Stable
(O.A.S.). This paper aims to develop methodologies to learn

∗email: wzhi@andrew.cmu.edu.
1 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Fig. 1: Diagrammatic teaching is a paradigm to interface with robots
by drawing sketches over camera images. We contribute SDDT to
diagrammatically teach robots robot policies that approach a surface
in view and stabilise at cyclic motions of the provided shape on
the surface. (Left) A sketch of the desired pentagon-shaped cycle
(in red) is provided by the user from the egocentric view of the
robot. (Right) The resulting policy forces the end-effector to quickly
approach the surface, and then stabilise to continuously trace out
the shape of the provided sketch.

robot policies, represented by O.A.S. dynamical systems, that
are shaped by diagrammatic sketches provided by the user.

We introduce Stable Diffeomorphic Diagrammatic Teach-
ing (SDDT), a novel framework for diagrammatic teaching to
learn policies that produce periodic and surface-approaching
motions. SDDT allows the user to provide input by sketching
the shape of the desired limit cycle onto an image of the
surface. We use the insight that when two dynamical systems
map to one another via a diffeomorphism (a differentiable and
invertible function), these systems have the same stability
properties [3], [4]. SDDT learns O.A.S. systems by optimis-
ing a parameterised diffeomorphism to “morph” a system
that is known to be O.A.S., such that the limit cycle matches
the desired shape. We develop a loss for the corresponding
optimisation. Then, we provide both theoretical guarantees
into what classes of shapes the limit cycle can be “morphed”
into and empirical evidence of the efficacy of our proposed
framework, including real-world experiments on a quadruped
with a mounted manipulator. SDDT is particularly appealing
for mobile manipulators (like quadrupeds with installed arms
fig. 1), where an egocentric view, readily available from
the onboard vision system, is used to prompt diagrammatic
sketches from the user.

The remainder of the paper is organised as follows: we
begin by reviewing related work in section II, and then
provide some background knowledge to understand SDDT
in section III. We introduce the methodology of SDDT and
provide theoretical results in section IV, followed by empir-
ical results in section V. We end the paper with conclusions
and future directions in section VI.

II. RELATED WORK

A. Robot Motion Generation and Diagrammatic Teaching

Generating robot motion is a central problem in robotics.
This can be done in a motion planning fashion [5], where an
optimisation problem needs to be constructed and a motion
planner [6], [7], [8] is then used to find a solution to the
problem. Motion planning approaches are beneficial in that
once the constraints and costs for the motion have been
specified, the task of motion generation is primarily “off-
loaded” to the planner, and the solution inherits theoretical
guarantees, such as probabilistic completeness [9]. However,
many natural motion patterns cannot be easily distilled into a
simple cost function, and additionally, the construction of the
optimisation problem requires technical expertise. Another
approach for specifying robot motion has been Learning from
Demonstration (LfD) [1], where a human expert physically
handles the robot to trace out the desired motion (i.e. kines-
thetic teaching) [10], [11] or teleoperation via specialised
remote controllers [12]. To allow demonstrations to be more
easily and intuitively collected, Diagrammatic Teaching [2]
has been introduced as an alternative interface for the user
to specify movement patterns to robots: the user is provided
with images and prompted to provide sketches, which are
subsequently used to construct a model of robot motions.
This work falls within the Diagrammatic Teaching paradigm,
where the robot’s motion is shaped by a sketch from the user.

B. Stable Dynamical Systems as Robot Policies

In many LfD and motion generation problem formulations,
robot policies are modelled by state-dependent dynamical
systems [13], [14]. Enforcing the convergence properties of
dynamical systems has been shown to increase the robustness
of the robot policy and enables prior knowledge to be imbued
into the system [15]. However, previous methods exclusively
focus on systems that converge to a single fixed point, instead
of an orbit. Additionally, these systems are learned in a LfD
setup where the training data is a set of collected expert
trajectories, in the form of sequences of end-effector or joint
positions. Examples of such methods include [16], [13], [17],
[18], [3], In particular, methods [3], [18] also take a diffeo-
morphic learning approach, but only considered stability with
respect to convergence to a fixed point. A similar approach
was provided in [19] which provided extensions to learning
stochastic systems with stability properties from multiple
kinesthetic demonstrations and examined stable orbits. Our
work is unique from these previous approaches, in that
we study learning stable systems within the diagrammatic
teaching paradigm. Our approach does not require multiple
kinesthetic demonstrations, and instead simply requires a
single sketch provided by the user.

