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Abstract

Large Language Models (LLMs) achieve strong performance on mathematical
problem solving when guided by chain-of-thought prompting or trained on rea-
soning traces. Yet it remains unclear whether Retrieval-Augmented Generation
(RAG) which shows a lot of success on knowledge-intensive tasks, can also provide
benefits for math reasoning. We show that with regular text datastores, vanilla RAG
provides no or little benefit on benchmarks such as MATH and AIME. However, it
is possible to redesign datastore contents to be more RAG-friendly, and we exam-
ine which types of content and organizational structures most effectively support
mathematical reasoning. We run experiments on different corpora building from
generic text to structured “thinking traces” and explore how offline restructuring
can transform raw material into reasoning-friendly retrieval units. Results show
that restructuring documents into step-by-step reasoning units consistently boosts
accuracy, with average gains of 17.7% and 8.8% for general-purpose models such
as LLaMA-3.1-8B and Qwen-2.5-32B. Notably, even math-finetuned models ben-
efit from structured external reasoning traces: Mathstral-7B-v0.1 improves by
30.3%, while OpenMath2-LLaMA-3.1-8B gains 15.7%. These findings highlight
the central role of corpus design: retrieval supports math reasoning only when
paired with well-structured, reasoning-oriented data.

1 Introduction

Large Language Models (LLMs) are increasingly applied to reasoning intensive tasks, such as
mathematical problem solving, theorem proving, complex scientific QA and so on Wang et al. (2025,
2024); Patel et al. (2025); Lála et al. (2023); Auer et al. (2023). Researchers have deployed a variety
of prompt design and inference strategies to coax models into multi-step reasoning instead of directly
outputting the answer Wei et al. (2022); Wang et al. (2022); Kojima et al. (2022). Some recent
advances go beyond prompting by training or finetuning models on reasoning traces to further boost
correctness Yang et al. (2024); Ho et al. (2023); Magister et al. (2023). Nevertheless, much of the
improvement is believed to come from internalizing knowledge that is, the model’s parameters encode
facts, lemmas, patterns, and reasoning heuristics derived from the training data Roberts et al. (2020);
Kaplan et al. (2020); Hoffmann et al. (2022). Thus, a strong model “knows” many theorem facts and
solution templates implicitly, and uses those to guide its chain-of-thought.

Because of this, the community typically views success in reasoning-heavy domains as evidence of
the model’s internal reasoning and knowledge capacity Schaeffer et al. (2023). In contrast, while
Retrieval-Augmented Generation (RAG) has been widely used in knowledge-intensive NLP tasks
(e.g. open-domain QA, summarization) Lewis et al. (2020); Fan et al. (2024), the potential of RAG
to assist with mathematical reasoning is far less explored. A few works apply RAG to math QA or
tutoring settings and observe that retrieval can enhance answer quality when well integrated, though
grounding overly rigidly to textbooks may reduce fluency or flexibility in explanations Levonian et al.
(2023); Han et al. (2024). Still, the question remains: Can retrieval actually help LLMs with math
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problem solving? Under what conditions, and with what kinds of retrieved content, can RAG improve
reasoning, especially for models that lack strong implicit reasoning skills?

To answer this, in this work, we investigate the following three Research Questions (RQ)s:

• RQ1: Does retrieval help math problem solving? We hypothesize that retrieving helpful
knowledge (e.g. similar examples, useful lemmas) might provide hints for solving problems.

• RQ2: What kind of content is helpful for RAG on math problems? We compare generic corpus
of textbooks and web articles against collections that are only build from the “thinking trajectory”
of other LLMs on decontaminated math problems. Our hypothesis is that a retrieving reasoning
examples might provide guidance that aligns with the model’s own reasoning steps.

• RQ3: Can we restructure a corpus to make it more RAG-friendly for math? Math documents
often interleave text, formulas, and noisy context that may not directly support reasoning. Retrieved
chunks are sometimes truncated, incomplete, or too short to convey full solutions. We therefore ask
whether offline processing such as extracting concise reasoning steps can reorganize raw documents
into retrieval units that better support RAG for mathematical problem solving.

