
Understanding the Transferability of Representations
via Task-Relatedness

Akshay Mehra, Yunbei Zhang, and Jihun Hamm
Tulane University

{amehra, yzhang111, jhamm3}@tulane.edu

Abstract

The growing popularity of transfer learning, due to the availability of models
pre-trained on vast amounts of data, makes it imperative to understand when the
knowledge of these pre-trained models can be transferred to obtain high-performing
models on downstream target tasks. However, the exact conditions under which
transfer learning succeeds in a cross-domain cross-task setting are still poorly
understood. To bridge this gap, we propose a novel analysis that analyzes the
transferability of the representations of pre-trained models to downstream tasks in
terms of their relatedness to a given reference task. Our analysis leads to an upper
bound on transferability in terms of task-relatedness, quantified using the difference
between the class priors, label sets, and features of the two tasks. Our experiments
using state-of-the-art pre-trained models show the effectiveness of task-relatedness
in explaining transferability on various vision and language tasks. The efficient
computability of task-relatedness even without labels of the target task and its high
correlation with the model’s accuracy after end-to-end fine-tuning on the target
task makes it a useful metric for transferability estimation. Our empirical results of
using task-relatedness on the problem of selecting the best pre-trained model from
a model zoo for a target task highlight its utility for practical problems.

1 Introduction

Transfer learning (TL) [42, 59] is a powerful tool for developing high-performance machine learning
models, especially in current times when large models [45, 11, 12, 18] pre-trained on huge amounts
of data are being fine-tuned for various downstream tasks. While large pre-trained models achieve
impressive performance on downstream tasks even in the zero-shot inference setting [45], their
performance can often be improved by fine-tuning them on data from target tasks. However, our
understanding of when representations from these models lead to classifiers that achieve high
performance (i.e., high transferability) to downstream tasks is still lacking.

Analytical works based on domain adaptation [8, 7, 52, 36, 32, 37, 38] can only explain cross-domain
tasks (i.e., when only features/label priors change across tasks) but in the TL setting, label sets can
also change (i.e., cross-task setting). Recently, [56] showed that the relatedness between the label sets
of the two tasks measured using conditional entropy can explain the difference in their transferability.
However, [56] focused only on the cross-task setting, and analysis for transferability in a general
cross-domain cross-task setting is not addressed. Apart from these analytical works, another line of
work focuses on proposing transferability metrics that correlate well with performance on downstream
tasks after end-to-end fine-tuning. We refer to these works as score-based transferability estimation
(SbTE) metrics [61, 55, 29, 40, 19, 51]. These works focus on developing scores for selecting a
pre-trained model from a model zoo, that achieves the best transferability on a target task. While
these works address a practical problem, they do not focus on providing an analysis of transferability.
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Figure 1: Given a pre-trained encoder (e.g.,
CLIP [45]), how does the performance after
fine-tuning it on a reference task (e.g., Ima-
geNet) relate to the performance after fine-
tuning it on other tasks? Through a rigorous
bound on transferability (Theorem 3) in terms
of the relatedness between a reference and a
target task, we show that tasks related to the
reference task achieve provably better perfor-
mance after fine-tuning.

Thus, we first rigorously analyze the transferability
of the representations in producing high-performing
classifiers and propose a novel approach that studies
transferability in terms of its relatedness to a refer-
ence task (see Fig. 1). This is in line with previ-
ous analytical works [7, 2, 56, 55] which studied
the model’s performance on target tasks in terms of
the source task in different settings such as domain
adaptation/generalization and recently TL. However,
there’s a crucial difference: we study transferability
in terms of a reference task instead of the source task
since it is impractical to assume the knowledge of the
source task used to train large models such as CLIP
[45] or GPT, commonly used for TL.

Our approach works by transforming the distribution
(and classifier) of a reference task, by transforming
its class-prior distribution, label set, and feature space
to obtain a new distribution that is similar to that of
the target task (Fig. 2). Based on these transforma-
tions, we show that transferability can be provably
explained (and is tightly upper bounded) using three
interpretable terms. A weighted reference loss term appearing due to the class prior distribution
difference between the tasks, a label mismatch term appearing as conditional entropy between the
label distributions of the tasks, and a distribution mismatch term appearing as the Wasserstein distance
between the transformed reference and target distributions (Theorem 3). We define task-relatedness
as the sum of these three terms (a smaller value implies higher relatedness). We propose an opti-
mization problem (Eq. 4) and an algorithm (Alg. 1) to learn the transformations to compute it. Using
state-of-the-art (SOTA) pre-trained models, with different architectures, trained with various training
methods on computer vision (CV) and natural language processing (NLP) tasks, we show that task-
relatedness achieves a small gap to transferability (Sec. 4.1). Our analysis also leads to new insights
into learning in the TL setting such as to improve the transferability of an encoder on a downstream
task, one can improve the encoder’s transferability on related reference tasks (Sec. 4.2). This is
particularly useful when practitioners intend to develop encoders that achieve high transferability to
proprietary (and potentially inaccessible) datasets.

We also demonstrate the utility of task-relatedness in estimating the accuracy of the model after
end-to-end fine-tuning. While the TL setting assumes access to target labels, the high computational
cost of end-to-end fine-tuning of a pre-trained model on a target task calls for developing metrics that
are efficiently computable and highly correlated with end-to-end fine-tuning accuracy. To this end,
we propose to use task-relatedness computed in the penultimate layer of the pre-trained model as our
transferability estimation metric. To further improve the computational efficiency of task-relatedness
we only measure the difference between the class-wise means and covariances of the distributions
in lieu of the Wasserstein distance as required in Theorem 3. This enables the computation of
task-relatedness with only the statistics of the reference/target tasks. Our empirical results (Sec. 4.3)
attest that task-relatedness achieves a high correlation with the model’s accuracy after end-to-end
fine-tuning on the target task making it an effective metric for selecting a pre-trained model from
a model zoo that achieves the best accuracy on the target task. Moreover, unlike previous SbTE
metrics, task-relatedness can be estimated even without labeled target data, making it suitable for
unsupervised transferability estimation, highlighting the advantage of a reference task as used in our
analysis. Our main contributions are:

• We rigorously analyze transferability for classification tasks. Our analysis, to the best of our
knowledge, leads to the first upper bound on transferability in terms of task-relatedness in a
cross-domain cross-task setting.

• We propose an optimization problem to efficiently compute task-relatedness, using a small
amount of target labels and show that it can even predict performance after end-to-end fine-
tuning without requiring target labels.
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• Using SOTA models and CV/NLP tasks, we show that task-relatedness accurately predicts
transferability and show that transferability to unseen tasks can be improved by improving
transferability to known (related) tasks.

2 Related Work

Transfer learning (TL): TL [42, 59, 18, 49, 46, 15, 14] has been studied widely and consists
of various settings including transductive transfer, inductive transfer, and task transfer learning.
The transductive setting also referred to as domain adaptation [8, 7] focuses on reducing the shift
between two domains. The task transfer setting focuses on identifying the relationship between tasks,
regardless of the model, to explain the transfer performance (see Appendix B for more details). Lastly,
the inductive transfer setting focuses on using an inductive bias such as fine-tuning a pre-trained
model (trained via adversarial training [48], self-supervised learning [11, 10, 12] or by combining
language and image information [45]) to improve the performance on a target task. Our work focuses
on the inductive transfer learning setting and proposes an upper bound on transferability of the
representations of pre-trained models to downstream tasks.

Analytical works for learning under distribution shifts: Prior works [8, 7, 52, 36, 32, 37, 38]
analytically explained learning under distribution shifts using distributional divergence between
the marginal distributions and a label mismatch term. However, these results are applicable under
assumptions such as covariate or label shift which need not be satisfied in TL where both the data
distribution and the label spaces can be different (see App. B for detailed comparison). Recently, [56]
proposed an upper bound on transferability in a restrictive setting of the same features for both tasks,
however, our analysis does not require such an assumption. Other works [9, 47, 41] analyzed the
representation for the multi-task learning setting. These works showed that when tasks are weakly
related, a single representation space (model) may not perform well for all tasks. However, the TL
setting differs from both of these and our work aims to analyze transferability in this setting.

Score-based transferability estimation (SbTE): These works [5, 40, 29, 61, 55, 39] use data from
the target task and produce a score correlated with transferability. Such a score is useful for selecting
the model from a model zoo that leads to the best transferability to a target task. [56] proposed the
Negative Conditional Entropy (NCE) score that predicts transferability using the negative conditional
entropy between labels of the tasks but requires the two tasks to have the same input instances. [6]
estimates transferability by solving the HGR maximum correlation problem and using normalized
Hscore, in the same setting as [56]. [40] proposed the LEEP score and computed NCE using soft
(pseudo) labels for the target task from a pre-trained model. OT-CE [55] combined Wasserstein
distance [3] and NCE whereas [5, 61] estimate likelihood and the marginalized likelihood of labeled
target examples to estimate transferability. [33] proposes a model-agnostic approach that also relies
on optimal transport to compute the distance between the tasks similar to OTDD [3]. In contrast, we
focus on analyzing transferability in terms of task-relatedness theoretically along with demonstrating
its effectiveness as a transferability estimation metric for the pre-trained model selection problem.

3 Analysis of TL using task-relatedness

Problem setting and notations: Let PR(x, y) and PT (x, y) denote the distributions of the reference
and the target tasks, defined on XR×YR and XT ×YT respectively. We assume that the feature spaces
are common (XR = XT = X ) such as RGB images, but the reference label set YR = {1, 2, · · · ,KR}
and the target label set YT = {1, 2, · · · ,KT } can be entirely different. We assume the number of
reference task classes (KR) are greater than or equal to the number of target classes (KT ). In
the TL setting, an encoder (feature extractor) g : X → Z is pre-trained on a dataset with or
without labels depending on the training method (e.g., supervised vs. self-supervised). We denote
the resultant push-forward distributions of R and T on the encoder output space as PR(z, y) and
PT (z, y). With a fixed encoder g, a classifier (linear or non-linear), h(z) : Z → ∆, that outputs a
probability vector is learned for the reference (hR) and the target (hT ) separately, where ∆R/T is
a KR/KT simplex for R/T . The classifier hR = argminh∈H E(z,y)∈PR

[ℓ(h(z; g), y)] and hT =
argminh∈H E(z,y)∈PT

[ℓ(h(z; g), y)] where H is the set of classifiers and ℓ(h(z), y) = − log(h(z)y)
is the cross-entropy loss. Table 3 in App. A summarizes the notations used in our work. Next, we
define transferability as commonly used in the literature.
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Figure 2: : Overview of our task transformation model: A series of transformations are applied to
the reference distribution PR(z, y) and classifier hR to produce the transformed distribution PR′′′

and classifier hR′′′ to explain transferability to the downstream target task. Class-prior transformation
(R → R′) changes the class prior of the reference distribution (e.g., an irrelevant Bee class in R now
has smaller prior) followed by label set transformation (R′ → R′′) (e.g., to match {Lion, Wolf} with
{Cat, Dog}), followed by feature space transformation (R′′ → R′′′) to match the feature distribution
of the target task PT (z, y).