III. PRELIMINARIES

Here, we introduce the necessary background concepts for
the presentation of SDDT in section IV.

A. Robot Motion Generation via Dynamical Systems

In this work, we shall directly model the robot’s end-
effector position x ∈ R3. We represent the robot’s policy
as a first-order time-invariant dynamical system.

ẋ(t) = f(x(t)), ẋ(0) = x0, (1)

where f : R3 → R3 is a non-linear mapping between x
and its time derivative ẋ, and x0 is the initial condition.
Individual motion trajectories ξ of time duration t ∈ R can
be obtained via integration,

ξ(t,x0) = x0 +

∫ t

0

ẋ(s)s, (2)

where the integral can be evaluated using a numerical ODE
integrator, such as Euler’s method. Modelling the robot’s
policy, rather than individual trajectories, has the benefit of
being robust to perturbations. That is, at any end-effector
state after perturbation, the robot can follow the dynamical
system and does not track a pre-determined trajectory. In
our problem setup, we may wish to additionally constrain
the end-effector to be orthogonal to the surface, fixing its
rotation.

B. O.A.S. Systems

We are interested in understanding the long-term be-
haviour of the dynamical system, namely, what happens to
the trajectories after a long integration duration. Will the
solution eventually converge to fixed points, a limit cycle,
or diverge and blow up? We are interested in robot motion
which approaches a surface and converges onto a cyclic
motion on that surface. This requires the dynamical system
to be Orbitally Asymptotically Stable (O.A.S.) with a limit
cycle. Here, we give a definition for O.A.S.

Definition 3.1 (O.A.S. Stability): A dynamical system
x = f(x) is Orbitally Asymptotically Stable (O.A.S.) if for
any initial condition x0 within a region of state-space X ,
we have

lim
t→inf

min
τ∈[0,T]

||x(t)− x̄(τ)||= 0, (3)

where x̄(τ) is a solution of the system. Furthermore, x̄(τ) is
periodic, i.e. x̄(τ) = x̄(τ + T), where T ∈ R+ is the period
of the cycle. Here, x̄(τ) is known as a “limit cycle” and X
is known as the “basin of attraction”.

C. Invertible Neural Networks

Diffeomorphisms, which are differentiable and invertible
functions, are crucial building blocks of our proposed frame-
work. Diffeomorphisms can be parameterised by Invertible
Neural Networks (INNs). INNs are function approximators
that are invertible by definition and have easily computable
Jacobians [20]. We use Coupling-based INNs [21] which
contain the reversible block introduced, where the split the
input u into halves, u = [u1,u2], and the output v into

halves, v = [v1,v2]. We learn four fully-connected neural
networks, p1, p2, q1, q2 such that,

v1 = u1 ⊙ exp(p2(u2)) + q2(u2), (4)
v2 = u2 ⊙ exp(p1(v1)) + q1(v2), (5)

where ⊙ denotes the Hadamard product. By construction,
the inverse is given as follows:

v1 = u1 ⊙ exp(p2(u2)) + q2(u2), (6)
v2 = u2 ⊙ exp(p1(v1)) + q1(v2). (7)

As such, the INN is able to enforce invertibility without the
functions p1, p2, q1, q2 being invertible.

IV. STABLE DIFFEOMORPHIC DIAGRAMMATIC
TEACHING

Stable Diffeomorphic Diagrammatic Teaching (SDDT)
first presents the user with an image of the contact surface
and prompts the user to sketch a closed shape on the image.
The corresponding points in the robot’s task space are found
via ray-tracing the sketch onto the surface. We then minimise
the distance between the limit cycle of a parameterised
O.A.S. system and the set of corresponding points.