We conduct experiments on the MATH benchmark and AIME competition problems (2022–2024).
We evaluate the performance of different LLMs under different settings: with vs. without retrieval,
across datastore types, and under various corpus reconstruction strategies. Preliminary results show
that retrieval can improve math problem solving, but the content of the datastore is crucial. Simply
retrieving from a large generic corpus often yields little or no benefit, depending on the LLM. In
contrast, when the datastore contains high-quality restructured reasoning traces, models can use these
cues to reach correct solutions. Reformatting retrieved context into concise, step-by-step hints further
boosts effectiveness, especially for smaller models. This suggests that reasoning knowledge from
larger models can indeed help weaker models when provided as external context. More broadly,
making the retrieval corpus “RAG-friendly”, both in relevance and format, is key to unlocking
retrieval benefits for mathematical reasoning.

2 Methodology

Let q ∈ Q be a math problem, and let an LLM L produce a solution y. A retriever R takes a query
q and a corpus C and returns k documents ranked by similarity D = R(q; C, k) = {d1, . . . , dk}. In
this work, we study the following four variants in the source and form of the retrieved context:

(1) No-RAG. No external retrieval is used. Therefore: y ∼ L
(
q
)
.

(2) Vanilla-RAG-Text. A text corpus Ctext (e.g., textbooks, web math) is indexed. The top-k passages
are retrieved and concatenated with the query, denoted [ · ⊕ · ]:

Dtext = R(q; Ctext, k), y ∼ L
(
Dtext ⊕ q

)
.

(3) Vanilla-RAG-Trace. We construct a thinking-trace corpus from an auxiliary problem set Q′,
chosen to be related in topic to Q and ideally much larger (|Q′| ≫ |Q|). An auxiliary “thinker” model
L′ generates a reasoning trace τ(q′) for each q′ ∈ Q′. The trace corpus is Cτ =

{
τ(q′) : q′ ∈ Q′ }.

At test time we retrieve from Cτ and condition the LLM on the retrieved traces:

Dτ = R(q; Cτ , k), y ∼ L
(
Dτ⊕q).

(4) RAG-Restruct. We apply a restructuring operator F : (d) 7→ d̃ that converts raw retrieved
content into a canonical, math-friendly scaffold (e.g., numbered steps, lemma, application, symbol-
normalized equations, truncation repair). Using either Cτ or Ctext as the source corpus, we obtain:

D = R(q; C, k), D̃ = {F(di)|di ∈ D}, y ∼ L
(
D̃ ⊕ q

)
.

We note that since the restructuring function F is independent of the query and depends only on the
corpus chunks, it can be applied entirely offline. Thus, it is possible to incur a one-time cost by using
a larger model to restructure the corpus.
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Table 1: Accuracy of different models on MATH under various RAG and no-RAG settings. Best
values in each column are in bold. Best value for each model is shown in blue.

LLaMA-3.1-8B Qwen2.5-32B

Method CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini-2.0

CompactDS
MATH

CompactDS
Full

Traces
Qwen3-2B

Traces
Gemini-2.0

No-RAG 45.9 45.9 45.9 45.9 73.6 73.6 73.6 73.6
Vanilla-RAG 47.6 44.3 47.6 48.1 76.2 75.6 74.4 74.7
RAG-Restruct-8B 54.4 48.0 44.0 54.5 77.5 78.0 74.8 79.8
RAG-Restruct-32B 51.8 48.3 46.2 53.5 76.1 77.2 74.4 80.4

OpenMath2-Llama3.1-8B Mathstral-7B-v0.1

Method CompactDS
MATH

CompactDS
Full

Traces
Qwen32B

Traces
Gemini

CompactDS
MATH

CompactDS
Full

Traces
Qwen32B

Traces
Gemini

No-RAG 63.0 63.0 63.0 63.0 47.5 47.5 47.5 47.5
Vanilla-RAG 64.2 61.4 61.4 61.0 43.3 42.3 45.6 45.0
RAG-Restruct-8B 62.8 64.5 61.3 73.5 51.7 52.1 43.8 62.7
RAG-Restruct-32B 64.1 65.2 62.6 72.2 50.9 53.0 47.4 61.1

3 Experimental setup

Datasets and Evaluation: Following Lyu et al. (2025), we evaluate on MATH Hendrycks et al.
(2021) and AIME 2022-2024 using zero-shot chain-of-thought (CoT) with the same prompt and
decoding settings across both datasets. Evaluation details and prompts are provided in Appendix B

