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Abstract

The well-known empirical risk minimization (ERM) principle is the basis of many
widely used machine learning algorithms, and plays an essential role in the classical
PAC theory. A common description of a learning algorithm’s performance is its
so-called “learning curve”, that is, the decay of the expected error as a function of
the input sample size. As the PAC model fails to explain the behavior of learning
curves, recent research has explored an alternative universal learning model and has
ultimately revealed a distinction between optimal universal and uniform learning
rates (Bousquet et al., 2021). However, a basic understanding of such differences
with a particular focus on the ERM principle has yet to be developed.
In this paper, we consider the problem of universal learning by ERM in the realiz-
able case and study the possible universal rates. Our main result is a fundamental
tetrachotomy: there are only four possible universal learning rates by ERM, namely,
the learning curves of any concept class learnable by ERM decay either at e−n, 1/n,
log (n)/n, or arbitrarily slow rates. Moreover, we provide a complete characteriza-
tion of which concept classes fall into each of these categories, via new complexity
structures. We also develop new combinatorial dimensions which supply sharp
asymptotically-valid constant factors for these rates, whenever possible.

1 Introduction

The classical statistical learning theory mainly focuses on the celebrated PAC (Probably Approxi-
mately Correct) model (Vapnik and Chervonenkis, 1974; Valiant, 1984) with emphasis on supervised
learning. A particular setting therein, called the realizable case, has been extensively studied. Comple-
mented by the “no-free-lunch" theorem (Antos and Lugosi, 1996), the PAC framework, which adopts
a minimax perspective, can only explain the best worst-case learning rate by a learning algorithm over
all realizable distributions. Such learning rates are thus also called the uniform rates. However, the
uniform rates can only capture the upper envelope of all learning curves, and are too coarse to explain
practical machine learning performance. This is because real-world data is rarely worst-case, and the
data source is typically fixed in a given learning scenario. Indeed, Cohn and Tesauro (1990, 1992)
observed from experiments that practical learning rates can be much faster than is predicted by PAC
theory. Moreover, many theoretical works (Schuurmans, 1997; Koltchinskii and Beznosova, 2005;
Audibert and Tsybakov, 2007, etc.) were able to prove faster-than-uniform rates for certain learning
problems, though requiring additional modelling assumptions. To distinguish from the uniform rates,
these rates are named the universal rates and was formalized recently by Bousquet et al. (2021) via a
distribution-dependent framework. Unlike the simple dichotomy of the optimal uniform rates: every
concept class H has a uniform rate being either linear VC(H)/n or “bounded away from zero", the
optimal universal rates are captured by a trichotomy: every concept class H has a universal rate being
either exponential, linear or arbitrarily slow (see Thm.1.6 Bousquet et al., 2021).

In supervised learning, a family of successful learners called the empirical risk minimization (ERM)
consist of all learning algorithms that output a sample-consistent classifier. In other words, an ERM
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algorithm is any learning rule, which outputs a concept in H that minimizes the empirical error (see
Appendix A for a formal definition). For notation simplicity, we first introduce

Definition 1 (Version space, Mitchell, 1977). Let H be a concept class and Sn := {(xi, yi)}ni=1 be
a dataset, the version space induced by Sn, denoted by VSn

(H) (or Vn(H) for short), is defined as
VSn

(H) := {h ∈ H : h(xi) = yi,∀i ∈ [n]}.

Now given labeled samples Sn := {(xi, yi)}ni=1, an ERM algorithm is any learning algorithm that
outputs a concept in the sample-induced version space, that is, a sequence of universally measurable
functions An : Sn → ĥn ∈ VSn

(H), n ∈ N. Throughout this paper, we will simply denote an ERM
algorithm by its output predictors {ĥn}n∈N.

It is well-known that the ERM principle plays an important role in understanding general uniform
learnability: a concept class is uniformly learnable if and only if it can be learned by ERM. However,
while the optimal VC(H)/n rate is achievable by some improper learner (Hanneke, 2016a), ERM
algorithms can at best achieve a uniform rate of (VC(H)/n) log (n/VC(H)). Moreover, such a gap
has been shown to be unavoidable in general (Auer and Ortner, 2007), which leaves a challenging
question to study: what are the sufficient and necessary conditions on H for the entire family of ERM
algorithms to achieve the optimal error? Indeed, many subsequent works have devoted to improving
the logarithmic factor in specific scenarios. The work of Giné and Koltchinskii (2006) refined the
bound by replacing log (n/VC(H)) with log (θ(VC(H)/n)), where θ(·) is called the disagreement
coefficient. Based on this, Hanneke and Yang (2015) proposed a new data-dependent bound with
log (n̂1:n/VC(H)), where n̂1:n is a quantity related to the version space compression set size (a.k.a.
the empirical teaching dimension). As a milestone, the work of Hanneke (2016b) proved an upper
bound (VC(H)/n) log (sH/VC(H)) and a lower bound (VC(H) + log (sH))/n, where sH is called
the star number of H (see Definition 4 in Section 2). Though not quite matching, these two bounds
together yield an optimal linear rate when sH < ∞. Thereafter, the uniform rates by ERM can be
described as a trichotomy, namely, every concept class H has a uniform rate by ERM being exactly
one of the following: 1/n, log (n)/n and “bounded away from zero".

From a practical perspective, many ERM-based algorithms are designed and are widely applied in
different areas of machine learning, such as the logistic regression and SVM, the CAL algorithm in
active learning, the gradient descent (GD) algorithm in deep learning. Since the worst-case nature
of the PAC model is too pessimistic to reflect the practice of machine learning, understanding the
distribution-dependent performance of ERM algorithms is of great significance. However, unlike
that a distinction between the optimal uniform and universal rates has been fully understood, how
fast universal learning can outperform uniform learning in particular by ERM remains unclear.
Furthermore, we are lacking a complete theory to the characterization of the universal rates by ERM,
though certain specific scenarios that admit faster rates by ERM have been discovered (Schuurmans,
1997; van Handel, 2013). In this paper, we aim to answer the following fundamental question:

Question 1. Given a concept class H, what are the possible rates at which H can be universally
learned by ERM?

We start with some basic preliminaries of this paper. We consider an instance space X and a concept
class H ⊆ {0, 1}X . Given a probability distribution P on X × {0, 1}, the error rate of a classifier
h : X → {0, 1} is defined as erP (h) := P ((x, y) ∈ X × {0, 1} : h(x) ̸= y). A distribution P is
called realizable with respect to H, denoted by P ∈ RE(H), if infh∈H erP (h) = 0. Note that in
this definition, h∗ satisfying erP (h∗) = infh∈H erP (h) is called the target concept of the learning
problem, and is not necessary in H. We may also say that P is a realizable distribution centered at
h∗. Given an integer n, we denote by Sn := {(xi, yi)}ni=1 ∼ Pn a i.i.d. P -distributed dataset. In the
universal learning framework, the performance of a learning algorithm is commonly measured by its
learning curve (Bousquet et al., 2021; Hanneke et al., 2022; Bousquet et al., 2023), that is, the decay
of the expected error rate E[erP (ĥn)] as a function of sample size n. With these settings settled, we
are now able to formalize the problem of universal learning by ERM.

Definition 2 (Universal learning by ERM). Let H be a concept class, and R(n) → 0 be a rate
function. We say

• H is universally learnable at rate R by ERM, if for every distribution P ∈ RE(H), there
exist parameters C, c > 0 such that for every ERM algorithm, E[erP (ĥn)] ≤ CR(cn), for
all n ∈ N.

2



• H is not universally learnable at rate faster than R by ERM, if there exists a distribution
P ∈ RE(H) and parameters C, c > 0 such that there exists an ERM algorithm satisfying
E[erP (ĥn)] ≥ CR(cn), for infinitely many n ∈ N.

• H is universally learnable with exact rate R by ERM, if H is universally learnable at rate
R by ERM, and is not universally learnable at rate faster than R by ERM.

• H requires arbitrarily slow rates to be universally learned by ERM, if for every rate func-
tion R(n) → 0, H is not universally learnable at rate faster than R by ERM.

Remark 1. The above definition inherits the structure of the definition to the optimal universal
learning (Definition 1.4 Bousquet et al., 2021). Here, we are actually considering the “worst-case"
ERM algorithm, which is consistent with the PAC theory. A crucial difference between this definition
and the PAC one is that here the constants C, c > 0 are allowed to depend on the distribution P .
In other words, the PAC model can be defined similarly, but requires uniform constants C, c > 0.
Consequently, H is universally learnbale at rate R by ERM if it is PAC learnable at rate R by ERM.
Remark 2. It is not hard to see that the error rate achieved by any ERM algorithm, given Sn ∼ Pn

as input, is at most suph∈VSn (H) erP (h). Furthermore, for any distribution P ∈ RE(H), there exist
ERM algorithms obtaining error rates arbitrarily close to this value. Hence, to obtain upper bounds of
the universal rates by ERM, it requires us to bound the random variable suph∈VSn (H) erP (h), where
a common technique is to bound P(suph∈VSn (H) erP (h) > ϵ) = P(∃h ∈ VSn

(H) : erP (h) > ϵ). To
obtain lower bounds, it requires us to construct specific “hard" distributions.

1.1 Basic examples

In order to develop some initial intuition for what universal learning rates are possible for ERM, we
first introduce several basic examples that illustrate the possibilities in the following Section 1.2. To
convince the reader, we provide direct analysis (without using our characterization in Section 1.2) for
those examples (see details in Appendix B.1).
Example 1 (e−n learning rate). Any finite class H is universally learnable at exponential rate
(Schuurmans, 1997). Indeed, according to their analysis, such exponential rates can also be achieved
by any ERM algorithm.
Example 2 (1/n learning rate). Let Hthresh,N := {ht : t ∈ N} be the class of all threshold classifiers
on natural numbers, where ht(x) := 1(x ≥ t), for all x ∈ N. Hthresh,N is universally learnable at
exponential rate since this class does not have an infinite Littlestone tree (Bousquet et al., 2021).
However, ERM algorithms cannot guarantee such exponential rates but at best linear rates, when
encountering certain realizable distributions centered at the target concept hall-0’s, which is the
function that labels zero everywhere (see Appendix A).
Example 3 (log (n)/n learning rate). Let X = N and Hsingleton,N := {ht : t ∈ X} be the class of all
singletons on X , where ht(x) := 1(x = t), for all x ∈ N. It is clear that VC(Hsingleton,N) = 1. Note
that Hsingleton,N is universally learnable at exponential rate since it has finite Littlestone dimension
LD(Hsingleton,N) = 1. However, the exact universal rate by ERM is instead log (n)/n. This is because
Hsingleton,N admits certain realizable distributions centered at hall-0’s. Indeed, it is an example where
the universal rate by ERM matches the uniform rate, up to a distribution-dependent constant.
Example 4 (Arbitrarily slow learning rate). Let X =

⋃
i∈N Xi be the disjoint union of finite sets

with |Xi| = 2i, for all i ∈ N. For each i ∈ N, let Hi := {hS := 1S : S ⊆ Xi, |S| ≥ 2i−1} and
consider the concept class H =

⋃
i∈N Hi. H is universally learnable at exponential rate since it does

not have an infinite Littlestone tree. However, a bad ERM algorithm can perform arbitrarily slowly.
Example 5 (Not Glivenko-Cantelli but learnable by ERM). Let X = [0, 1], H := {1S : S ⊂
X , |S| < ∞}, and P be the uniform (Lebesgue) distribution on [0, 1]. H is universally learnable
at exponential rate (no infinite Littlestone tree). Moreover, H is not a universal Glivenko-Cantelli
class for P (van Handel, 2013), but is still universally learnable by ERM. However, if we consider
the class H ∪ {hall-1’s}, which is still not a universal Glivenko-Cantelli class for P , but no longer
universally learnable by any ERM algorithm since erP (ĥn) = 1 regardless of the sample size.

The above examples indicate that the cases of universal learning by ERM do not match the uniform
learning, but contains at least five possible cases: every nontrivial concept class H is either universally
learnable at exponential rate (but not faster), or is universally learnable at linear rate (but not faster), or
is universally learnable at slightly slower than linear rate log (n)/n (but not faster), or is universally
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learnable but necessarily with arbitrarily slow rates, or is not universally learnable at all. Throughout
this paper, we only consider the case where the given concept class is universally learnable by ERM.
We leave it an open question whether there exists a nice characterization that determines the universal
learnability by ERM.

1.2 Main results

In this section, we summarize the main results of this paper. The examples in Section 1.1 reveal that
there are at least four possible universal rates by ERM. Interestingly, we find that these are also the
only possibilities. The following two theorems consist of the main results of this work. In particular,
Theorem 1 gives out a complete answer to Question 1. It expresses a fundamental tetrachotomy: there
are exactly four possibilities for the universal learning rates by ERM: being either exponential, or
linear, or log (n)/n, or arbitrarily slow rates. Moreover, Theorem 2 specifies the answer by pointing
out for what realizable distributions (targets), those universal rates are sharp.

Theorem 1 (Universal rates for ERM). For every class H with |H| ≥ 3, the following hold:

• H is universally learnable by ERM with exact rate e−n if and only if |H| < ∞.
• H is universally learnable by ERM with exact rate 1/n if and only if |H| = ∞ and H does

not have an infinite star-eluder sequence.
• H is universally learnable by ERM with exact rate log (n)/n if and only if H has an infinite

star-eluder sequence and VC(H) < ∞.
• H requires at least arbitrarily slow rates to be learned by ERM if and only if VC(H) = ∞.

Remark 3. The formal definition of the star-eluder sequence can be found in Section 2. Unlike the
separation between exact e−n and 1/n rates is determined by the cardinality of the class, and the
separation between exact log (n)/n and arbitrarily slow rates is determined by the VC dimension
of the class, whether there exists a simple combinatorial quantity that determines the separation
between exact 1/n and log (n)/n rates is unclear and might be an interesting direction for future
work. We thought that it is likely the star number sH (Definition 4) is the correct characterization
here, but it turns out not unfortunately (see details in Section 4 and Appendix B.3).

Based on Theorem 1, a distinction between the performance of ERM algorithms and the optimal
universal learning algorithms can be revealed, which we present in the following table (the required
definitions in “Case" are deferred to Section 2, and examples can be found in Appendix B.2).

Optimal rate Exact rate by ERM Case Example
e−n 1/n infinite eluder sequence but no infinite Littlestone tree Example 12
e−n log (n)/n infinite star-eluder sequence but no infinite Littlestone tree Example 13
e−n arbitrarily slow infinite VC-eluder sequence but no infinite Littlestone tree Example 15
1/n log (n)/n infinite star-eluder sequence but no infinite VCL tree Example 14
1/n arbitrarily slow infinite VC-eluder sequence but no infinite VCL tree Example 16

Furthermore, the distinction between the universal rates and the uniform rates by ERM can also be
fully captured, and are depicted schematically in Figure 1 as an analogy to the Fig.4 of Bousquet
et al. (2021). Besides the examples in Section 1.1, we also need the following additional example
concerning the Littlestone dimension to appear in the diagram.

Example 6 (log (n)/n learning rate and unbounded Littlestone dimension). We consider here
the class of two-dimensional halfspaces, that is, X := R2 and Hhalfspaces,R := {1(w · x+ b ≥ 0) :
w ∈ R2, b ∈ R}. It is a classical fact that for any integer d, the class of halfspaces on Rd has a finte
VC dimension d, but has an infinite Littlestone tree, and thus having unbounded Littlestone dimension
(Shalev-Shwartz and Ben-David, 2014). Finally, to show that this class is universally learnable by
ERM at exact log (n)/n rate, we simply consider the subspace S1 ⊂ X , this is indeed an infinite star
set of Hhalfspaces,R centered at hall-0’s and thus an infinite star-eluder sequence.

As a complement to Theorem 1, the following Theorem 2 gives out target-specified universal rates.
We say a target concept h∗ is universally learnable by ERM with exact rate R if all realizable
distribution P considered in Definition 2 are centered at h∗. In other words, H is universally learnable
with exact rate R is equivalent to say all realizable target concepts are universally learnable with
exact rate R. Concretely, for each of the four possible rates stated in Theorem 1, Theorem 2 specifies
the target concepts that can be learned at such exact rate by ERM.

4



arbitrary rate
universal Glivenko-Cantelli

VC

log (n)/n
rate

Littlestone linear
rate

sH < ∞

finite

exponential
rate

Ex.19

Ex.1

Ex.2Ex.3

Ex.6

Ex.4

Ex.5

Figure 1: A venn diagram depicting the tetrachotomy of the universal rates by ERM and its relation
with the uniform rates characterized by the VC dimension and the star number.

Theorem 2 (Target specified universal rates). For every class H with |H| ≥ 3, and a target concept
h∗, the following hold:

• h∗ is universally learnable by ERM with exact rate e−n if and only if H does not have an
infinite eluder sequence centered at h∗.

• h∗ is universally learnable by ERM with exact rate 1/n if and only if H has an infinite
eluder sequence centered at h∗, but does not have an infinite star-eluder sequence centered
at h∗.