This section is organised as follows: We shall first elab-
orate on how to construct a parameterised 3D dynamical
system which is O.A.S. with a stable orbit on a surface
(section IV-A). We describe how to shape the system to
match a sketch provided by the user (section IV-B). Then, we
provide theoretical guarantees that our model is sufficiently
flexible to model any limit cycle that is smooth and closed
(section IV-E).

A. Parameterising O.A.S. Systems via Diffeomorphisms

Fig. 2: Diffeomorphisms can be
thought of as “morphing” a dy-
namical system into one another.
(Left) Five trajectories (red) of
overlaid on grid points (blue);
(Right) Morphed trajectories and
the corresponding grid.

We can learn a desired
O.A.S. system ẋ = f(x),
by starting with a hand-
designed base O.A.S. sys-
tem ẏ = g(y). We then
learn a diffeomorphism F
such that x = F (y).
Intuitively, we can think
of the diffeomorphism to
be “morphing” the base
system into the desired
system. A simple illustra-
tion of this is provided
in fig. 2. Throughout this
section, we denote the state variables of the base system as
y, and that of the desired system as x.

In this paper, we will by convention define the flat surface
as the x, z-plane at y = 0. We begin by constructing a simple
base system to have a stable circular orbit on the surface.
Consider a system where a polar coordinate system (with
polar variables r and ω) is defined in the x, z-plane, with an
additional attractor in the y-axis:

ṙ = µ(1− r2

R2
)r, ω̇ = 1, ẏ = −αy, (8)

where µ > 0 and α > 0 are parameters which control how
fast the system converges. Trajectories of this system will
converge to an equilibrium at r = R, y = 0, and any ω, for
all r ≥ 0. This system is O.A.S., with a basin of attraction
X = {(r, ω, y)|r > 0, ω, y ∈ R}. Example trajectories of this
system are shown in fig. 3. We can transform the coordinates
into Cartesian coordinates as the system:

ẏ = g(y) =

ẋẏ
ż

 =

−z + µ

(
1− x2+z2

R2

)
x,

−αy,
x+ µ

(
1− x2+z2

R2

)
z,

 . (9)

which has a limit cycle L := {(x, y, z) ∈ R3|x2 + z2 =
R2, y = 0}.

Fig. 3: Trajectories converge to a limit
cycle at y = 0.

Dynamical systems
with state variables
satisfying x = F (y),
where F is a
diffeomorphism,
are topologically
conjugates of one
another. They can
be thought of as
the same system

under a change of coordinate systems and their stability
characteristics are not altered (proof in [4], [18], [22]). We
seek a mapping F , such that no change is made on the y
axis while shaping the circle on the x, z plane x2+z2 = R2

to match the provided data. Therefore, we decompose F into
separate functions, using an INN to learn a diffeomorphism
on the x, z axes and leaving the y-axis with the identity
function. Specifically,

x=F(y), where [xx, xz]=INNθ([yx, yz]), xy=yy, (10)

where x = [xx, xy, xz], y = [yx, yy, yz] and INNθ is an
invertible neural network with parameters θ.

The desired O.A.S. system dynamics ẋ = f(x) is now
related to that of the base O.A.S. system ẏ = g(y) via the
chain rule:

ẋ = f(x) = JF (F
−1(x))g(F−1(x)), (11)

where JF (F−1(x)) is the Jacobian of F at F−1(x).

B. Learning the Parameterised System via the Hausdorff
Distance

This section elaborates on how to train F defined in
eq. (10) such that the limit cycle of ẋ = f(x) matches the
user’s sketch. This involves projecting the user’s sketch to
the surface via ray-tracing. Then, defining and minimising a
loss between the set of projected points on the surface to the
limit cycle of our dynamical system model.

C. Ray-tracing onto Surface

After prompting the user to sketch the desired limit cycle
on the surface on the camera image, we are assumed to have
a set of n 2D coordinates, p, and corresponding depths, d, to

(a) Visualisation of ray-tracing
(rays in blue) a pentagon
shape (in red) onto a surface
(magenta).

