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Abstract

Multi-task learning for molecular property prediction is becoming increasingly
important in drug discovery. However, in contrast to other domains, the perfor-
mance of multi-task learning in drug discovery is still not satisfying as the number
of labeled data for each task is too limited, which calls for additional data to com-
plement the data scarcity. In this paper, we study multi-task learning for molecule
property prediction in a different setting, where a relation graph between different
tasks is available. We first extract a dataset including 400 tasks as well as a relation
graph between different tasks. Then we systematically investigate modeling the
relation between different tasks: (1) in the latent space by learning effective task
representations on the task relation graph; (2) and in the output space via structured
prediction methods (e.g., energy-based methods). Empirical results prove the
effectiveness of our proposed approaches.

1 Introduction

Predicting the properties of molecules is a fundamental problem in drug discovery. Recently, we
witnessed many successes of deep neural networks for molecular property prediction [4, 29, 24,
25, 31, 16, 18, 10, 26]. In particular, molecules are represented as molecular graphs, and graph
neural networks (GNNs) [13] are utilized for learning molecular representations for predicting their
properties. However, one big limitation for property prediction in drug discovery is that the labeled
data are scarce, since they are very expensive and time-consuming to obtain. As a result, how to
minimize the number of labeled data needed for effective molecular property prediction has long
been a challenge in drug discovery.

One promising direction is multi-task learning, which tries to train multiple tasks (or properties)
simultaneously so that the supervision or knowledge can be shared across different tasks. Indeed,
multi-task learning has been successfully applied to different domains and applications such as
natural language understanding [27, 30], computer vision [23, 20], speech recognition [34, 11], and
recently to drug discovery [25, 18]. In general, the essential idea of these works is to infer the
relation among different tasks, like learning a linear vector for task weights [2, 18] or pairwise task
relation [15, 33, 30]. There are also some recent works on multi-task learning for molecular property
prediction [4, 24, 31, 15, 18], which have shown very promising results compared to single task
learning.

In this paper, we study multi-task learning for molecular property prediction in a different setting,
where a relation graph between different tasks is explicitly given. We first construct a dataset by com-
bining the chemical database ChEMBL [22] and the protein-protein interaction graph STRING [28].
ChEMBL can be formulated as a 2-dimensional matrix where each row is a molecule and each
column is a task (biological effect), and each binary element in this matrix measures the interaction
for that molecule-protein pair. The relationship between tasks are defined according to the relation of
their associated sets of proteins, which can be inferred according to the protein-protein interaction
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graph in STRING. Finally, we are able to construct a dataset with 13,004 molecules and 382 different
tasks, together with the task relation graph.

With this constructed dataset, we further propose to model the relation between different tasks
in both the latent and output space. For the latent space representation, one can learn effective
task representations by applying graph neural networks to the task relation graph. These task
representations effectively capture the task similarities, which are further used for predictions in
different tasks. Besides, for each molecule, its biological interactions with various tasks are dependent;
thus we further formulate this as a problem of structured prediction [1] and propose an energy-
based model (EBM) to model the joint distribution of the labels of a given molecule in different
tasks. As training EBMs is computational expensive in general, we deploy the noise contrastive
estimation (NCE) [9] for approximation, which turns the intractable integration problem into a simple
classification: if the data is from the actual task distribution or from a noise distribution.

Related Work. In multi-task learning (MTL), there are two key problems: (1) how to learn the
relation among tasks, and (2) how to model this task relation for improvement. Existing works
on multi-task learning mainly focus on the first question, and can be classified into two categories:
the architecture-specific methods [20, 23, 25] design specific neural network architecture, like task
grouping using clustering; the architecture-agnostic methods [12, 2, 19, 18, 15, 33, 30] are modeling
a linear task weight using certain optimization measure like loss and gradient. However, there is one
limitation of the existing MTL methods: they neglect the effect of modeling the task relation. In our
work, we circumvent the first problem by extracting an explicit task relation graph, and mainly target
at the second problem: how to better model the task relation.

2 Problem Definition and Preliminaries

In this paper, given a molecular graph x, our goal is to jointly predict its properties in T different
tasks y = {y0, y1, ..., yT−1} with a task relation graph G. Besides, a special setting of our work is
that a relation graph between different tasks G = (V,E) is given, and we will also take this into
the modeling process. Here V is the set of tasks, E are the edges between different tasks. More
information on the task relation graph G is included in Appendix A.