• h∗ is universally learnable by ERM with exact rate log (n)/n if and only if H has an infinite
star-eluder sequence centered at h∗, but does not have an infinite VC-eluder sequence
centered at h∗.

• h∗ requires at least arbitrarily slow rates to be universally learned by ERM if and only if H
has an infinite VC-eluder sequence centered at h∗.

All detailed proofs appear in Appendix D. We also provide a brief overview of the main idea of each
proof as well as some related concepts in Section 2.

An additional part of this work presents a fine-grained analysis (Bousquet et al., 2023) of the universal
rates by ERM, which complements the coarse rates used in Theorem 1. Concretely, we provide
a characterization of sharp distribution-free constant factors of the ERM universal rates, whenever
possible. The characterization is based on two newly-developed combinatorial dimensions, called
the star-eluder dimension (or SE dimension) and the VC-eluder dimension (or VCE dimension)
(Definition 9). We say “whenever possible" because distribution-free constants are unavailable for
certain cases (Remark 16). Such a characterization can also be considered as a refinement to the
classical PAC theory, in a sense that it is sometimes better but only asymptotically-valid. Due to
space limitation, we defer the definition of fine-grained rates and related results to Appendix C.

1.3 Related works

PAC learning by ERM. The performance of consistent learning rules (including the ERM algorithm)
in the PAC (distribution-free) framework has been extensively studied. For VC classes, Blumer
et al. (1989) gave out a log (n)/n upper bound of the uniform learning rate. Despite the well-known
equivalence between uniform learnability and uniform learnability by the ERM principle (Vapnik
and Chervonenkis, 1971), the best upper bounds for general ERM algorithms differ from the optimal
sample complexity by an unavoidable logarithmic factor (Auer and Ortner, 2007). By analyzing the
disagreement coefficient of the version space, the work of Giné and Koltchinskii (2006); Hanneke
(2009) refined the logarithmic factor in certain scenarios. Furthermore, not only being a relevant
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measure in the context of active learning (Cohn et al., 1994; El-Yaniv and Wiener, 2012; Hanneke,
2011, 2014), the region of disagreement of the version space was found out to have an interpretation
of sample compression scheme with its size known as the version space compression set size (Wiener
et al., 2015; Hanneke and Yang, 2015). Based on this, the label complexity of the CAL algorithm can
be converted into a bound on the error rates of all consistent PAC learners (Hanneke, 2016b). Finally,
Hanneke and Yang (2015); Hanneke (2016b) introduced a simple combinatorial quantity named the
star number, and guaranteed that a concept class with finite star number can be uniformly learned at
linear rate.

Universal Learning. Observed from empirical experiments, the actual learning rates on real-world
data can be much faster than the one described by the PAC theory (Cohn and Tesauro, 1990, 1992).
The work of Benedek and Itai (1988) considered a setting lies in between the PAC setting and the
universal setting called nonuniform learning, in which the learning rate may depend on the target
concept but still uniform over the marginal distributions. After that, Schuurmans (1997) studied
classes of concept chains and revealed a distinction between exponential and linear rates along
with a theoretical guarantee. Later, more improved learning rates have been obtained for various
practical learning algorithms such as stochastic gradient decent and kernel methods (Koltchinskii and
Beznosova, 2005; Audibert and Tsybakov, 2007; Pillaud-Vivien et al., 2018, etc.). Additionally, van
Handel (2013) studied the uniform convergence property from a universal perspective, and proposed
the universal Glivenko-Cantelli property. Until very recently, the universal (distribution-dependent)
learning framework was formalized by Bousquet et al. (2021), in which a complete theory of the
(optimal) universal learnability was obtained as well. After that, Bousquet et al. (2023) carried out a
fine-grained analysis on the “distribution-free tail" of the universal learning curves by characterizing
the optimal constant factor. As generalizations, Kalavasis et al. (2022); Hanneke et al. (2023) studied
the universal rates for multiclass classification, and Hanneke et al. (2022) studied the universal
learning rates under an interactive learning setting.

2 Technical overview

In this section, we discuss some technical aspects in the derivation of our main results in Section
1.2. Our analysis to the universal learning rates by ERM is based on three new types of complexity
structures named the eluder sequence, the star-eluder sequence and the VC-eluder sequence. More
details can be found in Sections 3-4 and all technical proofs are deferred to Appendix D.
Definition 3 (Realizable data). Let H be a concept class on an instance space X , we say that a
(finite or infinite) data sequence {(x1, y1), (x2, y2), . . .} ∈ (X ×{0, 1})∞ is realizable (with respect
to H), if for every n ∈ N, there exists hn ∈ H such that hn(xi) = yi, for all i ∈ [n].
Definition 4 (Star number). Let X be an instance space and H be a concept class. We define
the region of disagreement of H as DIS(H) := {x ∈ X : ∃h, g ∈ H s.t. h(x) ̸= g(x)}. Let h
be a classifier, the star number of h, denoted by sh(H) or sh for short, is defined to be the largest
integer s such that there exist distinct points x1, . . . , xs ∈ X and concepts h1, . . . , hs ∈ H satisfying
DIS({h, hi}) ∩ {x1, . . . , xs} = {xi}, for every 1 ≤ i ≤ s. (We say {x1, . . . , xs} is a star set of H
centered at h.) If no such largest integer s exists, we define sh = ∞. The star number of H, denoted
by s(H) or sH, is defined to be the maximum possible cardinality of a star set of H, or sH = ∞ if no
such maximum exists.
Remark 4. From this definition, it is clear that the star number sH of H satisfies sH ≥ VC(H).
Indeed, any set {x1, . . . , xd} that shattered by H is also a star set of H based on the following
reasoning: Since {x1, . . . , xd} is shattered by H, there exists h ∈ H such that h(x1) = · · · =
h(xd) = 0. Moreover, for any i ∈ [d], there exists hi ∈ H satisfying hi(xi) = 1 and hi(xj) = 0 for
all j ̸= i. An immediate implication is that a VC-eluder sequence is always a star-eluder sequence
(see Definition 6 and Definition 7 below).

With these basic definitions in hand, we next define the three aforementioned sequences:
Definition 5 (Eluder sequence). Let H be a concept class, we say that H has an eluder sequence
{(x1, y1), . . . , (xd, yd)}, if it is realizable and for every integer k ∈ [d], there exists hk ∈ H such that
hk(xi) = yi for all i < k and hk(xk) ̸= yk. The eluder dimension of H, denoted by E(H), is defined
to be the largest integer d ≥ 1 such that H has an eluder sequence {(x1, y1), (x2, y2), . . . , (xd, yd)}.
If no such largest d exists, we say H has an infinite eluder sequence and define E(H) = ∞. We say
an infinite eluder sequence {(x1, y1), (x2, y2), . . .} is centered at h, if h(xi) = yi for all i ∈ N.
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Remark 5. It has been proved that max{sH, log (LD(H))} ≤ E(H) ≤ 4max{sH,2LD(H)} (Li et al.,
2022, Thm.8), where LD(H) is the Littlestone dimension of H. Moreover, the very recent work of
Hanneke (2024) proved that E(H) ≤ |H| ≤ 2sH·LD(H), which implies that any concept class with
finite star number and finite Littlestone dimension must be a finite class.

Before proceeding to the next two definitions, we define a sequence of integers {nk}k∈N as n1 = 0,
nk :=

(
k
2

)
for all k > 1, which satisfies nk+1 − nk = k for all k ∈ N.

Definition 6 (Star-eluder sequence). Let H be a concept class and h be a classifier. We say that H
has an infinite star-eluder sequence {(x1, y1), (x2, y2), . . .} centered at h , if it is realizable and for
every integer k ≥ 1, {xnk+1, . . . , xnk+k} is a star set of Vnk

(H) centered at h.

Definition 7 (VC-eluder sequence). Let H be a concept class and h be a classifier. We say that
H has an infinite VC-eluder sequence {(x1, y1), (x2, y2), . . .} centered at h , if it is realizable and
labelled by h, and for every integer k ≥ 1, {xnk+1, . . . , xnk+k} is a shattered set of Vnk

(H).

Remark 6. In the definitions of eluder sequence and VC-eluder sequence, “{(x1, y1), (x2, y2), . . .}
centered at h" simply means the sequence is labelled by h. However, the words “centered at" in the
definition of star-eluder sequence is more meaningful. In this paper, we give them a uniform name in
order to make Theorem 2 look consistent.

Remark 7. An infinite star-eluder (VC-eluder) sequence requires the version space to keep on having
star (shattered) sets with infinitely increasing sizes. If the size cannot grow infinitely, the largest
possible size of the star (shattered) set is called the star-eluder (VC-eluder) dimension (Definition 9),
which plays an important role in our fine-grained analysis (Appendix C). To distinguish the notion
of star-eluder (VC-eluder) sequence here from the d-star-eluder (d-VC-eluder) sequence defined in
Appendix C, we may call the construction in Definition 6 an infinite strong star-eluder sequence, and
the construction in Definition 7 an infinite strong VC-eluder sequence.

Proof Sketch of Theorem 1 and 2. The proof of Theorem 1 is devided into two parts (Section 3 and
Section 4). Roughly speaking, for each equivalence therein, we first characterize the exact universal
rates by ERM via the three aforementioned sequences (see Theorems 3-6 in Section 3). We have
to prove a lower bound together with an upper bound for the sufficiency since we are showing the
“exact" universal rates. The lower bound is established by constructing a realizable distribution on
the existent infinite sequence, and the derivation of upper bound is strongly related to the classical
PAC theory. To prove the necessity, we will use the method of contradiction. Then in Section 4, we
establish equivalent characterizations via those well-known complexity measures, whenever possible.
Theorem 2 is an associated target-dependent version, and is directly proved by those corresponding
lemmas in Section 3. The complete proof structure for Theorem 1 can be summarized as follow:

For the first bullet, we start by proving that H is universally learnable with exact rate e−n if and
only if H does not have an infinite eluder sequence (Theorem 3), and then we extend the equivalence
by showing that H does not have an infinite eluder sequence if and only if H is a finite class (Lemma
8). For the second bullet, we prove that H is universally learnable with exact rate 1/n if and only
if H has an infinite eluder sequence but does not have an infinite star-eluder sequence (Theorem
4). Then the desired equivalence follows immediately from the first bullet. For the third bullet,
we prove that H is universally learnable with exact rate log (n)/n if and only if H has an infinite
star-eluder sequence but does not have an infinite VC-eluder sequence (Theorem 5). The desired
equivalence comes in conjunction with the claim that H has an infinite VC-eluder sequence if and
only if H has infinite VC dimension (Lemma 9). Finally, for the last bullet, it suffices to prove that
H requires at least arbitrarily slow rates to be universally learned by ERM if and only if H has an
infinite VC-eluder sequence (Theorem 6).

3 Exact universal rates

Sections 3 and 4 of this paper are devoted to the proof ideas of Theorems 1 and 2 with further details.
In this section, we give a complete characterization of the four possible exact universal rates by
ERM (e−n, 1/n, log (n)/n and arbitrarily slow rates) via the existence/nonexistence of the three
combinatorial sequences defined in Section 2. For each of the following “if and only if" results
(Theorems 3-6), we are required to prove both the sufficiency and the necessity. The sufficiency
consists of both an upper bound and a lower bound since we are proving the exact universal rates. The
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necessity also follows simply by the method of contradiction, given the rates are exact. All technical
proofs are deferred to Appendix D.1.

3.1 Exponential rates

Theorem 3. H is universally learnable by ERM with exact rate e−n if and only if H does not have
an infinite eluder sequence.

The lower bound for sufficiency is straightforward and was established by Schuurmans (1997).

Lemma 1 (e−n lower bound). Given a concept class H, for any learning algorithm ĥn, there exists
a realizable distribution P with respect to H such that E[erP (ĥn)] ≥ 2−(n+2) for infinitely many n,
which implies that H is not universally learnable at rate faster than exponential rate e−n.
Remark 8. Note that this lower bound is actually stronger than desired in a sense that it holds for
any learning algorithm (not necessarily for ERM algorithms).
Lemma 2 (e−n upper bound). If H does not have an infinite eluder sequence (centered at h∗), then
H (h∗) is universally learnable by ERM at rate e−n.

Proof of Theorem 3. The sufficiency follows directly from the lower bound in Lemma 1 together
with the upper bound in Lemma 2. Furthermore, Lemma 3 in Section 3.2 proves that the existence of
an infinite eluder sequence leads to a linear lower bound of the ERM universal rates. Therefore, the
necessity follows by using the method of contradiction.

3.2 Linear rates

Theorem 4. H is universally learnable by ERM with exact rate 1/n if and only if H has an infinite
eluder sequence but does not have an infinite star-eluder sequence.
Lemma 3 (1/n lower bound). If H has an infinite eluder sequence centered at h∗, then h∗ is not
universally learnable by ERM at rate faster than 1/n.
Lemma 4 (1/n upper bound). If H does not have an infinite star-eluder sequence (centered at h∗),
then H (h∗) is universally learnable by ERM at rate 1/n.

Proof of Theorem 4. To prove the sufficiency, on one hand, the existence of an infinite eluder se-
quence implies a linear lower bound based on Lemma 3. On the other hand, if H does not have an
infinite star-eluder sequence, Lemma 4 yields a linear upper bound. The necessity can be proved by
the method of contradiction. Concretely, if either of the two conditions fail, the universal rates will be
either e−n or at least log (n)/n, based on Lemma 2 in Section 3.1 and Lemma 5 in Section 3.3.

3.3 log (n)/n rates

Theorem 5. H is universally learnable by ERM with exact rate log (n)/n if and only if H has an
infinite star-eluder sequence but does not have an infinite VC-eluder sequence.
Lemma 5 (log (n)/n lower bound). If H has an infinite star-eluder sequence centered at h∗, then
h∗ is not universally learnable by ERM at rate faster than log (n)/n.
Remark 9. Note that the conclusion in Remark 5 explains why the intersection of “infinite Littlestone
classes" and “classes with finite star number" is empty in Figure 1. However, we mention in Remark
3 that infinite star number does not guarantee an infinite star-eluder sequence (see Appendix B.3 for
details). Hence, Remark 5 cannot explain why the intersection of “infinite Littlestone classes" and

“classes that are learnable at linear rate by ERM" is also empty. To address this problem, we give out
the following additional result:
Proposition 1. Any infinite concept class H has either an infinite star-eluder sequence or infinite
Littlestone dimension.
Lemma 6 (log (n)/n upper bound). If H does not have an infinite VC-eluder sequence (centered at
h∗), then H (h∗) is universally learnable by ERM at log (n)/n rate.

Proof of Theorem 5. To prove the sufficiency, on one hand, if H has an infinite star-eluder sequence,
the universal rates have a log (n)/n lower bound based on Lemma 5. On the other hand, if H does not
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have an infinite VC-eluder sequence, then Lemma 6 yields a log (n)/n upper bound. The necessity
can be proved using the method of contradiction based on Lemma 4 in Section 3.2 and Lemma 7 in
Section 3.4 below.

3.4 Arbitrarily slow rates

Theorem 6. H requires at least arbitrarily slow rates to be learned by ERM if and only if H has an
infinite VC-eluder sequence.

Proof of Theorem 6. Given the necessity proved by Lemma 6 in Section 3.3, it suffices to prove the
sufficiency, which is completed by the following Lemma 7.

Lemma 7 (Arbitrarily slow rates). If H has an infinite VC-eluder sequence centered at h∗, then h∗

requires at least arbitrarily slow rates to be universally learned by ERM.

4 Equivalent characterizations

In Section 3, it has been shown that the eluder sequence, the star-eluder sequence and the VC-eluder
sequence are the correct characterizations of the exact universal learning rates by ERM. However, the
definitions to them are somewhat non-intuitive. Therefore, in this section, we aim to build connections
between these combinatorial sequences and some well-understood complexity measures, which will
then give rise to our Theorem 1. Concretely, we have the following two equivalences (see Appendix
D.2 for their complete proofs).

Lemma 8. H has an infinite eluder sequence if and only if |H| = ∞.

Lemma 9. H has an infinite VC-eluder sequence if and only if VC(H) = ∞.

Maybe surprisingly, unlike the above two equivalences, sH = ∞ is inequivalent to the existence of
an infinite star-eluder sequence. Indeed, it is straightforward from definition that if H has an infinite
star-eluder sequence, then it must have sH = ∞. However, the converse is not true.

Proposition 2. sH = ∞ if H has an infinite star-eluder sequence. Moreover, there exist concept
classes H with sH = ∞ but does not have any infinite star-eluder sequence.

Remark 10. Based on the results in Section 3, the proposition essentially states that the gap between
1/n and log (n)/n exact universal rates by ERM is not characterized by the star number sH. We
wonder whether there is some other simple combinatorial quantity that is determinant to this gap,
which would be an valuable direction for future work.

