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Abstract

The e-commerce platform has evolved rapidly due to its widespread
popularity and convenience. Developing an e-commerce shopping
assistant for customers is crucial to aiding them in quickly find-
ing desired products and recommending precisely what they need.
However, most previous shopping assistants face two main prob-
lems: (1) task-specificity, which necessitates the development of
different models for various tasks, thereby increasing development
costs and limiting effectiveness; and (2) poor generalization, where
the trained model performs inadequately on up-to-date products.
To resolve these issues, we employ Large Language Models (LLMs)
to construct an omnipotent assistant, leveraging their adeptness at
handling multiple tasks and their superior generalization capability.
Nonetheless, LLMs lack inherent knowledge of e-commerce con-
cepts. To address this, we create an instruction dataset comprising
65,000 samples and diverse tasks, termed as EshopInstruct1.
Through instruction tuning on our dataset, the assistant, named
LLaSA, demonstrates the potential to function as an omnipotent
assistant. Additionally, we propose various inference optimization
strategies to enhance performance with limited inference resources.
In the Amazon KDD Cup 2024 Challenge2, our proposed method,
LLaSA, achieved an overall ranking of 3rd place on ShopBench,

∗Xuming Hu is the corresponding author.
1Our instruction dataset can be found at https://github.com/suyan-liang/EshopInstruct.
2https://www.aicrowd.com/challenges/amazon-kdd-cup-2024-multi-task-online-
shopping-challenge-for-llms
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including 57 tasks and approximately 20,000 questions, and we
secured top-5 rankings in each track, especially in track4, where
we achieved the best performance result among all student teams.
Our extensive practices fully demonstrate that LLMs possess the
great potential to be competent e-commerce shopping assistants3.
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• Computing methodologies → Natural language processing.
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Multi-Task Online Shopping, Large Language Models, Instruction
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1 INTRODUCTION

1.1 Background

The rapid growth of e-commerce has transformed how we shop,
offering unprecedented convenience and access to a vast array of
products. However, this convenience comes with the challenge of
navigating an overwhelming volume of information. When shop-
ping online, users often face the daunting task of sifting through
countless products, reading numerous reviews, comparing prices,
and ultimately making a purchase decision. This process can be
time-consuming and stressful, highlighting the complexities inher-
ent in online shopping [8, 10, 12].

Large language models (LLMs) offer a promising solution to
address these challenges [20]. Current techniques often struggle

3All of the authors contributed equally to this work. Our team name is “shimmer-
ing_as_the_stars”, whose expression in Chinese is灿若星辰.
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Figure 1: Construction pipeline of EshopInstruct. We de-

sign three strategies for building the EshopInstruct dataset:

generating data from seed data, extracting data from publicly

available ECInstruct, and designing new tasks to generate

data. Based on these strategies, we obtained 65k data points.

to fully grasp the nuances of specific shopping terms, customer
behaviors, and the diverse nature of products and languages. In
contrast, LLMs, with their multi-task and few-shot learning capabil-
ities, have the potential to enhance the online shopping experience
significantly.

To encourage LLMs to meet the unique needs of online shopping,
enhance user experience, and streamline decision-making, Ama-
zon has introduced ShopBench and organized the Amazon KDD
Cup 2024 challenge. This competition features five tracks, focus-
ing on four key shopping skills: Shopping Concept Understanding,
Shopping Knowledge Reasoning, User Behavior Alignment, and
Multilingual Abilities.

1.2 Datasets Description

ShopBench is a multi-task dataset derived from real-world shopping
data in the Amazon platform, designed for the Amazon KDD Cup
2024 challenge. The dataset is divided into a few-shot development
set and a test set, designed to more accurately simulate the few-shot
learning settings. It contains 57 tasks and approximately 20,000
questions, which are all reformulated into a unified text-to-text
generation format to facilitate LLM-based solutions. The detailed
statistics of the datasets are summarized in Table 1.

1.3 Task Description

In the ShopBench benchmark, five abilities, including Generation,
Ranking, Retrieval, Multiple-Choice, and NER (Named Entity Recog-
nition), are introduced to evaluate four important shopping skills:

• Track1 (Shopping Concept Understanding): Given the preva-
lence of domain-specific concepts in online shopping, the
goal is to enhance LLMs’ ability to effectively understand
and respond to queries about these concepts.