Graph Neural Networks (GNN). GNN is a powerful tool in capturing the structure information in
the data. Gilmer et al. propose a general framework called message passing neural network (MPNN)
in [8]. Following this, more recent works have explored how to model the complex structured data
like molecular graph [5, 17, 26].

Energy-Based Models (EBMs). EBMs [14] use a parametric energy function Eφ(x,y) to fit the
data distribution. Formally, the probability of pφ(y|x) can be written as:

pφ(y|x) =
exp(−Eφ(x,y))

Zφ
, (1)

where Eφ(x,y) is the energy function, and Zφ =
∫
y′∈Y exp(−Eφ(x,y

′)) is the partition function.
Here Y = {0, 1}T is the label space, and the partition function is computationally intractable due to
the high dimensionality of the label space. We will discuss how to cope with this issue in Section 3.2.

3 Method and Primary Results

The existing mainstream multi-task learning methods [12, 2, 18, 33] learn the task relation implicitly,
which can help balance optimization for each task during training. While in this paper, we focus on a
different setting where the task relation graph is explicitly given. We propose two modules to model
the task relation in latent and output space respectively.

3.1 Modeling Task Relation in the Latent Space

We propose a GNN to model the task relation. The task relation is implicitly encoded in the task
representations, and the final predictions are made independently for each task. We first embed the
molecule into the feature space as z(x) ∈ Rdm using Graph Isomorphism Network (GIN) [32],
where dm is the latent dimension. Then to embed each task, we use one-hot encoding, and by
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Figure 1: Pipeline of EBM-GNN. We first obtain molecule and task embedding via GIN and GCN. Then, they
are used to learn the latent representation for each task via a GNN model in the latent space. In EBM-GNN, a
GNN model is used to model the task relation graph in the latent space and EBM learns the task distribution in
the output space. The ultimate likelihood applies the energy tilting term: p̂θ,φ(y|x).

passing it through graph convolutional network (GCN) [13], we get the explicit task representation
z(i) ∈ Rdt×1,∀i ∈ {0, 1, . . . , T − 1}, where dt is the task embedding dimension. More detailed
discussions are in Appendices B and C.

Given the molecule and task representations (z(x) and z(i)), we then model the task relation using
another GNN, and the node- and edge-level inputs are:

h
(0)
i (x) = MLP(0)

n (z(x)⊕ z(i)), h
(0)
ij (x) = MLP(0)

e (z(x)⊕ z(i) ⊕ z(j)), (2)

where ⊕ is the concatenation operation of two tensors. The two mapping functions MLP(0)
n (·) :

Rdm+dt → RC×d and MLP(0)
e (·) : Rdm+2dt → RC×C×d are two multi-layer perceptrons (MLP)

on the node- and edge-level respectively. C = 2 is for binary task and d is the latent dimension.
Different from existing GNN models where there is only one state for each node and edge, we have
C node states and C × C edge states. The representation for each node and edge state is defined as:

h
(0)
i (x, yi) = h

(0)
i (x)[yi], h

(0)
ij (x, yi, yj) = h

(0)
ij (x)[yi, yj ]. (3)

With the inputs defined above, we then define the message-passing function in this task relation GNN.
As we have multiple states for each node and edge, the aggregation function will consider the states
accordingly. The propagation on the l-th layer is:

h
(l+1)
i (x, yi) = MPNN(l+1)

n

(
h
(l)
i (x, yi),

{
h
(l)
ij (x, yi, yj) | ∀j, yj

})
h
(l+1)
ij (x, yi, yj) = MPNN(l+1)

e

(
h
(l)
i (x, yi),h

(l)
j (x, yj),h

(l)
ij (x, yi, yj)

)
,

(4)

where MPNNn and MPNNe are MPNN layers defined on the nodes and edges on the (l+ 1)-th layer
respectively. Iterating Equation (4) L times can give the latent representation for each molecule-task
pair. The detailed structure of MPNN is described in Appendix D.

