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Abstract

In NMT we search for the mode of the model001
distribution to form predictions. The mode002
and other high-probability translations found003
by beam search have been shown to often be004
inadequate in a number of ways. This pre-005
vents improving translation quality through bet-006
ter search, as these idiosyncratic translations007
end up selected by the decoding algorithm, a008
problem known as the beam search curse. Re-009
cently, an approximation to minimum Bayes010
risk (MBR) decoding has been proposed as an011
alternative decision rule that would likely not012
suffer from the same problems. We analyse013
this approximation and establish that it has no014
equivalent to the beam search curse. We then015
design approximations that decouple the cost of016
exploration from the cost of robust estimation017
of expected utility. This allows for much larger018
hypothesis spaces, which we show to be benefi-019
cial. We also show that mode-seeking strategies020
can aid in constructing compact sets of promis-021
ing hypotheses and that MBR is effective in022
identifying good translations in them. We con-023
duct experiments on three language pairs vary-024
ing in amounts of resources available: English025
into and from German, Romanian, and Nepali.1026

1 Introduction027

NMT systems (Sutskever et al., 2014; Bahdanau028

et al., 2015) are trained to predict a conditional029

probability distribution over translation candidates030

of any given source sentence. After training, choos-031

ing a translation for a given input requires a deci-032

sion rule: a criterion to elect a ‘preferred’ transla-033

tion. MAP decoding, the most common decision034

rule in NMT, seeks the most probable translation035

under the model (i.e., the mode of the distribution).036

1Code is available at github.com/ANONYMISED.

Figure 1: NMT spreads probability roughly uniformly
over a large set of promising hypotheses (left). MBR
(right) assigns hypotheses an expected utility, revealing
clear preferences against those that are too idiosyncratic.

MAP decoding and its approximations such 037

as beam search (Graves, 2012) have been under 038

scrutiny. Stahlberg and Byrne (2019) show that 039

the true mode is oftentimes inadequately short or 040

empty. Better approximate search is known to hurt 041

quality (Koehn and Knowles, 2017; Murray and 042

Chiang, 2018; Kumar and Sarawagi, 2019), a prob- 043

lem known as the beam search curse. The suc- 044

cess of beam search depends on search biases in- 045

troduced by hyperparameters such as beam size 046

and length normalisation, which are tuned not 047

to correlate with the objective of MAP decoding, 048

but rather to strike a compromise between mode- 049

seeking search and properties of reasonable trans- 050

lations. Despite its success, a number of problems 051

have been observed: length bias (Cho et al., 2014; 052

Sountsov and Sarawagi, 2016), word frequency 053

bias (Ott et al., 2018), susceptibility to copy noise 054

(Khayrallah and Koehn, 2018; Ott et al., 2018), and 055

hallucination under domain shift (Lee et al., 2019; 056

Müller et al., 2020; Wang and Sennrich, 2020). 057

Eikema and Aziz (2020) argue that the inade- 058

quacy of the mode in NMT is a reasonable conse- 059

quence of the translation space being combinato- 060

rial and unbounded. They show that, while distri- 061
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butions predicted by NMT do reproduce various062