• Track2 (Shopping Knowledge Reasoning): Considering the
complex reasoning required for shopping decisions, the
goal is to assess the model’s capability in reasoning about
products and their attributes using domain-specific implicit
knowledge.

• Track3 (User Behavior Alignment): Given the diversity and
implicit nature of user behaviors in online shopping, the
goal is to align language models with these behaviors to
improve their effectiveness in this domain.

Figure 2: The data distribution of development set, includ-

ing four important shopping skills: (1) Shopping Concept

Understanding; (2) Shopping Knowledge Reasoning; (3) User

Behavior Alignment; (4)Multi-Lingual Abilities, and five abil-

ities: (i) Generation; (ii) Ranking; (iii) Retrieval; (iv) Multiple-

Choice; (v) NER.

• Track4 (Multi-Lingual Abilities): Recognizing the need for
multi-lingual models in online shopping, the goal is to eval-
uate a single model’s performance across different shopping
locales without re-training, focusing on multi-lingual con-
cept understanding and user behavior alignment.

2 TRAINING DATASET CONSTRUCTION

While LLMs exhibit strong generalization across multiple tasks,
they often perform poorly in specific domains due to a lack of
relevant knowledge. This competition involves many tasks related
to online shopping, and general-purpose models lack knowledge
in this area. Therefore, directly adapting a general-purpose model
to the online shopping scenario is quite challenging. To improve
the model’s performance in this domain, we need to inject relevant
knowledge into it.

In this challenge, the organizers did not provide a large-scale
training dataset. As a result, we constructed our training dataset us-
ing publicly available data, our data construction pipeline is shown
in Figure 1.

2.1 Development Set Analysis

We analyzed the provided development data to gain insights for
constructing the training dataset. The development set comprises
96 data points across 18 different tasks, the distribution of task
types is shown in Figure 2.

2.1.1 Shopping Concept Understanding. This track focuses on eval-
uating the model’s ability to understand entities and concepts spe-
cific to the online shopping domain, which can be divided into the
following sub-tasks:

2
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Table 1: Statistics of Shopbench.

Track # Tasks # Questions # Products # Product Category # Attributes # Reviews # Queries

All 57 20598 ∼13300 400 1032 ∼11200 ∼4500
Track1 27 11129 ∼1500 400 1032 ∼9600 361
Track2 8 3117 ∼1000 400 ∼10 / 552
Track3 15 3973 ∼4800 / / 1600 ∼3600
Track4 7 2379 ∼6000 / / / ∼520

• Concept Normalization: Given a product name, select the
product that represents the same concept as the current
product name.

• Elaboration: Given a concept, explain it in plain, under-
standable, and concise language.

• Extraction and Summarization: Extract and summarize the
product names mentioned within the product description.

• Relation Inference: Given four options, select the product
category that has a certain attribute.

• Concept Explanation: Describe the concept of the corre-
sponding product.

• Sentiment Analysis: Select 3 snippets from a list that cus-
tomers are most likely to write in their reviews.

2.1.2 Shopping Knowledge Reasoning. This track aims to evaluate
the model’s ability to understand complex implicit knowledge in
the online shopping domain and to apply this knowledge to various
types of reasoning:

• Numerical Reasoning: Extract related numeric information
and perform numeric reasoning.

• Commonsense Reasoning: Recommend daily products that
aremost likely to be purchased based on the current product
in the shopping list.

• Implicit, Multi-Hop Reasoning: Understand the implicit,
domain-specific knowledge and infer multi-hop relations
between shopping entities.

2.1.3 User Behavior Alignment. This track aims to assess a model’s
ability to understand implicit relationships in user behavior, thereby
enabling its recommendation capabilities.

• Recommendation based on user queries: Given a list of
product IDs, rank the products according to their relevance
to the query.

• Behavior predictions: Given the user’s previous actions,
infer the next action.

• Recommendation based on purchase histories: Given the
products a user has just purchased, predict what they might
buy next.

• Sentiment Label Predictions: Given a comment, score it
based on its sentiment.

2.1.4 Multi-Lingual Abilities. This track focuses on how models
can extend their capabilities to multiple languages to simultane-
ously meet the needs of global markets.