Why is the case of star-eluder sequence different from the other two structures? We suspect that such
a distinction may arise from the following: unlike the eluder sequence and the VC-eluder sequence,
the centered concept of a star-eluder sequence is much more meaningful (see Remark 6). Concretely,
within its definition, the set of the following k points is not only required to be a star set of the version
space Vnk

(H), but is required to be centered at the same labelling target. This intuitively implies
that there might exists a class such that for arbitrarily large integer k, it can witness a star set of size
k, but with a k-specified center (for different k). Such a class (e.g. Examples 19, 20 in Appendix
B.3) does have infinite star number but will not have an infinite star-eluder sequence. Indeed, the
relations between those star-related notions (star number, star-eluder dimension, star set and star
eluder sequence) turn out to be more complicated than expected, and we leave it to Appendix B.3.

5 Appendix Summary

Due to page limitation, we leave some interesting results as well as all the proofs to Appendices,
which are briefly summarized below. Given extra required notations and definitions in Appendix A
and related technical lemmas in Appendix E, the main body of supplements consists of three parts,
namely, Appendices B, C and D.

Specifically, Appendix B contains three sub-parts. In Appendix B.1, we provide direct mathematical
analysis (without using our characterization in Section 1.2) for those basic examples in Section 1.1.
In Appendix B.2, we provide details of examples that appeared in Section 1.2. These examples are
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carefully constructed, providing evidence that ERM algorithms cannot guarantee the optimal universal
rates (Bousquet et al., 2021). In Appendix B.3, we construct nuanced examples to distinguish between
the following notions: star number sH (Definition 4), the star-eluder dimension SE(H) (Definition
9), star set (Definition 4) and star eluder sequence (Definition 6). These examples will convince
the readers why our characterization in Theorem 1 uses the star eluder sequence rather than the star
number (see our discussions in Remarks 3 and 10).

Appendix C presents a fine-grained analysis of the asymptotic rate of decay of the universal learning
curves by ERM, whenever possible. This will be an analogy to the optimal fine-grained universal
learning curves studied in Bousquet et al. (2023). Concretely, we provide a characterization of
sharp distribution-free constant factors of the ERM universal rates. Our characterization of these
constant factors is based on two newly-developed combinatorial dimensions, namely, the star-eluder
dimension (or SE dimension) and the VC-eluder dimension (or VCE dimension) (Definition 9). We
say “whenever possible" because distribution-free constants are unavailable for certain cases (see our
discussion in Remark 16). Such a characterization can be considered as a refinement to the classical
PAC theory, in a sense that it is sometimes better but only asymptotically-valid.

Finally, Appendix D includes all the missing proofs for the theorems and lemmas that have shown up
in previous sections.

6 Conclusion and Future Directions

In this paper, we reveal a fundamental tetrachotomy of the universal learning rates by the ERM
principle and provide a complete characterization of the exact universal rates via certain appropriate
complexity structures. Additionally, by introducing new combinatorial dimensions, we are able to
characterize sharp asymptotically-valid constant factors for these rates, whenever possible. While only
the realizable case is considered in this paper, we believe analogous results can be extend to different
learning scenarios such as the agnostic case. Generalizing the results from binary classification
to multiclass classification would be another valuable future direction. Moreover, since this paper
considers the “worst-case" ERM in its nature, studying the universal rates of the “best-case" ERM is
also an interesting problem which we leave for future work.
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A Preliminaries

Notation 1. We denote by N the set of all natural numbers {0, 1, . . .}. For any n ∈ N, we denote
[n] := {1, . . . , n}.
Notation 2. For any x > 0, we redefine ln (x) := ln (x ∨ e) and log (x) := log2 (x ∨ 2). Moreover,
for correctness, we also adopt the conventions that ln (0) = log (0) = 0, 0 ln (∞) = 0 log (∞) = 0.
After then, it is reasonable to define 0 ln (0/0) = 0 log (0/0) = 0.
Notation 3. For any R-valued functions f and g, we write f(x) ≲ g(x) if there exists a finite
numerical constant c > 0 such that f(x) ≤ c · g(x) for all x ∈ R. For example, ln (x) ≲ log (x) and
log (x) ≲ ln (x).
Notation 4. Let X be an instance space, we write hall-0’s and hall-1’s to denote the hypotheses that
output all zero labels and all one labels, respectively, that is, hall-0’s(x) = 0, hall-1’s(x) = 1,∀x ∈ X .
Notation 5. For an infinite union of spaces (X1 ∪ X2 ∪ · · · ) and an integer k, we write X<k to
denote the finite union of prefix (X1 ∪ · · · ∪Xk−1) and write X>k to denote the infinite union of suffix
(Xk+1 ∪ Xk+2 ∪ · · · ).
Definition 8 (Empirical risk minimization). Let H be a concept class on an instance space X . For
every n ∈ N, let Sn := {(xi, yi)}ni=1 ∈ (X × {0, 1})n be a set of samples. A learning algorithm
that outputs {ĥn}n∈N is called an Empirical Risk Minimization (ERM) algorithm, if it satisfies
ĥn ∈ argminh∈H êrSn(h) := argminh∈H{ 1

n

∑n
i=1 1(h(xi) ̸= yi)} for all n ∈ N, where êrSn(ĥn)

is called the empirical error rate of ĥn on Sn. It is clear that êrSn
(ĥn) = 0 when P ∈ RE(H).

B Detailed examples

In this appendix section, we provide further examples. Specifically, in Appendix B.1, we present
direct analysis (without using our newly-developed characterization) of each example illustrated
in Section 1.1. The aim of the examples in Appendix B.2 is to reveal that ERM algorithms can
sometimes be optimal but sometimes not in a universal learning framework, and compare their
performance with the optimal universal learning algorithms. Finally, we also provide additional
examples related to the star number in Appendix B.3 as complements to Proposition 2 in Section 4.

B.1 Details of examples in Section 1.1

We provide direct analysis to the examples illustrated in Section 1.1 without using the characterization
in Theorem 1. Concretely, Examples 8 and 9 illustrate scenarios where linear universal rates occur.
Example 10 specifies a case where universal rate matches uniform rate by ERM as log (n)/n.
Example 11 specifies a case where extremely fast universal learning is achievable, but where some
bad ERM algorithms can give rise to arbitrarily slow rates.
Example 7 (Example 1 restated). Any finite class H is universally learnable at exponential rate by
ERM. To show this, for any realizable distribution P with respect to H, we have

E
[
erP (ĥn)

]
≤ P (∃h ∈ H : erP (h) > 0, êrSn

(h) = 0)

union bound
≤

∑
h∈H:erP (h)>0

P (êrSn(h) = 0)

=
∑

h∈H:erP (h)>0

(1− erP (h))n

≤ |H| ·
(
1− min

h∈H:erP (h)>0
erP (h)

)n

1 − t ≤ e−t

≤ |H| · exp
{
−
(

min
h∈H:erP (h)>0

erP (h)
)
· n
}
.

Example 8 (Example 2 restated). Let Hthresh,N := {ht : t ∈ N} be the class of all threshold
classifiers on the space of natural numbers defined by ht(x) := 1(x ≥ t). Hthresh,N is universally
learnable at exponential rate since this concept class does not have an infinite Littlestone tree
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(Bousquet et al., 2021). In the following part, we show that the worst-case ERM cannot achieve such
exponential rate, but has a rate 1/n.

Let ht∗ ∈ Hthresh,N be the target hypothesis. Given a dataset Sn, let ht̂ = ERM(Sn) be the output
of an ERM algorithm. For any realizable distribution P satisfying P{(t, 0)} = 1 for all t < t∗ and
P{(t, 1)} = 1 for all t ≥ t∗, we define

tl := max {t < t∗ : P (t) > 0} .

According to the definition of threshold classifiers, if the dataset Sn contains at least a copy of both tl
and t∗, then erP (ht̂) = 0. Therefore, we have

E [erP (ht̂)] ≤ P (erP (ht̂) > 0) ≤ (1− P (t∗))n + (1− P (tl))
n.

Note that for any ϵ ∈ (0, 1), 1− ϵ ≤ e−ϵ, it follows immediately that

E [erP (ht̂)] ≤ (1− P (t∗))n + (1− P (tl))
n ≤ e−nP (t∗) + e−nP (tl) ≤ 2e−n·min{P (t∗),P (tl)}.

However, let us consider a distribution P satisfying P{(t, 0)} = 2−t and P{(t, 1)} = 0 for all t ∈ N.
Note that P is also realizable with respect to Hthresh,N according to the definition, that is

inf
h∈Hthresh,N

erP (h) = inf
t∈N

erP (ht) = inf
t∈N

2−t = 0.

Given a dataset Sn := {(xi, yi)}ni=1 ∼ Pn, let tn := maxi∈[n] xi be the largest point in the dataset,
it is straightforward that the worst-case ERM outputs h

t̂n+1
, and we have that

E
[
erP

(
h
t̂n+1

)]
=
∑
t≥1

2−t−1 · P
(
max
i∈[n]

xi = t

)
=
∑
t≥1

2−t−1
[(
1− 2−t

)n −
(
1− 2−(t−1)

)n]
.

On one hand, we can lower bound the above infinite series by∑
t≥1

2−t−1
[(
1− 2−t

)n −
(
1− 2−(t−1)

)n]

≥
⌊logn⌋∑
t=1

2−t−1
[(
1− 2−t

)n −
(
1− 2−(t−1)

)n]

≥ 1

2n

⌊logn⌋∑
t=1

[(
1− 2−t

)n −
(
1− 2−(t−1)

)n]
≥ 1

2n

(
1− 2

n

)n

≥ 1

18n
, for infinitely many n.

This implies that Hthresh,N is not learnable by ERM at rate faster than 1/n. On the other hand, we
have the following upper bound for all n:∑
t≥1

2−t−1
[(
1− 2−t

)n −
(
1− 2−(t−1)

)n]
≤
∑
t≥1

2−t
(
1− 2−t

)n ≤
∫ 1

0

ϵ(1− ϵ)ndϵ =
1

n+ 1
,

which implies that Hthresh,N is indeed learnable by ERM at linear rate 1/n. In conclusion, Hthresh,N is
universally learnable by ERM with exact 1/n rate.
Example 9 (Threshold classifier on R). This example serves as a complement to Example 8.
Here, we show that ERM algorithms can sometimes be optimal for universal learning. Specifically,
let Hthresh,R := {ht : t ∈ R} be the class of all threshold classifiers on the real line defined by
ht(x) := 1(x ≥ t),∀x ∈ R. It has been shown that Hthresh,R is universally learnable with optimal
linear rate (Schuurmans, 1997).

To show that Hthresh,R is also universally learnable with exact linear rate by ERM, we only need to
prove an upper bound. To this end, let ht∗ ∈ Hthresh,R be the target hypothesis. For any realizable
distribution P satisfying P{(t, 0)} = 1 for all t < t∗ and P{(t, 1)} = 1 for all t ≥ t∗, a dataset
Sn and ϵ ∈ (0, 1), let ht̂ = ERM(Sn) be the output of an ERM algorithm. Now we define A and B
be the minimal regions left and right to t∗ ∈ R such that P(A) = P(B) = ϵ. If at least one of A
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and B does not contain any sample, then the worst-case ERM can output ht̂ ∈ Hthresh,R such that
erP (ht̂) ≥ ϵ. Therefore, it follows that

E [erP (ht̂)] =

∫ 1

0

P (erP (ht̂) ≥ ϵ) dϵ ≤
∫ 1

0

2(1− ϵ)ndϵ ≤
∫ 1

0

2e−nϵdϵ ≤ 2

n
.

Note that such analysis is also applicable to the realizable distribution with the target concept hall-0’s.
Therefore, we have that Hthresh,R is universally learnable by ERM with exact rate 1/n.

Example 10 (Example 3 restated). Let X = N and define Hsingleton,N := {ht : t ∈ X} be the class
of all singletons on X , where ht(x) := 1(x = t), for all x ∈ X . It is clear that VC(Hsingleton,N) = 1.
Note that Hsingleton,N is universally learnable at exponential rate since it does not have an infinite
Littlestone tree (Actually, we have LD(Hsingleton,N) = 1). In the following part, we show that the
worst-case ERM algorithm has an exact universal rate log (n)/n.

To get the exact rate by ERM on universally learning Hsingleton,N, we consider a marginal uniform
distribution over {1, 2, . . . , 1/ϵ} with all zero labels with ϵ ∈ (0, 1), if the dataset Sn does not have
a copy of a point 1 ≤ x ≤ 1/ϵ, the worst-case ERM can label 1 at x, and thus has an error rate
erP (ĥn) ≥ ϵ. Based on the Coupon Collector’s Problem, we know that to have E[erP (ĥn)] ≤ ϵ,
we need n = Ω(ϵ−1 log(1/ϵ)). In other words, E[erP (ĥn)] ≥ Ω( logn

n ), that is, Hsingleton,N is not
universally learnable by ERM at rate faster than log (n)/n. Finally, the classical PAC theory yields
the same upper bound, and thus log (n)/n is tight.

Example 11 (Example 4 restated). Let X =
⋃

i∈N Xi be the disjoint union of finite sets with
|Xi| = 2i. For each i ∈ N, let

Hi :=
{
hS := 1S : S ⊆ Xi, |S| ≥ 2i−1

}
,

and consider the concept class H =
⋃

i∈N Hi. In the following part, we show that the worst-case
ERM can be arbitrarily slow in learning this class.

Given any rate function R(n) → 0, let {nt}t≥1 and {it}t≥1 be two strictly increasing sequences
such that {pt := 2it−2/nt,∀t ≥ 1} satisfies

{pt}t≥1 is decreasing ,
∑
t≥1

pt ≤ 1 and pt ≥ 4R(nt).

We consider any ERM algorithm with the following property: if the data Sn = {(xi, yi)}ni=1 satisfies
yi = 0 for all i ∈ [n], outputs ĥn ∈ HiTn

with

Tn := min {t : ∃h ∈ Hit s.t. h(x1) = · · · = h(xn) = 0} .

We construct the following distribution P :

P {(x, 0)} = 2−itpt, for all x ∈ Xit , t ∈ N,

where we set P{(x′
, 0)} = 1−

∑
t≥1 pt for some arbitrary choice of x

′
/∈
⋃

t∈N Xit . Since

inf
h∈H

erP (h) = inf
i∈N

inf
h∈Hi

erP (h) ≤ inf
i∈N

erP (hXi) ≤ inf
it:t∈N

erP (hXit
) = inf

it:t∈N
P {(x, 0) : x ∈ Xit} = 0,

we know that P is realizable with respect to H. Finally, we claim that the ERM defined above behave
poorly on P by showing E[erP (ĥn)] ≥ R(n) for infinitely many n. To this end, note that for a dataset
Snt

= {(xi, yi)}nt
i=1 ∼ Pnt , and for any t ∈ N, it holds

P (Tnt
≤ t) ≥ P

(∣∣{j ∈ [nt] : xj ∈ Xit}
∣∣ ≤ 2it−1

)
= P

 nt∑
j=1

1 {xj ∈ Xit} ≤ 2it−1

 ≥ 1

2
,
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where the last inequality follows from the Markov’s inequality. Therefore,

E
[
erP (ĥnt

)
]

≥ 2R(nt) · P
(

erP (ĥnt
) ≥ 2R(nt)

)
pt ≥ 4R(nt)

≥ 2R(nt) · P
(

erP (ĥnt
) ≥ 1

2
pt

)
LoFT
≥ 2R(nt) · P

(
erP (ĥnt) ≥

1

2
pt

∣∣∣Tnt ≤ t

)
P (Tnt ≤ t)

≥ 2R(nt) · P
(

erP (ĥnt
) ≥ 1

2
pTnt

∣∣∣Tnt
≤ t

)
P (Tnt

≤ t)

≥ 2R(nt) · P (Tnt ≤ t)

≥ R(nt).

B.2 Optimal universal rates versus exact universal rates by ERM

In this section, we provide evidence that ERM algorithms cannot guarantee the best achievable univer-
sal learning rates. Recall that the optimal universal learning rates and the associated characterization
have been fully understood by Bousquet et al. (2021), which we present first as follow:

Theorem 7 (Bousquet et al., 2021, Theorem 1.9). For every concept class H with |H| ≥ 3, the
following hold:

• H is universally learnable with optimal rate e−n if H does not have an infinite Littlestone
tree.

• H is universally learnable with optimal rate 1/n if H has an infinite Littlestone tree but
does not have an infinite (strong) VCL tree.

• H requires arbitrarily slow rates if H has an infinite (strong) VCL tree.

Based on our Theorem 1, to distinguish the optimal universal rates from the exact universal rates
by ERM, we have to distinguish their corresponding characterizations. Indeed, those sequences
we defined in Section 2 are strongly related to the Littlestone tree and the VCL tree in Theorem 7.
According to the definitions, it is not hard to figure out all the following relations:

• Every branch of a Littlestone tree is an eluder sequence. Hence, if H does not have an
infinite eluder sequence, then H must not have an infinite Littlestone tree, and thus can be
universally learned with optimal exponential rate. However, there exists a class H having
an infinite eluder sequence but no infinite Littlestone tree (see Example 12 below). This
implies that such a class cannot be universally learned by ERM at rate faster than 1/n, but
can be learned by some other “optimal" learning algorithms at e−n rate.