statistics of observed data, they tend to spread prob-063

ability mass almost uniformly over a large space064

of translation candidates. This makes their precise065

ranking in terms of probability mass a fragile crite-066

rion for prediction. While some of these candidates067

are possibly inadequate (e.g., the empty sequence),068

most of them are similar to one another and ex-069

hibit appreciable structural similarity to reference070

translations. To make better use of the statistics pre-071

dicted by NMT models, Eikema and Aziz (2020)072

recommend MBR decoding (Kumar and Byrne,073

2004), a decision rule that seeks the translation can-074

didate which maximises an external notion of utility075

(e.g., an MT evaluation metric) in expectation un-076

der the model distribution. While MBR decoding077

promises robustness to idiosyncratic translations,078

it remains intractable, much like MAP decoding.079

Eikema and Aziz (2020) propose an approximation080

based on Monte Carlo (MC) sampling, which al-081

though tractable in principle, requires a prohibitive082

number of assessments of the utility function.083

In this work, we first analyse the procedure by084

Eikema and Aziz (2020) and establish that it does085

not suffer from a counterpart to the beam search086

curse. That is, better search does not hurt trans-087

lation quality. Their approximation is, however,088

computationally expensive, requiring a number of089

assessments of the utility function that is quadratic090

in sample size. We propose algorithms that scale091

linearly, allowing us to explore large hypothesis092

spaces, and considerably improve upon existing093

approximations to MBR with less computation. Fi-094

nally, we find that mode-seeking strategies such nu-095

cleus sampling and beam search can still aid MBR096

decoding by constructing compact sets of high ex-097

pected utility hypotheses, relying on MBR to filter098

idiosyncratic translations that may be present.099

2 NMT and Decision Rules100

NMT employs neural networks (NNs) to predict101

a conditional probability distribution Y |θ, x over102

translation candidates of any given source sentence103

x. The sample space Y is the set of all sequences104

of known target-language symbols (e.g., sub-word105

units). NMT factorises the distribution as a chain106

of random draws from Categorical distributions107

Yj |θ, x, y<j ∼ Cat(f(x, y<j ; θ)) (1)108

parameterised in context. The prefix translation109

y<j starts empty and grows one symbol at a time110

until a special end-of-sequence symbol is drawn. 111

At each step j, f maps from varying inputs (x, y<j) 112

to a probability distribution over the vocabulary. 113

Common choices for f include recurrent networks 114

(Sutskever et al., 2014; Bahdanau et al., 2015) and 115

Transformers (Vaswani et al., 2017). The NN pa- 116

rameters θ are estimated to attain a local optimum 117

of the regularised log-likelihood function. 118

After training, and for a given input, choosing a 119

translation requires a decision rule to map from a 120

distribution over translation candidates to a single 121

‘preferred’ translation. The most common decision 122

rule in NMT is MAP decoding, which outputs the 123

mode of the conditional distribution. Despite the 124

widespread intuition that MAP decoding is an obvi- 125

ous choice, maximum likelihood estimation (MLE) 126

is oblivious to our desire to form predictions. 127

2.1 MAP Decoding 128

Maximum-a-posteriori (MAP) decoding outputs 129

the most probable translation under the model. As 130

this is intractable, beam search (Graves, 2012) is 131

used. Beam search is a pruned version of breadth- 132

first search which maintains an active set of k par- 133

tial translations. For large beam size k, transla- 134

tion quality degrades (Koehn and Knowles, 2017) 135

and the exact yMAP is often the empty sequence 136

(Stahlberg and Byrne, 2019). Therefore, in prac- 137

tice, the beam size is kept small and the objective 138

is length normalised to up-rank longer hypotheses 139

(Wu et al., 2016; Murray and Chiang, 2018). 140

2.2 MBR Decoding 141

Minimum Bayes risk (MBR) decoding stems from 142

the principle of maximisation of expected utility 143

(Berger, 1985). A utility function u(y, h) measures 144

the benefit in choosing h ∈ Y when y ∈ Y is 145

the ideal decision. When forming predictions, we 146

lack knowledge about ideal translations and must 147

decide under uncertainty. MBR lets the model fill 148

in ‘ideal decisions’ probabilistically as we search 149

through the space of candidates for the one which 150

is assigned highest utility in expectation: 151

yMBR = argmax
h∈Y

E[u(Y, h) | θ, x]︸ ︷︷ ︸
=:µu(h;x,θ)

. (2) 152

MBR has a long history in parsing (Goodman, 153

1996; Sima’an, 2003), speech recognition (Stol- 154

cke et al., 1997; Goel and Byrne, 2000), and MT 155

(Kumar and Byrne, 2002, 2004). 156

In MT, u can be a sentence-level evaluation met- 157

ric (e.g., METEOR (Denkowski and Lavie, 2011) 158
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or Sentence BLEU (Chen and Cherry, 2014)). Intu-159

itively, whereas the MAP prediction is the transla-160

tion to which the model assigns highest probability,161

no matter how idiosyncratic, the MBR prediction162

is the translation that is closest (under the chosen163

u) to all other probable translations. See Figure 1164

for an illustration of this concept.165

Like in MAP decoding, exhaustive enumeration166

of the hypotheses is impossible, we must resort to167

a finite subset H̄(x) of candidates. Unlike MAP168

decoding, the objective function µu(h;x, θ) can-169

not be evaluated exactly. Most approximations to170

MBR decoding, from Kumar and Byrne (2004) to171

recent instances (Stahlberg et al., 2017; Shu and172

Nakayama, 2017; Blain et al., 2017), use k-best173

lists from beam search for H̄(x) and to form a bi-174

ased estimate of expected utility. Eikema and Aziz175

(2020) use unbiased samples from the model for176

both approximations: i) they follow the generative177

story in Equation (1) to obtain N independent sam-178

ples y(n) , a procedure known as ancestral sampling179

(Robert and Casella, 2010); then, ii) for a hypothe-180

sis h, they compute an MC estimate of µu(h;x, θ):181

182

µ̂u(h;x,N)
MC
:=

1

N

N∑
n=1

u(y(n), h) , (3)183

which is unbiased for any sample size N . Eikema184

and Aziz (2020) use the same N samples as candi-185

dates and approximate Equation (2) by186

yN-by-N := argmax
h∈{y(1),...,y(N)}

µ̂u(h;x,N) . (4)187

We note that the candidates do not need to be ob-188

tained using ancestral sampling. We investigate189

alternative strategies in Section 5.4. It is impor-190

tant, however, to use ancestral samples to obtain an191

unbiased estimate of expected utility as we show192

in Section 5.1. We call this class of MBR algo-193

rithms using unbiased MC estimation instances of194

sampling-based MBR decoding.195

3 Coarse-to-Fine MBR Decoding196

A big disadvantage of MBRN-by-N is that it requires197

N2 assessments of the utility function. If U is an198

upperbound on the time necessary to assess the199

utility function once, then MBRN-by-N runs in time200

O(N2×U). For a complex utility function, this can201

grow expensive even for a modest hypothesis space.202

As NMT distributions have been shown to be high203

entropy (Ott et al., 2018; Eikema and Aziz, 2020),204

the quadratic cost prevents us from sufficiently ex- 205

ploring the space of translations. Therefore, we 206

investigate and propose more flexible algorithms. 207

An important property of sampling-based MBR 208

decoding is that MC estimation of expected utility, 209

Equation (3), and approximation of the hypothesis 210

space in Equation (4) really are two independent 211

approximations. Tying the two is no more than a de- 212

sign choice that must be reconsidered. We start by 213

obtaining N translation candidates from the model, 214

which will form the hypothesis space H̄(x). Then, 215

we use any fixed number S < N ancestral samples 216

for approximating expected utility in Equation (3). 217

We call this version MBRN-by-S, which takes time 218

O(N × S × U). Compared to MBRN-by-N, this 219

variant is able to scale to much larger hypothesis 220

spaces H̄(x). In practice, however, robust MC esti- 221

mation for the utility of interest may still require S 222

that is too large for the N we are interested in. 223

An idea that we explore in this work is to make 224

use of a proxy utility that correlates with the target 225

utility but is cheaper to compute. Even when those 226

do not correlate perfectly, we can make use of the 227

proxy utility to filter the hypothesis space to a man- 228

ageable size T on which we can perform robust 229

MC estimation of expected utility. We coin this ap- 230

proach coarse-to-fine MBR decoding (or MBRC2F), 231

which filters the hypothesis space to a manageable 232

size in the coarse step, and performs robust MC 233

estimation of expected utility in the fine step: 234

yC2F := argmax
h∈H̄T (x)