(b) Example contributing dis-
tances (green, purple) of the
Hausdorff distance between
two (red and blue) point sets.

the surface, i.e. {pi, di}ni=1. We call the set of 2D coordinates
the view-space shape. We follow the [2] and assume a pin-
hole camera. We construct a ray in 3D which passes through
each 2D coordinate, si = o + r(pi)di, where o and r are
camera origin and projection direction respectively. These are
obtainable from the camera parameters and camera position.
We collect the set of projected points, S = {si}ni=1, and use
this as our training data. Note that as we align the flat surface
to be the x, z-plane at y = 0, by convention, we drop the
y-axis of our projected points and simply consider the 2D
coordinates of the sketch on the surface. Figure 4a shows an
example of projecting a pentagon shape from view-space to
a surface, with the traced rays in blue and the pentagon on
the surface in red.

D. Hausdorff Distance Loss

The main component of the loss function is a measure of
similarity between the shape specified by the user and the
limit cycle. This requires us to define a distance between
the set of sketched points projected onto the surface, S, and
the limit cycle, L. Here, we compute a discretised Hausdorff
distance [23], which provides distance between two point
sets. Intuitively, the Haussdorff distance takes the larger of
the maximum distances from one set to the other, and its
reverse. A visualisation of this intuition is given in fig. 4b.
This is defined as:

H(S,L) =max

{
max
s∈S

min
l∈L

D(s,l),max
l∈L

min
s∈L

D(l,s)

}
, (12)

where D is a metric distance between individual elements,
here, we simply use the L2 distance.

To prevent the INN from learning diffeomorphisms that
excessively distort the base system, we can regularise the
diffeomorphism towards the identity function. This can be
done by adding an additional regularisation term minimising
the difference between x and F−1(x). This term can be
computed via uniformly drawing m samples, x̂1, . . . , x̂m,
within a region of interest in state-space and evaluating their
mean distances between F−1(x̂1), . . . , F

−1(x̂m). We arrive
at the combined loss function:

ℓ = H(S,L) + α
1

m

m∑
i=1

||x̂i − F−1(x̂i)||22, (13)

Fig. 5: Our learned cycles on the x, z-plane. Cycle of the base in
blue, the target data in green, and the cycle learned in red.

where α controls the regularisation strength. We can then
apply gradient-based optimisers, such as ADAM [24], to
learn the weights of the INN.

E. Theoretical Guarantees on Learning Cycles

A particular question of interest is: What classes of 2D
shapes can we find a diffeomorphism, to “morph” our limit
cycle of the base system in eq. (9), at y = 0 into?

We show that any 2D shape that can be represented by a
smooth and non-intersecting closed curve is diffeomorphic
with the unit circle, and hence can, in theory, be “morphed”
into by the limit cycle of our base system.

Proposition 4.1: Let C be a smooth and non-intersecting
closed curve in R2. Then, C is diffeomorphic to the unit
circle S1 := {(u, v) ∈ R2|u2 + v2 = 1}.

Proof: Parameterise the curve, and extend to a
periodic function: Since C is a smooth curve in R2, we
can find a parameterisation γ : [0, 1) → R2, such that
γ′(t) ̸= 0 for t ∈ [0, 1). As C is closed, we can extend γ to
be periodic function on all of R, such that γ(t + 1) = γ(t)
for t ∈ R. Additionally, as C is also non-intersecting, each
point on C can be uniquely mapped to t ∈ [0, 1), hence γ is
a diffeomorphism.

Map [0, 1) to S1: Furthermore, consider the mapping ψ :
R → S1, given by ψ(t) = exp(2πit). This is a smooth map
that wraps the real line around the circle infinitely many
times and has a period of 1. There exists a smooth inverse
ψ−1 which maps to [0, 1).

Create the diffeomorphism between C and S1: Consider
the composition ϕ = γ−1 ◦ ψ : C → [0, 1) → S1. This
is a diffeomorphism because it is a composition of two
diffeomorphisms.

Note that this proposition extends to a circle of arbitrary
radius as the circle itself would be diffeomorphic to the unit
circle. Moreover, the authors of [25] show that coupling-
based INNs are universal diffeomorphism approximators.
Informally, this means that they can approximate any dif-
feomorphism, ϕ, to arbitrary accuracy.