Definition 1. (Transferability). Transferability of the representations from an encoder g on a target
task T for classifiers in H is defined as E(z,y)∈PT

[ℓ(hT (z; g), y)].

In the next section, we show the analysis with H as the class of linear classifiers for ease of explanation
and discuss its extension to non-linear classifiers in App. A.5. Proofs for Sec. 3 are in App. A.

3.1 Our task transformation model

The reference and the target tasks share the same encoder but do not share label sets or data
distributions. Therefore, to relate the two tasks, we propose a chain of three simple transformations:
1) prior transformation (from R to R′), 2) label transformation (from R′ to R′′), and 3) feature
transformation (from R′′ to R′′′). The R′, R′′, R′′′ are intermediate domain names after each of the
transformations are applied. The corresponding classifier in each domain is denoted by hR′ , hR′′ , and
hR′′′ as illustrated in Fig. 2. The distribution after the transformations (PR′′′) has the same feature
ZR′′′ = ZT = Z and label sets YR′′′ = YT as the target task T , and consequently, the loss of the
transformed classifier hR′′′ and the target classifier hT can be related.

Class-prior transformation (R → R′): Since the reference task has more classes than the target
task (KR ≥ KT ), many of the reference task classes are likely irrelevant for transfer to the target
classes, e.g., while transferring from ImageNet to CIFAR10, only a small portion of ImageNet classes
are relevant to CIFAR10 classes. The prior transformation accounts for the relative importance of the
reference classes. This is illustrated in Fig. 2, where changing the class prior of R reduces the prior of
the Bee class and increases the priors of Wolf and Lion classes (shown by the changed size of classes
Wolf and Lion in R′). While transforming the prior of R, we keep the conditional distribution and the
classifier the same i.e., PR′(z|y) = PR(z|y) and hR′(z) = hR(z). Lemma 1 in App. A.2.1 shows
that the expected loss of the classifier hR on R′ is a re-weighted version of the loss of hR on R.

Label transformation (R′ → R′′): Next, we use a label transformation to match the label sets of
the new domain R′′ and that of the target domain. To this end, we specify the conditional distribution
Bij := P (yR′′ = i|yR′ = j) (Bij ∈ [0, 1], ∀ i, j,

∑
i Bij = 1, ∀j). The label yR′′ of an

example from the domain R′′ is obtained via BP (yR′). This generative process doesn’t require
the feature, i.e., PR′′(yR′′ |yR′ , z) = PR′′(yR′′ |yR′). B with sparse entries (i.e., only one entry of
a column is 1) models a deterministic map from YR to YT ; B with dense entries models a weaker
association. This process is illustrated in Fig. 2 which shows the map from {Bee, Wolf, Lion} ⊂ YR′

to {Dog, Cat} ⊂ YT after using B. Under this model, a reasonable choice of classifier for R′′ is
hR′′(z) = BhR′(z). Lemma 2 in App. A.2.2 shows that the expected loss of hR′′ depends on the
loss of hR′ and the conditional entropy between the label sets of the tasks R′ and R′′ and Corollary 1
shows the conditions for optimality of hR′′ .

Feature transformation (R′′ → R′′′): The final step involves changing the feature space of the
distribution R′′. We apply an invertible linear transformation A to the distribution in R′′ to obtain the
new distribution R′′′. After the transformation, the classifier associated with the new domain R′′′ is
hR′′′(z) = hR′′(A−1(z)). This is illustrated in Fig. 2 after feature transform using A. Lemma 3 in
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App. A.2.3 shows that a linear transform of the space and classifier does not incur any additional loss
and Corollary 2 shows that the optimality of hR′′ implies optimality of hR′′′ . Using these, we get
Theorem 1 by defining conditional entropy as follows

H(YR′′ |YR′) = −
∑

yR′∈YR′

∑
yR′′∈YR′′

PR′(yR′)ByR′′ ,yR′ log(ByR′′ ,yR′ ). (1)

Theorem 1. Let C :=
[
PR′ (y)
PR(y)

]KR

y=1
be a vector of probability ratios , B be a KT ×KR matrix with

Bij = P (yR′′ = i|yR′ = j), A : Z → Z be an invertible linear map of features. Let the classifiers
hR′(z) := hR(z), hR′′(z) := BhR′(z), hR′′′(z) := hR′′(A−1(z)). Assuming ℓ is the cross-entropy
loss, we have

EPR′′′ (z,y)[ℓ(hR′′′(z), y)] ≤ EPR(z,y)[C(y)ℓ(hR(z), y)]︸ ︷︷ ︸
Re-weighted reference loss

+H(YR′′ |YR′)︸ ︷︷ ︸
Label mismatch

.

Theorem 1 provides an upper bound on the loss of the final transformed classifier/distribution in
terms of the loss of the reference classifier/distribution. The re-weighted reference loss shows that the
performance of the transformed classifier on the new domain is linked to the label-wise re-weighted
loss of the reference classifier on R. This implies that one can use only the relevant reference classes
to contribute to the bound. The label mismatch term shows that the performance of the distribution
R′′′ and R depends on the conditional entropy H(YR′′ |YR′ ;B) between the label distributions of
the domain R′′ and R′. A high value of H implies that the labels of the reference task are unrelated
leading to lower transferability, whereas a low H implies higher transferability. Corollary 3 in
App. A.2.4 shows when the bound in Theorem 1 becomes equality.

3.2 Distribution mismatch between PR′′′ and PT

After the three transformations, the transformed reference PR′′′(z, y) can be compared with the target
PT (z, y). However, these are only simple transformations and PR′′′ cannot be made identical to
PT in general. This mismatch can be measured by the Wasserstein or Optimal Transport distance
[44, 58]. Since our goal is to match two joint distributions defined on Z × Y we use

d((z, y), (z′, y′)) := ∥z − z′∥2 +∞ · 1y ̸=y′ , (2)

with z, z′ ∈ Z and y, y′ ∈ Y as our base distance [53] to define the (type-1) Wasserstein distance

Wd(P,Q) := inf
π∈Π(P,Q)

E((z,y),(z′,y′))∼π[d((z, y), (z
′, y′))]. (3)

Using Eq. 2, the Wasserstein distance between the joint distributions is the weighted sum of the
Wasserstein distance between conditional distributions (P (z|y)) (Lemma 4 in App. A). Theorem 2
below explains the gap between the losses due to the distribution mismatch.
Assumption 1. 1) The composition of the loss function and the classifier ℓ ◦ h is a τ−Lipschitz
function w.r.t to ∥ · ∥2 norm, i.e., |ℓ(h(z), y) − ℓ(h(z′), y)| ≤ τ∥z − z′∥2 for all y ∈ Y , z, z′ ∈ Z
where h ∈ H. 2) PT (y) = PR′′′(y).

The assumption 2), can be satisfied since we have full control on the prior PR′′′(y) via B and C.
Theorem 2. Let the distributions T and R′′′ be defined on the same domain Z ×Y and assumption 1
holds, then

EPT (z,y)[ℓ(h(z), y)]− EPR′′′ (z,y)[ℓ(h(z), y)] ≤ τ Wd(PR′′′ , PT )︸ ︷︷ ︸
Distribution mismatch

,

with d as in Eq. 2.

Theorem 2 shows that when ℓ ◦ h is τ−Lipschitz then the performance gap between the R′′′ and T is
bounded by the type-1 Wasserstein distance between the two distributions. The Lipschitz coefficient
of the composition can be bounded by τ , by penalizing the gradient norm w.r.t z at training time. Thus,
for linear fine-tuning, we train the classifiers hR and hT with an additional gradient norm penalty
max{0, ∥∇zℓ(h(z), y)∥2 − τ} to make them conform to the Lipschitz assumption (see App. C.3).
Note that constraining the Lipschitz constant restricts the hypothesis class. The trade-off between the
Lipschitz constant and the performance of h is empirically evaluated in App. C.3.1.
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Figure 3: Task-relatedness (decomposed into its components) produces a small gap to transferability
(blue bars). As the task-relatedness between the reference (ImageNet (for CV), DBPedia (for NLP)),
and the target tasks (x-axis) increases, the transferability improves. (Note: the label mismatch term is
zero in our figures as B is fixed to a sparse matrix, see Sec. 3.4.)

3.3 Bounding transferability using task-relatedness

Here, we combine the results obtained in Theorem 1 and Theorem 2. The final bound proposed
in Theorem 3 is one of our main contributions which explains transferability as a sum of three
interpretable and measurable gaps.

Theorem 3. Let ℓ be the cross-entropy loss, then under assumptions of Theorems 1 and 2,
EPT (z,y)[ℓ(hT (z), y)] ≤ EPR(z,y)[C(y)ℓ(hR(z), y)]︸ ︷︷ ︸

Re-weighted reference loss

+H(YR′′ |YR′)︸ ︷︷ ︸
Label mismatch

+ τ Wd(PR′′′ , PT ).︸ ︷︷ ︸
Distribution mismatch

The theorem shows that transferability can be decomposed into the loss incurred while transforming
the class prior distribution, label space, and feature space of the reference distribution (first two terms)
and the residual distance between the distribution obtained after transformations and the actual target
distribution (last term). Based on the terms in the upper bound we define task-relatedness as follows.

Definition 2. (Task-relatedness). The relatedness between a target and a reference task is defined as
EPR(z,y)[C(y)ℓ(hR(z), y)] +H(YR′′ |YR′) + τ Wd(PR′′′ , PT ).