µ̂utarget(h;x, L) (5a) 235

H̄T (x) := top-T
h∈H̄(x)

µ̂uproxy(h;x, S) . (5b) 236

Upper-bounding the complexity of the proxy util- 237

ity by Uproxy, the target utility by Utarget, using S 238

samples for MC estimation in the coarse step (5b) 239

and L in the fine step (5a), the complexity of this 240

algorithm is O(N ×S×Uproxy +T ×L×Utarget). 241

MBRC2F decouples robust MC estimation (large L) 242

from exploration (large N ) and the cost of explo- 243

ration from the cost of the target utility. 244

As illustrated in Figure 2, we can find proxy util- 245

ities that correlate reasonably well with our target 246

utility and are able to give us a rough—but useful— 247

ordering of the hypothesis space. Rather than using 248

a proxy utility, we could use the target utility itself 249

in the coarse-step provided we pick a small S. This, 250

however, most likely leads to too high variability 251

in the ranking, as shown in Figure 2 (left). 252
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Figure 2: Motivation for coarse-to-fine MBR. We sort 300 candidates sampled from the model along the x-axis
from best to worst according to a robust MC estimate (using 1,000 samples) of expected BEER under the model.
Left: feasible MC estimates (5 samples) of each candidate’s expected BEER. Right: robust and inexpensive MC
estimates (100 samples) of expected utility w.r.t. a simpler metric (skip-bigram F1). As estimates are stochastic, we
perform 100 repetitions and plot mean ± two deviations. We can see that the robust estimates (right) correlate fairly
well with the expensive ranking we intend to approximate (x-axis), despite of the simpler utility. As we can afford
more evaluations of the proxy utility, we obtain estimates of reduced variance, which leads to safer pruning.

4 Data, Systems and Utilities253

We perform experiments on three language pairs254

with varying amount of resources for training: En-255

glish into and from German, Romanian and Nepali.256

For German-English (de-en) we use all available257

WMT’18 (Bojar et al., 2018) news data except258

for Paracrawl, resulting in 5.9 million sentence259

pairs. We train a Transformer base model (Vaswani260

et al., 2017) until convergence and average the last261

10 epoch checkpoints to obtain our final model.262

We test our models on newstest2018. For263

Romanian-English (ro-en) we use all available264

WMT’16 (Bojar et al., 2016a) news data amount-265

ing to 565k sentence pairs. We train a Transformer266

base model until convergence and pick the best267

epoch checkpoint according to the validation loss.268

We test our models on newstest2016. Finally,269

for Nepali-English (ne-en) we use the data setup by270

Guzmán et al. (2019). We apply the pre-processing271

step of removing duplicates as in Eikema and Aziz272

(2020). This results in 235k sentence pairs. We273

test our models on the FLORES test set, which is274

of a widely different domain than the training data.275

We mimick the training setup and models used in276

Guzmán et al. (2019). In all models we disable277

label smoothing, as this has been found to nega-278

tively impact model fit, which would compromise279

the performance of MBR (Eikema and Aziz, 2020).280

For computational efficiency, we opt for non-281

neural evaluation metrics for use as utility function282

in MBR. BEER (Stanojević and Sima’an, 2014) is283

a non-neural trained metric that has shown good284

correlation with human judgements in previous285

Figure 3: Estimates of expected utility for various hy-
potheses. We plot practical estimates of expected utility
(x-axis) using either ancestral, nucleus or ‘beam’ sam-
ples against an accurate MC estimate using 1,000 ances-
tral samples. The gray line depicts a perfect estimator.

WMT metrics shared tasks (Macháček and Bojar, 286

2014; Stanojević et al., 2015; Bojar et al., 2016b). 287

In experiments shown in Table 2 in Appendix B 288

we found that using BEER as utility function per- 289

formed well at pushing translation performance 290

higher across a range of automatic evaluation met- 291

rics. We therefore use BEER as the utility of 292

choice in our experiments and as a consequence 293

will consistently report corpus-level BEER scores 294

of MBR translations as well. We also report Sacre- 295

BLEU (Papineni et al., 2002; Post, 2018a) scores 296

where relevant to be able to detect overfitting to the 297

utility and for comparison with other works. 298

5 Experiments 299

5.1 Estimation of Expected Utility 300

We start by motivating the importance of unbiased 301

estimates of expected utility using ancestral sam- 302
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Figure 4: MBRN-by-N for various sizes of N using BEER
as target utility. We report both BEER and BLEU scores.

