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Abstract001

Recent advancements in large language mod-002
els (LLMs) have revolutionized natural lan-003
guage processing through their remarkable ca-004
pabilities in understanding and executing di-005
verse tasks. While supervised fine-tuning,006
particularly in Retrieval-Augmented Genera-007
tion (RAG) scenarios, has proven effective for008
enhancing task-specific performance, it often009
leads to catastrophic forgetting, where models010
lose their previously acquired knowledge and011
general capabilities. Existing solutions either012
require access to general instruction data or013
face limitations in preserving the model’s origi-014
nal distribution. To overcome these limitations,015
we propose SelfAug, a novel self-distribution016
alignment method. By aligning distributions017
through the logits of input sequences, SelfAug018
preserves the model’s semantic distribution,019
thereby simultaneously mitigating catastrophic020
forgetting and improving downstream task per-021
formance. Through extensive experiments, we022
show that SelfAug achieves a better balance023
between downstream task learning and the re-024
tention of general capabilities compared to ex-025
isting methods. Our comprehensive empirical026
analysis reveals a direct correlation between027
distribution shifts and the severity of catas-028
trophic forgetting in RAG scenarios, particu-029
larly highlighting how the absence of RAG ca-030
pabilities in general instruction tuning leads to031
significant distribution shifts during fine-tuning.032
Our findings not only advance the understand-033
ing of catastrophic forgetting in RAG contexts034
but also provide a practical solution applicable035
across diverse fine-tuning scenarios. Our code036
is publicly available at https://anonymous.037
4open.science/r/SelfAug-5CB7.038

1 Introduction039

Large language models (LLMs) like GPT (Achiam040

et al., 2023), PaLM (Chowdhery et al., 2023), GLM041

(GLM et al., 2024), and LLaMA (Touvron et al.,042

2023) have revolutionized NLP by learning com- 043

plex linguistic patterns from extensive pre-training 044

data, demonstrating excellence in contextual under- 045

standing and few-shot learning capabilities. 046

Supervised fine-tuning (Ouyang et al., 2022; 047

Chung et al., 2024) with general instruction 048

datasets (Taori et al., 2023; Wang et al., 2022) im- 049

proves models’ instruction following abilities but 050

often inadequately addresses specialized domain 051

tasks. Task-specific fine-tuning provides targeted 052

solutions for specialized applications (Roziere 053

et al., 2023; Yang et al., 2024a; Hui et al., 2024; 054

Luo et al., 2023a; Jin et al., 2024). Partic- 055

ularly, Retrieval-Augmented Generation (RAG) 056

(Guu et al., 2020; Lewis et al., 2020; Gao et al., 057

2023; Cai et al., 2022; Chen et al., 2024b) en- 058

hances LLMs by incorporating external knowledge 059

through retrieval, reducing hallucinations. Recent 060

work (Yang et al., 2024c; Liu et al., 2024b; Zhang 061

et al., 2024b) improves how models utilize relevant 062

information and handle insufficient information. 063

However, fine-tuning for downstream tasks in- 064

troduces catastrophic forgetting (French, 1999; 065

Kemker et al., 2018; Shi et al., 2024; Wu et al., 066

2024; Luo et al., 2023b), where models lose 067

previously acquired knowledge and instruction- 068

following abilities when adapting to new tasks. 069

This causes performance deterioration across di- 070

verse applications. For example, a model fine- 071

tuned on document extraction may generate struc- 072

turally incorrect code, despite improved document 073

parsing abilities. Recent research attributes this 074

problem to distribution shift when models adapt 075

to specialized task distributions during fine-tuning 076

(Saha et al., 2021; Yang et al., 2024d). 077

To address capability degradation, recent stud- 078

ies (Chen et al., 2024a; Bai et al., 2024; Jin and 079

Ren; Huang et al., 2024) suggest incorporating gen- 080

eral instruction data during downstream fine-tuning 081

to maintain LLM’s general capabilities. However, 082

these strategies are limited by the scarcity of pub- 083
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licly available instruction datasets. Researchers084