Finally, we make predictions for each task independently. We first get the node representation by
concatenating the two state representations, after which we apply a readout function R:

fi(x) = R({h(l)
i (x, 0)⊕ h

(l)
i (x, 1) | l = 1, . . . , L}), (5)

where R : R2dL → R is an MLP. Because C = 2 for binary classification, the label distribution is
p(yi = 1|x,G) = sigmoid(fi(x)), and the loss function is the binary cross entropy over all T binary
tasks L =

∑T−1
i=0 log p(yi|x,G).

3.2 Modeling Task Relation in the Output Space

The multi-task learning methods discussed so far are predicting each task independently. However,
there also exists a task distribution over multiple tasks, i.e., p(y = y0, y1, . . . , yT−1|x). In this
subsection, we propose to apply an energy-based model (EBM) to inject the prior knowledge about
task dependency and model it with joint task distribution.
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We define the energy function as the summation of first-order (node) and second-order (edge) factors
on the graph Eφ(x,y) = −

∑T−1
i=0 fi(x, yi)− λ

∑
〈i,j〉∈G fij(x, yi, yj), where λ is the coefficient

between first- and second-order factors. The conditional probability under the EBM framework is
defined as:

pφ(y|x) =
exp

(∑
i fi(x, yi) +

∑
ij fij(x, yi, yj)

)
Zφ

. (6)

The energy function in EBM can have flexible formulation [14]. Following Section 3.1, we de-
fine our energy function as fi(x, yi) = R̃({h(l)

i (x, yi) | l = 1, . . . , L}), fij(x, yi, yj) =

R̃({h(l)
ij (x, yi, yj) | l = 1, . . . , L}), where R̃ : RdL → R is a readout function defined as

R̃ = σ(MLP(·)) and σ(·) is the activation function. These two equations are mapping the node and
edge representations to scalars (or energies) indexed with the corresponding node and edge label.

Learning. We apply the noise contrastive estimation (NCE) [9] for EBM learning, which casts the
problem of maximizing log-likelihood into a binary classification task. It first takes the normalization
constant Zφ in Equation (1) as a learned scalar parameter, then it transforms the EBM learning into a
binary classification problem by maximizing the following objective:

LNCE = Ey∼pn log
pn(y|x)

pn(y|x) + pφ(y|x)
+ Ey∼pdata log

pφ(y|x)
pn(y|x) + pφ(y|x)

, (7)

where pdata, pφ and pn denote the data distribution, the model distribution and the noise distribution
over tasks respectively. In practice, the noise distribution should be close to the data distribution to
facilitate the mining of hard negative samples. We also combine the energy tilting term into NCE
learning. We apply the backbone model for the noise distribution, i.e., pn = q, and replace the energy
tilting term into Equation (7). More detailed derivations are attached in Appendix F.

Inference. The inference procedure aims at computing the marginal distribution for each task, and the
main challenge is how to calculate the intractable partition function. Here we use Gibbs sampling [7]:
it is a standard method and the core idea is to generate samples by sweeping through each variable to
a sample with the remaining variables fixed. For each data point (x, y0, . . . , yT−1), we iteratively
sample label for each task with other task labels fixed. The update function at each iteration is:

pφ(yi|y−i,x) =
exp

(
fi(x, yi) +

∑
〈i,j〉∈G fij(x, yi, yj)

)∑C−1
yi=0 exp

(
fi(x, yi) +

∑
〈i,j〉∈G fij(x, yi, yj)

) , (8)

where y−i denotes all T task labels except the i-the task. And taking this as the tilting term, we apply
p̃(y|x) = pφ(y|x) · q(y|x) for sampling. To accelerate the convergence of Gibbs sampling, we take
the backbone model for initial distribution.

Table 1: Dataset is split into 8-1-1 for train, valid, and test. For each method, we run 5 seeds and report the
mean and standard deviation. The best performance is highlighted.

Method ChEMBL 10 ChEMBL 50 ChEMBL 100

STL 71.67 ± 0.64 73.57 ± 1.20 70.81 ± 1.28
MTL 74.83 ± 0.61 79.37 ± 1.76 77.78 ± 1.59
UW [12] 72.49 ± 0.53 79.68 ± 0.98 78.71 ± 1.93
GradNorm [2] 75.17 ± 0.77 79.46 ± 1.27 78.75 ± 1.60
DWA [19] 72.45 ± 1.31 79.35 ± 0.68 78.21 ± 2.31
LBTW [18] 75.21 ± 0.49 79.52 ± 0.56 79.07 ± 0.99