• Multilingual shopping concept understanding: The tasks in
Track1 are expanded to multiple languages.

• Multilingual user behavior alignment: The tasks in Track3
are expanded to multiple languages.

2.2 External Datasets

We collect several external datasets related to Amazon products.
Leveraging these datasets, we can construct various tasks and cor-
responding data tailored for SFT. These external datasets are listed
as follows:

• ECInstruct [12]: It is an open-source SFT dataset in the
e-commerce domain, encompassing 10 different tasks and
comprising 264K instances, including Sequential Recom-
mendation, Query Product Rank, etc.

• Amazon-ESCI [14]: It is a large-scale multilingual query-
product dataset, which was employed in the KDD Cup 2022
competition. It includes three sub-tasks: Query-Product
Ranking, Multi-class Product Classification, and Product
Substitute Identification.

• Amazon-M2 [7]: It is a multilingual session-based recom-
mendation dataset designed for the KDD Cup 2023 compe-
tition.

• Amazon Reviews 2023 [4]: It is a comprehensive Amazon
product dataset that not only includes user reviews for var-
ious products but also provides extensive information such
as brand, description, category, features, and co-purchase
relationships. It is an updated version of Amazon Reviews
2018.

• OA-Mine & AE-110K [1]: They are two NER datasets in the
E-commerce domain, designed to extract categories, brands,
target audiences, and other product characteristics from
product names.

• Amazon-Category4: It provides various products alongwith
their corresponding categories, encompassing items from
multiple languages.

2.3 Training Data Construction Strategy

We utilized public datasets and OpenAI’s ChatGPT and GPT45 [11]
for the data construction of our EshopInstruct, whose detailed
construction pipeline is shown in Figure 1. Our data construction
strategy can be categorized into three main approaches:

• We analyzed 18 tasks and their corresponding data in the
development set, using this analysis to generate more data

4https://huggingface.co/datasets/ikeno-ada/amazon_category
5https://openai.com/api/
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Figure 3: The overall inference framework of our solution. In our prompt construction, we enhanced the model’s reasoning

capabilities by incorporating few-shot examples retrieved using queries, the “read again” technique, and chain-of-thought

reasoning. Additionally, for Qwen2-72B, we applied GPTQ quantization, enabling it to run efficiently on limited resources.

that aligns more closely with the types found in the devel-
opment set.

• Based on the practical scenarios of each track, we developed
additional task types and corresponding data beyond those
in the development set.

• To increase the proportion of the real-world data in the
SFT dataset and provide more knowledge to the LLMs, we
also created a substantial amount of data based on external
datasets.

To create data that aligns with the task types in the development
set, we adopted two strategies. Firstly, for task types that can be di-
rectly constructed or transformed using existing datasets like ECIn-
struct, we generated the corresponding data directly from these
datasets. For example, tasks such as Elaboration, Extraction and
Summarization, Relation Inference, Sentiment Analysis in Track1,
and Recommendation based on query in Track3, we identified simi-
lar data in ECInstruct [12]. For these tasks, we directly extracted
data from ECInstruct and transformed them into the standard for-
mat. Secondly, for task types where it was challenging to extract
data from existing datasets, we utilized LLMs, such as GPT-4, for
data generation. For numeric reasoning, implicit and multi-hop
reasoning in Track2, as well as user behavior prediction in Track3,
we used GPT-4 for data construction. When using GPT-4 to gener-
ate this portion of the data, we provided the model with few-shot
examples and employed the chain-of-thought method, enabling it
to generate the reasoning process to ensure data quality.

Considering that the task types in the development set do not
comprehensively cover all scenarios, we constructed additional
tasks and corresponding data based on descriptions from various
tracks. For instance, we observed that there is no relevant data about
the Concept Normalization task in Track1 and the Daily Product
Recommendation in Track2 in the development set. Therefore, we
constructed corresponding data for them. These data constructions
may involve transformations from external datasets or generation
by LLMs. Additionally, we referred to the methods in Self-Instruct
[16] to generate a portion of the data. Specifically, we used de-
velopment data as seed data and then utilized GPT-3.5-turbo to

generate instructions and corresponding responses based on this
data. Subsequently, we employed GPT-4 as a judge to filter the data.