have therefore explored alternative approaches that085

retain the model’s original distribution without ac-086

cessing general data. Instruction synthesis methods087

like MAGPIE (Xu et al., 2024b) use the model088

to generate instruction-response pairs for data re-089

play, though they depend heavily on generation090

quality. Parameter constraint methods such as Or-091

thogonal Loss (Wang et al., 2023) enforce orthogo-092

nality between parameters but compromise down-093

stream task performance. Knowledge reconstruc-094

tion approaches like SDFT (Yang et al., 2024d)095

approximate the original distribution by regener-096

ating responses from fine-tuning data but struggle097

with format-specific tasks, particularly when struc-098

tured outputs like JSON are required. While each099

approach offers certain benefits, they all have limi-100

tations. These limitations underscore the need for101

more efficient solutions that better balance capabil-102

ity preservation and task adaptation.103

To address aforementioned limitations, we pro-104

pose SelfAug, a novel method that improves down-105

stream performance while preserving the original106

capabilities of the model. SelfAug is general and107

adaptable for different fine-tuning scenarios. The108

core idea is to use the sequential processing of109

large language models, which produce probability110

distributions for both input and output sequences.111

These logits contain rich information about the112

model’s learned knowledge and decision bound-113

aries. By aligning the input sequence logits during114

fine-tuning, SelfAug maintains the model’s origi-115

nal knowledge without needing the initial training116

data. The logits capture not only the final predic-117

tions but also the relationships among different118

outputs, reflecting the model’s reasoning and uncer-119

tainty. This helps prevent catastrophic forgetting120

and keeps the fine-tuned model’s behavior consis-121

tent with the original while learning new tasks (Hsu122

et al., 2022; Sun et al., 2024).123

Our analysis shows catastrophic forgetting is es-124

pecially severe in RAG scenarios, and we find that125

longer reference documents are linked to greater126

forgetting. Although modern LLMs perform well127

on tasks like mathematical reasoning and coding,128

they are not specifically trained for document use129

in RAG. Through systematic experiments, we find130

two main results. First, there is a strong link be-131

tween distribution shift and catastrophic forgetting:132

larger shifts lead to greater loss of the model’s orig-133

inal abilities. Second, using longer contexts dur-134

ing RAG training causes larger distribution shifts,135

which may increase changes in the model’s be- 136

havior. Our SelfAug method reduces catastrophic 137

forgetting and achieves downstream performance 138

similar to LoRA, showing that aligning logits dis- 139

tributions is effective (Hsu et al., 2022; Sun et al., 140

2024). The main contributions of this work are as 141

follows: 142

• We introduce SelfAug, a novel self-alignment 143

method based on logits. SelfAug aligns input 144

sequence logits to overcome limitations of cur- 145

rent methods related to data access and parameter 146

constraints. It does not need extra data or valida- 147

tion and avoids performance loss in downstream 148

tasks caused by strict parameter updates. 149

• We provide an empirical analysis of catastrophic 150

forgetting in RAG scenarios, showing that miss- 151

ing RAG ability in general instruction tuning 152

causes significant distribution shift. We also find 153

a direct link between the level of distribution shift 154

and the severity of catastrophic forgetting. 155

• Our experiments on various benchmarks demon- 156

strate that SelfAug achieves better downstream 157

performance than existing methods while pre- 158

serving the original model distribution and reduc- 159

ing catastrophic forgetting. 160

2 Related Works 161

2.1 Fine-Tuning 162

Fine-tuning leverages the knowledge of pre-trained 163

large models to improve their performance on spe- 164

cific downstream tasks. This approach has proven 165

effective in areas such as mathematics (Luo et al., 166

2023a; Yang et al., 2024a; Tang et al., 2024), code 167

(Roziere et al., 2023; Hui et al., 2024), finance 168

(Li et al., 2023; Wu et al., 2023a), and healthcare 169

(Yu et al., 2024). Standard fine-tuning works by 170

aligning the model’s output distribution with the 171

downstream data through log-likelihood maximiza- 172

tion. Although open-source LLMs are available for 173

fine-tuning, training all parameters remains com- 174

putationally expensive. Parameter-Efficient Fine- 175

Tuning (PEFT) (Mangrulkar et al., 2022; Han et al., 176

2024) addresses this by optimizing fewer param- 177

eters. Low-Rank Adaptation (LoRA) (Hu et al., 178

2021) is a popular PEFT method that allows fine- 179

tuning with significantly fewer trainable parame- 180

ters. Recent research (Wang et al., 2023; Liu et al., 181

2024a; Qiao and Mahdavi; Kowsher et al., 2024) 182
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Figure 1: An illustration of full fine-tuning, LoRA, and methods for catastrophic forgetting mitigation. (a) SFT:
Vanilla supervised fine-tuning with full parameter optimization. (b) LoRA: Parameter-efficient adaptation through
low-rank decomposition. (c) MAGPIE: Self-synthesizing instruction-response pairs with pre-query templates for
data replay. (d) SDFT: Fine-tuning with model-rewritten responses as optimized training dataset. (e) Orthogonal
Loss: Imposing orthogonal constraints between LoRA modules and pre-trained parameters. (f) SelfAug: Self-
distillation through input logits distribution alignment to preserve model’s original capabilities.