• Every branch of a (strong) VCL tree is a VC-eluder sequence, and also a star-eluder sequence.
Therefore, if H does not have an infinite star-eluder sequence, then it must not have an
infinite VCL tree, and thus can be universally learned with optimal linear rate. However,
there exists a concept class that has an infinite star-eluder sequence, but does not have an
infinite VCL tree (see Example 14 below). Furthermore, there also exists a concept class
that has an infinite star-eluder sequence, but does not even have an infinite Littlestone tree
(see Example 13 below). These two examples imply that there exist classes that can not be
universally learned by ERM at rate faster than log (n)/n, but can be learned by some other
“optimal" learning algorithms at 1/n or even e−n rates.

• Moreover, there exists a concept class that has an infinite VC-eluder sequence, but does not
have an infinite VCL tree (see Example 16 below), or even no infinite Littlestone tree (see
Example 15 below). Such examples imply that there exist classes that require arbitrarily
slow rates to be universally learned by ERM, but can be learned by some other “optimal"
learning algorithms at 1/n or even e−n rates.

To summarize, we are able to illustrate all the distinctions as in the following table.
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Optimal rate Exact rate by ERM Case Example
e−n 1/n infinite eluder sequence but no infinite Littlestone tree Example 12
e−n log (n)/n infinite star-eluder sequence but no infinite Littlestone tree Example 13
e−n arbitrarily slow infinite VC-eluder sequence but no infinite Littlestone tree Example 15
1/n log (n)/n infinite star-eluder sequence but no infinite VCL tree Example 14
1/n arbitrarily slow infinite VC-eluder sequence but no infinite VCL tree Example 16

Example 12 (Infinite eluder sequence but no infinite Littlestone tree). A simple example is given
in Example 8, where H = Hthresh,N is the class of all threshold classifiers on N. Note that H does not
have an infinite Littlestone tree, but any infinite sequence {(x1, 0), (x2, 0), . . .} with x1 < x2 < . . .
is an infinite eluder sequence of H centered at hall-0’s. In particular, hall-0’s is the only realizable
target that allows an infinite eluder sequence. In other words, for H, all the realizable distribution
with target concept h∗ ∈ H is universally learnable by ERM at exponential rate, except that special
one hall-0’s, which matches our analysis within Example 8.
Example 13 (Infinite star-eluder sequence but no infinite Littlestone tree). Let X :=

⋃
k∈N Xk

be the disjoint union of finite sets with |Xk| = k and H :=
⋃

k≥1 Hk, where Hk := {1x : x ∈ Xk}.
Note that this is exactly singletons on an infinite domain and we have the following hold:

1. H does not have an infinite Littlestone tree since for any root x ∈ X , the subclass {h ∈ H :
h(x) = 1} has only size 1, and thus the corresponding subtree of the Littlestone tree must
be finite.

2. H has an infinite star-eluder sequence. Indeed, any infinite sequence {(x1, 0), (x2, 0), . . .}
with xk ∈ Xk for all k ≥ 1, is an infinite star-eluder sequence. To see this, note that
for any k ∈ N, and any nk, the version space Vnk

(H) contains
⋃

j>nk
Hj . Therefore,

{(xnk+1, 0), (xnk+2, 0), . . . , (xnk+k, 0)} is a star set of Vnk
(H) centered at hall-0’s, wit-

nessed by concepts {1{xnk+1},1{xnk+2}, . . . ,1{xnk+k}}.

Example 14 (Infinite star-eluder sequence but no infinite VCL tree). Let X1 and H1 be defined
in Example 13, let X2 = R and H2 = Hthresh,R be the class of all threshold classifiers on R. Note
that H2 has an infinite Littlestone tree. Now we define X := X1 ∪ X2 and H := H1 ∪H2, and have
the following hold:

1. H does not have an infinite VCL tree since for any fixed root x ∈ X , the subclass {h ∈ H :
h(x) = 1} has a VC dimension only 1, and thus the corresponding subtree of the VCL tree
must be finite.

2. H has an infinite star-eluder sequence (see Example 13).
Example 15 (Infinite VC-eluder sequence but no infinite Littlestone tree). Let X :=

⋃
k∈N Xk

be the disjoint union of finite sets with |Xk| = k and H :=
⋃

k≥1 Hk, where Hk := {1S : S ⊆ Xk}.
We have the following hold:

1. H does not have an infinite Littlestone tree since for any root x ∈ X , the subclass {h ∈ H :
h(x) = 1} is finite, and thus the corresponding subtree of the Littlestone tree must be finite.

2. H has an infinite VC-eluder sequence. Indeed, any sequence {(x1, 0), (x2, 0), (x3, 0), . . .}
with xnk+1, . . . , xnk+k ∈ Xk for all k ≥ 1, is an infinite VC-eluder sequence. Furthermore,
it has been argued that VC(H) = ∞ (Ex.2.3 Bousquet et al., 2021), which is consistent with
our Lemma 9 in Section 4.

Example 16 (Infinite VC-eluder sequence but no infinite VCL tree). Let X1 and H1 be defined in
Example 15, let X2 = R and H2 = Hthresh,R be the class of all threshold classifiers on R. Note that
H2 has an infinite Littlestone tree. Now we define X := X1 ∪ X2 and H := H1 ∪H2, and have the
following hold:

1. H does not have an infinite VCL tree since for any fixed root x ∈ X , the subclass {h ∈
H : h(x) = 1} has a bounded VC dimension, and thus the corresponding subtree of the
VCL-tree must be finite.

2. H has an infinite VC-eluder sequence (see Example 15).

B.3 Star-related notions

In this section, we provide examples to distinguish between the following star-related notions: star
number sH (Definition 4), the star-eluder dimension SE(H) (Definition 9), star set (Definition 4) and
star eluder sequence (Definition 6).
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In particular, Example 17 reveals that having an infinite star number of h∗ does not guarantee that H
has an infinite star-eluder sequence centered at the same target h∗. Note that if sH = ∞ always yields
an infinite star set, then we can simply choose this infinite star set to be an infinite star-eluder sequence.
Unfortunately, Example 18 fails the conjecture. Furthermore, Proposition 2 in Section 4 is convinced
by Example 19. Finally, Example 20 gives an instance that SE(H) = ∞ and infinite star-eluder
sequence are not equivalent as well. For comparison, we recall that E(H) = ∞ is equivalent to an
infinite eluder sequence, and VCE(H) = ∞ is equivalent to an infinite VC-eluder sequence (see a
discussion in Appendix C).

Example 17 (Infinite star number and infinite star-eluder sequence with different centers). Let
us recall Example 3, where Hsingleton,N is the class of singletons on natural numbers. According to
the analysis in Example 13, we know that Hsingleton,N has an infinite star number of hall-0’s, and also
an infinite star-eluder sequence centered at hall-0’s.

Now we slightly change the setting: Let X :=
⋃

k∈N Xk be the disjoint union of finite sets with
|Xk| = k (one may simply assume X := N). Denote Xk := {xk,1, . . . , xk,k} and define hk,i(x) :=
1{x = xk,i or x /∈ Xk}, for all 1 ≤ i ≤ k. We let H := {hk,i, k ∈ N, 1 ≤ i ≤ k}, and have the
following hold:

1. shall-0’s = ∞: Given arbitrarily large integer k, {(xk,1, 0), (xk,2, 0), . . . , (xk,k, 0)} is a star
set centered at hall-0’s, witnessed by hypotheses {hk,i, 1 ≤ i ≤ k}.

2. shall-1’s = ∞: Given arbitrarily large integer k, {(x1,1, 1), (x2,1, 1), . . . , (xk,1, 1)} is a star
set centered at hall-1’s, witnessed by hypotheses {hi,2, 1 ≤ i ≤ k}.

3. H has an infinite star-eluder sequence centered at hall-1’s: Indeed, {(x1,1, 1), (x2,1, 1), . . .}
is an example of infinite star-eluder sequence.

4. H does not have an infinite star-eluder sequence centered at hall-0’s.

Example 18 (Infinite star number but no infinite star set). We slightly change the setting in
Example 17: Let X :=

⋃
k∈N Xk be the disjoint union of finite sets with |Xk| = k (one may again

simply assume X := N). Denote Xk := {xk,1, . . . , xk,k}, let hk,i(x) := 1{x = xk,i or x ∈ X>k},
for all 1 ≤ i ≤ k and k ∈ N, and let H := {hk,i, 1 ≤ i ≤ k, k ∈ N}. We have the following hold:

1. sH = ∞ since H has a star set of arbitrarily large finite size.
2. H does not have an infinite star set.

It is worthwhile to mention that in this example, H does have an infinite star-eluder sequence
{(x1,1, 0), (x2,1, 0), (x2,2, 0), . . .} centered at hall-0’s. Hence, an infinite star set is an infinite star-
eluder sequence, but not the only possibility.

Example 19 (Infinite star number but no infinite star-eluder sequence). We slightly change the
setting in Example 18 as follow: Let X :=

⋃
k∈N Xk be the disjoint union of finite sets with |Xk| = k

(one may again simply assume X := N). Denote Xk := {xk,1, . . . , xk,k}, let hk,i(x) := 1{x =
xk,i or x ∈ X<k}, for all 1 ≤ i ≤ k and k ∈ N, and let H := {hk,i, 1 ≤ i ≤ k, k ∈ N}. Then the
following hold:

1. sH = ∞ since H has a star set of arbitrarily large finite size.
2. H does not have an infinite star-eluder sequence, and SE(H) < ∞.

Example 20 (Infinite star-eluder dimension but no infinite star-eluder sequence). For any
k ∈ N, let Xk :=

⋃
t∈N Xk,t be disjoint union of finite sets with |Xk,t| = k for all t ∈ N. Let

X :=
⋃

k∈N Xk also with disjoint subspaces {Xk}k∈N. For notation simplicity, let us denote
Xk,t := {xk,t,1, . . . , xk,t,k} for all k, t ∈ N. Now we can define a hypothesis class as follow: let
hk,t,j(x) := 1{(x = xk,t,j) ∨ (x ∈ Xk,>t) ∨ (x ∈ X<k)}, for all k, t ∈ N and 1 ≤ j ≤ k, and let
H := {hk,t,j , 1 ≤ j ≤ k, k, t ∈ N}. We have the following hold:

1. SE(H) = ∞ since for arbitrarily large k ∈ N, H has an infinite k-star-eluder sequence Xk

with all labels 0.
2. H does not have an infinite (strong) star-eluder sequence.
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Remark 11. Altogether, we have the follow relations

H has an infinite star set

��

// SE(H) = ∞

��

Ex.20
R

��

Ex.20?

��

H has an infinite star-eluder sequence //

==

Ex.18�

<<

sH = ∞

Ex.19
?

ee

Ex.18,

hh

Ex.19�

^^

Remarkably, a complete theory to the relations between these notions is still lacking here, which
might be of independent interests.

C Fine-grained analysis

In this appendix section, we provide a fine-grained analysis of the asymptotic rate of decay of
the universal learning curves by ERM, whenever possible. This will be an analogy to the optimal
fine-grained universal learning curves studied in Bousquet et al. (2023). Our characterization of the
sharp distribution-free constant factors is based on two newly-introduced combinatorial dimensions
named the star-eluder dimension or SE dimension and the VC-eluder dimension or VCE dimension.
We present their formal definitions first.
Definition 9 (Star(VC)-eluder dimension). Let H be a concept class, we say H has an infinite

• d-star-eluder sequence {(x1, y1), (x2, y2), . . .} centered at h, if it is realizable and for ev-
ery k ∈ N, {xkd+1, . . . , xkd+d} is a star set of Vkd(H) centered at h. Furthermore, the
star-eluder dimension of H, denoted by SE(H), is defined to be the largest integer d ≥ 0
such that H has an infinite d-star-eluder sequence. If H does not have any infinite 1-star-
eluder sequence, we define SE(H) = 0. If for arbitrarily large integer d, H has an infinite
d-star-eluder sequence, we define SE(H) = ∞.

• d-VC-eluder sequence {(x1, y1), (x2, y2), . . .} centered at h, if it is realizable, and for ev-
ery k ∈ N, h(xk) = yk and {xkd+1, . . . , xkd+d} is a shattered set of Vkd(H). Furthermore,
the VC-eluder dimension of H, denoted by VCE(H), is defined to be the largest integer
d ≥ 0 such that H has an infinite d-VC-eluder sequence. If H does not have any infinite
1-VC-eluder sequence, we define VCE(H) = 0. If for arbitrarily large integer d, H has an
infinite d-VC-eluder sequence, we define VCE(H) = ∞.

Remark 12. We recall that the eluder dimension E(H) in Definition 5 represents the length of the
longest eluder sequence that exists in H. Indeed, an eluder sequence is exactly one branch of a
Littlestone tree, and thus E(H) < ∞ implies that H has no infinite Littlestone tree. The converse is
not true, because H may have a finite Littlestone tree with some of the branches being infinitely long
(see Example 12). Similarly, the star-eluder dimension SE(H) and the VC-eluder dimension VCE(H)
here are also strongly related to certain combinatorial structures that have been studied before. In
particular for VCE(H), one may refer to the concepts of the (strong) VCL tree, d-VCL tree and the
VCL dimension introduced by Bousquet et al. (2021, 2023). Indeed, an infinite (strong) VC-eluder
sequence is exactly one branch of a strong VCL tree, and an infinite d-VC-eluder sequence is exactly
one branch of an infinite d-VCL tree. Since an infinite 1-VCL-tree is exactly an infinite Littlestone
tree, an infinite 1-VC-eluder sequence is thus exactly an infinite eluder sequence. Moreover, recall
that VCL(H) = 0 implies that H does not have an infinite Littlestone tree, and similarly, here we
have VCE(H) = 0 implies that H does not have an infinite eluder sequence.

Remark 13. For any concept class H, the following hold:

1. E(H) ≥ SE(H) ≥ VCE(H).
2. VCE(H) ≥ 1 ⇐⇒ SE(H) ≥ 1 ⇐⇒ E(H) = ∞.
3. VCE(H) = 0 ⇐⇒ SE(H) = 0 ⇐⇒ E(H) < ∞.
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We then state the formal definition of the fine-grained universal rates by ERM.

Definition 10 (Fine-grained universal rates by ERM). Let H be a concept class and R(n) → 0 be
a distribution-free rate function. We say

• H is universally learnable at fine-grained rate R by ERM, if for every distribution P ∈
RE(H), there exists a distribution-dependent rate λ(n) = o (R(n)) such that for every ERM
algorithm, E[erP (ĥn)] ≤ R(n) + λ(n), for all n ∈ N.

• H is not universally learnable at fine-grained rate faster than R by ERM, if there exists a
distribution P ∈ RE(H) such that there is an ERM algorithm satisfying E[erP (ĥn)] ≥ R(n),
for infinitely many n ∈ N.

• H is universally learnable with exact fine-grained rate R by ERM, if H is universally learn-
able at fine-grained rate R by ERM, and is not universally learnable at fine-grained rate
faster than R by ERM.

Note that the crucial difference between this definition and Definition 2 is that here R(n) is indepen-
dent of the data distribution P . In other words, the fine-grained rates provide optimal distribution-free
upper and lower envelopes of the universal learning curves up to numerical constant factors.

Remark 14. Definition 10 describes special cases of Definition 2 in the following sense: If H is
universally learnable at fine-grained rate (no faster than) R by ERM, then it is universally learnable
at rate (no faster than) R by ERM as well. Briefly speaking, the fine-grained analysis aims to find
the correct characterization that captures the optimal distribution-free upper envelope and lower
envelope of all the distribution-dependent learning curves, tight up to numerical constant factors.

We now turn to state our results of fine-grained universal rates by ERM. All technical aspects of the
proofs are deferred to Appendix D.3.

Theorem 8 (Fine-grained learning rates). For every class H with |H| ≥ 3, the following hold:

• If VCE(H) < ∞, then H is universally learnable at fine-grained rate VCE(H) logn
n , and is

not universally learnable at fine-grained rate faster than VCE(H)
n , by ERM.

• If SE(H) < ∞, then H is universally learnable at fine-grained rate VCE(H)
n log ( SE(H)

VCE(H) ),

but is not universally learnable at fine-grained rate faster than VCE(H)+log (SE(H))
n , by ERM.

or equivalently, there exist finite numerical constants α, β > 0 such that

• If VCE(H) < ∞, then

E
[
erP (ĥn)

]
≥ α · VCE(H)

n
, for infinitely many n ∈ N, (1)

E
[
erP (ĥn)

]
≤ β · VCE(H) log n

n
+ 2−⌊n/2κ⌋, ∀n ∈ N, (2)

where κ = κ(P ) is a distribution-dependent constant.
• If SE(H) < ∞, then

E
[
erP (ĥn)

]
≥ α · VCE(H) + log (SE(H))

n
, for infinitely many n ∈ N, (3)

E
[
erP (ĥn)

]
≤ β · VCE(H)

n
log

(
SE(H)

VCE(H)

)
+ 2−⌊n/2κ̂⌋, ∀n ∈ N, (4)

where κ̂ = κ̂(P ) is a distribution-dependent constant.