A smaller value of the task-relatedness measure implies higher relatedness of the reference and the
target tasks. In particular, when the target task is a transformation of the reference task then there
exist transformations A,B, and C such that the distribution R′′′ perfectly matches the distribution
of the target task (i.e., Wd(PR′′′ , PT ) = 0). Moreover, when labels are deterministically related
(Corollary 3) our bound becomes an equality.

Lastly, while we presented an analysis for linear fine-tuning here (for simplicity of presentation), our
bounds hold for non-linear classifiers and non-linear feature transformations as well (see App. A.5).

3.4 Estimating task-relatedness

The optimization problem for learning the transformations A,B, and C to compute task-relatedness
in Theorem 3 is presented below. We use two new variables: inverse of the transformation A, denoted
by Ā := A−1 and a transformed reference prior distribution denoted by D(y) := C(y)PR(y).

min
A,Ā,B,D

EPR(z,y)

[
D(y)

PR(y)
ℓ(hR(z), y)

]
+H(YR′′ |YR′ ;B,D) + τWd(PR′′′ , PT ;A,B)

s.t. AĀ = ĀA = I, PT (y) = BD,
∑
i

Bij = 1 ∀j,
∑
y∈YR

D(y) = 1,

Bij ∈ [0, 1] ∀i, j, and Di ∈ [0, 1] ∀i.

(4)

Alg. 1 shows how we solve Eq. 4 (see App. D for additional details of the algorithm). Fig. 8 in
App. C.1.2 shows how the upper bound is reduced as the optimization proceeds. Computationally, a
single epoch of Alg. 1 takes a mere 0.17 seconds on our hardware for transfer from ImageNet to Pets
for the ResNet-18 model (we ran Alg. 1 for 2000 epochs). In App. C.1, we show the effectiveness of
learning the transformations using Alg. 1 on small-scale transfer tasks. Our results show that when
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Algorithm 1 Minimization of the bound in Theorem 3
Input: Reference task samples and labels (ZR, YR), Target task samples (ZT ), Target task labels
(YT ) (optional).
Output: Estimate of task-relatedness using the learned transformations A, Ā,B,D.
Init: A := Ā := I, D := PR(y), random B ∈ RKT×KR

1: Randomly sample nR points (ziR, y
i
R) ∼ (ZR, YR) as per the class prior D.

2: if YT is available then
3: Randomly sample nT points (zjT , y

j
T ) ∼ (ZT , YT ).

4: else
5: Randomly sample nT points (zjT ) ∼ (ZT ).
6: # Compute pseudo-labels for the target samples zT .
7: yjT = argmaxy∈YT

BhR(A
−1zT ) for j = 1, · · · , nT .

8: end if
9: Compute (ziR′′′ , yiR′′′) = (AziR, argmaxy Be(yiR)), for i = 1, · · · , nR.

10: Assign YR′ := YR and YR′′ := YT .
11: Compute the optimal coupling π∗ between the distributions R′′′ and T by minimizing

Wd(PR′′′ , PT ), i.e.,

min
π∈Π(PR′′′ ,PT )

∑
i,j

πij d̃((z
i
R′′′ , yiR′′′), (z

j
T , y

j
T ))

s.t.
∑
j

πij =
1

nR
∀i,

∑
i

πij =
1

nT
∀j.

12: Using π∗, solve for A, Ā,B,D using mini-batch SGD

min
A,Ā,B,D

∑
i,j

π∗
i,j

[
d̃((ziR′′′ , yiR′′′), (z

j
T , y

j
T ))

]
+

1

nR

∑
i

D(yi)

PR(yi)
ℓ(hR(z

i
R), y

i) +H(YR′′ |YR′)

+ ∥PT (y)−BD∥22 + (∥AĀ− I∥F + ∥ĀA− I∥F ).

13: Repeat 1 - 12 until convergence.

the reference task has classes semantically related to the target task, Alg. 1 learns transformations that
achieve the smallest gap to transferability. However, since finding data semantically related to the
target task may not always be possible we choose a reference task with the same number of classes as
the target and fix that matrix B to a random permutation of identity (making the label mismatch term
zero) and D to the prior of the reference task, learning only the transformation A, in our experiments.

4 Empirical Analysis

Here, we empirically demonstrate the effectiveness of task-relatedness in explaining transferability in
various settings. We present additional results in App. C and dataset/experimental details in App. D.
Our codes can be found at https://github.com/akshaymehra24/TaskTransferAnalysis.

4.1 Task-relatedness achieves a small gap to actual transferability

Task-relatedness tightly upper bounds transferability across various architectures, pretraining meth-
ods, and datasets. We demonstrate this by using various pre-trained models with architectures such
as Vision Transformers (ViT) [20], ResNet-18/50/101/152 [27], DistilRoBERTa [34] trained with
various pretraining methods including supervised training, adversarial training [48], SimCLR [11],
MoCo [26], SwAV [10], and MAE [25]. We also consider a wide range of target datasets including,
CIFAR10/100, Aircraft, Pets, DTD, AG-News, Yelp-5, and SST-5 whose details are in App. D.
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Figure 4: (a) Task-relatedness and transferability are highly correlated across various reference-target
pairs. (b) Improving the transferability of an encoder on a reference task (in the plot title) leads to
improved transferability of all related target tasks (x-axis). (e.g., compared to the original pre-trained
CLIP encoder (PE), a end-to-end fine-tuned CLIP encoder (FFE) on the reference task achieves
higher transferability to all related tasks.)

For this experiment, we fix the reference task to be ImageNet [17] for image classification and to
DBPedia for sentence classification tasks and use Alg. 1 to estimate task-relatedness. The results
in Fig. 3 and 9 (in the Appendix) show that our bound achieves a small gap to actual transferability.
As the task-relatedness between the reference and the target tasks improves, transferability also
improves showing that task-relatedness and transferability are strongly correlated. Task-relatedness
is also strongly correlated with the accuracy of the end-to-end fine-tuned classifiers on the target
task. In Fig. 11 (in the Appendix), we show high Pearson correlation coefficients (≥ −0.57) for
task-relatedness and accuracy after fully fine-tuning various pre-trained encoders using data from
various target tasks.

4.2 Effect of the reference task on task-relatedness

Highly related reference–target task pairs, based on task-relatedness, achieve higher transferability
coinciding with the semantic relatedness between tasks. To understand how a reference task affects
task-relatedness and eventually transferability, we consider two experiments using convolutional
and CLIP-trained models with various character recognition tasks such as MNIST, Fashion-MNIST
(FMNIST), SVHN, MNIST-M, and USPS. Of these datasets, SVHN and MNIST-M contain colored
images while the rest contain gray-scale images. In the first experiment, we train convolutional
models on MNIST, FMNIST, and USPS and measure pairwise transferability. Here we use the
reference task to be the same task as that used for training the models. The results in Fig. 4(a)
show that transferability to those target tasks is higher for which task-relatedness metric’s value is
smaller. Specifically, USPS achieves the best transferability (1.23) and the smallest task-relatedness
(2.80) when the reference task is MNIST. This is attributed to both datasets containing gray-scale
images of digits. On the other hand, when the reference task is unrelated to the target task i.e., the
task-relatedness value is high, transferability suffers, e.g., when the reference task is MNIST and the
target task is FMNIST. Results in App. C.2.2 show similar results for the sentence classification task.

The gap between task-relatedness and transferability is smaller when a reference task performs well
with a given encoder. Here we use MNIST and SVHN as two reference tasks and compute the
task-relatedness and transferability with USPS and MNIST-M as target tasks, using CLIP (Vit B32)
model. A linear classifier trained on top of the embeddings from the CLIP model achieves ≈98%
accuracy on MNIST but only ≈61% accuracy for SVHN. Due to this, transferability (USPS:2.02,
MNIST-M:2.20) explained using task-relatedness with MNIST as the reference task (USPS:2.46,
MNIST-M:2.48) is better than that computed using SVHN (USPS:2.66, MNIST-M:2.65) as the
reference, even though MNIST-M is intuitively more similar to SVHN (as both contain colored
images of digits). This is evident from the results of PE (Pre-trained Encoder) in Fig. 4(b).

Improving the performance of an encoder on a reference task improves transferability to other
related (potentially unseen) tasks. To show this we fully fine-tune the CLIP encoder on MNIST and
SVHN tasks, increasing the accuracy of the classifiers for both MNIST and SVHN to 99% and 95%,
respectively. Using the representations from these new encoders, we find that the transferability of
both related target tasks improves along with task-relatedness (see FFE results in Fig. 4(b)). Here,
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Table 1: Task-relatedness achieves high (negative) Pearson correlation to the accuracy after end-to-end
fine-tuning for various tasks. For NCE [56], Leep [40], LogMe [61], SFDA [51], OT-NCE, OTCE
[55], and H-score [6] positive correlation is better whereas for PACTran [19] and task-relatedness
(ours) negative correlation is better.

Target task LogMe Leep NCE PACTran SFDA H-Score OT-NCE OTCE Ours
Pets 0.82 0.80 0.73 -0.82 0.57 0.77 0.88 0.86 -0.77
DTD 0.88 0.96 -0.19 -0.85 0.90 0.89 0.84 0.82 -0.97

Aircraft -0.60 0.92 0.97 0.11 0.72 -0.80 0.56 0.60 -0.72
Average 0.37 0.90 0.50 -0.52 0.73 0.29 0.76 0.76 -0.82

we see that task-relatedness for MNIST-M and USPS is the best when the reference task is SVHN
and MNIST, respectively, aligning with our intuition of semantic relatedness between these tasks.
This also suggests that transferability on other related tasks can be improved by fully fine-tuning the
encoder on these reference tasks. Thus, in scenarios where target tasks are private (such as proprietary
Chest X-rays), an encoder trained to work well on related tasks (such as publicly available Chest
X-rays) is bound to achieve good transferability.