has focused on improving LoRA to increase perfor-183

mance with minimal training costs and to support184

multiple downstream tasks.185

2.2 Catastrophic Forgetting186

Fine-tuning models causes catastrophic forgetting187

as the model shifts toward downstream task distri-188

butions and away from pre-training distributions.189

Traditional methods try to balance performance190

across different tasks through various approaches.191

Parameter-constraining methods use regularization192

(Ni et al., 2024; Xinrui et al.) or selective parameter193

updates (Lin et al., 2024; Alexandrov et al., 2024;194

Marczak et al., 2025; Jin and Ren, 2024a; Aggarwal195

et al., 2024; Franke et al., 2024; Panda et al., 2024;196

Zhang et al., 2024a; Yang et al., 2024b), but these197

limit downstream task performance. Mixture of198

Experts inspired approaches (Li et al., 2024a; Zhao199

et al., 2024; Le et al., 2024; Li et al., 2024b) main-200

tain general capabilities by using different parame-201

ters for different tasks but alter model structure and202

prevent parameter merging. Data replay techniques203

(Bai et al., 2024; Jin and Ren, 2024b; Aggarwal204

et al., 2024; Huang et al., 2024) preserve founda-205

tion knowledge but are limited by pre-training data 206

unavailability. 207

Among these, some methods focus on scenar- 208

ios of continual learning, emphasizing the balance 209

of performance across multiple downstream tasks. 210

Our approach places more emphasis on mitigating 211

the forgetting of general capabilities in pre-trained 212

models, and addressing the limitations of the afore- 213

mentioned methods, we propose a universal strat- 214

egy to alleviate the catastrophic forgetting problem 215

in LLMs during fine-tuning. 216

2.3 Knowledge Distillation 217

Knowledge distillation is widely used for model 218

compression and performance improvement by 219

transferring knowledge from a teacher model to a 220

smaller student model. Early work (Hinton, 2015; 221

Xie et al., 2018; Liu et al., 2019; Wang et al., 2020) 222

focused on distilling knowledge from large models 223

into smaller ones. Later studies applied knowledge 224

distillation to various tasks (Shu et al., 2021; Zhang 225

and Ma, 2020; Wang et al., 2019). For LLMs, the 226

most common method (Mai et al., 2024; Xu et al., 227

2024a) uses KL divergence to reduce the difference 228
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between the teacher and student output distribu-229

tions. Other methods (Hou et al., 2020; Liang et al.,230

2023) align their intermediate hidden states. Some231

approaches (Wang et al., 2022; Ding et al., 2023)232

transfer knowledge from closed-source API models233

by augmenting the training data.234

Most existing knowledge distillation methods235

focus on transferring output sequences distribu-236

tions to improve downstream task performance of237

smaller models. In contrast, our method aims to238

reduce catastrophic forgetting during model fine-239

tuning by using the distribution of input sequences.240

3 Method241

In this section, we first outline the output logits of242

LLMs and the fine-tuning process. Subsequently,243

we introduce our SelfAug method and provide de-244

tails on its implementation.245

3.1 Logits as Model Distribution246

Representations247

In LLM inference, input text undergoes several248

transformations to generate logits. Text is first to-249

kenized into a sequence x = [x1, x2, ..., xn] and250

embedded into high-dimensional representations,251

then processed through multiple transformer layers252

to capture contextual relationships.253

Finally, the model output is transformed into254

logits through a linear projection:255

hi = zLi W
T + b.

where zLi ∈ Rd represents the final layer hidden256

representation of the i-th token, W T ∈ Rd×|V | is257

the transpose of the projection matrix, and b ∈ R|V |258

is the bias term. Each element in hi ∈ R|V | gen-259

erates a corresponding score for each word in the260

vocabulary, reflecting the likelihood of selecting261

that word in the current context.262

These logits are then converted to probability263

distributions via softmax for next-token prediction.264

The logit distribution encapsulates the linguistic265

patterns and semantic relationships learned during266

training (Jin and Ren, 2024a).267

3.2 Fine-tuning: Aligning Model Distribution268

with Task Distribution269

While powerful, LLMs still require optimization270

for specific tasks. Fine-tuning is a crucial step that271

adjusts the model distribution to match the task272

data distribution. We denote the model to be fine-273

tuned as M with parameters θ, mapping instruction274

x to output y.275

Fine-tuning uses task-specific dataset (xt, yt) ∈ 276

D to update model parameters, aiming to minimize 277

the negative log-likelihood loss: 278

LNLL(θ) = −
∑

(xt,yt)∈D

logP (yt | xt; θ).