Remark 15. Our proofs use α = 1/20 and β = 160.

Remark 16. When SE(H) = VCE(H) = 0, E(H) < ∞, or SE(H) = VCE(H) = 1, E(H) = ∞,
we still have the bounds (3) and (4) since we define log (0) = 0, 0 log (0/0) = 0 and log (x) :=
log (x ∨ 2) for any x > 0. Moreover, we remark that neither VCE(H) = ∞ nor SE(H) = ∞ is
considered in these fine-grained rates. This is because when VCE(H) = ∞, arbitrarily slow rates
cannot admit distribution-free constants. And when SE(H) = ∞, it is still impossible because it does
not guarantee an infinite star-eluder sequence, that is, the lower bound of (1) cannot be increased to
log (n)/n, and is the sharpest one we can have here.
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Remark 17. It is not hard to understand that a target-specified version of fine-grained universal
rates by ERM is also derivable, based on a centered version of the star-eluder dimension SEh∗ and
VC-eluder dimension VCEh∗ .

Remark 18. It is worth noting that, when SE(H) < ∞, there is a mismatch between the lower bound
and the upper bound. This serves as an analogy to the mismatch between Cor.12 and Thm.13 in
Hanneke (2016b), and certain demonstrating examples have been exhibited in Hanneke and Yang
(2015). In the following two examples, we provide evidence that such a gap does exist, in a sense that
both the upper bound and the lower bound can sometimes be tight for some classes. Roughly speaking,
if an infinite SE(H)-star-eluder sequence in H is also an infinite VCE(H)-VC-eluder sequence (see
Definition 9), then VCE(H)

n log ( SE(H)
VCE(H) ) is the optimal rate, otherwise VCE(H)+log (SE(H))

n is optimal.

Example 21 (Optimal (VCE(H) + log (SE(H)))/n rate). We construct a concept class H such
that an infinite VCE(H)-VC-eluder sequence and an infinite SE(H)-star-eluder sequence cannot be
realized by an infinite sequence. To this end, we slightly change the example presented in Appendix
D.2 of Hanneke and Yang (2015), which yields the tightness of a lower bound (VC(H)+ log (sH))/n.

Specifically, let d, s > 0 be two integers satisfying d ≤ s. Let X := Z \ {0} := X1 ∪ X2, where
X1 := N \ {0} and X2 := −N \ {0} = −X1. We can also write

X1 = (X1,0 ∪ X1,1 ∪ · · · ), where X1,k := {ks+ 1, . . . , (k + 1)s} for all k ∈ N,

X2 = (X2,0 ∪ X2,1 ∪ · · · ), where X2,k := {−(k + 1)d, . . . ,−kd− 1} for all k ∈ N.

Now we let H := H1 ∪H2 satisfying VCE(H) = d and SE(H) = s, where

H1 := {hk,j : ∀j ∈ X1,k,∀k ∈ N}, where hk,j(x) := 1(x = j or x ∈ X1,>k).

H2 := {hk,S : ∀S ⊆ X2,k,∀k ∈ N}, where hk,S(x) := 1(x ∈ S or x ∈ X2,>k).

In particular, X1 itself is an infinite s-star-eluder sequence centered at hall-0’s, and X2 itself is an
infinite d-VC-eluder sequence, but they do not intersect. To show that the upper bound can be
decreased to match the lower bound, we simply note that for any infinite s-star-eluder sequence, its
associated VC-eluder dimension is exactly 1, resulting in a log (s)/n upper bound. For any infinite
d-VC-eluder sequence, its associated star-eluder dimension is also d, resulting in a d/n upper bound.
The maximum of the two upper bounds yields the desired one.

Example 22 (Optimal (VCE(H)/n) log (SE(H)/VCE(H)) rate). We construct a concept class
H such that there exists an infinite sequence in H which is both an infinite VCE(H)-VC-eluder
sequence and an infinite SE(H)-star-eluder sequence. To this end, we slightly change the example
presented in Appendix D.1 of Hanneke and Yang (2015), which yields the tightness of an upper bound
(VC(H)/n) log (sH/VC(H)).

Specifically, let d, s > 0 be two integers satisfying d ≤ s. Let X := N and for every k ∈ N, define
hk,S(x) := 1(x ∈ S or x > (k + 1)s) for every subset S ⊆ {ks + 1, . . . , (k + 1)s} with |S| ≤ d.
Let H := {hk,S : S ⊆ {ks + 1, . . . , (k + 1)s}, |S| ≤ d, k ∈ N}. Note that for this class, we have
VCE(H) = d, SE(H) = s and there exists an infinite sequence serving as an infinite d-VC-eluder
sequence as well as an infinite s-star-eluder sequence. To show in this case that the lower bound can
be increased to match the upper bound, the realizable distribution that witnesses this rate is referred
to Appendix D.1.1 of Hanneke and Yang (2015).

Now let us turn to the proof of Theorem 8, which is based on the following two lemmas and within
each an upper bound as well as a lower bound are established.

Lemma 10. For every concept class H with |H| ≥ 3, if VCE(H) < ∞, then the following hold:

E
[
erP (ĥn)

]
≥ VCE(H)

18n
, for infinitely many n ∈ N,

E
[
erP (ĥn)

]
≤ 28VCE(H) log n

n
+ 2−⌊n/2κ⌋, ∀n ∈ N,

where κ = κ(P ) is a distribution-dependent constant.

Remark 19. Note that a concept class with its VCE dimension finite can either have an infinite
star-eluder sequence or not, which results in a difference (of a logarithmic factor) in the upper bound
and lower bound stated in Lemma 10.
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Recall that VC(H) < ∞ yields a uniform upper bound VC(H) log (n)/n. On one hand, VCE(H) =
∞ implies that H has a shattered set of arbitrarily large size, which further implies an unbounded VC
dimension. On the other hand, according to Lemma 9, VC(H) = ∞ implies that H has an infinite
VC-eluder sequence, and thus VCE(H) = ∞ holds as well. Therefore, VCE(H) = ∞ if and only if
VC(H) = ∞ if and only if H has an infinite VC-eluder sequence. Moreover, when VCE(H) < ∞, a
trivial observation is VCE(H) ≤ VC(H) < ∞. However, the following example reveals that VCE
and VC are not the same dimension, namely, there exists a class H having strictly VCE(H) < VC(H)
(see the following Example 23). Therefore, Lemma 10 sometimes reflects an improvement over the
classical uniform bound.
Example 23 (VCE(H) < VC(H) < ∞). To make it more convincing, we provide an example of
infinite classes here. Let X1 be a finite set of size d, and X2 be an infinite instance space that is
disjoint with X1. For simplicity, one may assume that X1 := {−d,−(d− 1), . . . ,−1} and X2 := N.
We define X := X1 ∪ X2 and let H := {hS,k := 1S∪{k},∀S ⊆ X1,∀k ∈ N}. This class has
VC(H) = (d+ 1) but VCE(H) = 1 since there is no infinite 2-VC-eluder sequence. Similarly, we
can also construct an example that witnesses strictly SE(H) < sH < ∞.
Lemma 11. For every concept class H with |H| ≥ 3, if SE(H) < ∞, then the following hold:

E
[
erP (ĥn)

]
≥ log (SE(H))

12n
, for infinitely many n ∈ N,

E
[
erP (ĥn)

]
≤ 160VCE(H)

n
log

(
SE(H)

VCE(H)

)
+ 2−⌊n/2κ̂⌋, ∀n ∈ N,

where κ̂ = κ̂(P ) is a distribution-dependent constant.

Remark 20. Note that in Theorem 8, the lower bound appears as VCE(H)+log (SE(H))
n . Indeed,

SE(H) < ∞ immediately implies VCE(H) < ∞ and then the lower bound in Lemma 10 holds.
Combining with the lower bound in Lemma 11 will give us the desired result in Theorem 8 with some
sufficiently small constant, e.g. α = 1/20.

Remarkably, when both SE(H) and VCE(H) are finite, either of VCE(H) and log (SE(H)) can be
larger than the other, and we provide the following examples for evidence. Therefore, none of the
quantities can be removed in the lower bound.
Example 24 (VCE(H) < log (SE(H)) < ∞). Let X :=

⋃
k∈N Xk be the disjoint union of finite

sets with |Xk| = d < ∞. We denote Xk := {xk,1, . . . , xk,d}, for every k ∈ N, let hk,j(x) := 1{x =
xk,j or x ∈ X>k}, for every k ∈ N and every 1 ≤ j ≤ d, and finally let H := {hk,j , 1 ≤ j ≤ d, k ∈
N}. For this class, we have VCE(H) = 2 < log (SE(H)) = log d for a sufficiently large d.
Example 25 (log (SE(H)) < VCE(H) < ∞). Let X :=

⋃
k∈N Xk be the disjoint union of finite

sets with |Xk| = d < ∞. We denote Xk := {xk,1, . . . , xk,d}, for every k ∈ N, let hk,S(x) := 1{x ∈
S or x ∈ X>k}, for every k ∈ N and every subset S ⊆ Xk, and finally let H := {hk,S , S ⊆ Xk, k ∈
N}. For this class, we have log (SE(H)) = log d < VCE(H) = d.

D Proofs

D.1 Omitted Proofs in Section 3

Proposition 3 (Proposition 1 restated). Any infinite concept class H has either an infinite star-eluder
sequence or infinite Littlestone dimension.

To prove the proposition, we first introduce a new complexity structure named the threshold sequence.
Definition 11 (Threshold sequence). Let H be a concept class, we say that H has an infinite
threshold sequence {(x1, y1), (x2, y2), . . .}, if it is realizable and for every integer k, there exists
hk ∈ H such that hk(xi) = yi for all i < k and hk(xi) ̸= yi for all i ≥ k. We say an infinite
threshold sequence {(x1, y1), (x2, y2), . . .} is centered at h, if h(xi) = yi for all i ∈ N.

The following claim turns out to be an alternative result to the proposition.
Claim 1. Any infinite class H has either an infinite star set or an infinite threshold sequence.

Given that the claim holds, the proof to the proposition is then straightforward. This is because an
infinite star set itself is an infinite star-eluder sequence. Moreover, an infinite threshold sequence
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gives rise to infinite Littlestone dimension since H can have a Littlestone tree of arbitrarily large
depth (an easy example is Hthresh,N). Therefore, it suffices to prove Claim 1. The remaining proof
relies on a connection to the classical Ramsey theory, which we briefly introduced as follow.

The classical Ramsey’s theorem states that one will find monochromatic cliques in any edge labelling
(with colors) of a sufficiently large complete graph. Specifically, let r be an positive integer, a simple
2-colors version of the Ramsey’s theorem states that there exists a smallest positive integer R(r, r),
named the (diagonal) Ramsey number, such that every red-blue edge coloring of the complete graph
on R(r, r) vertices contains either a red clique on r vertices or a blue clique on r vertices. However,
we will need the following extension of the theorem to an infinite graph.
Theorem 9 (Infinite Ramsey’s theorem, Ramsey, 1987). For any countably infinite set, if its
induced complete graph is colored with finitely many colors, then there is an infinite monochromatic
clique.

Proof of Claim 1. Based on Lemma 8, we know that any infinite class H has an infinite eluder
sequence. Let {(x1, y1), (x2, y2), . . .} be an infinite eluder sequence centered at h∗, that is, for any
j ∈ N, there exists hj ∈ H such that hj(xi) = yi = h∗(xi) for all i < j and hj(xj) ̸= yj = h∗(xj).
We aim to show that there exists an infinite subsequence {(xi1 , yi1), (xi2 , yi2), . . .} that is either
an infinite star set centered at h∗ or an infinite threshold sequence centered at h∗. To this end, we
consider the infinite eluder sequence {(x1, y1), (x2, y2), . . .} as a red-blue coloring of an infinite
complete graph according to the following: let the vertices be indexed by N, then for every edge ei,j
with integers i > j, we color it red if hj(xi) = yi and blue otherwise.

Note that for any infinite subsequence {(xi1 , yi1), (xi2 , yi2), . . .}, if the infinite subgraph comprised
of the vertices {i1, i2, . . .} is monochromatically red, then hij (xik) = yik = h∗(xik) for all integers
k > j. Since hij (xik) = yik = h∗(xik) for all integers k < j and hij (xij ) ̸= yij = h∗(xij ), it
implies that {(xi1 , yi1), (xi2 , yi2), . . .} is an infinite star set centered at h∗, witnessed by {hij}j∈N.
Moreover, if the infinite subgraph comprised of the vertices {i1, i2, . . .} is monochromatically blue,
it is not hard to verify that {(xi1 , yi1), (xi2 , yi2), . . .} is an infinite threshold sequence centered at h∗.
The proof is completed by applying the infinite Ramsey’s theorem.

Lemma 12 (Lemma 1 restated). Given a concept class H, for any learning algorithm ĥn, there
exists a realizable distribution P with respect to H such that E[erP (ĥn)] ≥ 2−(n+2) for infinitely
many n, which implies that H is not universally learnable at rate faster than exponential e−n.

Proof of Lemma 12. We prove the lemma by using the “probabilistic method". Let us consider
non-trivially that |H| > 2, let h1, h2 ∈ H and x, x

′ ∈ X such that h1(x) = h2(x) = y and h1(x
′
) ̸=

h2(x
′
). Now for any learning algorithm ĥn, we define the following two realizable distributions P0

and P1, where Pi{(x, y)} = 0.5 and Pi{(x
′
, i)} = 0.5, i ∈ {0, 1}. Let I ∼ Bernoulli(0.5), and

conditioned on I , let Sn := {(x1, y1), (x2, y2), . . . , (xn, yn)} and (xn+1, yn+1) be i.i.d. samples
from PI that the learning algorithm ĥn is trained on. We note that

E
[
P
(
ĥn(xn+1) ̸= yn+1

∣∣Sn, I
)]

≥ 1

2
P
(
x1 = . . . = xn = x, xn+1 = x

′
)
= 2−(n+2).

Furthermore, by the law of total probability, we have

E
[
P
(
ĥn(xn+1) ̸= yn+1

∣∣Sn, I
)]

=
1

2

∑
i∈{0,1}

E
[
P
(
ĥn(xn+1) ̸= yn+1

∣∣Sn, I = i
) ∣∣I = i

]
≤ max

i∈{0,1}
E
[
P
(
ĥn(xn+1) ̸= yn+1

∣∣Sn, I = i
) ∣∣I = i

]
.

The above two inequalities imply that for every n, there exists in ∈ {0, 1} such that

E
[
P
(
ĥn(xn+1) ̸= yn+1

∣∣Sn, I = in

) ∣∣I = in

]
= E[erPin

(ĥn)] ≥ 2−(n+2).

In particular, by the pigeonhole principle, there exists i ∈ {0, 1} such that in = i infinitely often,
which completes the proof.

Lemma 13 (Lemma 2 restated). If H does not have an infinite eluder sequence centered at h∗, then
h∗ is universally learnable by ERM at rate e−n.
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Proof of Lemma 13. Since H does not have an infinite eluder sequence centered at h∗, then for any
realizable distribution P centered at h∗ and data sequence S := {(x1, h

∗(x1)), (x2, h
∗(x2)), . . .} ∼

PN, we have

#
{
t ∈ N : ∃t

′
> t s.t. ∃h ∈ VSt(H) : h(xt′ ) ̸= h∗(xt′ )

}
< ∞.

For the largest such integer t, we further have P(∃h ∈ VSt
(H) : h(xt′ ) ̸= h∗(xt′ )) = 1 for some

t
′
:= t

′
(S) > t. This is true because the probability decays exponentially. Therefore, we have

lim
n→∞

PS∼PN (P (x ∈ X : ∃h ∈ Vn(H) s.t. h(x) ̸= h∗(x)) = 0) = 1,

which implies that there is a distribution-dependent positive integer k := k(P ) < ∞ such that

P (P (x ∈ X : ∃h ∈ Vk(H) s.t. h(x) ̸= h∗(x)) = 0) ≥ 1/2.

Now for any integer n > k, we split the dataset Sn ∼ Pn into ⌊n/k⌋ parts with each one sized at
least k, denoted by Sn,1, . . . , Sn,⌊n/k⌋. It holds then

P (P (x ∈ X : ∃h ∈ Vn(H) s.t. h(x) ̸= h∗(x)) ̸= 0)

≤P
(
∀i ∈ {1, . . . , ⌊n/k⌋} : P

(
x ∈ X : ∃h ∈ VSn,i

(H) s.t. h(x) ̸= h∗(x)
)
̸= 0
)

=

⌊n/k⌋∏
i=1

P
(
P
(
x ∈ X : ∃h ∈ VSn,i

(H) s.t. h(x) ̸= h∗(x)
)
̸= 0
)
≤ 2−⌊n/k⌋,

which also holds for n ≤ k. Finally, it follows that

E
[
erP (ĥn)

]
≤P (∃h ∈ Vn(H) : erP (h) > 0)

=P (P (x ∈ X : ∃h ∈ Vn(H) s.t. h(x) ̸= h∗(x)) ̸= 0) ≤ 2−⌊n/k⌋, ∀n ∈ N.