4.3 Task-relatedness for end-to-end transferability estimation

In this section, we show an efficient way of computing task-relatedness which enables its use for
estimating transferability after end-to-end fine-tuning. While Alg. 1, accurately estimates task-
relatedness by minimizing the bound in Eq. 3, it could be inefficient due to the requirement of
computing and minimizing the Wasserstein distance between distributions at every epoch. Thus, to
make the computation efficient, we replace the Wasserstein distance computation in step 11 and 12 of
Alg. 1, with mean and covariance matching terms. Specifically, we define the distance between two
distributions R′′′ and T as

Γ(R′′′, T ) := ∥µR′′′ − µT ∥22 + λ ∥ΣR′′′ − ΣT ∥22, (5)

where µR′′′/T := 1
nR′′′/T

∑
z∈PR′′′/T

z, ΣR′′′/T := 1
nR′′′/T

∑
z∈PR′′′/T

(z−µR′′′/T )
T (z−µR′′′/T ),

and λ is a regularization coefficient. Using Γ(R′′′, T ) in place of Wd(R
′′′, T ), makes the computation

of task-relatedness by learning transformations A,B, and C significantly more efficient.

Task-relatedness is an effective metric for the pre-trained model selection problem. The goal of this
problem is to find a pre-trained model from a model zoo that achieves the best accuracy on a given
target task after end-to-end fine-tuning of the model using labeled target data. Since end-to-end
fine-tuning is costly (takes almost a day to fully fine-tune a single model on a single target task as
shown by [61]), an effective transferability metric is significantly more efficient to compute and is
correlated well with the accuracy after end-to-end finetuning. Using 5 different pre-trained models
(supervised ResNet-50/101/152, adversarially pre-trained [48] ResNet50 with ϵ ∈ {0.1, 1}) and
ImageNet as the reference task, we show in Table 1, that task-relatedness achieves a high correlation
with the accuracy after end-to-end fine-tuning on the target task. Our results also highlight the
instability of various popular SbTE metrics, such as LogMe [61] and NCE [56] which can produce
a high negative correlation, and those of PACTran [19] which achieve low correlation values on
complex datasets. In comparison, task-relatedness consistently achieves a good correlation for various
target tasks. Computationally, it takes a mere 3-4 minutes to learn the transformations to compute
task-relatedness, providing a significant computation advantage over end-to-end fine-tuning. We also
show that task-relatedness remains highly correlated with end-to-end fine-tuning accuracy even with
a limited amount of labeled data from the target task as shown in Fig. 5 unlike other SbTE metrics.

Next, we show that task-relatedness can even be estimated without using labels from the target task.

Table 2: Correlation of task-relatedness and
end-to-end fine-tuning accuracy computed us-
ing true and pseudo labels of the target task.

Target True
labels

Pseudo
labels

Pets -0.77 -0.76
DTD -0.97 -0.91

Aircraft -0.72 -0.16

For scenarios, where labeled data from the tar-
get task is unavailable, estimating transferability
is challenging. This is because both fine-tuning
and most SbTE methods require labels to com-
pute the transferability scores. Here we show that
task-relatedness can still be an effective measure to
estimate transferability in this challenging setting.
Since we use a transformative model and have ac-
cess to a reference task/classifier, we can use the
predictions from the reference task’s classifier trans-
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Figure 5: Task-relatedness (Ours) remains highly correlated with accuracy after end-to-end fine-tuning
on a target task even when using a small percentage of target data unlike other SbTE methods (LogME,
Leep, NCE, PACTran, OT-NCE, OTCE, and H-Score) whose correlation is affected significantly.
For LogMe, Leep, NCE, OT-NCE, OTCE, and H-score positive correlation is better whereas for
PACTran and task-relatedness (ours) negative correlation is better.

formed via B (to obtain labels ∈ YT ) and estimate the pseudo-labels of the target data. Concretely,
pseudo-label for a target sample xT is obtained as ypseudoT = argmaxy∈YT

BhR(A
−1(zT )). Results

in Table 2 show that our task-relatedness estimated via pseudo-labeled target data still achieves a high
correlation to transferability on most datasets. For datasets such as Pets and DTD, where transforming
the reference task classifier produces high accuracy on the target task, the difference between the
pseudo and true labels is small. Consequently, the difference in the correlations with pseudo and
true labels is also small. Thus, when the reference and target tasks are related, transferability can be
estimated accurately without requiring labels of the target task, showing that task-relatedness is an
effective metric even for unsupervised transferability estimation.

5 Conclusion

We analyzed TL in terms of the relatedness between the target and a reference task. Our analysis works
by transforming the distribution of a reference task to match that of the target. Using this we proved
an upper bound on transferability, defined as task-relatedness, consisting of three interpretable terms,
namely, the re-weighted reference task loss, label mismatch, and distribution mismatch. We proposed
an algorithm to compute task-relatedness and demonstrated its effectiveness at accurately predicting
transferability (even without target labels) with SOTA models. Moreover, the high correlation of
task-relatedness with accuracy after end-to-end fine-tuning and its efficient computability, makes it
an effective metric for transferability estimation.

Limitations. We studied transferability using the cross-entropy loss and used Wasserstein distance-
based distribution shift analysis due to their popularity. However, due to accuracy being the primary
metric of interest in classification tasks and the difficulty of computing the Wasserstein distance with
limited samples in a high dimensional representation space, extending the analysis to 0-1 loss and
other divergence measures are important directions which are not addressed here and are left for
future works.
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Appendix

We present the missing proofs of the theoretical results from Sec. 3 along with justifications for the
classifiers (hR′ , hR′′ , hR′′′ ) as Corollaries in Appendix A followed by related work on learning in the
presence of distribution shift with the same feature and label space in Appendix B. This is followed
by additional experimental results including NLP classification tasks with large pre-trained models in
Appendix C. We conclude in Appendix D with details of the experiments and datasets used.

A Proofs for Sec. 3

A.1 Notation

Table 3: Table of notations

Data related

R/T Reference/Target task.
XR/T Images of reference/target tasks.
YR/T Label set of reference/target tasks.
KR/T Number of classes in reference/target tasks.

PR/T (x, y) Data distribution of reference/target tasks.
(ZR/T , YR/T ) Samples (features and labels) of the reference/target tasks.

Model related

g Encoder pre-trained on a pre-training dataset.
ZR/T Representations extracted for reference/target tasks using g.
hR/T Classifier learned for reference/target tasks on the representations of g.

ℓ Cross-entropy loss.
τ Lipschitz constant.

Task-transformation related

A Parameters for feature transformation.
B Parameters for label transformation.
C Parameters for class-prior transformation.

PR′(z, y) and hR′ Distribution and classifier of R′ after applying transformation C on R.
PR′′(z, y) and hR′′ Distribution and classifier of R′′ after applying transformation B on R′.
PR′′′(z, y) and hR′′′ Distribution and classifier of R′′′ after applying transformation A on R′′.

H Conditional entropy as defined in Eq. 1.
d Base distance between two samples as defined in Eq. 2.

Wd Wasserstein distance between two distributions defined in Eq. 3.
Γ Distance between two distributions based on their mean/variance defined

in Eq. 5.

A.2 Our task transformation model (Sec. 3.1)

A.2.1 Class-Prior transformation (R → R′)

Lemma 1. Let C :=
[
PR′ (y)
PR(y)

]KR

y=1
be a vector of probability ratios and the classifier hR′(z) :=

hR(z), then EPR′ (z,y)[ℓ(hR′(z), y)] = EPR(z,y)[C(y)ℓ(hR(z), y)], for any loss function ℓ.
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Proof.

EPR′ (z,y)[ℓ(hR′(z), y)] = EPR′ (z,y)[ℓ(hR(z), y)] =
∑
y∈YR

PR′(y)EPR′ (z|y)[ℓ(hR(z), y)]

=
∑
y∈YR

PR(y)

PR(y)
PR′(y)EPR′ (z|y)[ℓ(hR(z), y)] =

∑
y∈YR

PR(y)EPR′ (z|y)[C(y)ℓ(hR(z), y)]

=
∑
y∈YR

PR(y)EPR(z|y)[C(y)ℓ(hR(z), y)] (since PR(z|y) = PR′(z|y) by construction)

= EPR(z,y)[C(y)ℓ(hR(z), y)].

A.2.2 Label transformation (R′ → R′′)

Lemma 2. Let B be a KT × KR matrix with Bij = P (yR′′ = i|yR′ = j) and
hR′′(z) := BhR′(z) and ℓ be the cross-entropy loss. Then, EPR′′ (z,y)[ℓ(hR′′(z), y)] ≤
EPR′ (z,y)[ℓ(hR′(z), y)] + H(YR′′ |YR′), where H(YR′′ |YR′) is the conditional entropy
(−

∑
yR′∈YR′

∑
yR′′∈YR′′ PR′(yR′)ByR′′ ,yR′ log(ByR′′ ,yR′ )).

Proof. Note that P (z) := PR′(z) = PR′′(z) by construction.

EPR′′ (z,y)[ℓ(hR′′(z), y)] = EP (z,y′′)[ℓ(hR′′(z), y′′)]

= EP (z)EP (y′′|z)[ℓ(hR′′(z), y′′)] = EP (z)

∑
y′′

∑
y′

P (y′′, y′|z)(ℓ(hR′′(z), y′′)) (since y′ ∈ YR′)

= EP (z)EP (y′′,y′|z)[ℓ(hR′′(z), y′′)]

= EP (z)EP (y′|z)EP (y′′|y′)[ℓ(hR′′(z), y′′)] (since P (y′′|y′, z) = P (y′′|y′))

= EP (z)EP (y′|z)[
∑

y′′∈YR′′

ℓ(hR′′(z), y′′)By′′,y′ ] (since By′′,y′ = P (y′′|y′))

= EP (z,y′)[
∑

y′′∈YR′′

ℓ(BhR′(z), y′′)By′′,y′ ].