By optimizing this function, the model’s output 279

distribution becomes closer to the true data distri- 280

bution, with predicted outputs ŷt more aligned with 281

labels yt. This process increases logits for target 282

words and decreases them for others, making the 283

model more suitable for specific task requirements. 284

3.3 SelfAug: Preserving Model Distribution 285

via Input Logits 286

From a Bayesian perspective, model parameters θ 287

exist within a probability distribution where pre- 288

training establishes the prior distribution p(θ) that 289

confers general abilities. During fine-tuning on a 290

new dataset D, these parameters update to a pos- 291

terior distribution p(θ | D) to adapt to the current 292

task. However, when this update relies exclusively 293

on the new dataset, the posterior may diverge sub- 294

stantially from the original prior, leading to catas- 295

trophic forgetting where the model loses its general 296

knowledge and generalization ability. To mitigate 297

this issue, we explicitly define the prior p(θ) as a 298

distribution that remains close to the original model 299

distribution, constraining it through the distribu- 300

tional distance between the fine-tuned model fθ 301

and the original model fθ0 , as follows: 302

p(θ) = exp(−α ·Dist(fθ, fθ0))

where Dist(fθ, fθ0) denotes the distance between 303

the distributions from the fine-tuned model and 304

the original model, and α is a hyperparameter that 305

controls the strength of this constraint. Therefore, 306

the objective for optimizing the parameter posterior 307

distribution during fine-tuning is as follows: 308

θ∗ = argmax
θ

p(θ | D)

= argmin
θ

−log p(D | θ) + α ·Dist(fθ, fθ0)

= argmin
θ

LNLL + α ·Dist(fθ, fθ0)

This design ensures that while the model pa- 309

rameters adapt to new data, their distribution does 310

not deviate too far from that of the original model, 311

which helps improve the model’s adaptability to 312

new tasks and effectively preserves the original 313

knowledge and generalization ability. 314
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Table 1: Results of Fine-tuning on Downstream Tasks in the RAG Domain (First CRAG, then RAG-Instruct). The
CRAG benchmark employs a LLM-based ternary scoring mechanism (1: accurate, 0: missing, -1: incorrect) with
overall performance represented by the mean score ranging from -1 to 1.

Dataset Benchmark Metric Base SFT LoRA
+MAGPIE +SDFT +Orthgonal +SelfAug

CRAG score (%) -13.11 9.59 8.76 6.22 2.54↓ 4.34 4.42↓ 2.40 6.36↓ 10.94 2.18↑

ChatRAGBench F1 (%) 24.04 25.92 31.90 33.56 1.66↑ 31.22 0.68↓ 33.77 1.87↑ 34.46 2.56↑

BioASQ F1 (%) 66.76 59.41 59.70 62.06 2.36↑ 64.71 5.01↑ 62.35 2.65↑ 65.00 5.30↑

OmniEval F1 (%) 66.05 42.58 51.64 54.71 3.07↑ 48.87 2.77↓ 49.53 2.11↓ 57.30 5.66↑

MATH accuracy (%) 69.56 53.84 65.64 68.36 2.72↑ 69.26 3.62↑ 68.78 3.14↑ 69.46 3.82↑

CRAG HumanEval pass@1 (%) 79.88 76.83 78.05 78.05 0.00↑ 76.83 1.22↓ 79.88 1.83↑ 79.27 1.22↑

IFEval accuracy (%) 71.90 45.10 48.80 58.04 9.24↑ 54.71 5.91↑ 63.77 14.97↑ 62.11 13.31↑

MMLU accuracy (%) 74.23 72.24 73.72 73.56 0.16↓ 73.29 0.43↓ 74.45 0.73↑ 74.04 0.32↑

ARC-C accuracy (%) 86.78 85.08 88.47 88.47 0.00↑ 89.83 1.36↑ 89.15 0.68↑ 90.17 1.70↑

HellaSwag accuracy (%) 85.48 83.72 84.55 83.68 0.87↓ 82.54 2.01↓ 85.11 0.56↑ 83.73 0.82↓

Average 71.57 63.73 67.22 68.89 1.67↑ 68.02 0.80↑ 69.36 2.14↑ 70.73 3.51↑

CRAG score (%) -13.11 -13.63 -7.19 -11.16 3.97↓ -17.00 9.81↓ -11.99 4.80↓ -6.22 0.97↑