V. EXPERIMENTAL RESULTS

We experimentally evaluate the performance and test the
robustness of our proposed SDDT method, both in simulation
and on real-world robots. We begin by empirically investi-
gating the learning capacity of SDDT, and stress-testing it
to learn complicated limit cycles (section V-A). We then
highlight the benefits of enforcing O.A.S. by comparing
SDDT against neural ODEs [26], which parameterise the
dynamics of the system as a free-form neural network
(section V-A). Lastly, we demonstrate the applicability of

Fig. 6: Qualitative results of learning diffeomorphisms to shape the circular limit cycle into outlines of the whale, dog, flower, and eagle.
We also show, at different viewing angles, of example trajectories integrated from multiple initial 3D positions (in green). We observe
that each trajectory is able to converge onto the shaped limit cycle on the surface.

Fig. 7: We evaluate SDDT in the PyBullet Simulator. (Left) The user is provided a view from a camera in the scene and is prompted to
sketch a star, a knight chess piece, and an arrow on the image respective. The user sketches (in red) are overlaid over the camera image.
(Right) For each different sketch, we generate motion trajectories from SDDT from 3 different robot configurations. We observe that each
of these trajectories is able to consistently and accurately converge onto the desired shape.

Fig. 8: We visualise how the ambient space is morphed by the
learnt diffeomorphism: (Left) Transport map with points on the
base system (blue) mapped (shown by grey line) onto those of the
learned system (red); (Right) Concentric circles passed through the
diffeomorphism to match the desired shape.

TABLE I: Performance of SDDT and baselines, on each task, as
measured by Hausdorff distance (lower is better).

O.A.S. Star Knight Arrow

SDDT (ours) ✓ 0.011 0.011 0.017
Neural ODEs [26] ✗ 0.040 0.035 0.063
Base System ✓ 0.133 0.201 0.209

SDDT in the real world by deploying the framework on a
quadruped-mounted manipulator.

A. A Qualitative Analysis: Learning Challenging Cycles

We seek to explore the capabilities of our proposed method
for learning systems with limit cycles that are intricate
and vary greatly from the circular limit cycle of the base
dynamical system. Here, we extract silhouette outlines and
investigate how well SDDT is able to “morph” the cycle into
the outlines.

We use outlines of a whale, a dog, a flower, and an
eagle and learn an INN to morph the base system’s limit
cycle to match the outline. Throughout this paper, we use
the INN models in the FrEIA library [20], which is built
on PyTorch [27]. In fig. 6, we provide qualitative results
of both the limit cycle and trajectories integrated from
the resulting dynamical system. We observe that the limit
cycle is generally able to be accurately shaped into each of
these outlines, and the integrated 3D trajectories are able
to approach the surface and smoothly converge onto the
limit cycle. We also visualise and compare the original base
system and the target 2D shape, on the x, z-plane in fig. 5.

Fig. 10: The learnt O.A.S. vec-
tor field on the x, z-plane. The
vector field (red arrows) pushes
points off the cycle onto the
stable cycle (in black).

To gain insight into
how the diffeomorphism
“morphs” the x, y-plane
at y = 0, in fig. 8,
we visualise additional
quantitative results on the
whale outline. On the
left, we show a transport
map showing examples of
points on the orbit of the
base system mapped to
the learned system, with
correspondence between
points on the systems
indicated by the grey line.
On the right, we visualise the result of diffeomorphism
operating on concentric circles (in red), starting from a
radius of 0.1 to 2. This gives us an intuition of how the

Fig. 9: SDDT is particularly useful when egocentric images, from onboard cameras, are available. We run our real-world experiments on
a quadruped with a mounted arm. (Left) We sketch the shapes of a pentagon and a star (in red) on an egocentric view from the onboard
camera. (Right) The robot converges to the surface, stabilises at, and traces out the diagrammatically provided shapes.

ambient space is stretched and compressed to match the
target shape (in black). In fig. 10, we show the vector field
of the resulting learned system, with the limit cycle shown
in black. We observe that points not in the vector field shall
be attracted towards the stable cycle — points inside the
cycle push outwards while those outside push inwards.