ples (i.e. sampling-based MBR). In Figure 3 we303

verify the biasedness of alternatives to ancestral304

sampling for this computation: nucleus sampling305

(Holtzman et al., 2020) and ‘beam sampling’ (i.e.,306

using k-best outputs from beam search for esti-307

mating expected utility; Blain et al. (2017)). We308

can see, rather clearly, that estimates using nucleus309

samples or beam search bias away from expected310

utility under the model, while ancestral sampling311

is unbiased by design and hence should be pre-312

ferred when approximating the objective function313

in search. Therefore, in all experiments that follow,314

we shall use ancestral samples for making unbiased315

estimates of expected utility, even when different316

methods are used to construct the hypothesis space.317

5.2 N-by-N MBR318

Now, we look into scaling MBRN-by-N. Eikema and319

Aziz (2020) only explored 30 by 30 approximations320

to the MBR objective. Our aim is to investigate321

whether MBR decoding is indeed able to scale to322

better translation performance with more computa-323

tion. In Figure 4, we explore N from 30 to 405.2324

As MBR optimises a specific utility (we use BEER),325

we report translation quality along both BEER and326

BLEU to detect overfitting to the metric.327

We find that MBR steadily improves across lan-328

guage pairs as N grows larger. BLEU scores im-329

prove at a similar rate to that of BEER, showing330

no signs of overfitting to the utility. This is strong331

empirical evidence that sampling-based MBR has332

no equivalent to the beam search curse. We see this333

as an important property of a decoding objective.334

2A batch size of 15 is convenient on our hardware, which
is why we work with multiples of 15 in most experiments.

Figure 5: MBRN-by-S: we estimate the expected utility
of N hypotheses using S samples. We show average
performance over 3 runs with 1 standard deviation. The
dashed line shows MBRN-by-N performance at N = 405.

5.3 N-by-S MBR 335

MBRN-by-N couples two approximations, namely, 336

tractable exploration and unbiased estimation of 337

expected utility are based on the same N ances- 338

tral samples. Our aim is to learn more about the 339

impact of these two approximations, for which we 340

look into MBRN-by-S. Moreover, with less than N2 341

assessments of utilities per decoding, we can also 342

investigate larger H̄(x). We explore N ranging 343

from 210 to 1005, while keeping the number of 344

samples used for approximating expected utility of 345

each hypothesis smaller, with S ranging from 10 to 346

200. We argue that S does not need to grow at the 347

same pace as N , as MC estimates should stabilize 348

after a certain point.3 See our results in Figure 5. 349

We find that growing N beyong 405 improves 350

translation quality further, even when the estimates 351

of expected utility are less accurate. Increasing 352

S also steadily improves translation quality, with 353

diminishing returns in the magnitude of improve- 354

ment. On the other hand, smaller values of S lead 355

to notable deterioration of translation quality and 356

we note higher variance in results. For all lan- 357

guage pairs it is possible to improve upon the best 358

MBRN-by-N results by considering a larger hypoth- 359

esis spaces and smaller S. This experiment shows 360

that the two approximations can be controlled in- 361

dependently and better results are within reach if 362

we explore more. On top of that, the best setting of 363

MBRN-by-N takes 164,025 utility assessments per 364

3The standard error of the mean scales with the inverse
square root of the sample size.
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decoding, MBRN-by-S with S = 100 brings this365