ChatRAGBench F1 (%) 24.04 34.92 34.82 33.59 1.23↓ 29.90 4.92↓ 29.16 5.66↓ 35.44 0.62↑

BioASQ F1 (%) 66.76 68.82 66.47 66.76 0.29↑ 66.18 0.29↓ 64.41 2.06↓ 70.00 3.53↑

OmniEval F1 (%) 66.05 66.37 66.62 67.68 1.06↑ 64.98 1.64↓ 66.84 0.22↑ 67.58 0.96↑

RAG- MATH accuracy (%) 69.56 69.64 69.88 68.12 1.76↓ 69.82 0.06↓ 70.74 0.86↑ 70.02 0.14↑

Instruct HumanEval pass@1 (%) 79.88 46.34 76.83 79.88 3.05↑ 76.22 0.61↓ 79.27 2.44↑ 79.27 2.44↑

IFEval accuracy (%) 71.90 55.64 63.77 64.32 0.55↑ 66.73 2.96↑ 73.20 9.43↑ 68.02 4.25↑

MMLU accuracy (%) 74.23 73.61 73.36 72.96 0.40↓ 73.28 0.08↓ 74.61 1.25↑ 73.66 0.30↑

ARC-C accuracy (%) 86.78 90.85 90.17 86.78 3.39↓ 89.49 0.68↓ 88.14 2.03↓ 92.20 2.03↑

HellaSwag accuracy (%) 85.48 82.21 83.45 82.36 1.09↓ 82.98 0.47↓ 85.82 2.37↑ 84.93 1.48↑

Average 71.57 66.30 70.77 70.36 0.41↓ 70.13 0.64↓ 71.89 1.12↑ 72.51 1.74↑

We propose the SelfAug, which aims to enhance315

performance on downstream tasks while maintain-316

ing the model’s original distribution, as shown317

in Figure 1(g). We leverage the characteristic of318

LLMs in receiving sequential inputs, where the319

model produces logits for both input sequence xt320

and the response sequence yt, which together rep-321

resent the original output distribution. Our key322

insight is using the original model’s input sequence323

logits as a reference during fine-tuning. We mea-324

sure the distribution difference between the original325

model be Mo and the fine-tuning model be Mft us-326

ing Kullback-Leibler divergence. For any input327

xt, with logits ho(xt) and hft(xt)from respective328

models, we define the KL loss as:329

Dist(fθ, fθ0) = LKL = DKL(pft(xt) || po(xt)).

where po(xt) = softmax(ho(xt)) and pft(xt)
= softmax(hft(xt)). The total loss function com-
bines the negative log-likelihood loss LNLL for the
response sequences and the KL divergence loss:

Ltotal = LNLL + αLKL.