Lemma 14 (Lemma 3 restated). If H has an infinite eluder sequence centered at h∗, then h∗ is not
universally learnable by ERM at rate faster than 1/n.

Proof of Lemma 14. Let {(x1, y1), (x2, y2), . . .} be an infinite eluder sequence centered at h∗, we
consider the following distribution P : P{(xi, yi)} = 2−i and P{(xi, 1−yi)} = 0 for all i ∈ N. Note
that P is realizable (with respect to H) with target h∗. Given a dataset Sn := {(xi, yi)}ni=1 ∼ Pn,
let the worst-case ERM outputs ĥn := ERM(Sn). For any t ∈ N, if Sn does not contain any copy of
the points in {xi, i > t}, we have erP (ĥn) ≥ 2−t. The probability of such event is

P

(
n∑

i=1

1 {Xi ∈ {xt+1, xt+2, . . .}} = 0

)
=

n∏
i=1

P (Xi ∈ {x1, . . . , xt}) =
(
1− 2−t

)n
.

Therefore, it follows immediately that

E
[
erP (ĥn)

]
≥

∞∑
t=1

2−t
(
1− 2−t

)n ≥ 1

n

(
1− 2

n

)n

≥ 1

9n
,

where the second inequality follows from choosing t = ⌊log n⌋.

Lemma 15 (Lemma 4 restated). If H does not have an infinite star-eluder sequence centered at h∗,
then h∗ is universally learnable by ERM at rate 1/n.

Before proceeding to the proof of Lemma 15, we first introduce several useful tools. The following
definition of the sample compression scheme was originally stated in Littlestone and Warmuth (1986).
Definition 12 (Sample compression scheme). Let H be a concept class and Sn := {(xi, yi)}ni=1. A
sample compression scheme for H consists of two maps (κ, ρ) such that the following hold:

— The compression map κ takes Sn to T := κ(Sn), for some T ∈
⋃∞

t=0{(x, y) ∈ Sn}t.
— The reconstruction function ρ takes T to ρ(T ) : X → {0, 1}.

24



The size of the sample compression scheme (κ, ρ) is defined as maxSn∈(X×{0,1})n |κ(Sn)|. A sample
compression scheme (κ, ρ) is called sample-consistent for H, if for any realizable distribution P

with respect to H and Sn := {(xi, yi)}ni=1 ∼ Pn, it holds that êrSn
(ρ(κ(Sn))) = 0. A sample

compression scheme (κ, ρ) is called stable if for every subsequence S
′

satisfying κ(Sn) ⊆ S
′ ⊂ Sn,

it holds that ρ(κ(S
′
)) = ρ(κ(Sn)), that is, removing any non-compression point from Sn does not

change the classifier returned by the sample compression scheme.
Definition 13 (Version space compression set). Let H be a concept class and P be a realizable
distribution with respect to H. For any n ∈ N, and any dataset Sn := {(xi, yi)}ni=1 ∼ Pn, the
version space compression set Ĉn is defined to be the smallest subset of Sn satisfying VSn

(H) =

VĈn
(H). Furthermore, we define the version space compression set size as n̂(Sn) := |Ĉn|, which

is a data-dependent quantity. Finally, we define n̂1:n := max1≤m≤n m̂(Sm), which is also data-
dependent. However, n̂1:n is not only just dependent on the full sample, but is also dependent on any
prefix of the sample (that is, the order of the sample).
Remark 21. It has been argued in Wiener et al. (2015) that the region of disagreement of the version
space DIS(Vn(H)) can be described as a compression scheme, where the size of the compression
scheme is exactly the version space compression set size n̂(Sn).

With these definitions in hand, we are now able to prove the lemma.

Proof of Lemma 15. Let P be a realizable distribution with respect to H centered at h∗, let Sn :=

{(xi, yi)}ni=1 ∼ Pn be a dataset and Ĉn ⊆ Sn be the corresponding version space compression set
with size |Ĉn| = n̂(Sn). We let (κ, ρ) be a sample compression scheme of size n̂(Sn) defined by
κ(Sn) = Ĉn and ρ(Ĉn) = ĥn. Since any ERM algorithm will output predictors {ĥn}n∈N satisfying
ĥn ∈ Vn(H), it is clear that

êrSn (ρ (κ (Sn))) =

n∑
i=1

1 {ρ (κ (Sn)) (xi) ̸= yi} =

n∑
i=1

1

{
ĥn(xi) ̸= yi

}
= 0,

and thus it is sample-consistent. Furthermore, let S
′

be any subsequence satisfying Ĉn ⊆ S
′ ⊂ Sn.

On one hand, we have VSn
(H) ⊆ VS′ (H). On the other hand, we also have VS′ (H) ⊆ VĈn

(H) =

VSn
(H). Therefore, we conclude VSn

(H) = VS′ (H), and thus ρ(κ(S
′
)) = ρ(κ(Sn)), that is, the

compression scheme (κ, ρ) is also stable. Now we can apply Lemma 24, and then obtain

E
[
erP (ĥn)

]
= E [erP (ρ (κ (Sn)))] ≤

E[n̂(Sn)]

n+ 1
.

Indeed, it has been proved that n̂(Sn) ≤ sh∗ (Thm.13 Hanneke and Yang, 2015), and for complete-
ness, we prove it as in Lemma 25 in Appendix E. The only remaining concern is that the fact “H
does not have an infinite star-eluder sequence centered at h∗" does not guarantee sh∗ < ∞. However,
it essentially states that the version space will eventually have a bounded star number centered
at h∗. Since H does not have an infinite star-eluder sequence centered at h∗, for any sequence
S := {(x1, y1), (x2, y2), . . .} ∼ PN, there exists a data-dependent integer k̄ := k̄(S) < ∞ such
that sh∗(Vnk̄

(H)) < k̄. Moreover, we know there exists a distribution-dependent constant factor
k := k(P ) < ∞ such that k̄(S) ≤ k(P ) with probability at least 1/2. By using a similar argument
in the proof of Lemma 15, we have

E
[
erP (ĥn)

]
≲

k

n
+ 2−⌊n/k⌋,∀n ∈ N,

which proves a target-specified linear upper bound.

Lemma 16 (Lemma 5 restated). If H has an infinite star-eluder sequence centered at h∗, then h∗ is
not universally learnable by ERM at rate faster than log (n)/n.

Proof of Lemma 16. Suppose that S := {(x1, y1), (x2, y2), . . .} is an infinite star-eluder sequence in
H centered at h∗, that is h∗(xi) = yi for all i ∈ N. For notation simplicity, let X1 := {x1},X2 :=

{x2, x3},X3 := {x4, x5, x6}, . . . ,Xk := {xnk+1, . . . , xnk+k}, . . ., with nk :=
(
k
2

)
. We consider a

strictly increasing sequence {kt}t∈N that will be specified later, and only put non-zero probability
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masses on these disjoint sets Xkt with t ∈ N. Then, let X :=
⋃

t∈N Xkt be a union of disjoint finite
sets with |Xkt

| = kt, and consider the following marginal distribution PX on X :

PX {x ∈ Xkt} = 2−t and PX (x) = 2−t/kt, ∀x ∈ Xkt .

It immediately implies the joint distribution P := P (PX , h∗) that is realizable with respect to H:

P {(x, h∗(x))} = 2−t/kt, P {(x, 1− h∗(x))} = 0, ∀x ∈ Xkt , ∀k ∈ N.

Now for any n ∈ N, we let Sn := {(xi, yi)}ni=1 ∼ Pn and consider the event E := E1 ∩ E2, where

E1 := {Sn does not contain a copy of any point in Xk>t
} ,

E2 := {Sn does not contain a copy of at least one point in Xkt} .

If E happens, the worst-case ERM can output some ĥn ∈ VSn
(H) such that erP (ĥn) ≥ 2−t/kt.

This is because: Vnkt
(H) ⊆ VSn,k<t

(H), where Sn,k<t
contains the samples of Sn that falling into

Xk1 ∪ · · · ∪ Xkt−1 , and then Xkt = {xnkt+1, . . . , xnkt+kt} is a star set of VSn,k<t
(H) witnessed by

a set of functions, denoted by {hnkt+1, . . . , hnkt+kt
}. In other words, VSn,k<t

(H) contains a size-kt
“singletons" with point-wise probability mass 2−t/kt. However, the remaining samples Sn ∩ Xkt

does not contain a copy of every point in Xkt , which results in an error rate erP (ĥn) ≥ 2−t/kt, with
ĥn := hnkt+j for some 1 ≤ j ≤ kt.

Hence, it remains to characterize the probability of E . To this end, we refer to the so-called Coupon
Collector’s Problem, and define a random variable

n̂kt := min {n ∈ N : Xkt ⊆ Sn} .

Note that n̂kt
can be represented as a sum

∑kt

j=1 Gj of independent geometric random variables
Gj ∼ Geometric(kt+1−j

kt
2−t) for 1 ≤ j ≤ kt, with E [n̂kt

] =
∑kt

j=1 E [Gj ] =
∑kt

j=1
kt·2t

kt+1−j = kt · 2t
(∑kt

j=1
1

kt+1−j

)
= kt · 2t ·Hkt

Var [n̂kt ] =
∑kt

j=1 Var [Gj ] <
∑kt

j=1

(
kt+1−j

kt
2−t
)−2

<
π2·k2

t ·2
2t

6

,

where Hm is mth harmonic number satisfying Hm ≳ log (m). Then the standard Chebyshev’s
inequality implies that P(|n̂kt − E[n̂kt ]| > z) ≤ Var[n̂kt ] · z−2. By choosing z =

√
2Var[n̂kt ], we

have with probability at least 1/2,

n̂kt
> E [n̂kt

]−
√
2Var [n̂kt

] ≥ kt · 2t ·
(
log kt −

π√
3

)
.

In particular, when kt ≥ 38, it holds that log kt ≥ 2π/
√
3, and thus n̂kt

> 2t−1kt log kt with
probability at least 1/2. Altogether, we have for any n ≤ 2t−1kt log kt,

P (E2) ≥ P (n < n̂kt
) ≥ P

(
n ≤ 2t−1kt log kt, 2

t−1kt log kt < n̂kt

)
≥ 1/2.

Moreover, to characterize the probability of E1, note that for any x ∼ PX , P(x ∈ Xk>t
) = 2−kt ,

which implies immediately that for any n ∈ N, P(E1) = (1− 2−kt)n. Now for any integer kt ≥ 38,
we let n = 2t−1kt log kt, and have (for infinitely many n) that

P
(

erP (ĥn) ≥
2−t

kt

)
≥ P (E) ≥ P (E1)P (E2) ≥

1

2

(
1− 2−kt

)n
,

which implies further

E
[
erP (ĥn)

]
≥ 2−t

kt
P
(

erP (ĥn) ≥
2−t

kt

)
≥ 1

kt2t+1

(
1− 2−kt

)n
=: ηn,t.

Finally, by choosing kt = Ω(2t), we can guarantee that n ≥ η−1
n,t log η

−1
n,t . Applying Lemma 29, we

have E[erP (ĥn)] ≥ ηn,t ≥ log (n)/n, for infinitely many n.

Lemma 17 (Lemma 6 restated). If H does not have an infinite VC-eluder sequence centered at h∗,
then h∗ is universally learnable by ERM at log (n)/n rate.
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Proof of Lemma 17. We first prove that any class H is universally learnable by ERM at log (n)/n rate
if VC(H) < ∞. For any realizable distribution P with respect to H, we let S2n := {(xi, yi)}2ni=1 ∼
P 2n, and denote Sn := {(xi, yi)}ni=1 and Tn := {(xi, yi)}2ni=n+1, namely, the “ghost samples".
Given ϵ ∈ (0, 1), Lemma 31 states that for any n ≥ 8/ϵ,

P (∃h ∈ H : êrSn
(h) = 0 and erP (h) > ϵ) ≤ 2P (∃h ∈ H : êrSn

(h) = 0 and êrTn
(h) > ϵ/2) .

Moreover, Lemma 32 states that for any n ≥ VC(H)/2,

P (∃h ∈ H : êrSn(h) = 0 and êrTn (h) > ϵ/2) ≤
(

2en

VC(H)

)VC(H)

2−nϵ/2.

Altogether, we have

P
(

erP (ĥn) > ϵ
)
≤ P (∃h ∈ H : êrSn(h) = 0 and erP (h) > ϵ) ≤ 2

(
2en

VC(H)

)VC(H)

2−
nϵ
2 , (5)

for any n ≥ max{8/ϵ,VC(H)/2}. Finally, the upper bound on the expectation can be derived via
the follow analysis (which will be used several times later): let

ϵn :=
2

n

(
VC(H) log

(
2en

VC(H)

)
+ 1

)
,

and then by letting the RHS of (5) =: δ, we have

ϵ =
2

n

(
VC(H) log

(
2en

VC(H)

)
+ log

(
2

δ

))
> ϵn.

When ϵ ≤ ϵn, we of course still have P(erP (ĥn) > ϵ) ≤ 1. It follows that for all n ≥ VC(H)/2,

E
[
erP (ĥn)

]
=

∫ 1

0

P
(

erP (ĥn) > ϵ
)
dϵ

=

∫ 1

8
n

P
(

erP (ĥn) > ϵ
)
dϵ+

∫ 8
n

0

P
(

erP (ĥn) > ϵ
)
dϵ

=

∫ ϵn

8
n

P
(

erP (ĥn) > ϵ
)
dϵ+

∫ 1

ϵn

P
(

erP (ĥn) > ϵ
)
dϵ+

∫ 8
n

0

P
(

erP (ĥn) > ϵ
)
dϵ

(5)
≤ ϵn +

∫ ∞

ϵn

2

(
2en

VC(H)

)VC(H)

2−nϵ/2dϵ

=
2VC(H)

n
log

(
2en

VC(H)

)
+

2 + 2 ln (2)

n
≲

VC(H)

n
log

(
n

VC(H)

)
.

For n ≤ VC(H)/2, the result is trivial.

Now to prove a target-specified upper bound, let P be any realizable distribution centered at the
target concept h∗ with an associated marginal distribution denoted by PX . Suppose that H does not
have an infinite VC-eluder sequence centered at h∗, then there is a largest target-dependent integer
d := d(h∗) < ∞ such that there exists an infinite d-VC-eluder sequence centered at h∗, but no
infinite (d+ 1)-VC-eluder sequence centered at h∗ (see Definition 9). We know that there exists a
positive distribution-dependent integer k := k(P ) < ∞ such that P(VC(Vk(H)) ≤ d) ≥ 1/2.

We let Sn := {(xi, yi)}ni=1 ∼ Pn be a dataset, and consider the event En := {VC(V⌊n/2⌋(H)) ≤ d}.
The probability of this event can be characterized as follow: for any n ∈ N, assume first n ≥ k,
we then split the dataset Sn ∼ Pn into ⌊n/k⌋ parts with each one sized at least k, denoted by
Sn,1, . . . , Sn,⌊n/k⌋. For every 1 ≤ i ≤ ⌊n/k⌋, we know that the corresponding induced version
space has VC dimension VC(VSn,i

(H)) ≤ d with probability at least 1/2. Note that Vn(H) =⋂
1≤i≤⌊n/k⌋ VSn,i(H) satisfies VC(Vn(H)) ≤ VC(VSn,i(H)), for every 1 ≤ i ≤ ⌊n/k⌋. Therefore,

we have P(VC(Vn(H)) > d) ≤ P(∀1 ≤ i ≤ ⌊n/k⌋ : VC(VSn,i
(H)) > d) ≤ 2−⌊n/k⌋. Note that

this bound also holds when n < k since a probability is always at most 1. Altogether, we obtain
P(¬En) = P(VC(V⌊n/2⌋(H)) > d) ≤ 2−⌊n/2k⌋. Conditioning on this event, the previous analysis
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of the uniform rate log (n)/n can be applied since the version space has a bounded VC dimension d.
Finally, we have that for all n ∈ N,

E
[
erP (ĥn)

]
=

∫ ∞

0

P
(

erP (ĥn) > ϵ
)
dϵ

≤
∫ ∞

0

(
P
(

erP (ĥn) > ϵ
∣∣∣En)+ P (¬En)

)
dϵ ≲

d

n
log
(n
d

)
+ 2−⌊n/k⌋,

where both d := d(h∗) and k := k(P ) are distribution-dependent constants. In conclusion, h∗ is
universally learnable by ERM at log (n)/n rate.