GNN (ours) 77.72 ± 0.66 79.69 ± 1.07 80.19 ± 2.01
EBM-GNN (ours) 78.04 ± 0.73 80.34 ± 1.08 80.48 ± 1.93

Primary results. We use the proposed dataset with three thresholds introduced in Appendix A for
experiments, and report the average ROC-AUC over all T binary tasks in Table 1. We can see all the
multi-task learning methods are better than the single-task learning, which matches with the common
belief that the joint learning can improve the overall performance. Then for our proposed methods,
we can see that modeling task relation in the latent space using GNN reaches a good performance
compared to all multi-task learning baselines, while combining it with the EBM in the output space,
i.e., EBM-GNN, can reach the best performance on all datasets. Due to the space limitation, we put
the detailed descriptions of baselines and our models in Appendix E.
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A Dataset Generation

We propose a multi-task learning dataset with explicit task relation for the molecular property prediction.
This new dataset is built on the Large Scale Comparison (LSC) dataset [21], and we list the three main steps
in Appendices A.1 to A.3.

A.1 Filtering molecules

Among 456,331 molecules in the LSC dataset, 969 are filtered out following the pipeline in [10]. Here we
describe the detailed filtering process, and the molecules filtered out in each step.

1. Discard the 22 Nones in the compound list.

2. Filter out the 9 molecules with ≤ 2 non-H atoms.

3. Retain only the largest molecule in the SMILES string. E.g. if the compound is a organic hydrochloride,
say CH3NH+

3 Cl
−, we retain only the organic compound after removing HCl, in this case CH3NH2.

4. Filter out 929 molecules with molecular weight < 50 and 9 with m.w. > 900.

A.2 Querying the PPI scores

Then we obtain the PPI scores by quering the ChEMBL [22] and STRING [28] databases. The details are as
follows:

1. The LSC dataset [21] gives the ChEMBL ID for each assay. We use the assay id to query the ChEMBL
database by visiting https://www.ebi.ac.uk/chembl/api/data/assay/[assay_id]
for target ID. We then query the ChEMBL database by visiting
https://www.ebi.ac.uk/chembl/api/data/ target/[target_id] for UniProt [3] in-
formation. We save all the uniprots related to each target in a list. We discard the 585 assays with no
associated uniprot, and confirm that all remaining assays are targeting human proteins.

2. Next, we query the STRING database for the corresponding STRING ID for each of the 2,670 uniprots
by visiting https://string-db.org/api/xml/get_string_ids?identifiers=[uniprot].
40 uniprots do not have corresponding StringIDs, so we discard them. The String ID list is then sent to
https://string-db.org/ api/tsv-no-header/network via a POST request to obtain 12,356
human PPI scores.

A.3 Constructing the Task Relation Graph

Finally, we calculate the edge weights wij , i.e., task relation score, for task ti and tj in the task relation graph to
be max{PPI(si, sj) : si ∈ Si, sj ∈ Sj}, where Si denotes the protein set of task ti. The resulting task relation
graph has 1,310 nodes and 9,172 edges with non-zero weights. Note that 96% of the protein-targeted tasks only
target a single protein, for which the relation score of these tasks is exactly the PPI score between their target
proteins. We then densify the dataset via the following filtering process:

1. We filter out all isolated tasks.

2. We define a threshold τ and iteratively filter out molecules with number of labels below τ , tasks with
number of labels below τ , and tasks with number of positive or negative labels below 10. We repeat
this until no molecule or task is filtered out.
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B GIN for Molecule Embedding

The Graph Isomorphism Network (GIN) is proposed in [32]. It was originally proposed for the simple graph
structured data, where each node has one discrete label and no extra edge information is provided. Here we
adopt a customized GIN from a recent paper [10]. With this customized GIN as the base model, plus pre-training
techniques, [10] can reach the state-of-the-art performance on several molecular property prediction tasks. Thus
we adopt this customized GIN model in our work.