Models: We evaluate four models to study RAG effects across general-purpose vs. math-specialized
LLMs: Llama3.1-8B-Instruct and Qwen2.5-32B-Instruct as general models, alongside two
math-tuned variants, Mathstral-7B-v0.1, specialized for mathematical and scientific tasks, and
OpenMath2-Llama3.1-8B, obtained by finetuning Llama-3.1-8B-Base on OpenMathInstruct-2
and reported to markedly improve MATH accuracy over the vanilla Llama 3.1-8B-Instruct
Toshniwal et al. (2024). All models are run with a decoding temperature of 0.6 and a maximum
generation length of 32K tokens.

Corpora. We evaluate RAG using four corpora: two large-scale text collections (CompactDS–Math
and CompactDS–Full) and two reasoning-trace collections (S1–Traces-Gemini and S1–Traces-
Qwen3-32B). The text corpora provide raw math-related content from web and academic sources,
while the trace corpora consist of worked-out step-by-step solutions generated by large models. The
S1–Traces-Gemini traces are taken from the SimpleScaling dataset Muennighoff et al. (2025), while
the S1–Traces-Qwen3-32B traces are generated by us on the same decontaminated MATH portion
using the released S1 prompt. A detailed description of each corpus is provided in Appendix C.

Retrieval. For all corpora indexed locally, we use FAISS Johnson et al. (2019) with Contriever
embeddings Izacard et al. (2022), 256-token chunking, and using top-3 retrieved chunks via a FLAT
exact index. For the CompactDS-Full corpus we query via their provided API.

Corpus Restructuring. We compare restructuring via a smaller model (Qwen3-8B) with a larger
one (Qwen3-32B), in order to assess the impact of restructure model size on downstream performance.
The restructuring prompt is inspired by the solution CoT prompt shown in Figure 3.

4 Results

In this section, we report results on the MATH problems; due to space constraints, results on AIME
2022–2024 are presented in Appendix A. Table 1 summarizes Average@4 accuracy across four
models under different retrieval settings, and Figure 1 shows relative improvements compared to the
No-RAG baseline. Across all settings, we find that RAG on raw text alone provides no significant
benefit over the No-RAG baseline. For example, LLaMA-3.1-8B improves only marginally, from
45.9 without retrieval to 47.6 with CompactDS-Math, while Mathstral-7B-v0.1 even drops from
47.5 (No-RAG) to 43.3 (Vanilla-RAG-Text) with CompactDS-Full. In general, simply appending
raw text passages does not consistently improve performance. We further observe that increasing
corpus size or diversity does not guarantee better results. CompactDS-Full, despite being much
larger and more diverse than CompactDS-Math, performs comparably or worse across models. For
instance, Qwen2.5-32B improves only slightly, from 73.6 (No-RAG) to 76.2(Vanilla-RAG-Text)
with CompactDS-Math and 75.6 with CompactDS-Full.

Comparing Vanilla-RAG-Text and Vanilla-RAG-Trace, we find that retrieval from thinking traces does
not provide a significant advantage over raw text corpora. The key improvements only emerge once a
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Figure 1: Relative improvements (%) across different RAG strategies and corpora w.r.t NO-RAG
baselines. Each heatmap corresponds to a different retrieval corpus and each row represents a
different model. Within each heatmap, columns correspond to improvements from Vanilla-RAG,
RAG-Restruct with Qwen3-8B, and RAG-Restruct with Qwen3-32B (from left to right). As shown,
restructuring retrieved items from traces produced by larger models such as Gemini consistently
improves performance for both general-purpose and math-specialized models.