Lemma 18 (Lemma 7 restated). If H has an infinite VC-eluder sequence centered at h∗, then h∗

requires at least arbitrarily slow rates to be universally learned by ERM.

Proof of Lemma 18. Let S := {(x1, y1), (x2, y2), . . .} be an infinite VC-eluder sequence in H
centered at h∗, that is, h∗(xi) = yi for all i ∈ N. We inherit the notations used in Lemma 5 by
letting Xk := {xnk+1, . . . , xnk+k} with nk :=

(
k
2

)
, for all k ∈ N. Let X :=

⋃
k∈N Xk be a union of

disjoint finite sets with |Xk| = k, and consider the following marginal distribution PX on X :

PX {x ∈ Xk} = pk and PX (x) = pk/k, ∀x ∈ Xk,

where {pk}k∈N is a sequence of probabilities satisfying
∑

k≥1 pk ≤ 1 that will be specified later. It
implies immediately the following realizable (joint) distribution P := P (PX , h∗):

P {(x, h∗(x))} = pk/k, P {(x, 1− h∗(x))} = 0, ∀x ∈ Xk, ∀k ∈ N.

Our remaining target is to show that for any rate function R(n) → 0, H cannot be universally
learned by the worst-case ERM at rate faster than R(n) under the distribution P . To this end, we let
Sn := {(xi, yi)}ni=1 ∼ Pn. For any t ∈ N and any j ∈ [kt], we consider the following event

En,k,t,j :=
{
Sn does not contain a copy of any point in Xk>t ∪ {xnkt+j}

}
,

where {kt}t∈N is an increasing sequence of integers that will be specified later. If En,k,t,j happens,
then the worst-case ERM algorithm can output some ĥn ∈ Vnkt

(H) such that erP (ĥn) ≥ pkt
/kt,

that is the classifier that predicts incorrectly on the “missing" point in Xkt
. Moreover, to characterize

the probability of event En,k,t,j , we have P(En,k,t,j) = (1−
∑

k>kt
pk − pkt/kt)

n. Therefore, we
make a construction by applying Lemma 30, and finally get for all t ∈ N,

E
[
erP

(
ĥnt

)]
≥
∑
j∈[kt]

pkt
·P (Ent,k,t,j) ≥ pkt

(
1−

∑
k>kt

pk − pkt

kt

)nt

≥ pkt

(
1− 2

nt

)nt

≳ R (nt) .

D.2 Omitted Proofs in Section 4

Lemma 19 (Lemma 8 restated). H has an infinite eluder sequence if and only if |H| = ∞.

Proof of Lemma 19. The necessity is straightforward. To show the sufficiency, we construct such an
infinite eluder sequence via the following procedure: pick some x1 ∈ X such that both V(x1,0)(H) :=
{h ∈ H : h(x1) = 0} and V(x1,1)(H) := {h ∈ H : h(x1) = 1} are non-empty. Such a point
x1 must exist since otherwise we will have |H| = 1. Furthermore, we know that at least one of
them is infinite, since otherwise we will have |H| < ∞. We assume, without loss of generality, that
|V(x1,0)(H)| = ∞. Then we pick some x2 ∈ X such that both V{(x1,0),(x2,0)}(H) := {h ∈ H :
h(x1) = 0, h(x2) = 0} and V{(x1,0),(x2,1)}(H) := {h ∈ H : h(x1) = 0, h(x2) = 1} are non-empty.
Note that such an x2 exists, because otherwise we will have |V(x1,0)(H)| < ∞. Again, at least one
of them is infinite for the same reason, and then we choose x3 from that infinite one. Following a
similar procedure, we can get an infinite sequence {(x1, y1), (x2, y2), . . .}, where {x1, x2, . . .} are
chosen to keep the separates of version space non-empty, and {y1, y2, . . .} are chosen to keep the
version space infinite. Now note that for any i ∈ N, we can find some hi ∈ VSi(H) ̸= ∅, where
Si = {(x1, 1−y1), (x2, 1−y2), . . . , (xi−1, 1−yi−1), (xi, yi)}. According to Definition 5, we know
that {(x1, y1), (x2, y2), . . .} is an infinite eluder sequence consistent with H.
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Lemma 20 (Lemma 9 restated). H has an infinite VC-eluder sequence if and only if VC(H) = ∞.

Proof of Lemma 20. According to Definition 7, the necessity is straightforward, i.e. we must have
VC(H) = ∞ if H has an infinite VC-eluder sequence. It remains to prove the sufficiency, that is,
VC(H) = ∞ yields the existence of an infinite VC-eluder sequence.

We construct an infinite VC-eluder sequence via the following procedure: Let x1 ∈ X be any
point, then at least one of V{(x1,0)}(H) and V{(x1,1)}(H) has an infinite VC dimension, which
is because otherwise H = V{(x1,y1)}(H) ∪ V{(x1,1−y1)}(H) will have a finite VC dimension
based on Lemma 28. Let y1 ∈ {0, 1} such that V{(x1,y1)}(H) has an infinite VC dimension,
and let {x2, x3} be a shattered set of V{(x1,y1)}(H). Similarly, we know least one of the follow-
ing four subclasses V{(x1,y1),(x2,0),(x3,0)}(H), V{(x1,y1),(x2,0),(x3,1)}(H), V{(x1,y1),(x2,1),(x3,0)}(H),
V{(x1,y1),(x2,1),(x3,1)}(H) has an infinite VC dimension since otherwise VC(V{(x1,y1)}(H)) < ∞
will lead to a contradiction. We then pick labels y2, y3 ∈ {0, 1} such that V{(x1,y1),(x2,y2),(x3,y3)}(H)
has an infinite VC dimension. For notation simplicity, let S := {(x1, y1), (x2, y2), . . .} and let
nk :=

(
k
2

)
. Inductively, for any k ∈ N, if VS1+2+···+(k−1)

(H) = VSnk
(H) has an infinite VC di-

mension, let {xnk+1, . . . , xnk+k} be a shattered set of VSnk
(H). Lemma 28 yields the existence of

a set of labels {ynk+1, . . . , ynk+k} ∈ {0, 1}k such that VSnk+1
(H) has an infinite VC dimension.

Otherwise,

VC
(
VSnk

(H)
)
= VC

 ⋃
(ynk+1,...,ynk+k)∈{0,1}k

VSnk+1
(H)

 ≤ 2k+4maxVC
(
VSnk+1

(H)
)
< ∞,

which leads us to a contradiction! By such a construction, the returned infinite sequence S :=
{(x1, y1), (x2, y2), . . .} is an infinite VC-eluder sequence consistent with H.

D.3 Omitted Proofs in Appendix C

Lemma 21 (Lemma 10 restated). For every concept class H with |H| ≥ 3, if VCE(H) < ∞, then
the following hold:

E
[
erP (ĥn)

]
≥ VCE(H)

18n
, for infinitely many n ∈ N,

E
[
erP (ĥn)

]
≤ 28VCE(H) log n

n
+ 2−⌊n/2κ⌋, ∀n ∈ N,

where κ = κ(P ) is a distribution-dependent constant.

Proof of Lemma 21. Let H be a concept class with VCE(H) = d < ∞. Note that when VCE(H) =
0, the results hold trivially, and hence we consider only d ≥ 1 in the remaining part of the proof.

To show the upper bound, let P be a realizable distribution with respect to H, and for any n ∈ N, let
Sn := {(x1, y1), . . . , (xn, yn)} ∼ Pn be a dataset. Since VCE(H) = d, for any infinite sequence
S := {(x1, y1), (x2, y2), . . .} ∼ PN, there exists a (smallest) non-negative integer k = k(S) < ∞
such that VC(Vk(H)) ≤ d. For any ERM algorithm A, let ĥn := AH(Sn) ∈ Vn(H), which can
also be written as ĥn := ĥn,k := AVk(H) (Sk+1:n), for every k ∈ [n]. Recall that for any ϵ ∈ (0, 1),
using the same argument as in the proof of Lemma 6, we can get

P
(

erP (ĥn,k) > ϵ
)
≤ 2

(
2e(n− k)

d

)d

2−(n−k)ϵ/2, ∀n ≥ k +max {8/ϵ, d/2} . (6)

Now for any n ∈ N, we consider the event En := {VC(V⌊n/2⌋(H)) ≤ d}. Applying the inequality
P(A) ≤ P(A|B) + P(¬B), we have

P
(

erP (ĥn) > ϵ
)
≤ P

(
erP (ĥn,⌊n/2⌋) > ϵ

∣∣∣En)+ P (¬En) . (7)

Let the RHS of (6) =: δ ∈ (0, 1), then for the first probability in (7), we have

P
(

erP (ĥn) > ϵ
∣∣∣En) = P

(
erP (ĥn,⌊n/2⌋) > ϵ

∣∣∣VC(V⌊n/2⌋(H)) ≤ d
)
≤ δ,
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for all n ≥ max {16/ϵ, d} ≥ ⌊n/2⌋+max {8/ϵ, d/2}, and also

ϵ =
2

n− ⌊n
2 ⌋

(
d log

(
2e(n− ⌊n

2 ⌋)
d

)
+ log

(
2

δ

))
≳

4

n

(
d log

(ne
d

)
+ 1
)
=: ϵn. (8)

To characterize the second probability in (7), we define κ = κ(P ), a distribution-dependent quantity,
to be the smallest integer such that k(S) ≤ κ with probability at least 1/2, where the randomness is
from the data sequence S. Note that such an integer κ exists since otherwise there will exist at least
an infinite (d+ 1)-VC-eluder sequence. We then prove:

Claim 2. For any n ∈ N, P(¬En) ≤ 2−⌊n/2κ⌋.

Proof of Claim 2. For any n ∈ N, assume first that n ≥ κ, we then split the dataset Sn ∼ Pn into
⌊n/κ⌋ parts with each one sized κ, denoted by Sn,1, . . . , Sn,⌊n/κ⌋. According to the definition, for
every 1 ≤ i ≤ ⌊n/κ⌋, we know that the induced version space has VC dimension VC(VSn,i

(H)) ≤ d
with probability at least 1/2. Note that Vn(H) =

⋂
1≤i≤⌊n/κ⌋ VSn,i(H) satisfies VC(Vn(H)) ≤

VC(VSn,i
(H)), for all 1 ≤ i ≤ ⌊n/κ⌋. Therefore, we have

P (VC(Vn(H)) > d) ≤ P
(
∀1 ≤ i ≤ ⌊n/κ⌋ : VC(VSn,i(H)) > d

)
≤ 2−⌊n/κ⌋,

which also holds when n < κ. Finally, P(¬En) = P(VC(V⌊n/2⌋(H)) > d) ≤ 2−⌊n/2κ⌋.

Putting together, we have that for all n ≥ d,

E
[
erP (ĥn)

]
=

∫ 1

16/n

P
(

erP (ĥn) > ϵ
)
dϵ+

∫ 16/n

0

P
(

erP (ĥn) > ϵ
)
dϵ

(7)
≤
∫ 1

16/n

P
(

erP (ĥn,⌊n/2⌋) > ϵ
∣∣∣En) dϵ+ ∫ 16/n

0

P
(

erP (ĥn,⌊n/2⌋) > ϵ
∣∣∣En) dϵ+ ∫ 1

0

P (¬En) dϵ

(8)
≤ ϵn +

∫ 1

ϵn

P
(

erP (ĥn,⌊n/2⌋) > ϵ
∣∣∣En) dϵ+ ∫ 1

0

P (¬En) dϵ

(6)
≤ ϵn + 3

∫ ∞

ϵn

2
(ne
d

)d
2−nϵ/4dϵ+

∫ 1

0

P (¬En) dϵ

≤ 4d

n
log
(ne
d

)
+

4 + 12 ln (2)

n
+

∫ 1

0

P (¬En) dϵ

Claim 2
≤ 4d

n
log
(ne
d

)
+

4 + 12 ln (2)

n
+ 2−⌊n/2κ⌋ ≤ 28d log n

n
+ 2−⌊n/2κ⌋.

When n ≤ d, the upper bound is trivial.

To show the lower bound, let S := {(x1, y1), (x2, y2), . . .} be any infinite d-VC-eluder sequence that
is consistent with H. We denote Xk := {xkd−d+1, . . . , xkd} for all integers k ≥ 1, and consider the
following realizable distribution P :

P {(xkd−d+j , ykd−d+j)} = pk/d, P {(xkd−d+j , 1− ykd−d+j)} = 0, ∀1 ≤ j ≤ d, ∀k ≥ 1,

where {pk}k≥1 is a sequence of probabilities satisfying
∑

k≥1 pk ≤ 1, which will be specified later.

We use a similar argument in the proof of Lemma 7, but instead of considering an arbitrarily slow
rate function R(n) → 0, we consider here R(n) := d/n. Specifically, let Sn := {(xi, yi)}ni=1 ∼ Pn

be a dataset. Note that for any k ∈ N and any j ∈ [d], if the dataset Sn does not contain any copy of
the points in X>k ∪ {xkd−d+j} :=

⋃
t>k Xt ∪ {xkd−d+j}, the worst-case ERM can have an error

rate erP (ĥn) ≥ pk/d. The probability of such event is P(
∑n

i=1 1{Xi ∈ X>k ∪ {xkd−d+j}} = 0) =∏n
i=1 P(Xi /∈ X>k ∪ {xkd−d+j}) = (1−

∑
t>k pt − pk/d)

n.

Based on Lemma 30, for the rate function R(n) := d/n, there exist probabilities {pk}k≥1 satisfying∑
k≥1 pk = 1, two increasing sequences of integers {kt}t≥1 and {nt}t≥1, and a constant 1/2 ≤

C ≤ 1 such that
∑

k>kt
pk ≤ 1/nt and pkt

= C · d/nt. Therefore, it follows that for all integers
t ≥ 1 (and thus for infinitely many n ∈ N),

E
[
erP

(
ĥnt

)]
≥ C · d

nt

∑
t≥1

(
1− C + 1

nt

)nt

≥ d

2nt

∑
t≥1

(
1− 2

nt

)nt

≥ d

18nt
.
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Lemma 22 (Lemma 11 restated). For every concept class H with |H| ≥ 3, if 1 ≤ SE(H) < ∞,
then the following hold:

E
[
erP (ĥn)

]
≥ log (SE(H))

12n
, for infinitely many n ∈ N,

E
[
erP (ĥn)

]
≤ 160VCE(H)

n
log

(
SE(H)

VCE(H)

)
+ 2−⌊n/2κ̂⌋, ∀n ∈ N,

where κ̂ = κ̂(P ) is a distribution-dependent constant.

Proof of Lemma 22. Let H be a concept class with SE(H) = s < ∞ and VCE(H) = d < ∞.

To prove the upper bound, let P be a realizable distribution with respect to H centered at h, and
for any n ∈ N, let Sn := {(x1, y1), . . . , (xn, yn)} ∼ Pn be a dataset. Indeed, a distribution-free
upper bound for any consistent learning rule has been proved in Hanneke (2016b) (see Lemma 26 in
Appendix E), which states that for any δ ∈ (0, 1) and any n ∈ N, with probability at least 1− δ,

sup
h∈Vn(H)

erP (h) ≤
8

n

(
VC(H) ln

(
49esh

VC(H)
+ 37

)
+ 8 ln

(
6

δ

))
. (9)

Since H does not have an infinite (d + 1)-VC-eluder sequence, and also does not have an infinite
(s + 1)-star-eluder sequence, for any infinite sequence S := {(x1, y1), (x2, y2), . . .} ∼ PN, there
exists a (smallest) non-negative integer k = k(S) < ∞ such that VC(Vk(H)) ≤ d and sh(Vk(H)) ≤
s. Following a similar argument in the proof of Lemma 10, we define κ̂ = κ̂(P ), a distribution-
dependent quantity, to be the smallest integer such that k(S) ≤ κ̂ with probability at least 1/2, and
then consider the following event Ên := {VC(V⌊n/2⌋(H)) ≤ d, sh(V⌊n/2⌋(H)) ≤ s} with probability
P(¬Ên) ≤ 2−⌊n/2κ̂⌋. For notation simplicity, let us denote by ϵn := 8

n (d ln (
49es
d + 37) + 8 ln (6)),

then conditioning on Ên, we have that for all n ∈ N,

E

[
sup

ĥn∈Vn(H)

erP (ĥn)

]
=

∫ 1

0

P
(

erP (ĥn) > ϵ
)
dϵ

≤
∫ 1

0

P
(

erP (ĥn) > ϵ
∣∣∣Ên) dϵ+ ∫ 1

0

P
(
¬Ên

)
dϵ

=

∫ ϵn

0

P
(

erP (ĥn) > ϵ
∣∣∣Ên) dϵ+ ∫ 1

ϵn

P
(

erP (ĥn) > ϵ
∣∣∣Ên) dϵ+ ∫ 1

0

P
(
¬Ên

)
dϵ

(9)
≤ ϵn +

∫ 1

ϵn

6 exp

(
d

8
ln

(
49es

d
+ 37

)
− nϵ

64

)
dϵ+ 2−⌊n/2κ̂⌋

= ϵn +
384

n
exp

(
d

8
ln

(
49es

d
+ 37

)
− nϵn

64

)
+ 2−⌊n/2κ̂⌋

≤ 8

n

(
d ln

(
49es

d
+ 37

)
+ 8 ln (6)

)
+

64

n
+ 2−⌊n/2κ̂⌋

≤ 8d

n
log

(
(49e+ 37)s

d

)
+

64 ln (6) + 64

n
+ 2−⌊n/2κ̂⌋ ≤ 160d

n
log
( s
d

)
+ 2−⌊n/2κ̂⌋.