where α is a hyperparameter that balances the330

importance of the two loss terms.331

SelfAug aligns the distribution of the original 332

model through the logits of input sequences dur- 333

ing the fine-tuning process. For each training pair 334

(xt, yt), the model not only learns the data distri- 335

bution of downstream tasks through the response 336

sequence yt, but also maintains the distribution of 337

the original model through the logits of the input se- 338

quence xt. This integration of dual distributions ef- 339

fectively alleviates the catastrophic forgetting prob- 340

lem. Compared to methods requiring replay of 341

original data or generation of responses, SelfAug 342

offers the advantage of not needing additional data 343

or complex response validation steps, thereby sim- 344

plifying the implementation process and reducing 345

computational overhead. 346

4 Experiment 347

To evaluate the effectiveness of SelfAug and its 348

impact across different scenarios, we aim to answer 349

the following research questions: 350

• RQ1: How does SelfAug perform compared with 351

the state-of-the-art methods? 352

• RQ2: How does constrained distributional shift 353

mitigate catastrophic forgetting? 354

5



• RQ3: How do different components influence355

SelfAug?356

• RQ4: How does SelfAug perform across varying357

context lengths and model configurations?358

4.1 Experimental Setup359

Baselines. We use Qwen2.5-7B-Instruct as our360

base model and compare our method with four361

representative approaches, as shown in Figure 1:362

• Vanilla Fine-Tuning: full-parameter fine-tuning363

and LoRA.364

• MAGPIE (Xu et al., 2024b): Employs model-365

generated instruction-response pairs for data re-366

play during fine-tuning.367

• SDFT (Yang et al., 2024d): Fine-tunes using data368

generated from the model’s own distribution to369

maintain alignment.370

• Orthogonal Loss (Wang et al., 2023): Con-371

strains LoRA parameters to be orthogonal to the372

original model parameters.373

Datasets. We fine-tune models on the CRAG374

(Yang et al., 2024c) and RAG-Instruct (Liu et al.,375

2024b) datasets. Our evaluation framework en-376

compasses four categories of datasets designed to377

comprehensively assess model capabilities across378

various domains:379

• RAG Ability Evaluation: CRAG and ChatRAG-380

Bench (Liu et al., 2024c)381

• Domain-specific RAG Ability Evaluation:382

BioASQ (Nentidis et al., 2024) and OmniEval383

(Wang et al., 2024b).384

• Foundational Ability Evaluation: MATH385

(Hendrycks et al., 2021), HumanEval (Chen et al.,386

2021), and IFEval (Zhou et al., 2023).387

• General Knowledge Evaluation: MMLU388

(Hendrycks et al., 2020), ARC-C (Clark et al.,389

2018), and HellaSwag (Zellers et al., 2019).390

A comprehensive description of baselines,391

datasets, evaluation methodologies, and implemen-392

tation details is provided in Appendix A.393

4.2 Overall Performance Evaluation (RQ1)394

We first evaluated the effectiveness of our proposed395

SelfAug method, which can maintain the perfor-396

mance of LLMs on downstream task learning while397

mitigating catastrophic forgetting during the fine-398

tuning process. Specifically, we conducted fine-399

tuning on the RAG dataset to assess the impact on400

the model’s performance in both RAG tasks and401

Figure 2: Epoch-wise Performance and Logits Diver-
gence. KL Loss measures the distribution shift of model
output logits, IFEval evaluates instruction-following
ability catastrophic forgetting, and CRAG represents
downstream task performance. LoRA exhibits increas-
ing shift and forgetting, while SelfAug maintains stable
performance through effective distribution constraints.

other general capability tasks. Additionally, we 402

observed that fine-tuning downstream tasks signif- 403

icantly affected the model’s instruction-following 404

abilities, whereas the impact on the model’s knowl- 405

edge was relatively mild. The evaluation results 406

are presented in Table 1. 407

4.2.1 SelfAug Effectively Mitigated 408

Catastrophic Forgetting. 409

Our experimental results demonstrate that while 410

fine-tuning enhances downstream task perfor- 411

mance, it simultaneously induces distribution shifts 412

that compromise other capabilities. Following 413

LoRA fine-tuning on the CRAG dataset, IFEval 414

accuracy declined to 48.80, indicating substantial 415

catastrophic forgetting. Although MAGPIE and 416

SDFT effectively mitigated catastrophic forgetting, 417

SelfAug exhibited superior capability in this re- 418

gard. Orthogonal Loss, while achieving robust 419

catastrophic forgetting mitigation through strict or- 420

thogonal constraints, significantly compromised 421

downstream task performance. In contrast, Self- 422

Aug demonstrated comparable forgetting mitiga- 423

tion while achieving exceptional results in down- 424

stream task learning, outperforming LoRA on tar- 425

geted tasks. Among all methodologies evaluated, 426

SelfAug established the optimal equilibrium be- 427

tween downstream task learning and catastrophic 428

forgetting mitigation, thereby attaining the highest 429

average performance across evaluation metrics. 430
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4.2.2 The Impact on the Model’s Knowledge431