B. SDDT outperforms Free-form Neural ODEs

We evaluate, in the PyBullet Simulator [28], the per-
formance of the SDDT framework. We simulate a Franka
on a mobile base facing a wall, with an RGB-D camera
positioned behind the robot. We seek to generate robot
motion that approaches the wall and converges onto the shape
diagrammatically provided by the user on the camera image.
We compare against the following baselines:

1) Neural ODEs [26]: Neural ODEs learn dynamical
systems by parameterising the dynamics as a neural
network and then train on data. We use a Neural ODE
to learn the dynamics on the x, z-plane, and retain the
attractor towards the surface in the y-axis direction. The
dynamics of Neural ODEs are completely free-form,
with no assumption made on stability.

2) Base System (defined in eq. (9)): We evaluate how well
our stable base system performs. We allow the radius
and the origin of the base system to be tuned, such that
the limit cycle minimises the distance between the data.
The base system is highly structured and contrasts with
the entirely learning-based Neural ODE.

After collecting sketches of a star, a knight, and an ar-
row, we train each of these models and integrate trajectories
at three different initial robot configurations. Here, we use the
implementation of Neural ODEs provided in the torchdiffeq
library [26]. To measure how well the trajectories from the
traced motion match the diagrammatic sketch provided by
the user, we take points that have y-values under 10−4 to
be in contact with the surface, and compute the Hausdorff
distance between the trajectory and sketch ray-traced onto the
surface. A qualitative evaluation of our generated trajectories,
as well as the user-provided sketches, can be seen in fig. 6,
with results provided in table I. We observe that SDDT
imbues knowledge of stability into the system via enforcing
O.A.S., and outperforms Neural ODEs which treat the dy-
namics as a black-box. SDDT is also sufficiently flexible to

learn complex patterns, greatly outperforming the inflexible
stable base system.

C. SDDT on Real Robots

We demonstrate the applicability of SDDT on real-world
robots, by applying SDDT on a Unitree Aliengo quadruped
with an attached 6-DOF Z1 manipulator. The user is shown
egocentric views of the environment via the RGB-D camera
on board the quadruped and is asked to sketch a pentagon
and a star. SDDT is then used to learn stable systems
shaped by the projection of the drawing. We then integrate a
trajectory from the current end-effector position and track the
trajectory with a marker pen to trace out the corresponding
motion patterns. We observe that in both instances the
quadruped mount manipulator was able to approach the
surface and stabilise on a cycle that matched the diagrammat-
ically specified shapes, despite minor inaccuracies introduced
by contact forces. In fig. 9, we overlay the provided sketches
onto the egocentric view images from the quadruped and
show the manipulator converging onto the surface and tracing
the desired shapes.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we tackle the problem of learning robot
policies that approach a surface and trace on it periodically.
Robot motions of this kind are applicable to painting, wip-
ing, and sanding tasks. We take a diagrammatic learning
approach, where the type of periodical pattern is provided
by the user providing a 2D sketch on an image of the scene.
We contribute the novel Stable Diffeomorphic Diagrammatic
Teaching (SDDT) method, where ray-tracing is used to
project the user’s sketch onto the surface, and an Orbitally
Asymptotically Stable (O.A.S.) dynamical system, which
converges to a cyclic orbit, is learned as a policy for the
robot’s motion. SDDT learns O.A.S. systems by learning a
diffeomorphism that morphs a known stable base system into
the desired system. We provide theoretical insight into the
classes of 2D shapes the stable limit cycle can be shaped
into, and provide extensive empirical evaluations of SDDT,
both in simulation and on a real-world quadruped with a
mounted manipulator. Future avenues of research include: (1)
extending SDDT beyond flat surfaces, and to ensure stable
motion patterns of curved surfaces; (2) extending SDDT to
allow the specification of forces applied onto the surface.

REFERENCES

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual review of
control, robotics, and autonomous systems, 2020.

[2] W. Zhi, T. Zhang, and M. Johnson-Roberson, “Learning from demon-
stration via probabilistic diagrammatic teaching,” arXiv, 2023.