Since the loss ℓ is the cross-entropy loss, we have

ℓ(BhR′(z), y′′) = − log(
∑

j∈YR′

By′′,jh
j
R′(z)) ≤ − log(By′′,y′hy′

R′(z)) = − log(By′′,y′)− log(hy′

R′(z)).
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Therefore, we have

EPR′′ (z,y)[ℓ(hR′′(z), y)]

= EP (z,y′)[
∑

y′′∈YR′′

ℓ(BhR′(z), y′′)By′′,y′ ]

≤ −EP (z,y′)[
∑

y′′∈YR′′

By′′,y′

(
log(By′′,y′) + log(hy′

R′(z))
)
]

= −EP (z,y′)[
∑

y′′∈YR′′

By′′,y′ log(By′′,y′)]− EP (z,y′)[
∑

y′′∈YR′′

By′′,y′ log(hy′

R′(z))]

= −EP (z,y′)[
∑

y′′∈YR′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[− log(hy′

R′(z))
∑

y′′∈YR′′

By′′,y′ ]

= −EP (z,y′)[
∑

y′′∈YR′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[− log(hy′

R′(z))]

= EP (z,y′)[−
∑

y′′∈YR′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[ℓ(hR′(z), y′)]

= EP (y′)EPR′ (z|y′)[−
∑

y′′∈YR′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[ℓ(hR′(z), y′)]

= [−
∑

y′∈YR′

∑
y′′∈YR′′

P (y′)By′′,y′ log(By′′,y′)] + EP (z,y′)[ℓ(hR′(z), y′)]

= H(YR′′ |YR′) + EPR′ (z,y)[ℓ(hR′(z), y)].

Corollary 1 below, shows the conditions under which the optimal softmax classifier for the domain
R′ remains optimal for the domain R′′, justifying our choice of classifier change from R′ to R′′.

Corollary 1. Let e be one-hot encoding of the labels, |YR′′ | = |YR′ |, B be a KT × KR

permutation matrix and hR′ be the optimal softmax classifier for R′ and yR′′ := σ(yR′) :=
argmaxy∈YR′′ (Be(yR′))y then under the assumptions of Lemma 2, hR′′(z) := BhR′(z) is the
optimal softmax classifier for R′′.

Proof. Since yR′′ := σ(yR′) := argmaxy∈YT
(Be(yR′))y we have

EPR′′ [ℓ(hR′′(z), yR′′)] = EP (z,y′′)[ℓ(BhR′(z), y′′)] =
∑

y′′∈YR′′

P (y′′)EP (z|y′′)[ℓ(BhR′(z), y′′)]

=
∑

y′∈YR′

P (σ(y′))EP (z|σ(y′))[ℓ(BhR′(z), σ(y′))]

=
∑

y′∈YR′

P (y′)EP (z|y′)[ℓ(hR′(z), y′)] = EPR′ [ℓ(hR′(z), yR′)].

The second last equality follows due to the symmetry of cross-entropy loss, i.e., ℓ(h, y) = − log hy =
− logBhσ(y) = ℓ(Bh, σ(y)).

Since minhR′′ EPR′′ [ℓ(hR′′(z), yR′′)] = minhR′ EPR′ [ℓ(hR′(z), yR′)] and hR′ is optimal for R′ we
have hR′′(z) := BhR′(z) is the optimal softmax classifier for R′′.

A.2.3 Feature transformation (R′′ → R′′′)

Lemma 3. Let A : Z → Z be an invertible linear map of features and the classifier hR′′′(z) :=
hR′′(A−1(z)). Then EPR′′′ (z,y)[ℓ(hR′′′(z), y)] = EPR′′ (z,y)[ℓ(hR′′(z), y)] for any loss ℓ.

Proof. EPR′′′ (z,y)[ℓ(hR′′′(z), y)] = EPR′′′ (z,y)[ℓ(hR′′(A−1(z)), y)] = EPR′′ (z,y)[ℓ(hR′′(z), y)].
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Our Corollary 2 below shows that the optimal softmax classifier for domain R′′ remains optimal for
domain R′′′ too.
Corollary 2. Let hR′′ be the optimal softmax classifier in domain R′′ then under the assumptions of
Lemma 3, hR′′′(z) = hR′′(A−1(z)) is the optimal softmax classifier in domain R′′′.

Proof. When hR′′′(z) = hR′′(A−1(z)), minhR′′ EPR′′ (z,y)[ℓ(hR′′(z), y)] =
minhR′′′ EPR′′′ (z,y)[ℓ(hR′′′(z), y)] by Lemma 3, hence if hR′′ is optimal for R′′ then so is
hR′′′ for the domain R′′′.

A.2.4 Three transformations combined (R → R′′′)

Theorem 1. Let C :=
[
PR′ (y)
PR(y)

]KR

y=1
be a vector of probability ratios , B be a KT ×KR matrix with

Bij = P (yR′′ = i|yR′ = j), A : Z → Z be an invertible linear map of features. Let the classifiers
hR′(z) := hR(z), hR′′(z) := BhR′(z), hR′′′(z) := hR′′(A−1(z)). Assuming ℓ is the cross-entropy
loss, we have

EPR′′′ (z,y)[ℓ(hR′′′(z), y)] ≤ EPR(z,y)[C(y)ℓ(hR(z), y)]︸ ︷︷ ︸
Re-weighted reference task loss

+H(YR′′ |YR′)︸ ︷︷ ︸
Label mismatch

.

Proof.

EPR′′′ (z,y)[ℓ(hR′′′(z), y)] = EPR′′ (z,y)[ℓ(hR′′(z), y)] (Lemma 3)

≤ EPR′ (z,y)[ℓ(hR′(z), y)] +H(YR′′ |YR′) (Lemma 2)

= EPR(z,y)[C(y)ℓ(hR(z), y)] +H(YR′′ |YR′) (Lemma 1).

Corollary 3. Let e be one-hot encoding of the labels, |YR′′′ | = |YR|, B : ∆R′ → ∆R′′ be a
permutation matrix and yR′′ := σ(yR′) := argmaxy∈YR′′ (Be(yR′))y then under the assumptions
of Lemmas 1, 2, and 3 we have EPR′′′ (z,y)[ℓ(hR′′′(z), y)] = EPR(z,y)[C(y)ℓ(hR(z), y)].

Proof. Since yR′′ := σ(yR′) := argmaxy∈YT
(Be(yR′))y we have

EPR′′ [ℓ(hR′′(z), yR′′)] = EP (z,y′′)[ℓ(BhR′(z), y′′)] =
∑

y′′∈YR′′

P (y′′)EP (z|y′′)[ℓ(BhR′(z), y′′)]

=
∑

y′∈YR′

P (σ(y′))EP (z|σ(y′))[ℓ(BhR′(z), σ(y′))]

=
∑

y′∈YR′

P (y′)EP (z|y′)[ℓ(hR′(z), y′)] = EPR′ (z,y)[ℓ(hR′(z), y)].

The second last equality follows due to the symmetry of cross-entropy loss, i.e., ℓ(h, y) = − log hy =
− logBhσ(y) = ℓ(Bh, σ(y)).

Therefore, we have

EPR′′′ (z,y)[ℓ(hR′′′(z), y)] = EPR′′ (z,y)[ℓ(hR′′(z), y)] (Lemma 3)

= EPR′ (z,y)[ℓ(hR′(z), y)] (from above)

= EPR(z,y)[C(y)ℓ(hR(z), y)] (Lemma 1).

A.3 Distribution mismatch between R′′′ and T (Sec. 3.2)

Lemma 4. Let U and Q be two distributions on Z × Y with the same prior PU (y = i) =
PQ(y = i) = P (y = i). With the base distance d defined as in Eq. 2, we have Wd(PU , PQ) =∑

y P (y)W∥·∥2
(PU (z|y), PQ(z|y)).
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Proof. Let ω∗
y denote the optimal coupling for the conditional distributions (PU (z|y), PQ(z|y))

for y ∈ Y and π∗ denote the the optimal coupling for the joint distributions (PU (z, y), PQ(z, y)).
Then, under the definition of our base distance d, π∗((z, y), (z′, y′)) = 0 when y ̸= y′ i.e. no
mass from the distribution U belonging to class y can be moved to the classes y′ ̸= y of the
distribution Q when the class priors of U and Q are the same. Moreover, since

∑
ij(ω

∗
y)ij = 1 and∑

{i,j:yi=y′
j=k} π

∗
ij = P (y = k) for k ∈ Y we have π∗((z, y), (z′, y′)) = ω∗

y(z, z
′)P (y)1y=y′ for

every y, y′ ∈ Y .

Then, we can show that the total Wasserstein distance between the joint distributions can be expressed
as the sum of conditional Wasserstein distances, as follows

Wd(PU (z, y), PQ(z, y))

=
∑
y,y′

∫
π∗((z, y), (z′, y′))d((z, y), (z′, y′))dzdz′

=
∑
y,y′

∫
π∗((z, y), (z′, y′))(∥z − z′∥2 +∞ · 1y ̸=y′)dzdz′

=
∑
y,y′

∫
ω∗
y(z, z

′)P (y)1y=y′(∥z − z′∥2 +∞ · 1y ̸=y′)dzdz′

=
∑
y,y′

∫
ω∗
y(z, z

′)P (y)1y=y′∥z − z′∥2dzdz′ (since 1y=y′ · 1y ̸=y′ = 0)

=
∑
y,y′

P (y)1y=y′

∫
ω∗
y(z, z

′)∥z − z′∥2dzdz′

=
∑
y

P (y)

∫
ω∗
y(z, z

′)∥z − z′∥2dzdz′

=
∑
y

P (y)W∥·∥2
(PU (z|y), PQ(z|y)).

Theorem 2. Let the distributions T and R′′′ be defined on the same domain Z ×Y and assumption 1
holds, then EPT (z,y)[ℓ(h(z), y)]− EPR′′′ (z,y)[ℓ(h(z), y)] ≤ τ Wd(PR′′′ , PT )︸ ︷︷ ︸

Distribution mismatch

, with d as in Eq. 2.

Proof.

EPT (z,y)[ℓ(h(z), y)]− EPR′′′ (z,y)[ℓ(h(z), y)]

= EPT (y)EPT (z|y)[ℓ(h(z), y)]− EPR′′′ (y)EPR′′′ (z|y)[ℓ(h(z), y)]

= EPT (y)[EPT (z|y)[ℓ(h(z), y)]− EPR′′′ (z|y)[ℓ(h(z), y)]] (since PT (y) = PR′′′(y))

≤ EPT (y)[ sup
ℓ′◦h′∈τ−Lipschitz

EPT (z|y)[ℓ
′(h′(z), y)]− EPR′′′ (z|y)[ℓ

′(h′(z), y)]]

= EPT (y)[τ W∥·∥2
(PT (z|y), PR′′′(z|y))] (Kantorovich− Rubinstein duality)

= τ Wd(PR′′′ , PT ) (Lemma 4).