Following the notation in Section 2, each molecule is represented as a molecular graph, i.e., x = (X,E), where
X and E are feature matrices for atoms and bonds respectively. Suppose for one molecule, we have n atoms
and m edges. The message passing function is defined as:

z
(k+1)
i = MLP(k+1)

atom

(
z
(k)
i +

∑
j∈N (i)

(
z
(k)
j + MLP(k+1)

bond (Eij)
))
, (9)

where z0 = X and MLP(k+1)
atom and MLP(k+1)

bond are the (l + 1)-th MLP layers on the atom- and bond-level
respectively. Repeating this for K times, and we can encode K-hop neighborhood information for each atom in
the molecular data, and we take the last layer for each node/atom representation. The graph representation is the
mean of the node representation, i.e., the molecule representation in this paper:

z(x) =
1

N
z
(K)
i (10)

C GCN for Task Embedding

We use graph convolutional network (GCN) [13] for the task embedding. For the i-th task, we first get its
one-hot encoding and then pass it through an embedding layer, with the output denoted as ei ∈ Rdt×1, ∀i ∈
{0, 1, . . . , T − 1}, where dt is the task embedding dimension. E = {e0, e1, . . . , eT−1}T ∈ RT×dt is the
initial embedding matrix for T tasks. Then we pass E through a GCN and the output embedding for the i-th
task is z(i) = GCN(E)i, ∀i ∈ {0, 1, . . . , T − 1}.

D GNN for Modeling Latent Space

In this section, we give a detailed illustration of our proposed GNN model in Section 3.1. The general pipeline is
shown in Figure 2.

Figure 2: Pipeline of GNN. We first obtain molecule and task embedding via GIN and GCN. Then
they are concatenated and passed through a GNN to better learn the task representation. The final
prediction for each task is predicted independently on each node representation.

First let us quickly review the node- and edge-level inputs:

h
(0)
i (x) = MLP(0)

n (z(x)⊕ z(i))

h
(0)
ij (x) = MLP(0)

e (z(x)⊕ z(i) ⊕ z(j)),
(11)

and as discussed in Section 3.1, the biggest difference between our GNN model and the mainstream GNN
models is that each node and each edge has two and four states respectively, where each state represents a label.
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Recall that in this task relation graph, yi is the label for the i-th task, and it has two values; similarly for each
edge 〈yi, yj〉 has four labels with a simple combination. Thus the representations for node label yi and edge
label 〈yi, yj〉 are as follows:

h
(0)
i (x, yi) = h

(0)
i (x)[yi]

h
(0)
ij (x, yi, yj) = h

(0)
ij (x)[yi, yj ].

(12)

With the node and edge inputs, we can then define the message-passing propagation. Notice that here we
are propagating on both the node- and edge-levels. Following the notations in Section 3.1, for the node-level
propagation we have:

h
(l+1)
i (x, yi) = MPNN(l+1)

n

(
h

(l)
i (x, yi), {h(l)

ij (x, yi, yj) | ∀j, yj}
)

= MLP(l+1)
n

h
(l)
i (x, yi) +

∑
j∈N(i)

C−1∑
yj=0

h
(l)
ij (x, yi, yj)

 ,
(13)

and for the edge-level propagation, we have:

h
(l+1)
ij (x, yi, yj) = MPNN(l+1)

e

(
h

(l)
i (x, yi),h

(l)
j (x, yj),h

(l)
ij (x, yi, yj)

)
= MLP(l+1)

e

(
h

(l)
ij (x, yi, yj) + MLP(l+1)

a

(
h

(l)
i (x, yi) + h

(l)
j (x, yj)

))
,

(14)

where MLP(l+1)
n (·), MLP(l+1)

e (·) and MLP(l+1)
a (·) are MLP layers defined on the node-level, edge-level, and in

the aggregation function from nodes to edges. All three MLP layers are mapping functions defined on Rd → Rd.
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E Training Details

Baselines As discussed before, the memory cost of architecture-specific multi-task learning methods (Bypass
network) isO(T ), while pair-wise architecture-agnostic multi-task learning methods (RMTL, PCGrad, GradVac)
have O(T 2) complexity. Both are infeasible in the deep multi-task learning setting, so we exclude these in
the experiment. For the baseline methods, we include standard single-task learning (STL), standard multi-task
learning (MTL), Uncertainty Weighing (UW) [12], GradNorm [2], Dynamic Weight Average (DWA) [19], and
Loss-Balanced Task Weighting (LBTW) [18].