[3] W. Zhi, T. Lai, L. Ott, and F. Ramos, “Diffeomorphic transforms for
generalised imitation learning,” in Learning for Dynamics and Control
Conference, L4DC, 2022.

[4] W. Zhi, T. Lai, L. Ott, E. V. Bonilla, and F. Ramos, “Learning
efficient and robust ordinary differential equations via invertible neural
networks,” in International Conference on Machine Learning, ICML,
2022.

[5] S. M. LaValle, Planning Algorithms. USA: Cambridge University
Press, 2006.

[6] S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic
planning,” The International Journal of Robotics Research, 2001.

[7] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation, 2009.

[8] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” 2018.

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
2011.

[10] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
IEEE International Conference on Robotics and Automation, 2009.

[11] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Proceedings of the 26th International Con-
ference on Neural Information Processing Systems, 2013.

[12] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung,
J. Gao, J. Emmons, A. Gupta, E. Orbay, S. Savarese, and L. Fei-
Fei, “Roboturk: A crowdsourcing platform for robotic skill learning
through imitation,” in Conference on Robot Learning, 2018.

[13] K. Van Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. Peele, Q. Wan,
I. Akinola, B. Sundaralingam, D. Fox, B. Boots, and N. D. Ratliff,
“Geometric fabrics: Generalizing classical mechanics to capture the
physics of behavior,” IEEE Robotics and Automation Letters, 2022.

[14] W. Zhi, I. Akinola, K. van Wyk, N. Ratliff, and F. Ramos, “Global
and reactive motion generation with geometric fabric command se-
quences,” in IEEE International Conference on Robotics and Automa-
tion, ICRA, 2023.

[15] V. Sindhwani, S. Tu, and M. Khansari, “Learning contracting vector
fields for stable imitation learning,” 2018.

[16] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, 2011.

[17] M. Saveriano, “An energy-based approach to ensure the stability
of learned dynamical systems,” IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[18] M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff,
“Euclideanizing flows: Diffeomorphic reduction for learning stable dy-
namical systems,” in Proceedings of the 2nd Conference on Learning
for Dynamics and Control, 2020.

[19] J. Urain, M. Ginesi, D. Tateo, and J. Peters, “Imitationflows: Learn-
ing deep stable stochastic dynamic systems by normalizing flows,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2020.

[20] L. Ardizzone, J. Kruse, C. Rother, and U. Köthe, “Analyzing inverse
problems with invertible neural networks,” in International Conference
on Learning Representations, 2019.

[21] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real NVP,” in International Conference on Learning Representations,
2017.

[22] J. M. Lee, Introduction to Smooth Manifolds. Graduate Texts in
Mathematics, 2000.

[23] F. Hausdorff, Grundzüge der Mengenlehre. Leipzig: Veit & Co, 1914.
[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” ArXiv, 2015.
[25] T. Teshima, I. Ishikawa, K. Tojo, K. Oono, M. Ikeda, and

M. Sugiyama, “Coupling-based invertible neural networks are univer-
sal diffeomorphism approximators,” in Advances in Neural Informa-
tion Processing Systems, 2020.

[26] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
“Neural ordinary differential equations,” in Advances in Neural Infor-
mation Processing Systems, 2018.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, 2019.

[28] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning.” http://pybullet.org,
2016–2019.

http://pybullet.org

	Introduction
	Related Work
	Robot Motion Generation and Diagrammatic Teaching
	Stable Dynamical Systems as Robot Policies

	Preliminaries
	Robot Motion Generation via Dynamical Systems
	O.A.S. Systems
	Invertible Neural Networks

	Stable Diffeomorphic Diagrammatic Teaching
	Parameterising O.A.S. Systems via Diffeomorphisms
	Learning the Parameterised System via the Hausdorff Distance
	Ray-tracing onto Surface
	Hausdorff Distance Loss
	Theoretical Guarantees on Learning Cycles

	Experimental Results
	A Qualitative Analysis: Learning Challenging Cycles
	SDDT outperforms Free-form Neural ODEs
	SDDT on Real Robots

	Conclusions and Future Work
	References