is Slight.432

Table 1 illustrates the results of the foundation433

knowledge assessment after fine-tuning with down-434

stream tasks. While fine-tuning substantially deteri-435

orates the model’s instruction-following ability, its436

foundation knowledge retention remains remark-437

ably robust. The performance across various foun-438

dation knowledge benchmarks exhibits minimal439

degradation after fine-tuning, with certain method-440

ologies even demonstrating enhanced performance.441

These findings suggest that catastrophic forget-442

ting in LLMs predominantly manifests through the443

degradation of instruction-following abilities rather444

than the erosion of foundation knowledge. This ob-445

servation is also supported by other studies (Zhang446

and Wu, 2024; Yang et al., 2024d).447

4.3 Distribution Shift and Catastrophic448

Forgetting (RQ2)449

In this section, we explore how RAG task perfor-450

mance, instruction-following abilities, and distribu-451

tion shift evolve over the course of training. After452

incorporating SelfAug, by imposing constraints453

on the distribution shift, we can alleviate catas-454

trophic forgetting while maintaining RAG task per-455

formance.456

4.3.1 Distribution Shift Induced Catastrophic457

Forgetting.458

We trained the LLM for 10 epochs and visualized459

its performance across the CRAG training set, IFE-460

val datasets, as well as changes in KL Loss. As461

shown in Figure 2(a), increasing the number of462

training epochs progressively improves both the463

performance of model on Crag and logits distribu-464

tion shift. At the same time, instruction-following465

ability suffers from a severe decline. This phe-466

nomenon reveals a strong correlation between the467

magnitude of distribution shift and the severity of468

catastrophic forgetting. The results demonstrate469

that continued training leads to increases in both470

RAG performance and logits distribution diver-471

gence, while degrading general capabilities.472

4.3.2 Effectiveness of SelfAug in Mitigating473

Distribution Shift.474

Based on these observations, SelfAug leverages475

logits distribution self-alignment to constrain distri-476

bution shift during model training, effectively miti-477

gating catastrophic forgetting. As demonstrated in478

Figure 2(b), after applying the SelfAug constraint,479

Table 2: Performance Comparison of Constraints Using
Different Layer Outputs.

Method IFEval Method IFEval

LoRA 48.80 LoRA 48.80

+ Attention Q 47.13 + Attention All 50.46
+ Attention K 50.09 + FFN 51.02
+ Attention V 48.24 + All layers 49.35
+ Attention O 47.50 + SelfAug (Ours) 62.11

the KL divergence of model logits significantly 480

decreases and maintains at a stable level. Fur- 481

thermore, the degradation of instruction-following 482

ability is notably suppressed, confirming the effec- 483

tiveness of our method in mitigating catastrophic 484

forgetting phenomena. Notably, while mitigating 485

catastrophic forgetting, SelfAug does not compro- 486

mise the model’s performance on training data, 487

demonstrating a well-balanced trade-off between 488

maintaining downstream task learning capabilities 489

and preventing catastrophic forgetting. 490

4.4 Ablation Study (RQ3) 491

Since distribution shift can occur on features at any 492

module within the model, the effectiveness of Self- 493

Aug might be influenced by two factors: the loca- 494

tion where constraints are applied and the strength 495

of the constraints. Therefore, in the ablation study, 496

we will focus primarily on these two aspects. 497

4.4.1 The Impact of Loss Position. 498

Previous research has examined knowledge distilla- 499

tion via intermediate features, but in our systematic 500

study comparing self-distillation across different 501

transformer block components, we find through ex- 502

tensive experiments that distilling at the final logits 503

layer consistently yields better performance than 504

using intermediate representations, as presented 505

in Table 2. This phenomenon can be explained 506

through information bottleneck theory. As data 507

propagates through the network architecture, infor- 508

mation undergoes progressive filtration, emphasiz- 509

ing task-relevant features. The logits layer primar- 510

ily contain essential semantic content. Distilling 511

at this final layer not only aligns the model closely 512

with task-relevant information but also improves 513

generalization and robustness, while intermediate 514

layers may introduce unnecessary complexity due 515

to their mix of relevant and irrelevant features. 516

4.4.2 The Impact of Loss Weight. 517

By adjusting the weight parameter α in SelfAug, 518

we can control the strength of distribution con- 519

straints, where higher weights impose stronger 520
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Figure 3: Model Performance with Respect to Weight
Scaling. Larger loss weights strengthen distribution
shift constraints, effectively mitigating forgetting.

constrain on the model’s output distribution. As521

illustrated in Figure 3, increasing the weight pa-522

rameter leads to a gradual recovery of the model’s523

instruction-following ability. The experimental re-524

sults show that SelfAug effectively reduces the di-525

vergence between the model’s current and origi-526

nal distributions, thereby mitigating catastrophic527

forgetting. This demonstrates that our proposed528

approach successfully addresses the root cause of529

forgetting by maintaining the model’s output dis-530

tribution closer to its initial state while adapting to531

RAG tasks.532

4.5 Generalizability of SelfAug (RQ4)533

In a RAG scenario, the LLM needs to utilize re-534

trieved documents of varying lengths to answer535

questions. Therefore, we conducted experiments536

on model size, LoRA rank, and context length. Ad-537

ditionally, to further validate the effectiveness of538

our method, we also tested it on tasks with low539

distribution shift.540

4.5.1 Generalizability of SelfAug Across541

different Context Lengths.542

As context length increases, the model’s perfor-543

mance on general instruction-following tasks de-544

clines due to distribution shift. To investigate545

this, we analyzed how training with longer con-546

texts affects catastrophic forgetting. We gradually547

expanded context length by adding more docu-548

ments and measured instruction-following ability549

at each length, as shown in Table 3. When context550

length increased from 2K to 8K tokens, instruction-551

following accuracy dropped from 58.23 to 50.28.552

Applying SelfAug improved performance, showing553

its effectiveness in reducing catastrophic forgetting554

at all context lengths.555

Table 3: Results of Instruction-Following Ability at
Different Context Lengths.