To show the lower bound, let S := {(x1, y1), (x2, y2), . . .} be any infinite d-star-eluder sequence that
is consistent with H. We denote Xk := {xkd−d+1, . . . , xkd} for every integer k ≥ 1, and consider
the following realizable distribution P (with the same center of S):

P {(xkd−d+j , ykd−d+j)} = pk/d, P {(xkd−d+j , 1− ykd−d+j)} = 0, ∀1 ≤ j ≤ d, ∀k ≥ 1,

where {pk}k≥1 is a sequence of probabilities satisfying
∑

k≥1 pk ≤ 1, which will be specified later.
Let Sn := {(xi, yi)}ni=1 ∼ Pn be a dataset and consider the event E := E1 ∩ E2, where

E1 := {Sn does not contain a copy of any point in X>k} ,
E2 := {Sn does not contain a copy of at least one point in Xk} .
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If the event E happens, the worst-case ERM can have an error rate erP (ĥn) ≥ pk/d. This is because
{xkd−d+1, . . . , xkd} is a star set (with the same center) of Vn(H) ⊇ Vkd−d(H), and so we know
that for any 1 ≤ j ≤ d, there exists hk,j ∈ Vn(H) such that hk,j(xkd−d+j) ̸= ykd−d+j , and
the ERM outputting hk,j will have such an error rate. The probability of E1 follows simply as
P(E1) = (1−

∑
t>k pt)

n. Moreover, characterizing the probability of E2 can be approached as an
instance of the so-called Coupon Collector’s Problem. Specifically, we let

n̂k := min {n ∈ N : Xk ⊆ Sn} ,

which can be represented as a sum
∑d

j=1 Gj of independent geometric random variables Gj ∼
Geometric(d+1−j

d pk) for 1 ≤ j ≤ d, with the following properties E [n̂k] =
∑d

j=1 E [Gj ] =
∑d

j=1
d·p−1

k

d+1−j = d
pk

(∑d
j=1

1
d+1−j

)
= d

pk
·Hd

Var [n̂k] =
∑d

j=1 Var [Gj ] <
∑d

j=1

(
d+1−j

d pk

)−2

< π2d2

6p2
k

,

where Hd is dth harmonic number satisfying Hd ≥ log d, for all d ≥ 1. Then the standard
Chebyshev’s inequality implies that P(|n̂k − E[n̂k]| > z) ≤ Var[n̂k] · z−2. By choosing z =√
2Var[n̂k], we have with probability at least 1/2,

n̂k > E [n̂k]−
√

2Var [n̂k] ≥
d

pk

(
log d− π√

3

)
.

In particular, when d ≥ 38, it holds that log d ≥ 2π/
√
3, and thus n̂k > p−1

k d log d/2, with
probability at least 1/2. Altogether, we have for any n ≤ p−1

k d log d/2,

P (E2) ≥ P (n < n̂k) ≥ P
(
n ≤ p−1

k d log d/2, p−1
k d log d/2 < n̂k

)
≥ 1/2.

Now for all d ≥ 38, it follows from the proceeding analysis that

P
(

erP (ĥn) ≥
pk
d

)
≥ P (E) ≥ P (E1)P (E2) ≥

1

2

(
1−

∑
t>k

pt

)n

,

which further implies that for all d ≥ 38,

E
[
erP (ĥn)

]
≥ pk

d
P
(

erP (ĥn) ≥
pk
d

)
≥ pk

2d

(
1−

∑
t>k

pt

)n

,

for all n ≤ p−1
k d log d/2. By letting nk = p−1

k d log d/2, we have for all k ∈ N (infinitely many
n ∈ N),

E
[
erP

(
ĥnk

)]
≥ pk

2d

(
1−

∑
t>k

pt

)nk

=
log d

4nk

(
1−

∑
t>k

pt

) d log d
2pk

≥ log d

4enk
,

where the last inequality follows from choosing probabilities {pk}k≥1 satisfying
∑

t>k pt ≤ 1/nk.
When 1 ≤ d < 38, the result is trivial.

E Technical lemmas

Lemma 23 (Chernoff’s bound). Let Z1, . . . , Zn be independent random variables in {0, 1}, let
Z̄ := 1

n

∑n
i=1 Zi. For all t ∈ (0, 1), we have

P
(
Z̄ ≤ (1− t)E[Z̄]

)
≤ e−

nE[Z̄]t2

2 .

Lemma 24. Let H be a concept class, and (κ, ρ) be a stable sample compression scheme of size
n̂(Sn) < n that is sample-consistent for H given data Sn. For any realizable distribution P with
respect to H and Sn := {(xi, yi)}ni=1 ∼ Pn, let ĥn := ρ(κ(Sn)). Then it holds

E
[
erP (ĥn)

]
≤ E[n̂(Sn)]

n+ 1
.
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Proof of Lemma 24. We claim that if (xn+1, yn+1) satisfies ρ(κ(Sn))(xn+1) ̸= yn+1, we must have
(xn+1, yn+1) ∈ κ(Sn+1). Suppose not, then there is a subsequence Sn := Sn+1 \ {(xn+1, yn+1)}
satisfying κ(Sn+1) ⊆ Sn ⊂ Sn+1 and ρ(κ(Sn))(xn+1) ̸= yn+1 = ρ(κ(Sn+1))(xn+1) based on the
sample-consistency of the compression scheme, which contradicts to our assumption that (κ, ρ) is
stable. Now by the exchangeability of random variables {xi}i≥1, we have

E
[
erP (ĥn)

]
=ESn

[P {ρ (κ (Sn)) (xn+1) ̸= yn+1}]

=ESn+1
[1 {ρ (κ (Sn)) (xn+1) ̸= yn+1}]

=
1

n+ 1

n+1∑
i=1

E [1 {ρ (κ (Sn+1 \ {(xi, yi)})) (xi) ̸= yi}]

≤ 1

n+ 1

n+1∑
i=1

E [1 {(xi, yi) ∈ κ (Sn+1)}] ≤
E[n̂(Sn)]

n+ 1
.

Lemma 25 (Hanneke and Yang, 2015, Lemma 44). Let H be a concept class, and P be a realizable
distribution centered at the target h. For any n ∈ N, let Sn := {(xi, yi)}ni=1 ∼ Pn be a dataset, and
let Ĉn be the version space compression set (Definition 13), that is, the smallest subset of Sn such
that VĈn

(H) = VSn(H). We have |Ĉn| ≤ sh.

Proof of Lemma 25. We assume that the dataset Sn is consistent with the target h, i.e. h(xj) = yj for
all j ∈ [n]. Note that, if there exists (xj , yj) ∈ Ĉn such that every hypothesis g ∈ VĈn\{(xj ,yj)}(H)

satisfies g(xj) = h(xj), then we have VĈn\{(xj ,yj)}(H) = VĈn
(H) = VSn

(H), which contradicts
the definition of the version space compression set as the smallest subset. Therefore, for any
(xj , yj) ∈ Ĉn, there exists g ∈ VĈn\{(xj ,yj)}(H) such that g(xj) ̸= h(xj). Moreover, note that

“g ∈ VĈn\{(xj ,yj)}(H)" is equivalent to saying “g(x) = y = h(x), for all (x, y) ∈ Ĉn \ {(xj , yj)}",

which precisely matches the definition of a star set centered at h, that is, Ĉn is a star set for H centered
at h, witnessed by those hypotheses g’s. We must have |Ĉn| ≤ sh.

Lemma 26 (Hanneke, 2016b, Theorem 11). Let H be a concept class, and P be a realizable
distribution with respect to H centered at h, let Sn := {(xi, yi)}ni=1 ∼ Pn be a dataset, for any
n ∈ N. Then for any δ ∈ (0, 1) and any n ∈ N, we have with probability at least 1− δ,

sup
h∈Vn(H)

erP (h) ≤
8

n

(
VC(H) ln

(
49en̂1:n

VC(H)
+ 37

)
+ 8 ln

(
6

δ

))
,

where the data-dependent quantity n̂1:n is defined in Definition 13 satisfying n̂1:n ≤ sh.

Lemma 27 (Sauer’s lemma, Sauer, 1972). Let H be a concept class with VC(H) < ∞ defined on
X and Sn := {(xi, yi)}ni=1 ∈ (X × {0, 1})n. Then for all n ∈ N, it holds that

∣∣H(Sn)
∣∣ ≤ VC(H)∑

i=0

(
n

i

)
.

In particular, if n ≥ VC(H), ∣∣H(Sn)
∣∣ ≤ ( en

VC(H)

)VC(H)

.

Lemma 28 (VC dimension of unions). Let N,T ∈ N and H1, . . . ,HN be concept classes with
max1≤i≤N VC(Hi) ≤ T , then it holds

VC

(
N⋃
i=1

Hi

)
≤ 2 logN + 4T.
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Proof of Lemma 28. According to Sauer’s lemma (Lemma 27), for any i ≤ N and Sn :=
{(xi, yi)}ni=1 with n ≥ T , we have

∣∣Hi(Sn)
∣∣ ≤ VC(Hi)∑

i=0

(
n

i

)
≤

T∑
i=0

(
n

i

)
≤
(en
T

)T
. (10)

Then we can upper bound the number of possible classifications (of Sn) by the union
⋃N

i=1 Hi as∣∣∣∣∣
(

N⋃
i=1

Hi

)
(Sn)

∣∣∣∣∣ ≤
N∑
i=1

∣∣Hi(Sn)
∣∣ (10)
≤

N∑
i=1

(en
T

)T
= N

(en
T

)T
. (11)

Let n = VC(
⋃N

i=1 Hi) and Sn be a set shattered by
⋃N

i=1 Hi, the LHS of (11) is exactly 2n, and thus

2n ≤ N
(en
T

)T
⇒ n ≤ logN + T log

(en
T

)
⇒ n ≤ 2 logN + 4T,

where the last step follows from the fact that m ≤ s+ q log (em/q) implies m ≤ 2s+ 4q, for any
s ≥ 0 and m ≥ q ≥ 1.

Lemma 29 (Shalev-Shwartz and Ben-David, 2014, Lemma A.1). Let a > 0, then x ≥ 2a log a
implies x ≥ a log x. Conversely, x < a log x implies x < 2a log a.

Lemma 30 (Bousquet et al., 2021, Lemma 5.12). For any function R(n) → 0, there exist proba-
bilities {pt}t∈N satisfying

∑
t≥1 pt = 1, two increasing sequences of integers {nt}t∈N and {kt}t∈N,

and a constant 1/2 ≤ C ≤ 1 such that the following hold for all t ∈ N:

(1)
∑

k>kt
pk ≤ 1

nt
.

(2) ntpkt ≤ kt.
(3) pkt = CR(nt).

Lemma 31 (Ghost samples). Let H be a concept class and P be a realizable distribution with
respect to H. Let S2n := {(xi, yi)}2ni=1 ∼ P 2n, Sn := {(xi, yi)}ni=1 and Tn := {(xi, yi)}2ni=n+1.
Then for any ϵ ∈ (0, 1) and n ≥ 8/ϵ, it holds

P (∃h ∈ H : êrSn
(h) = 0 and erP (h) > ϵ) ≤ 2P (∃h ∈ H : êrSn

(h) = 0 and êrTn
(h) > ϵ/2) .

Proof of Lemma 31. If there exists h ∈ H such that êrSn
(h) = 0 and erP (h) > ϵ, since Tn is

independent of Sn, by applying the Chernoff’s bound (Lemma 23), we have

P
(
êrTn

(h) ≤ ϵ/2
∣∣h) = P

(
1

n

2n∑
i=n+1

1 {h(xi) ̸= yi} ≤ ϵ

2

∣∣∣∣erP (h) > ϵ

)
< exp

{
−nϵ

8

}
.

Then for any n ≥ 8/ϵ, it follows

P
(
êrTn (h) > ϵ/2

∣∣h) = 1− P
(
êrTn (h) ≤ ϵ/2

∣∣h) > 1− exp
{
−nϵ

8

}
≥ 1

2
,

which completes the proof.

Lemma 32 (Random swaps). Let H be a concept class with VC(H) < ∞ and P be a realizable
distribution with respect to H. Let S2n := {(xi, yi)}2ni=1 ∼ P 2n, Sn := {(xi, yi)}ni=1 and Tn :=
{(xi, yi)}2ni=n+1. Then for any ϵ ∈ (0, 1) and n ≥ VC(H)/2, it holds

P (∃h ∈ H : êrSn
(h) = 0 and êrTn

(h) > ϵ/2) ≤
(

2en

VC(H)

)VC(H)

2−nϵ/2.

Proof of Lemma 32. We prove the lemma by using the “random swaps" technique. Specifically,
we define σ1, . . . , σn to be independent random variables with σi ∼ Unif({i, n + i}) for all 1 ≤
i ≤ n, which are also independent of S2n. For notation simplicity, we denote by σn+i to be
the remaining element in {i, n + i} \ {σi}. Now we let Sσ := {(xσ1

, yσ1
), . . . , (xσn

, yσn
)} and
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Tσ := {(xσn+1 , yσn+1), . . . , (xσ2n , yσ2n)}, and note that Sσ ∪ Tσ follows the same distribution as
S2n. Hence, we have

P (∃h ∈ H : êrSn(h) = 0 and êrTn (h) > ϵ/2)

= P (∃h ∈ H : êrSσ (h) = 0 and êrTσ (h) > ϵ/2)

= P
(
∃(Y1, . . . , Y2n) ∈ H(S2n) :

1
n

∑n
i=1 1 {yσi ̸= Yσi} = 0,

1
n

∑n
i=1 1

{
yσn+i

̸= Yσn+i

}
> ϵ/2

)
LoTP
= E

[
P
(
∃(Y1, . . . , Y2n) ∈ H(S2n) :

1
n

∑n
i=1 1 {yσi

̸= Yσi
} = 0,

1
n

∑n
i=1 1

{
yσn+i

̸= Yσn+i

}
> ϵ/2

∣∣∣∣S2n

)]
Union bound

≤ E

 ∑
(Y1,...,Y2n)∈H(S2n)

P
(

1
n

∑n
i=1 1 {yσi ̸= Yσi} = 0,

1
n

∑n
i=1 1

{
yσn+i

̸= Yσn+i

}
> ϵ/2

∣∣∣∣S2n

) . (12)

Next, we consider that given S2n, how possibly that the following event happens

EY :=

{
1

n

n∑
i=1

1 {yσi
̸= Yσi

} = 0 and
1

n

n∑
i=1

1
{
yσn+i

̸= Yσn+i

}
>

ϵ

2

}
,

for a given labeling Y := (Y1, . . . , Y2n) ∈ H(S2n). Indeed, if EY happens, then there must exist
at least ⌈nϵ/2⌉ indices i ≤ n such that either yi = Yi, yn+i ̸= Yn+i or yi ̸= Yi, yn+i = Yn+i,
otherwise, the difference between 1

n

∑n
i=1 1{yσi

̸= Yσi
} and 1

n

∑n
i=1 1{yσn+i

̸= Yσn+i
} is less

than ϵ/2. Based on this and the distribution of σi’s, we have

P
(

1
n

∑n
i=1 1 {yσi

̸= Yσi
} = 0,

1
n

∑n
i=1 1

{
yσn+i

̸= Yσn+i

}
> ϵ/2

∣∣∣∣S2n

)
≤ 2−⌈

nϵ
2 ⌉.

Plugging into (12), we finally get for all n ≥ VC(H)/2,

P (∃h ∈ H : êrSn
(h) = 0 and êrTn

(h) > ϵ/2) ≤ E

 ∑
(Y1,...,Y2n)∈H(S2n)

2−⌈
nϵ
2 ⌉


≤ E [H(S2n)] · 2−nϵ/2

Lemma 27
≤

(
2en

VC(H)

)VC(H)

· 2−nϵ/2.

35



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main results made in the abstract are discussed with details in Section 1.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Certain limitations are discussed in the paper (see e.g. Sections 1.1, 2).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical model that we are working on is formalized in Section 1. Due
to space limitations, the complete proofs are postponed to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

36



• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is theoretical in its nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper is theoretical in its nature and does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper is theoretical in its nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper is theoretical in its nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is theoretical in its nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical in its nature and holds no foreseeable societal impacts
as far as we can discern.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is theoretical in its nature and poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper is theoretical in its nature and does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper is theoretical in its nature and does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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