number down to 100,500 for the largest N consid-366

ered, while improving BEER scores on all language367

pairs. We note that again increasing either N or368

S generally improves translation quality in our ex-369

periments. This further strengthens our previous370

finding that sampling-based MBR does not seem371

to have an equivalent of the beam search curse.372

5.4 Choice of Hypothesis Space373

While our focus thus far has been on reducing the374

number of target utility calls, allowing the explo-375

ration of larger H̄(x), one should also take sam-376

pling time in consideration. For example, we found377

that in MBRN-by-N with N = 100, sampling time378

made up about 60% of the total translation time379

for our setup. Therefore, it is computationally at-380

tractive to construct compact H̄(x) with promising381

translation candidates. Ideally, for better search in382

MBR, we enumerate a set of high expected util-383

ity hypotheses. Up until now we have constructed384

H̄(x) using ancestral samples, following Eikema385

and Aziz (2020). Strategies like nucleus sampling386

and beam search are known empirically to produce387

higher quality translations than ancestral sampling388

and might therefore also enumerate outcomes that389

have high expected utility. We explore ancestral390

sampling, nucleus sampling and beam search. In391

a hyperparameter search we found p = 0.7 for392

nucleus sampling to work best. For beam search393

we use a length penalty of 1.2 (ne) or 0.6 (de, ro).394

We compare each strategy by the expected BEER395

values of the translations generated, using accurate396

estimates of expected BEER (using 1,000 samples397

for MC estimation). We show results in Figure 6.398

We find ancestral sampling to produce hypothe-399

ses across the entire range of expected BEER400

scores. Nucleus sampling and beam search gen-401

erally produce translations at the higher end of402

expected BEER. Therefore, these seem more suit-403

able for generating effective H̄(x) at smaller N .404

Nucleus sampling seems to lead to the largest pro-405

portion of high expected utility translations across406

language pairs. Beam search has a noticeably high407

proportion of poor translations for English-Nepali,408

a low-resource language pair where mode-seeking409

search has been observed to be less reliable. Re-410

sults in the opposite direction were similar. We411

explore both nucleus sampling and beam search for412

constructing H̄(x) in the next experiment, as well413

as combining all three strategies together.414

5.5 Coarse-to-Fine MBR 415

We now turn to the coarse-to-fine procedure 416

(MBRC2F) described in Section 3. 417

5.5.1 Choice of Proxy Utility 418

We compare various proxy utilities by their effec- 419

tiveness as filtering strategies in obtaining high 420

expected utility sets, where we again use accurate 421

estimates of expected utility using 1,000 samples 422

for MC estimation. We filter the top-20 hypothe- 423

ses from an initial 100 hypotheses obtained using 424

ancestral sampling. This ensures a high variety 425

of expected utilities in the initial set. We also 426

compare each proxy utility on their runtime per- 427

formance. We compare both cheap estimates of 428

expected BEER using either 1 or 5 samples for MC 429

estimation (BEER-1 and BEER-5 respectively) as 430

well as cheap-to-compute proxy metrics: unigram 431

F1 using 50 samples for MC estimation (UF-50) 432

and skip-bigram F1 4 using 50 samples for MC 433

estimation (SBF-50). We use expected BEER us- 434

ing 100 samples for MC estimation (BEER-100) 435

as a reference point. See our results on the English- 436

German system in Figure 2. 437

We surprisingly find nearly all strategies to lead 438

to equally good filtered sets as BEER-100 in terms 439

of expected BEER of the filtered set. The only 440

strategy that performs slightly worse than the oth- 441

ers is BEER-1, which is likely too noisy to be a 442

reliable filtering strategy. We observed very similar 443

results for the other five language pairs. In terms of 444

runtime performance we find BEER-1 to be fastest 445

followed by UF-50 at a 22.2x performance increase 446

over BEER-100.5 In follow-up experiments, we 447

will use UF-50 as a proxy utility, providing high 448

quality filtered sets at good runtime performance. 449

5.5.2 Coarse-to-Fine MBR Results 450

In Table 1 we compare MBRC2F with MBRN-by-S 451

using N = 405 nucleus samples (p = 0.7) to 452

construct the hypothesis space. We filter the top- 453

T = 50 hypotheses using UF-50 as proxy utility 454

and use L = 100 samples for MC estimation of 455

the top-set, following our findings in Sections 5.5.1 456

and 5.3 respectively. For MBRN-by-S we set S = 13 457

to roughly match the amount of computation avail- 458

able to MBRC2F, based on a 22.2x speed-up of 459

UF-50 relative to BEER-100 observed in Figure 7. 460

4Skip-bigrams are bigrams that do not enforce adjacency.
5Our Python implementations of unigram and skip-bigram

F1 are not optimized and we deem it likely that a greater
speed-up is possible with a more efficient implementation.
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Figure 6: Proportion plots of expected utility for 3 strategies for constructing H̄(x), using 100 translation candidates
per strategy. We estimate expected utility using 1,000 samples. Results are aggregated over 100 source sentences.

Figure 7: Comparison of proxy utilities on English to German: BEER using 1, 5 or 100 samples for MC estimation,
and unigram F1 (UF) and skip-bigram F1 (SBF) each using 50 samples for MC estimation. We use each proxy
utility to filter a top-20 from 100 ancestral samples. We show the resulting expected target utilties (BEER, an
accurate estimate) (left), as well as a runtime comparison (right). Results are aggregated over 100 source sequences.

We find that across language pairs MBRC2F consis-461

tently outperforms MBRN-by-S showing improve-462

ments between +0.4 and +1.1 BEER and +0.2 to463

+1.9 BLEU. MBRC2F thus is effective at obtaining464

higher translation quality than MBRN-by-S at the465

same amount of computation available for MBR.466

We also explore the effects on translation quality467

of changing and combining strategies for construct-468

ing H̄(x). We find that using a beam of N = 405469

(using the same length penalty as in Section 5.4) to470

construct H̄(x) produces better results than nucleus471

sampling for most language pairs. Notably, re-472

ordering a large beam considerably improves over473

standard beam search decoding (using the usual474

beam size of 5 (ro, ne) or 4 (de)) for all language475

pairs in terms of BEER and for most language pairs476

in terms of BLEU scores. Combining all strategies477

for creating hypothesis spaces: ancestral sampling,478

nucleus sampling and beam search leads to the best479

results overall. For all language pairs both BEER480

and BLEU scores either improve or remain simi-481

lar. This is more empricial evidence that expected482

utility is a robust and reliable criterion for picking483

translations: enlarging the hypothesis space or im-484

proving MC estimation under reasonable choices485

of hyperparameters seemingly never unreasonably486

hurts translation quality, but generally improves it.487

6 Related Work488

In recent NMT literature MBR has started being ex-489

plored either in combination with MAP decoding or490

replacing it altogether. Stahlberg et al. (2017) adapt 491

lattice minimum Bayes risk decoding (Tromble 492

et al., 2008) on SMT translation lattices to be 493

incorporated in left-to-right beam search decod- 494

ing in NMT, thereby proposing a hybrid decoding 495

scheme. They adapt lattice MBR to work on par- 496

tial hypotheses and perform beam search to find 497

translations that are both high probability under 498

the NMT model and have high expected utility un- 499

der the SMT model. Shu and Nakayama (2017) 500

also combine beam search with MBR decoding to 501

find low risk hypotheses, after which they re-rank 502

all hypotheses with MBR again. They report hav- 503

ing to restrict the number of hypotheses as not to 504

degrade the effectiveness of MBR re-ranking, a 505

finding that is likely due to biased estimation of 506

expected utility, as in our work we find that increas- 507

ing the number of hypotheses always improves 508

translation quality. Blain et al. (2017) explore the 509

quality of k-best lists obtained from beam search 510

in NMT models and find that while MAP is not a 511

good criterion for ranking the resulting hypotheses, 512

re-ranking using MBR with BEER as a utility leads 513

to improvements on top of standard beam search 514

decoding (with a small beam size), in terms of both 515

BLEU scores as well as human evaluation scores. 516

Borgeaud and Emerson (2020) approach decoding 517

from a voting theory perspective and derive a de- 518

coding strategy similar to MBR. They explore a 519

range of utility functions, achieving similar BLEU 520

scores to beam search, but showing improvements 521

in terms of length, diversity and human judgement. 522
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All of the above works make use of beam search523