Our Methods We proposed two approaches in Section 3. (1) GNN models the task relation graph in the latent
space, as proposed in Section 3.1. (2) EBM-GNN is proposed in Section 3.2. It models the task relation graph in
both the latent and output space under the EBM framework, where the energy function is defined as GNN. We
explore two noise distributions in the NCE learning steps: (2.1) the first is a fixed pre-trained GNN, pn = pθ;
(2.2) the second is taking the pre-trained GNN, pn = pθ , as initial noise distribution, and then adaptively
updating this noise distribution with the latest model distribution pn = p̃φ. More training details can be found
in Appendix E.

Evaluation We follow the mainstream evaluation metrics on multi-task learning for drug discovery, i.e., the mean
of ROC-AUC over all T tasks. ROC-AUC is ranking-based, thus it can better match with the class-imbalance
tasks like molecular property prediction in drug discovery.

Reproducibility The sizes are actually quite small for ChEMBL-50 and ChEMBL-100, leading to the high
variation. To alleviate this issue, for each method on each dataset, we run 5 times with different seeds, and
report the mean and standard deviation. Another thing that may increase the unstable performance is the
implementation of GNN: our code is built on PyTorch Geometric [6], which uses torch-scatter operation. This
atomic operation is non-deterministic and has not been solved yet. Thus for reproducibility, we will provide the
trained model weight after the paper is accepted.

To train our proposed model, we use Adam for optimization with learning rate 1e-3, and the batch size is 32 for
ChEMBL-10 (due to the memory issue) and 128 for ChEMBL-50 and ChEMBL-100. We train 200 epochs on
ChEMBL-10 (within 36 hours) and 500 epochs on ChEMBL-50 and ChEMBL-100 (within 2 hours). The base
graph neural network for molecule representation is GIN [32], and we follow the hyperparameter used in [10].
The base graph neural network for task embedding is GCN [13]. We have more detailed description of GIN
and GCN in Appendices B and C. The hyperparameter tuning for all baseline methods and GNN base models
in Appendix E.1.

E.1 Hyperparameter Tuning

We list the hyperparameters for baselines models and our proposed models in Table 2, including MTL, UW [12],
GradNorm [2], Dynamic Weight Average (DWA) [19], and Loss-Balanced Task Weighting (LBTW) [18], GNN
in Section 3.1, EBM-GNN in Section 3.2.

F Noise Contrastsive Esitmation with Energy Tilting Term

Here we present the derivation of the training objective function of NCE learning with tilting term in section 3.2.
When applying the backbone model for noise distribution, i.e., pn = 1, and adopting the self-normalization
(Z = 1), the loss can be rewritten as:

L̂NCE = Ey∼pn log
pn(y|x)

pn(y|x) + pφ(y|x)
+ Ey∼pdata log

pφ(y|x)
pn(y|x) + pφ(y|x)

= Ey∼pn log
pn(y|x)

pn(y|x) + pn(y|x) exp(−Eφ(x,y))
+ Ey∼pdata log

pn(y|x) exp(−Eφ(x,y))
pn(y|x) + pn(y|x) exp(−Eφ(x,y))

= Ey∼pn log
1

1 + exp(−Eφ(x,y))
+ Ey∼pdata log

1

1 + exp(Eφ(x,y))
.

(15)
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Table 2: Hyperparameters for baselines and our models.
Model Hyperparameters Values

MTL Epochs [100, 200]

UW Epochs [100, 200]

GradNorm Epochs [100, 200]
α [0.1, 0.2, 0.5]

DWA Epochs [100, 200]
T [0.2]

LBTW Epochs [100, 200]
α [0.1, 0.2, 0.5]

GNN

Epochs [200, 500]
d [50, 100]
# GCN Layer [0, 2]
# GNN Layer [2]

EBM-GNN

Epochs [200, 500]
Fixed-Noise Distribution Epochs [200, 300, 400, 1000]
d [50, 100]
# GCN Layer [0, 2]
# GNN Layer [0, 2, 4]
λ [0.1, 1]

11


	Introduction
	Problem Definition and Preliminaries
	Method and Primary Results
	Modeling Task Relation in the Latent Space
	Modeling Task Relation in the Output Space

	Dataset Generation
	Filtering molecules
	Querying the PPI scores
	Constructing the Task Relation Graph

	GIN for Molecule Embedding
	GCN for Task Embedding
	GNN for Modeling Latent Space
	Training Details
	Hyperparameter Tuning

	Noise Contrastsive Esitmation with Energy Tilting Term