A.4 Final bound (Sec. 3.3)

Theorem 3. Let ℓ be the cross entropy loss then under the assumptions of Theorems 1 and 2 we have,

EPT (z,y)[ℓ(hT (z), y)] ≤ EPR(z,y)[C(y)ℓ(hR(z), y)]︸ ︷︷ ︸
Re-weighted reference task loss

+H(YR′′ |YR′)︸ ︷︷ ︸
Label mismatch

+ τ Wd(PR′′′ , PT )︸ ︷︷ ︸
Distribution mismatch

.
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Proof. Let ℓ ◦ hT , ℓ ◦ hR, and ℓ ◦ hR′′′ be τ−Lipschitz (from Assumption 1).

EPT (z,y)[ℓ(hT (z), y)] ≤ EPT (z,y)[ℓ(hR′′′(z), y)] (Optimality difference)

≤ EPR′′′ (z,y)[ℓ(hR′′′(z), y)] + τ Wd(PR′′′ , PT ) (Theorem 2)

≤ EPR(z,y)[C(y)ℓ(hR(z), y)] +H(YR′′ |YR′) + τ Wd(PR′′′ , PT ) (Theorem 1).

In our experiments, we enforce the τ−Lipschitz constraint for ℓ ◦ hR and ℓ ◦ hT and verify that the
Lipschitz constant of ℓ ◦ hR′′′ remains close to τ within tolerance.

A.5 Extension to non-linear classifiers and non-linear transformations

To extend our analysis to non-linear classifiers/transformations, we allow A : Z → Z to be a non-
linear map and the classifiers h ∈ Hnon_linear to be also non-linear (such as multi-layer perceptron).
In addition to the Assumption 1 (1), which requires ℓ ◦ hR′′′ to be τ−Lipschitz, we also require that
hR′′′ belongs to the same class Hnon_linear as hT and hR for any A. This holds for example when h
is linear and A is also linear or when h is a multilayer perceptron and A is linear. With this additional
assumption, all of our proofs work for any linear/non-linear transformation of the feature space,
without any change. Thus, Theorem 1, Theorem 2 and Theorem 3 hold for non-linear classifiers as
well. With these extensions, our bounds can be used to explain transferability even with non-linear
classifiers.

B Additional related work

Distributional divergence-based analyses of learning with distribution shifts (under same feature
and label sets): Here we review some of the previous works that analyzed the problem of learning
under distribution shifts in terms of distributional divergences such as the Wasserstein distance. These
analyses apply when the feature and label spaces remain the same between the original and the shifted
distribution.

Early works [8, 52, 36] showed that the performance on a shifted distribution (target domain) can
be estimated in terms of the performance of the source domain and the distance between the two
domains’ marginal distributions and labeling functions. Specifically, [8] showed that that

ET (h, fT ) ≤ ES(h, fS) + d1(PS , PT ) + min{EPS
[|fS(z)− fT (z)|],EDT

[|fS(z)− fT (z)|]},

where d1 denotes the total variation distance, f : Z → [0, 1] denotes the labeling function, h :
Z → {0, 1} denotes the hypothesis and EP (h, f) := Ez∼P [|h(z) − f(z)|] denote the risk of the
hypothesis h. A follow up work [52], showed a similar result using type-1 Wasserstein distance for
all K−Lipschitz continuous hypotheses i.e.,

ET (h, fT ) ≤ ES(h, fS) + 2K ·W1(PS , PT ) + λ,

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined error
ES(h, fS) + ET (h, fT ). Another recent work [32] used a target transformation-based approach
and Wasserstein distance to quantify learning in the presence of data and label shifts. Other works
[31, 50] also presented an analysis based on Wasserstein distance to understand how the accuracy
of smoothed classifies and robustness change in the presence of distribution shifts. Compared to
these works the bound proposed in Theorem 2 considers cross-entropy loss (which is a popular
choice of the loss function in the classification setting) and uses a joint feature and labels Wasserstein
distance rather than only marginal Wasserstein distance. These differences make the bound proposed
in Theorem 2 useful in the analysis of transfer learning than those proposed in previous works when
we have access to labeled target domain data.

Comparison with [56]: The closest work to ours is that of [56], which showed that transferability to
a target task can be related to transferability to another task (source task in their work) and the label
mismatch between the two tasks. However, the bound is proposed in a restrictive setting when both
the tasks have the same features but different labels (i.e. same images labeled differently between the
two tasks). In this setting, [56], showed that transferability is upper bounded by loss of the source
classifier on the source task and the conditional entropy (CE) of the label sets of the two tasks. We
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significantly extend this analysis to general tasks which is the most commonly used setting in practice
(e.g., our analysis allows us to study transfer learning from ImageNet with 1000 classes to CIFAR-100
with 100 unrelated classes, where both tasks have different images). In this setting, our main result in
Theorem 3, shows that transferability involves additional terms such as the distribution mismatch
term (in the form of Wasserstein distance), the prior mismatch term (in the form of re-weighted
source loss) and the conditional entropy between the label sets. Moreover, the bound proposed by
[56] is a special case of our bound with C being the vector of all ones (no prior change) and A being
Identity (data distributions of two tasks are the same).

Comparison with other transferability estimation and model selection methods: The problem
of transferability estimation has gained a lot of attention recently, especially due to the availability of
a larger number of pre-trained models. Earlier works used models end-to-end fine-tuned on target
tasks to evaluate transferability via task-relatedness estimated using the actual target loss [62] and the
Fisher information matrix [1]. However, the requirement of models trained on target tasks limits their
practical utility. Other works [22, 21, 54] used the representation of the data from the tasks from
these end-to-end fine-tuned models and developed similarity scores that achieved high correlation
with transferability. However, these approaches are not practical since they require models end-to-end
fine-tuned on the target task. Our work does not depend on models trained on target tasks as shown
in our analysis (Theorem 3) making it both theoretically and practically sound.

Another line of work [5, 40, 29, 61, 55, 51, 19] focuses on the problem of pre-trained model selection
where the goal is to find the best pre-trained classifier from a model zoo that will achieve the highest
transferability to a particular downstream task. Thus, the main challenge of this problem is to be able
to estimate transferability in a way that is more efficient than fine-tuning the pre-trained models on
the downstream tasks. To this end, recent works have proposed several scores that are correlated with
the accuracy of the models after fine-tuning them on the target task, which we refer to as score-based
transferability estimation (SbTE) methods, in our work.

However, unlike our work, the goal of SbTE works is not to propose a universal bound or identify
terms that provably govern transferability. Moreover, while the scores proposed in SbTE works
correlate well with transferability, they are only meaningful in a relative sense. Concretely, a score
of 1 (e.g., for LogMe [46]) on a CIFAR-100 task for a particular model does not indicate whether
transferability is good or bad and requires comparison with scores of other pre-trained models on
the same target task. On the other hand, our upper bound directly approximates transferability, e.g.,
an upper bound of 1 on the CIFAR-100 task for a model implies that transfer learning will incur an
average cross-entropy loss of less than 1 implying a highly accurate transfer. Our results in Figs. 3,
and 9 attest that our upper bound is indeed a good estimate of the transferability.

Another disadvantage of the scores proposed in these works is that they cannot be compared across
target tasks, unlike our upper bound. As observed from Fig. 4 of LogMe [46], scores for CIFAR-10
are lower than scores for CIFAR-100 on the same pre-trained model, but, the transferability to
CIFAR-10 is better than that to CIFAR-100. On the other hand, from our Fig. 9, the upper bounds on
CIFAR-10 are lower than those of CIFAR-100 implying better transferability of classifiers pre-trained
on ImageNet to CIFAR-10. Thus, our work is more suitable for estimating the absolute performance
on various target tasks given a particular pre-trained classifier.

Thus, while the goal of our work differs fundamentally from SbTE approaches the problem addressed
in this work is of significant practical importance. In Sec. 4.3, we show that task-relatedness estimated
via Alg. 1 achieves competitive performance compared to popular SbTE methods on this problem.

Comparison with task transfer learning approaches: This approach focuses on explaining the
transfer performance based on the relationship between tasks. For instance, works such as [28, 57, 24]
study the problem of few-shot learning (FSL) where a model is trained on data from related training
tasks and is adapted to an unseen task using only a few samples. Different from these works, we
focus on the setting where a pre-trained encoder trained on some pre-training dataset is adapted with
enough samples/gradient steps to a downstream task. This downstream target task may or may not
have any relation to the pre-training task unlike [28, 57, 24].

Concretely, [28] proposed a model-agnostic metric called Task Attribute Distance to gauge the
success of transfer. Our work, on the other hand, defines task-relatedness based on the similarity of
the representations of reference and target tasks in the representations of the pre-trained model (and is
model dependent) rather than relying on the attribute information, which may not be available in TL

21



setting. [57] analyzes the sample complexity for learning a model shared across tasks and adapting it
to a new target task and shows task diversity to be a crucial component for the success of transfer in
the FSL setting. Our work on the other hand does not assume access to shared tasks or restrict the
number of samples required for fine-tuning on the target task. Moreover, their notion of task diversity
requires access to a set of training tasks that may not be available in the TL setting, making our notion
of task-relatedness more practical for TL. Lastly, [24] proposes a notion of task-relatedness for the
FSL setting, allowing to utilize all the data from available training tasks to help learn a model on
a new task with a few gradient steps. This notion is model-agnostic and defined over the sample
space (X × Y) unlike our measure which is defined in the representation space of the model whose
transferability needs to be evaluated.

Thus while task-relatedness is at the core TL, the notions proposed by [28, 57, 24] are suitable for
task transfer setting where as our notion is more suitable for the inductive TL setting.

C Additional experiments

C.1 Small-scale experiment to evaluate Alg. 1

1) Our algorithm produces transformations that achieve a better value for the bound compared to
naive transformations. 2) Having the same number of classes in the reference task as in the target
task leads to the best value of the bound. 3) It is only marginally better to have semantically related
classes in the reference task.

We evaluate Alg. 1 for computing task-relatedness and predicting the transferability of a ResNet-18
model to CIFAR-10 in two settings. In the first setting, we consider a reference task that comprises
data from 10 classes chosen at random and 10 classes that are semantically related to the labels
of CIFAR10 from ImageNet [17] (see App. D) whereas in the setting we select reference task
with 20 classes. We compare the cross-entropy loss on CIFAR10 obtained after linear fine-tuning
(transferability) with our bound, by using various transformations including those learned via Alg. 1.