to provide both the hypothesis space as well as to524

make a biased estimate of expected utility. Eikema525

and Aziz (2020) are the first work in NMT that526

propose to use sampling from the model to both527

make unbiased estimates of expected utility, the528

importance of which we confirm in experiments,529

and to form the hypothesis space. The authors only530

explore MBRN-by-N, however, and never explore531

hypothesis spaces larger than N = 30 samples.532

We show that it is beneficial to scale MBR to much533

larger hypothesis spaces and that it can be benefi-534

cial to construct them using mode-seeking strate-535

gies. Müller and Sennrich (2021) study the proper-536

ties of the sampling-based algorithm proposed in537

Eikema and Aziz (2020) and explore hypothesis538

spaces up to a size of N = 100 as well as multiple539

utility functions. They find that MBR decoding540

outputs exhibit a similar but smaller bias towards541

short translations and frequent tokens compared to542

beam search, but do observe that this is dependent543

on the choice of utility function. They further find544

that MBR decoding mitigates spurious copying and545

hallucinations under domain shift. Similar to our546

work, they find that MBR decoding scales well547

with larger hypothesis spaces and better estimation548

of expected utility. Freitag et al. (2021) explore the549

use of large hypothesis spaces and a range of util-550

ities, including neural utilities, on the MBRN-by-N551

approximation. They find that using BLEURT as552

utility leads to significantly better translations in a553

human evaluation, while producing considerably554

lower probability translations.555

We provide a more extensive overview of his-556

torical approximations to the MBR objective as557

well as an overview of alternatives for tackling the558

inadequacy of the mode in Appendix A.559

7 Conclusion560

We have shown MBR to be a robust decision rule561

for NMT that can find high quality translations.562

In particular, we have found that MBR, under rea-563

sonable hyperparameter choices, generally leads564

to improved translation quality with more compu-565

tation (i.e., searching a larger search space and/or566

using more samples for more accurate MC esti-567

mation). Big challenges in decoding with MBR568

are constructing the hypothesis space and keeping569

computational cost of estimating expected utility570

tractable. We have proposed effective strategies for571

both, by exploring more efficient ways of forming572

en-de en-ro en-ne

MBR H̄ BEER BLEU BEER BLEU BEER BLEU

NxS N 64.3 38.0 54.9 21.4 38.9 3.6
C2F N +1.1 +1.9 +0.4 +0.2 +0.4 +0.2

B +0.9 +1.5 +0.5 +0.5 +0.5 +0.5
all +1.3 +2.4 +0.5 +0.4 +0.6 +0.5

BS - +0.9 +2.8 -0.1 +0.1 -0.8 +0.2

de-en ro-en ne-en

MBR H̄ BEER BLEU BEER BLEU BEER BLEU

NxS N 64.8 38.7 58.5 28.0 43.1 6.3
C2F N +0.9 +1.1 +0.5 +0.7 +0.5 +0.2

B +1.0 +1.5 +0.7 +1.2 +0.5 +0.9
all +1.0 +1.4 +0.6 +1.1 +0.8 +0.8

BS - +0.5 +1.2 -0.0 +0.8 -1.0 +0.4

Table 1: Comparing MBRN-by-S, MBRC2F and beam
search (BS) in terms of BEER and BLEU performance.
We use BEER as utility, UF-50 as proxy utility, set top-
T = 50 and use L = 100 samples for MC estimation.
We use various strategies for constructing H̄(x): 405
nucleus samples (N), the 405-best list from beam search
(B) and combining both of these along with 1,005 an-
cestral samples (all). We use S = 13 in MBRN-by-S to
mimic the computational cost of MBRC2F at N = 405.
The last row shows standard beam search performance
using a typical beam size of 4 or 5 depending on the
language. MBR results are averaged over 3 runs.

the hypothesis space and proposing an approxima- 573

tion to MBR that is linear in the size of this hypoth- 574

esis space. Our coarse-to-fine MBR procedure is 575

able to considerably reduce the number of calls to 576

the utility function without compromising transla- 577

tion quality. We have shown that sampling-based 578

MBR in general can outperform beam search on all 579

the language pairs we explored and can continue to 580

improve with better and more accurate search. We 581

believe sampling-based MBR to be a promising, al- 582

beit still more expensive, alternative to beam search 583

decoding. Unlike beam search, where it is not ob- 584

vious how to further improve translation quality, 585

sampling-based MBR is likely to benefit from im- 586

provements of different aspects of the algorithm. 587

We believe fruitful avenues of research to be among 588

i) clever algorithms for constructing hypothesis 589

spaces, ii) more robust estimates of expected util- 590

ity using fewer samples, iii) use of modern neural 591

utilities and iv) improving the modelling capacity 592

of NMT systems. We hope that this work moti- 593

vates researchers and practitioners to make more 594

conscious considerations of the choice of decision 595

rule and that it paves the way for use of tractable 596

sampling-based MBR decoding in NMT. 597
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A Additional Related Work960