Furthermore, given that much of the data constructed through
the first two methods is generated by LLMs, there may be a con-
siderable amount of noise, and scalability could be limited due to
cost constraints. Therefore, to introduce a substantial amount of
real-world data to our models, we have also constructed additional
tasks and corresponding data from external datasets. For example,
leveraging the Amazon-ESCI dataset, we constructed tasks such
as Query Generation, Related Product Retrieval, etc. It should be
noted that in order to enhance our model’s multilingual processing
capabilities, we incorporated a significant amount of data related
to products in various languages other than English during the
dataset construction phase.

Following the above strategy, we ultimately obtained approxi-
mately 65,000 data entries in EshopInstruct. Moreover, to further
augment our training dataset, we strategically sampled a subset
of data from the ECInstruct dataset. We then used these data for
instruction tuning.

3 INSTRUCTION TUNING

We use instruction tuning to incorporate online shopping-related
knowledge into the LLMs and enhance their instruction-following
capabilities. Given the size of our constructed dataset (65,000 en-
tries) and our limited training resources, we adopted the LoRA (Low-
Rank Adaptation) [5] fine-tuning method, following the standard
approach of auto-regressive language modeling. During phases 1
and 2 of the challenge, we experimented with four models6 of differ-
ent sizes: Mistral-7B7 [6], LLama3-8B8 [2], and Qwen2-7B/72B9 [19].
Some key training hyper-parameters are listed in Table 2. We used
the standard AdamW optimizer [9] for supervised fine-tuning (SFT)
optimization, with a cosine learning rate schedule, a peak learn-
ing rate of 4 × e−5, and a 10% warmup ratio. All the models were
trained with multiple NVIDIA A800 80G GPUs. For models with
6All models used are chat or instruct models
7https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
8https://github.com/meta-llama/llama3
9https://github.com/QwenLM/Qwen2
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Table 2: Hyperparameter for Instruction-tuning.

Configuration Value

Model Qwen2-72B
Number of epochs 2
Learning Rate 4𝑒-5
Max Length 2048
Devices 8 NVIDIA A800 GPUs (80GB)

LR Scheduler Cosine
Warmup Raion 0.1
Total Batch Size 256

Optimizer AdamW [9]
Lora Rank 8
Lora Target q𝑝𝑟𝑜 𝑗 , k𝑝𝑟𝑜 𝑗 , v𝑝𝑟𝑜 𝑗

fewer than 10 billion parameters, such as Mistral-7B, LLama3-8B,
and Qwen2-7B, we trained on a single GPU without quantization.
For the Qwen2-72B model, we used bf16 precision for LoRA fine-
tuning, employed DeepSpeed’s ZeRO Stage3 [13] for fine-tuning
across four GPUs, and then used GPTQ to quantize the parameters
to 4-bit precision.

4 INFERENCE

In this section, we will introduce our inference strategy, which com-
prises two key components: quantization and prompt engineering.
Our overall inference strategy pipeline is shown in Figure 3.

4.1 Quantification

During the challenge, the submission will run on a T4 GPU with
16GB of memory. In Phase 2, four T4 GPUs will be provided, which
means only 64GB of GPU memory will be available. To experi-
ment with larger models (such as models with 72B parameters)
and minimize the reduction in model capability while reducing the
required GPU memory as much as possible, we leveraged quan-
tization techniques. Specifically, we adopted GPTQ quantization
[3], a post-training quantization method where each row of the
weight matrix is independently quantized to int4 to reduce error
but restored to fp16 during inference for better performance. In this
challenge, we only applied quantization to the Qwen2-72B model.
After training, we utilized 1,000 data samples from Alpaca [15]
generated by GPT-4 for quantization calibration of the model.

4.2 Prompting Strategies

Through the analysis of the development set, we found that many
tasks in the challenge involve reasoning. To improve the model’s
performance on these tasks, we introduced Chain of Thought (CoT)
[17], a technique that can significantly enhance the complex rea-
soning abilities of large language models. we implemented a sim-
ple zero-shot Chain-of-Thought in our solution. Additionally, we
retrieved the three most relevant samples from the constructed
training dataset as few-shot examples, which yielded better results.

The test data can be roughly divided into multiple-choice and
non-multiple-choice types. We adopt different processing measures
and prompts for these two types of data. For questions that may in-
volve reasoning, we encourage the model to think more deeply and
use regular expressions to extract the final answer. For generation-
related questions, we let the model directly output the final result.