Using 10 reference classes

Using 20 reference classes

Figure 6: Transformations optimized
using Eq. 4 produce a better task-
relatedness than obtained by naively cho-
sen transformations, primarily due to de-
creased distribution mismatch. The pres-
ence of the same number of classes in the
reference as those in the target achieves
the smallest task-relatedness value. Se-
mantically related classes in the refer-
ence task help but only marginally.

We test 3 different cases. The first is FixedAll: where
all transformations are fixed (A is fixed to the Identity
matrix, B is fixed to a random permutation matrix in the
setting with 10 classes, and to a matrix such that two
reference classes match a single target class in the set-
ting with 20 classes, D is fixed to the reference prior).
The second is LearnedA: where we use Alg. 1 to learn
only A while B,D are fixed as in FixedAll, and lastly
LearnedAll: where all the transformations are learned via
Alg. 1. Our results in Fig. 6, show that in both settings
using FixedAll, our bound is marginally better when the
reference task has classes semantically related to the target
task. In all cases, the bound becomes significantly better
in the LearnedA setting due to learning the transformation
A that transforms the reference distribution to better match
the target and decrease the distribution mismatch term of
the bound. Lastly, by learning all the transformations, in
the LearnedAll setting, we achieve the best value for the
bound, regardless of whether there are randomly chosen
or semantically related classes in the reference task. More-
over, we see that the value of the bound estimated when
the reference task has 10 source classes is better in all
cases. This is due to smaller re-weighted reference loss
since learning a 20-way classifier is more challenging than
learning a 10-way classifier, especially with the Lipschitz
constraint. In the setting with 20 classes, Alg. 1, prefers
to retain data from 10 of the 20 reference task classes, Fig. 7 (right), reducing the re-weighted
reference loss, makes B sparse, reducing the label mismatch term, and aligns the reference and target
distributions, via A, reducing the distribution mismatch term.
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Overall, our results show that 1) learning D prefers to retain the data from the same number of
reference classes as those present in the target, 2) the B matrix eventually becomes sparse, making the
label mismatch term zero, and 3) there is only a small difference in task-relatedness between LearnedA
and LearnedAll settings. Based on these insights, we use Alg. 1 in the LearnedA setting, with the
reference task containing the same number of randomly sampled classes from ImageNet as the same
number of classes in the target task (since it may not always possible to find semantically similar
classes for all target tasks) and fix B to be a random permutation matrix, for all other experiments in
the paper. We select classes for the reference task from ImageNet due to its diversity and the fact that
it has a large number of classes. However, any dataset can be used to define the reference task (e.g.,
we used Digits datasets for the reference task in Sec. 4.2).

Next, we evaluate the effect of knowing the exact matching between the labels of the reference and
the target tasks in comparison to a random permutation. We use MNIST as the reference task and
USPS as the target task (and vice-versa). We compare our results in a setting where only A is learned
and B is set to an identity matrix and when B is set to a random permutation matrix. Note that the
identity matrix corresponds to the correct mapping between the classes of MNIST and USPS tasks
(both contain digits from 0 to 9).

We find that the upper bound obtained when B is fixed to identity is only marginally better than the
case when B is a random permutation. Specifically, the difference between the bound when B is
fixed to a random permutation and when B is an identity matrix is 0.10 for the MNIST→USPS task
and 0.17 for the USPS→MNIST task. The primary reason for the decrease in the upper bound comes
from the reduced distribution mismatch term. While the upper bound improves slightly when the
ideal matching between the labels is known, such a mapping may not be known when the labels of
the tasks are not related such as for FMNIST and MNIST. Thus, fixing B to a random permutation
matrix yields a reliable estimate of transferability in most cases.

C.1.1 Visualization of the transformed data via t-SNE for various settings in Sec. C.1

Here we use the setting considered in App. C.1 where we consider 20 randomly selected classes
from ImageNet as the reference task and consider the transfer to CIFAR-10. We plot the results of
using different transformations using t-SNE to show how various transformations affect the upper
bound in Theorem 3. Our results in Fig. 7(left) show that when no transformations are learned
(FixedAll), the 20 random reference task classes do not overlap with the 10 target classes leading
to an increased Wasserstein distance which in turn leads to a larger upper bound. By learning the
transformation A (LearnedA), Fig. 7(center) shows a significantly better alignment between the
classes of the reference and target which leads to a decreased Wasserstein distance and hence a tighter
upper bound. Moreover, by learning all the transformations (LearnedAll), Fig. 7(right) shows that
not only do the distributions align well but also the prior of the reference is changed to only keep 10
reference classes to match the prior of the target distribution providing a further improvement in the
upper bound. This clearly shows the effectiveness of our proposed optimization algorithm in learning
various transformations to minimize the upper bound.

C.1.2 Effectiveness of minimizing the upper bound in Theorem 3 via solving Eq. 4

In Fig. 8, we show how the upper bound changes as the optimization progresses to transform the
reference task (ImageNet) into four target tasks with the ResNet-18 model. Similar to experiments
in Sec. 4.1 of the paper we optimize over the transformation A while B and D are fixed to a
random permutation matrix and the reference prior. After about 600 epochs the optimization problem
converges to a local minima.

C.2 Additional results for the impact of the reference task on task-relatedness (Sec. 4.2)

C.2.1 Additional results for image classification

Here we provide details of the experiment presented in Sec. 4.2 about the effect of the reference task
on task-relatedness and transferability. Similar to the results presented in Fig. 4 of the main paper, the
results in Fig. 10 show that when the reference and the target tasks are related then task-relatedness is
good as in the case when the reference task is MNIST and target is USPS or vice versa achieving
a smaller gap to transferability. When the target tasks are unrelated to the reference task data then
both the transferability and task-relatedness are low. E.g., when the reference task is MNIST and the
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Figure 7: (Best viewed in color.) t-SNE visualizations of the effect of various transformations on
the bound in Theorem 3 when data from 20 randomly selected classes from ImageNet are used to
transfer to CIFAR-10. When all transformations are fixed (FixedAll, left) the distance between the
distribution R′′′ (transformed reference) and T is high explaining the large upper bound. Learning
just the transformation A using the algorithm proposed in Sec. 3.4 significantly reduces the distance
between R′′′ and T leading to a tighter upper bound (center). Learning all the transformations further
improves the matching (right). Especially, learning B and D change the class priors of the reference
so that the same number of classes from the reference are used for matching as those present in the
target. This is evident from the right plot where only 10 unique reference task clusters are visible
compared to 20 in the center plot, with fixed D. Moreover, the zoomed-in portion shows that for the
center figure two classes from the reference task (green 2 and 3) match with class 1 (blue) of the
target whereas a single class from the reference task (green 18) matches class 1 (blue) of the target in
the right figure.

Figure 8: Reduction of the proposed upper bound is shown as transformations are learned by
solving the optimization problem in Eq. 3. After 600 epochs, the upper bound stabilizes showing the
convergence of the optimization problem. Each subplot shows the effect of learning the transformation
parameters for the transfer learning task with ImageNet as the reference task and ResNet-18 (trained
in a supervised way) for different target tasks. The solid line is the average after 5 random restarts
and the shaded portion shows their standard deviation.

target is FMNIST or vice-versa. Task-relatedness is also correlated to transferability, i.e., a model
trained on MNIST achieves better transferability to USPS than FMNIST.

C.2.2 Results for NLP sentence classification task

In this section, we use sentence classification NLP task to demonstrate further the effect of the
reference task on task-relatedness. For this experiment, we first fine-tune the entire DistilRoBERTa
[34] model distilled on OpenAI’s WebText dataset, using a subsample of 10,000 points from the
DBPedia dataset. We then use these fine-tuned models to evaluate the transferability to AG news,
SST-5, and Yelp datasets. The results in Fig. 12 show that transferability on AG News is the smallest
among the three datasets. This coincides with the task-relatedness value obtained after learning the
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Figure 9: Full results for comparison of transferability vs. task-relatedness for large pre-trained
models on image and sentence classification tasks. Task-relatedness consistently achieves a small
gap to transferability. We denote cross-entropy loss on the y-axis. Plot-title denotes the pre-trained
model and the x-axis denotes the target tasks.
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Figure 10: Decomposition of task-relatedness into its three components illustrates that our task-
relatedness (specifically the distribution mismatch term) explains the difference in transferability.
Similar tasks such as USPS and MNIST have the highest transferability and also have the highest
task-relatedness.

transformations which explains why transfer from DBPedia to AG News is more successful compared
to other target tasks. This observation is reasonable, especially considering that both DBPedia and
AG News have structured information. Moreover, since DBPedia is related to Wikipedia, the terms
and entities appearing in AG News are more related to those appearing in DBPedia in comparison to
terms/entities appearing in SST-5 and Yelp which consist of movie reviews and reviews collected
from Yelp.

For our experiments, in this section, we follow a similar setting of fixing B to be a random permutation
matrix, C to the prior of the reference task, and only learn the transformation A. We sample 10,000
points from DBPedia belonging to the same number of classes as those present in the target task (e.g.,
for AG News we sample data from 4 randomly selected classes of DBPedia) and use this data as the
reference task data to train hR with gradient norm penalty (τ = 0.02). All experiments are run for 3
random seeds and average results are reported in Fig. 12.
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Figure 11: Task-relatedness is highly (negatively) correlated (Pearson correlation coefficient in the
subplot title) with the accuracy of the models after end-to-end fine-tuning. Each subplot shows
transfer learning with various target tasks for a specific model architecture and training method.
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Figure 12: Task-relatedness (Left) and transferability (Right) are highly correlated across various
reference-target pairs. A target task related to the reference task (DBPedia) such as AG News achieves
better transferability (with DistillRoBERTa model) and task-relatedness compared to less-related
tasks such as SST-5 and Yelp5.