A.1 Approximations to MBR961

Most instances of MBR decoding in machine trans-962

lation, from the original work of Kumar and Byrne963

(2004) to recent instances in NMT (Stahlberg et al.,964

2017; Shu and Nakayama, 2017; Blain et al., 2017),965

approximate the objective function by computing966

expectations not w.r.t. the model distribution, but967

rather, w.r.t. a proxy distribution. This proxy is968

obtained by enumeration via beam-search of a sub-969

set of the sample space (e.g., a k-best list), and970

renormalisation of the probabilities of the outcomes971

in this subset. This has the undesirable effect of972

exaggerating differences in probability due to un-973

derestimation of the normalisation constant, and,974

like MAP decoding, it over-represents pathologies975

around the mode. Similarly, most prior work uses976

mode-seeking search to explore a tractable subset977

of the hypothesis space. Mode-seeking approxi-978

mations bias the decoder towards the mode mak-979

ing MBR decoding less robust to idiosyncratic out-980

comes in the hypothesis space (Eikema and Aziz,981

2020).This is in stark contrast with our work, where982

we sample from the model to construct unbiased es- 983

timates of expected utility, as well as to enumerate 984

a tractable hypothesis space. 985

There are cases in statistical machine translation 986

(SMT) where the computation of expected utility 987

can be factorised along a tractable directed acyclic 988

graph (DAG) via dynamic programming (Tromble 989

et al., 2008; Zhang and Gildea, 2008; DeNero et al., 990

2009; Kumar et al., 2009). In such cases, the DAG 991

contains a much larger subset of the sample space 992

than any practical k-best list, still some pruning is 993

necessary to construct a compact DAG containing 994

only the most probable outcomes. These strate- 995

gies are only available for models and utility func- 996

tions that make strong Markov assumptions. For 997

example, Tromble et al. (2008) and DeNero et al. 998

(2009) develop linearisation strategies for BLEU, 999

and Zhang and Gildea (2008) maximise expected 1000

trigram counts as a proxy to BLEU proper. The 1001

idea of utilising a proxy utility is something we 1002

also explore in this paper, though only as an inter- 1003

mediate step to decoding with the target utility. 1004

In some (rarer) cases, unbiased (or asymptot- 1005

ically unbiased) samples have been used to ap- 1006

proximate the MBR objective and/or to reduce the 1007

search space. For example, Stanojević and Sima’an 1008

(2015) use ancestral sampling in MBR decoding 1009

for permutation-trees-based reordering models, and 1010

Arun et al. (2009) use Gibbs sampling for MBR de- 1011

coding in phrase-based MT. Unbiased samples for 1012

estimation of expected utility or exploration of a 1013

tractable hypothesis space are simply not common 1014

in machine translation. In SMT, the reason is a tech- 1015

nical one, most SMT models are not based on a left- 1016

to-right factorisation of the joint distribution, thus 1017

unbiased sampling requires MCMC (DeNero et al., 1018

2008; Blunsom et al., 2009) or expensive adaptive 1019

rejection sampling (Aziz et al., 2013). This limi- 1020

tation does not extend to NMT models, but NMT 1021

most likely simply inherited from SMT the prac- 1022

tice of using beam-search-based approximations, 1023

at least until the work of Eikema and Aziz (2020). 1024

A.2 Tackling the Inadequacy of the Mode 1025

Eikema and Aziz (2020) link the inadequacy of the 1026

mode in NMT to the entropy of the conditional dis- 1027

tribution, or, more precisely, to the fact that NMT 1028

models tend to spread probability mass over large 1029

subsets of the sample space (Ott et al., 2018). It 1030

is plausible that strategies to concentrate proba- 1031

bility mass (e.g., reducing entropy or pruning the 1032
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support of the model) will do so by making in-1033