restructuring step is applied. Looking at the Restruct. rows, we observe that offline restructuring
into step-by-step reasoning units yields consistent and substantial gains. For example, with
LLaMA-3.1-8B, restructuring retrieved context from CompactDS-Math boosts accuracy from 45.9
to 54.4 (+18.5%), and to 54.5 with restructured Gemini traces (+18.7%). Qwen2.5-32B improves
from 73.6 to 79.8 (+8.4%) when restructured by Qwen3-8B, and to 80.4 (+9.2%) when restructured
by Qwen3-32B. More interestingly, math-specialized models also benefit considerably. OpenMath2
rises from 63.0 to 73.5(+16.7%) with restructured Gemini traces, while Mathstral-7B-v0.1 jumps
from 47.5 to 62.7 (+32%; the largest relative improvement among all models) . Restructuring
quality also appears largely robust to the size of the restructuring model. Differences between
RAG-Restruct-8B by Qwen3-8B vs RAG-Restruct-32B by Qwen3-32B are minor across corpora.
However, the source of the traces matters substantially. Restructured Gemini traces (RAG-
Trace-Gemini) consistently outperform CompactDS-Math (RAG-Text), while as shown in Figure 1
RAG-Trace-Qwen32B shows no or little advantage over No-RAG. This highlights that the choice of
the “thinker” model strongly influences downstream RAG effectiveness.

In summary, retrieval can support math problem solving, but only when paired with right format and
right content. Effective corpus restructuring is the key to unlocking RAG benefits, even for models
already fine-tuned on math. Results on AIME (Appendix A) suggest that extending these benefits to
more challenging benchmarks remains an open direction.

5 Takeaway and Ongoing Work

We investigate under what conditions RAG can be helpful for solving mathematical problems. In
response to RQ1, we showed that simple vanilla RAG does not necessarily benefit math problem
solving. However, when we curate a RAG-friendly datastore, LLMs can indeed benefit from restruc-
tured retrieved content. In response to RQ2 we showed that retrieval by itself, whether over raw
text or unprocessed traces, provides little to no benefit, and in some cases even hurts performance.
Retrieval becomes useful only when combined with proper corpus preparation and restructuring. In
response to RQ3, we demonstrated that restructuring the retrieved content is essential for RAG to
be effective in math. A simple offline restructuring of the corpus creates a RAG-friendly datastore,
where content is optimized and prepared for the generator. Offline restructuring into step-by-step
reasoning units consistently improves accuracy across all models. Notably, even math-specialized
models benefit substantially from this restructuring. Restructured thinking traces prove especially
effective, outperforming raw text and establishing themselves as the most beneficial retrieval resource.

This work represents an initial step toward designing RAG-friendly datastores. Our experiments
are limited in scope, relying on a small set of models and benchmarks. Extending the analysis to
larger reasoning-intensive models, additional datastores, and broader task suites will be important
for generalization. Moreover, we explored only one method of restructuring. Future research should
investigate more generalizable restructuring strategies, adaptive reconstruction methods and richer
trace formats that extend to more complex reasoning benchmarks. Our results show that it is feasible
to restructure the same corpus into a math-friendly format, but further exploration is required to fully
realize the potential of RAG for reasoning-intensive tasks.
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Table 2: AIME 2022–2024 results (per year). Each cell shows Pass@4 for AIME 2022/2023/2024.

LLaMA-3.1-8B Qwen2.5-32B

Method CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

No-RAG 0/1/1 0/1/1 0/1/1 0/1/1 6/3/6 6/3/6 6/3/6 6/3/6
Vanilla-RAG 5/2/3 5/2/3 4/0/3 3/0/2 7/3/6 5/7/4 8/4/6 5/5/7
RAG-Restruct-8B 3/3/0 1/1/0 7/1/0 8/1/1 4/5/7 6/4/10 7/4/8 9/4/7
RAG-Restruct-32B 6/2/1 3/3/0 8/1/1 5/2/1 5/5/6 4/5/5 9/5/6 3/6/8

OpenMath2-LLaMA-3.1-8B Mathstral-7B-v0.1

Method CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

No-RAG 1/3/4 1/3/4 1/3/4 1/3/4 1/4/3 1/4/3 1/4/3 1/4/3
Vanilla-RAG 5/1/2 7/3/2 7/3/5 7/1/3 4/3/0 2/1/0 3/2/0 3/2/2
RAG-Restruct-8B 5/3/1 4/4/2 6/3/4 6/3/3 1/3/2 1/3/2 5/1/2 6/2/3
RAG-Restruct-32B 3/3/1 3/5/3 6/2/0 6/3/3 5/2/1 5/2/1 9/2/1 5/1/3

Table 3: Pass@4 over 90 questions in AIME 2022–2024 results (sum over three years, out of 90).
Best values in each column are in bold. Best value for each model is shown in blue.