Considering the importance of user input in online shopping sce-
narios, we have also implemented a simple and effective prompting
method called Re-Reading [18] which entails re-reading the ques-
tion to enhance reasoning capabilities in Large Language Models.

5 RESULTS

In this section, we will compare and analyze the performance of
different models across the five tracks, as shown in Table 3. Over-
all, the size of the model parameters has a considerable impact on
performance, with larger parameter models generally performing
better. (A) shows relatively weaker performance across Track1 to
Track4, especially on Track2, where it scored only 0.529. In compari-
son, (B) shows improved performance across all tracks, particularly
on Track1 and Track5. Despite having the same 7B parameters
as (A), (C) performs well across all available tracks, especially on
Track2 and Track4. Comparing (B) and (C), we find that Qwen2-7B
owns a greater potential than LLama3-8B in providing e-commerce
shopping assistance. Therefore, we chose the Qwen2 series as our
backbone model since it performs relatively well.

With 72B parameters, (D) demonstrates excellent performance
across all tracks, particularly on Track1 to Track3, achieving high
scores of 0.786, 0.716, and 0.706, respectively. However, its perfor-
mance slightly drops on Track4 to 0.654, but it remains at a high
level. To incorporate the domain knowledge of e-commerce, we
fine-tuned Qwen2-72B on ECInstruct and our constructed EshopIn-
struct, respectively. Comparing (E) and (F), we can see that (F)
consistently and considerably outperforms (E) in all tracks, indicat-
ing the superiority of supplementing e-commerce shopping tasks
with our EshopInstruct. It is worth mentioning that we find LLMs
fine-tuned on ECInstruct perform badly on generation tasks. The
performance of (F) on specific tasks is detailed in Table 4.

By utilizing our carefully constructed training dataset EshopIn-
struct for instruction fine-tuning and employing effective infer-
ence strategies, we ultimately secured 3rd place overall in the Ama-
zon KDD Cup 2024 Challenge, 3rd place in Track1, 2nd place in
Track4, and ranked within the top 5 for the remaining tracks.

6 CONCLUSION

In this paper, we present our solution for the Amazon KDD Cup
2024 Challenge. We constructed a multi-task instruction dataset
called EshopInstruct, which contained 65,000 samples tailored
to online shopping scenarios. In addition, we utilized EshopIn-

struct for instruction tuning on large language models, resulting
in knowledgeable shopping assistants named LLaSA. To optimize
inference performance with limited resources, we employed GPTQ
quantization and prompting strategies such as Chain-of-Thought
and Re-Reading. Evaluation results demonstrated the effectiveness
of our approach, securing 3rd place on the overall leaderboard
and ranking within the top 5 in each track. Especially in track4
(Multi-lingual Abilities), we obtained the best student team award.

5
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Table 3: Overall performance on different tracks, where the best results are boldfaced and the second-best results are underlined.

“-” denotes missing experimental data due to the unstable evaluation system.

Model Quantization Track1 Track2 Track3 Track4 Track5

(A) Mistral-7B+ECInstruct none 0.702 0.529 0.602 0.635 -
(B) LLama3-8B+EshopInstruct none 0.741 0.6 0.625 0.651 0.67
(C) Qwen2-7B+EshopInstruct none 0.744 0.629 0.614 0.664 -

(D) Qwen2-72B GPTQ-int4 0.786 0.716 0.706 0.654 0.722
(E) Qwen2-72B+ECInstruct GPTQ-int4 0.801 0.719 0.703 0.686 0.747
(F) Qwen2-72B+EshopInstruct GPTQ-int4 0.824 0.747 0.713 0.735 0.763

Table 4: Best Model’s Detailed Performance on different task types. “-” means that this track does not evaluate this type of task.

Track Generation Multiple-Choice NER Retrieval Ranking Overall

Track1 0.732 0.860 0.789 0.858 - 0.824
Track2 - 0.770 - 0.588 - 0.747
Track3 0.618 0.695 - 0.813 0.845 0.713
Track4 0.482 0.838 - - 0.83 0.735
Track5 0.763 0.793 0.802 0.765 0.659 0.844
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