adequate translations less probable. For example,1034

Forster et al. (2021) find that the inadequacy of the1035

mode problem does not seem to affect sequence-to-1036

sequence models of morphological inflection, an1037

essentially deterministic task, whose combinato-1038

rial space is built upon a smaller vocabulary (i.e.,1039

characters instead of sub-word units), and whose1040

observations are typically very short (i.e., words1041

rather than sentences). Peters and Martins (2021)1042

train sparse sequence-to-sequence models (Peters1043

et al., 2019) which assign zero probability to many1044

outcomes dramatically reducing the support of the1045

conditional distribution over complete sequences.1046

They show that sparsity leads to inadequate candi-1047

dates such as the empty string being pruned out of1048

the support. They also find that label smoothing1049

increases the rate at which the empty string is more1050

probable than the beam-search output.1051

Meister et al. (2020) interprets the algorithmic1052

approximations of beam search as an inductive1053

bias towards outputs with uniform information den-1054

sity (Jaeger and Levy, 2007). They develop vari-1055

ants of beam search where this preference is a tun-1056

able hyperparameter and show that deviating from1057

the mode with this type of bias can lead to im-1058

proved translation quality. Another way to deviate1059

from the mode is to augment the decoding objective1060

with an auxiliary model. Li and Jurafsky (2016)1061

re-rank a k-best list using a combination of two1062

model probabilities, namely, pY |X(h|x, θfwd) and1063

pX|Y (x|h, θbwd). They think of this as maximis-1064

ing the mutual information (MI) between source1065

and translation. The motivation is that the target-1066

to-source component will push against inadequate1067

candidates, as those are unlikely to be mapped1068

back to the source with high probability. Bhat-1069

tacharyya et al. (2021) find that 100 samples from1070

an NMT model contain better candidates (mea-1071

sured in terms of BLEU) than the output of beam1072

search (an observation Eikema and Aziz (2020)1073

also make based on 30 samples and METEOR,1074

instead). They propose to rerank these samples us-1075

ing an energy-based model trained to order candi-1076

dates as sentence-BLEU would. Like these works,1077

sampling-based MBR decoding, can be seen as a1078

form of explore and rank approach, however, the1079

ranking function in MBR is derived from the NMT1080

model itself, whereas both MI- and EBM-based1081

re-ranking involve an auxiliary trained model. For1082

the EBM, in particular, in the limit of a too large1083

hypothesis space, the beliefs of the NMT model 1084

are completely overwritten by the EBM. MBR, in- 1085

stead, does not overwrite the model’s beliefs, it 1086

re-expresses those beliefs in terms of utility. 1087

Leblond et al. (2021) recast NMT as a reinforce- 1088

ment learning problem and learn both a policy (i.e., 1089

a mechanism to explore the space of translations 1090

one word at a time from left-to-right) and a value 1091

function (i.e., an estimate at the expected reward 1092

of finishing a given prefix translation). For reward 1093

they investigate what they call privileged metrics, 1094

which require access to references (e.g., sentence- 1095

level BLEU), and unprivileged metrics, which do 1096

not use references but access the source (e.g., a 1097

quality estimation score). Compared to sampling- 1098

based MBR, their work tightly integrates search 1099

and value estimation, thus going beyond ranking a 1100

fixed set of candidates. The objective function of 1101

MBR can be thought of as an ‘unprivileged metric’ 1102

in their terminology, one that is based on the NMT 1103

model itself (and a choice of utility). But, the pol- 1104

icy in sampling-based MBR (i.e., the NMT model) 1105

is not trained to be aware of the evaluation metric. 1106

B Comparing Target Utilities 1107

We compare a number of utility functions for use in 1108

MBR decoding. In principle any function that mea- 1109

sures some notion of similarity across sequences 1110

and can be reliably assessed on the sentence-level 1111

is suitable as a utility function for MBR. As BLEU 1112

is the predominant automatic evaluation metric on 1113

which translation quality is assessed, we experi- 1114

ment with a smoothed version of BLEU (Papineni 1115

et al., 2002) that can work on the sentence-level: 1116

sentence-BLEU (Chen and Cherry, 2014) using the 1117

default parameters in Post (2018b). We further try 1118

METEOR (Denkowski and Lavie, 2011) as this 1119

was used in Eikema and Aziz (2020) and showed 1120

good results.6 BEER (Stanojević and Sima’an, 1121

2014) is a character-based metric that has shown 1122

to correlate well with human judgements in many 1123

WMT metrics tasks (Macháček and Bojar, 2014; 1124

Stanojević et al., 2015; Bojar et al., 2016b). Finally, 1125

we also explore ChrF++ (Popović, 2017), another 1126

character based metric that is an improved version 1127

of ChrF (Popović, 2015). 1128

We perform MBRN-by-S with N = 405 and 1129

S = 100 in order to perform the comparisons. We 1130

6We use a slightly different version of METEOR than in
Eikema and Aziz (2020). We use language-specific versions
rather than a language-agnostic version used in that work.
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Task Utility BEER BLEU METEOR ChrF++

en-de BEER 64.3 37.0 56.6 61.3
sentence-BLEU 63.3 37.5 55.9 60.2
METEOR 62.5 33.4 57.8 60.5
ChrF++ 63.2 34.9 56.9 61.4

de-en BEER 64.9 38.0 39.3 61.0
sentence-BLEU 64.3 38.3 38.9 60.3
METEOR 63.5 36.1 39.7 59.8
ChrF++ 64.4 37.2 39.5 61.5

en-ro BEER 54.8 21.0 33.9 47.8
sentence-BLEU 54.4 21.3 40.4 47.4
METEOR 54.5 20.9 40.9 47.7
ChrF++ 54.2 20.2 40.3 48.0

ro-en BEER 58.4 27.5 32.4 52.0
sentence-BLEU 57.8 27.8 32.2 51.4
METEOR 57.5 26.6 32.9 51.5
ChrF++ 58.0 27.1 32.7 52.6

en-ne BEER 38.4 3.4 11.0 26.1
sentence-BLEU 34.9 3.0 10.9 22.7
METEOR 37.3 3.4 13.2 25.3
ChrF++ 36.8 2.6 12.3 26.6

ne-en BEER 42.7 6.0 17.0 31.2
sentence-BLEU 39.9 5.7 15.1 28.4
METEOR 40.4 4.6 17.3 30.8
ChrF++ 40.6 4.8 17.0 32.0

Table 2: Comparing BEER, sentence-BLEU, METEOR
and ChrF++ as utility functions in MBRN-by-S using
N = 405 and S = 100.

measure the performance of each utility on BEER,1131

BLEU, METEOR and ChrF++. Our results are1132

shown in Table 2. As expected, using a certain1133

utility achieves the best performance under the lens1134

of that metric as well. Sometimes we find a small1135

deviation from this when BEER or METEOR out-1136

performs sentence-BLEU in terms of BLEU score.1137

This is likely due to sentence-BLEU only being an1138

approximation to BLEU itself. We find that overall1139

BEER seems to do best across metrics followed1140

by ChrF++. Herefore, in the main paper, we have1141

used BEER as the utility of choice. The finding1142

that BEER works well as a utility function in MBR1143

was also made before in the work of Blain et al.1144

(2017).1145
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