LLaMA-3.1-8B Qwen2.5-32B

Method CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

No-RAG 2 2 2 2 15 15 15 15
Vanilla-RAG 10 10 7 5 16 16 18 17
RAG-Restruct-8B 6 2 8 10 16 20 19 20
RAG-Restruct-32B 9 6 10 8 16 14 20 17

OpenMath2-LLaMA-3.1-8B Mathstral-7B-v0.1

Method CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

CompactDS
MATH

CompactDS
Full

Traces
Qwen2-32B

Traces
Gemini

No-RAG 8 8 8 8 8 8 8 8
Vanilla-RAG 8 12 15 11 7 3 5 7
RAG-Restruct-8B 9 10 13 12 6 6 8 11
RAG-Restruct-32B 7 11 8 12 8 8 12 9

A AIME results

Here, we present results on the AIME benchmark for the years 2022, 2023, and 2024, with each year
consisting of 30 questions (90 questions in total). We evaluate models using Pass@4, where the model
is given up to four attempts at temperature 0.6 and is counted correct if any attempt matches the gold
answer. Table 2 reports per-year results for AIME 2022, 2023, and 2024, while Table 3 aggregates
these into totals across all three years. Together, these tables highlight both year-by-year performance
and aggregate trends across AIME 2022–2024. We note that percentages are not reported, as the
absolute numbers are small and percentage values would exhibit high variance.

From the results, we observe that vanilla RAG can sometimes help, as with LLaMA-3.1-8B, where
performance improved from 2/90 without retrieval to 10/90 with vanilla RAG. However, restructuring
yields more consistent gains. For the stronger Qwen2.5-32B, vanilla RAG offered little benefit, but
restructuring the retrieved content improved performance from 15 to 20 correct answers, showing
that careful content design is crucial for larger models. For Mathstral-7B, which is already math-
specialized, vanilla RAG did not provide improvements, whereas restructuring with Traces was only
marginally helpful. Overall, these findings suggest that achieving improvements with RAG on more
challenging benchmarks like AIME (compared to MATH benchmark) requires systematic exploration
of how to restructure content to make retrieval more effective.

B Evaluation

For MATH, we follow the dataset’s seven categories and sample 100 problems per cate-
gory (700 total); answers are judged by exact numeric match after normalization using the
MINERVA_MATH::LLAMA3.1 configuration from OLMES Gu et al. (2025), which reproduces the
evaluation setup used by LLaMA-3.1 in Dubey et al. (2024). To account for the non-deterministic
nature of decoding, we report Average@4 accuracy on MATH, where the model is sampled four
times per question. For AIME, we report Pass@4, i.e., whether the correct solution appears in any of
four sampled generations.
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Prompt for Solution Generation

Solve the following math problem efficiently and clearly:
- For simple problems (2 steps or fewer): Provide a concise solution with minimal explanation.
- For complex problems (3 steps or more): Use this step-by-step format:
## Step 1: [Concise description] [Brief explanation and calculations]
## Step 2: [Concise description] [Brief explanation and calculations]
...
Regardless of the approach, always conclude with:
Therefore, the final answer is: $\boxed{answer}$. I hope it is correct.
Where [answer] is just the final number or expression that solves the problem.
Problem:

Figure 2: Prompt used for solution generation with chain-of-thought.

Prompt. We use the CoT prompt shown in Figure 2 to generate solutions.

C Corpora

We retrieve from four different corpora to study how the nature of retrieved material impacts RAG
for mathematical problem solving. To ensure the robustness of our evaluation, following Lyu et al.
(2025), all corpora have been decontaminated by filtering out any paragraph with more than 70%
13-gram Jaccard similarity to queries in our evaluation datasets.

1. CompactDS–Math: The math-only portion of the CompactDS raw-text release on Hugging
Face,1 which provides combines OpenWebMath Paster et al. (2023), a collection of filtered math
webpages from Common Crawl, and NaturalProofs Welleck et al. (2021), a corpus of theorems,
proofs, definitions, and related content.

2. CompactDS–Full: the full web-scale datastore introduced in, which combines diverse high-
quality sources (web crawls, curated math, academic papers, textbooks). We access this corpus
via the CompactDS API.2 Compared to the math-only split, the full CompactDS is substantially
larger and more diverse.