C.3 Lipschitz constrained linear fine-tuning

C.3.1 Implementing softmax classification with τ−Lipschitz loss

To use the bound Theorem. 3, it is required that the loss be τ−Lipschitz continuous w.r.t. z in
the input domain Z . To enforce this, while learning the weights of the softmax classifier (linear
fine-tuning) for the reference task or the target, we add the gradient norm penalty as used in previous
works [52, 4] and solve the following optimization problem

min
h

1

N

∑
i

[
ℓ(h(zi), yi) + ρmax

y
max{0, ∥∇zℓ(h(zi), y)∥2 − τ}2

]
(ρ ≈ 104)

where ℓ(h(z), y) = −wT
y z + log

∑
j e

wT
j z is the cross-entropy loss.

C.3.2 Trade-off between empirical and predicted transferability

Constraining the Lipschitz coefficient of the classifier increases both the target and the reference task
cross-entropy loss since the hypothesis set is being restricted. The smaller the τ is, the larger the loss
becomes. On the other hand, the smaller τ makes the distribution mismatch term in Theorem 3 also
smaller. Since the bound is the sum of the reference task loss and the distribution mismatch (and label
mismatch), there is a trade-off determined by the value of τ . We illustrate the effect of the values of τ
on the empirical and predicted transferability. As mentioned previously, we train both the classifier
for the reference task hR and the target hT with an additional penalty on the gradient norm to make
them τ−Lipschitz. In Fig. 13, we present results of varying the value of τ for the transfer to the Pets
dataset with ImageNet as the reference task. For this experiment, we selected 37 random classes
from ImageNet and only learned the transform A by keeping B fixed to a random permutation and
C fixed to the uniform prior over reference task classes. We observe that the performance of linear
fine-tuning degrades as we decrease the value of τ but explainability through the bound improves
since the distribution mismatch term (dependent on τ ) decreases in the bound. However, making τ
too small is not preferable since it leads to an increase in the first term of the bound (re-weighted
reference task loss) increasing the bound overall. Moreover, it also leads to a degradation in the
accuracy after linear fine-tuning. For our experiments, we use τ = 0.02 since it doesn’t decrease
the accuracy of fine-tuning significantly and leads to a small gap between empirical and predicted
transferability.

26



0.0
1

0.0
2

0.0
5 0.1 0.2

0

5

10

Lo
ss

RN18

0.0
1

0.0
2

0.0
5 0.1 0.2

0

5

10

RN50
Target Loss Reweighted Reference Loss Label Mismatch Distribution Mismatch

Figure 13: Trade-off between the cross-entropy loss (y-axis) after linear fine-tuning and the upper
bound in Theorem 3 as a function of τ (x-axis), for ResNet18 and ResNet50 models pre-trained on
ImageNet and linearly fine-tuned on the Pets dataset. Increasing the value of τ leads to a decrease in
the cross-entropy loss after fine-tuning but increases in the proposed bound mainly due to the τ ·Wd

term.

D Details of the experiments

All codes are written in Python using Tensorflow/Pytorch and were run on an Intel(R) Xeon(R)
Platinum 8358 CPU with 200 GB of RAM and an Nvidia A10 GPU. Implementation and hyperpa-
rameters are described below. Our codes can be found in the supplementary material. We report an
average of three independent runs for experiments in Sec. 4.2 and 4.3.

D.1 Dataset details

In our work, we used the standard image classification benchmark datasets along with standard
natural language processing datasets1.

Aircraft [35]: consists of 10,000 aircraft images belonging to 100 classes.

CIFAR-10/100 [30]: These datasets contain 60,000 images belonging to 10/100 categories. Addi-
tionally, we created two subsets of CIFAR100 with the first 25 (small CIFAR-100-S) and 50 (medium
CIFAR-100-M) classes.

DTD[13]: consists of 5,640 textural images belonging to 47 categories.

Fashion MNIST [60]: consists of 70,000 grayscale images belonging to 10 categories.

Pets [43]: consists of 7049 images of Cats and Dogs spread across 37 categories.

ImageNet [17]: consists of 1.1 million images belonging to 1000 categories.

Yelp [63]: consists of 650,000 training and 50,000 test examples belonging to 5 classes.

Stanford Sentiment Treebank (SST-5) [63]: consists of 8,544 training and 2,210 test samples
belonging to 5 classes.

AG News [63]: consists of 120,000 training and 7,600 test examples belonging to 4 classes

DBPedia [63]: consists of 560,000 training and 70,000 test examples belonging to 14 classes

D.2 Semantically similar classes for CIFAR-10 from ImageNet

For our experiments with CIFAR-10 in Sec. C.1, we selected the following semantically similar
classes from ImageNet, {airliner, minivan, cock, tabby cat, ox, chihuahua, bull-
frog, sorrel, submarine, fire engine}.

D.3 Additional experimental details

Details of the optimization problem in Eq. 4 and Alg. 1. In Step 5 of the algorithm, we use the
network simplex flow algorithm from POT [23] to compute the optimal coupling. Since computing
the Wasserstein distance over the entire dataset can be slow, we follow [16] and compute the coupling

1All NLP datasets and models are obtained from https://huggingface.co/.
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over batches. Note that the base distance defined in Eq. 2 is non-differentiable. Thus, we use
a differentiable approximation d̃((z, y), (z′, y′)) := dfeatures(z, z

′) + ν · ∥e(y) − e(y′)∥2 (with
ν = 108) where (z, y) and (z′, y′) are samples from the domains R

′′′
and T and e(·) denotes the

one-hot embedding of the labels in Step 5/6 . The first three terms in Step 6 of our algorithm
correspond to the terms in the objective of Eq. 4 while the two additional terms are added to penalize
the constraints of class prior matching PT (y) = BD and invertibility of the matrix A, respectively
as required by Theorem 3. We use the softmax operation to ensure B and D are a valid probability
matrix and vector.

In our experiments, in Sec. 4.1, we used pre-trained models available from Pytorch for ResNet18/50,
along with publicly available pre-trained models provided in the official repositories of each training
method. For each experiment, we subsample data from the ImageNet dataset belonging to the
same number of classes as those present in the target dataset and use this data to train the linear
layer on top of the representations extracted from the pre-trained model along with a gradient norm
penalty (Reference task classifier). To speed up the experiments, we use only 10,000 points from the
subsample of ImageNet for training the linear classifier and computing the transfer. For evaluation,
we use a similar subsample of the validation dataset of ImageNet containing all the samples belonging
to the subsampled classes. Fine-tuning on this dataset takes about 0.05 seconds per epoch for the task
of transfer from ImageNet to Pets with the ResNet-18 model (we run the fine-tuning for a total of
5000 epochs).

Along with training the linear classifiers with a gradient norm penalty (with τ = 0.02), we standardize
the features extracted from the pre-trained models to remove their mean (along each axis) and make
them have a unit standard deviation (along each axis). While standardizing the features do not have a
significant impact on the loss of the classifiers, including it makes it easier to match the distributions
of the reference task and target data after transformations. Since our optimization problem transforms
the reference task distribution to match the distribution of the target by solving the optimization
problem in Eq. 4 by working on mini-batches, the size of the batch must be greater than the dimension
of the representation space of the pre-trained encoder. E.g., for ResNet18 models which have a
representation dimension of 512, we use a batch size of 1000 and for ResNet50 models which have a
representation dimension of 2048, we use a batch size of 2500. Having a smaller batch size than the
dimension could lead to a noisy gradient since for that batch the transformation can achieve a perfect
matching, which may not generalize to data from other batches or unseen test data.

While computing the transformations, we apply the same augmentation (re-sizing and center crop-
ping)/normalization to the training data as those applied to the test data. Along with this, we extract
the features of the training and test data from the pre-trained model once and use these to train
the linear layer. We note that this is done to save the computation time and better results could be
obtained by allowing for extracting features after data augmentation for every batch.

Finally, for our experiments in Sec. 4.2, the encoders are trained end-to-end on the reference task.
This is in contrast to our other experiments where the encoders are pre-trained and data from the
reference task is only used for linear fine-tuning. Using these models, task-relatedness is evaluated by
fine-tuning a linear layer using the data from the target task as well as the transformations computed
by solving Eq. 4. We used τ = 0.2 here. We run the experiments with 3 random seeds and report the
average results.

For our experiments in Sec. 4.3, we used the official code from [61] to compute the scores for NCE,
Leep, and LogMe along with the official code of [51] for SFDA. For PACTran [19], we also use their
official code with the PACTran-Gaussian method with N/K = 100, β = 10N, σ2 = D/100 where
N denotes the number of samples and K denotes the number of classes. This setting is similar to
the PACTran-Gaussfix setting used in their work with the difference that we use N/K = 100 to
use a sufficiently large number of samples, especially considering that all our other results for SbTE
methods are computed on the full training set. For OTCE, we follow the official code and compute
the recommended OT-based NCE score and OTCE score (λ1 = −0.0001 and λ2 = −1) using 4000
randomly selected training samples from the two tasks. For the source task, we subsample the same
number of classes as the target task and use. For the H-score, we use the official code to compute the
H-score [6].

For estimating transferability by solving Eq. 5, we set λ=0.01 for all the experiments in Sec. 4.3.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract summarizes the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in Sec. 5 and elaborated here.
Here we present some of the potential limitations of our work and discuss the avenues for future
work. The analysis presented in the paper studies transferability using the popular cross-entropy
loss similar to that analyzed by [56]. While this is important and practically useful, extending
the analysis to other losses, primarily to the 0-1 loss, is an interesting future direction since in
most classification tasks, accuracy is the metric of primary interest.
Another limitation of our work is the dependence of our bound on the Wasserstein distance.
While it is a popular choice for analyzing performance in various distribution shift scenarios
[52, 16, 50], it is difficult to estimate in practice due to its sensitivity to the number of samples
and the dimension of the representation space. An analysis based on a different and easy-to-
compute divergence measure might be more amenable for making transferability estimation via
task-relatedness easier and faster.
We emphasize that even though we present some of the limitations of our current work above,
these are by no means weaknesses of our work, which non-trivially extends the current under-
standing of the transfer learning setting through a rigorous analysis and achieves impressive
performance on practical applications.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably
to provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover limita-
tions that aren’t acknowledged in the paper. The authors should use their best judgment and
recognize that individual actions in favor of transparency play an important role in devel-
oping norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: In App. A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In App. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our codes can be found at https://github.com/akshaymehra24/
TaskTransferAnalysis.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: In App. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: An average of three independent runs are reported.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: In App. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make
it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no ethics concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: NA
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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