3. S1–Gemini: thinking traces released in the SimpleScaling ablation study dataset Muennighoff
et al. (2025) 3 generated by Gemini 2.0 Flash. We use these as retrievable worked-step exemplars.

4. S1–Qwen3-32B: we additionally generate thinking traces on the same decontaminated MATH
portion of S1 using Qwen3-32B, in order to study the effect of corpus quality on RAG for
mathematical problem solving. We use the same prompt/template as the released S1 data.

D Restructuring Example

Figure 4 shows an example of retrieved chunk and restructured format of it.

1https://huggingface.co/datasets/alrope/CompactDS-102GB-raw-text
2https://github.com/berkeleyljj/Massive-Serve-Jinjian
3https://huggingface.co/datasets/simplescaling/data_ablation_full59K/
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Prompt for Restructuring the Corpus

Instruction. You are given a math problem and its solution. Your goal is to rewrite the solution into a
clearly labeled, step-by-step concise format that teaches how to solve the problem.

Guidelines.
• Each step should reflect a logical phase in solving the problem.
• Use a concise “cheatsheet” style so learners can generalize the strategy to harder or related problems.
• If the problem or solution is incomplete or noisy, infer reasonable steps and still provide guidance.
• Focus on key ideas, strategies, or techniques the learner can reuse.
• Keep at most 7 steps; be concise and avoid verbosity.
• Avoid over-fragmentation; combine actions logically where appropriate.

Output format.
Problem: [Copy the problem exactly as given]
Step 1: [Short label]
[Brief explanation of what’s being done and why, with any relevant
calculations]
Step 2: [Next short label]
[Brief explanation and math]
...
Step N: [Final step]
[Brief explanation and final processing or insight]
Therefore, the final answer is: $\boxed{[final answer]}$

Given problem: {retrieval_text}

Figure 3: Prompt used to restructuring the retrieved chunks.
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Problem

A band is marching in a rectangular formation with dimensions n− 2 and n+ 8 (members).
In the second stage of their performance, they re-arrange to form a different rectangle with
dimensions n and 2n− 3, excluding all the drummers. If there are at least 4 drummers, then
find the sum of all possible values of n.

(a) Problem

Retrieved Text

Difference between revisions of "2005 AIME I Problems/Problem 4" Problem The director
of a marching band wishes to place the members into a formation that includes all of them
and has no unfilled positions. If they are arranged in a square formation, there are 5 members
left over. The director realizes that if he arranges the group in a formation with 7 more rows
than columns, there are no members left over. Find the maximum number of members this
band can have.
Solution 1 If n > 14 then n2 + 6n+ 14 < n2 + 7n < n2 + 8n+ 21 and so (n+ 3)2 + 5 <
n(n + 7) < (n + 4)2 + 5. If n is an integer there are no numbers which are 5 more than
a perfect square strictly between (n + 3)2 + 5 and (n + 4)2 + 5. Thus, if the number of
columns is n, the number of students is n(n+7) which must be 5 more than a perfect square,
so n ≤ 14. In fact, when n = 14 we have n(n + 7) = 14 · 21 = 294 = 172 + 5, so this
number works and no larger number can. Thus, the answer is $\boxed{[294]}$.
Solution 2 Define the number of rows/columns of the square formation as s, and the number of
rows of the rectangular formation r (so there are r−7 columns). Thus, s2+5 = r(r−7) =⇒
r2 − 7r−"

(b) Retrieved Text

Restructured Retrieved Text

Problem: The director of a marching band wishes to place the members into a formation with
no unfilled positions. In a square formation there are 5 members left over. In a rectangular
formation with 7 more rows than columns, there are none left over. Find the maximum
number of members.
Step 1: Let columns = n, rows = n+ 7, so members = n(n+ 7). Also members = s2 + 5.

n(n+ 7) = s2 + 5

Step 2: For n > 14,

(n+ 3)2 + 5 < n(n+ 7) < (n+ 4)2 + 5

contradiction. So n ≤ 14.
Step 3: Check n = 14:

14 · 21 = 294 = 172 + 5 (since 172 = 289)

Answer: $\boxed{[294]}$

(c) Restructured Retrieved Text

Figure 4: Example restructured retrieved content for Problem shown in Figure (a), Figure (b) shows
the Retrieved Text, and (c) shows the Restructured version of Retrieved Text.
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