Avg Tokens Num LoRA SelfAug

2K tokens 58.23 63.03 4.80↑

4K tokens 56.19 62.48 6.29↑

6K tokens 52.87 55.82 2.95↑

8K tokens 50.28 57.67 7.39↑

4.5.2 Generalizability of SelfAug Across 556

different Model Configurations. 557

We evaluated SelfAug on different model sizes and 558

settings. On the CRAG benchmark, we observed 559

that larger base models struggled more with hal- 560

lucination, but after fine-tuning, SelfAug consis- 561

tently outperformed LoRA at all scales and better 562

preserved general abilities. For LoRA rank, in- 563

creasing trainable parameters caused greater loss in 564

instruction-following, but SelfAug reduced this ef- 565

fect across all parameter settings. Downstream task 566

performance improved within an optimal parameter 567

range but dropped if the parameter count was too 568

high due to redundancy (Wang et al., 2024a). We 569

also applied SelfAug to mathematical reasoning 570

and code generation using the MATH and Magi- 571

Coder datasets (Wei et al., 2023). Since these tasks 572

have low distribution shift, SelfAug brought only 573

minor improvements but successfully maintained 574

instruction-following ability. These results show 575

SelfAug is versatile and effective in various do- 576

mains. More details are in Appendix B. 577

5 Conclusion 578

Our research explores the problem of catastrophic 579

forgetting when fine-tuning language models for 580

retrieval-augmented generation tasks. We find that 581

distribution shift during fine-tuning weakens the 582

model’s general performance, especially its ability 583

to follow instructions. To address this, we propose 584

SelfAug, a method that does not use data replay 585

or change the model architecture, and can be ap- 586

plied to any fine-tuning setting. SelfAug uses only 587

the original training data and aligns the model’s 588

input distributions by constraining input sequence 589

logits. This simple approach reduces distribution 590

shift and helps prevent catastrophic forgetting. Our 591

experiments show that there is a clear link between 592

distribution shift and catastrophic forgetting. Self- 593

Aug reduces this shift and preserves model abilities, 594

while matching or exceeding the downstream task 595

performance of standard fine-tuning methods. 596
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Limitations597

While our proposed SelfAug serves as a plug-and-598

play approach that can be seamlessly integrated599

into both LoRA and full-parameter fine-tuning600

paradigms, comprehensive experiments on full-601

parameter fine-tuning scenarios were not conducted602

due to computational resource constraints. Future603

work could explore the effectiveness and scalabil-604

ity of SelfAug in full-parameter fine-tuning set-605

tings, potentially revealing additional insights into606

its broader applicability across different training607

paradigms.608

References609

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama610
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,611
Diogo Almeida, Janko Altenschmidt, Sam Altman,612
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-613
cal report. arXiv preprint arXiv:2303.08774.614

Divyanshu Aggarwal, Sankarshan Damle, Navin Goyal,615
Satya Lokam, and Sunayana Sitaram. 2024. Ex-616
ploring continual fine-tuning for enhancing language617
ability in large language model. arXiv preprint618
arXiv:2410.16006.619

Anton Alexandrov, Veselin Raychev, Mark Niklas620
Müller, Ce Zhang, Martin Vechev, and Kristina621
Toutanova. 2024. Mitigating catastrophic forget-622
ting in language transfer via model merging. arXiv623
preprint arXiv:2407.08699.624

Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,625
Shayne Longpre, Stephen Pulman, and Srinivas626
Chappidi. 2020. Open-domain question answering627
goes conversational via question rewriting. arXiv628
preprint arXiv:2010.04898.629

Andrew Bai, Chih-Kuan Yeh, Cho-Jui Hsieh, and Ankur630
Taly. 2024. Which pretrain samples to rehearse631
when finetuning pretrained models? arXiv preprint632
arXiv:2402.08096.633

Deng Cai, Yan Wang, Lemao Liu, and Shuming Shi.634
2022. Recent advances in retrieval-augmented text635
generation. In Proceedings of the 45th international636
ACM SIGIR conference on research and development637
in information retrieval, pages 3417–3419.638

Howard Chen, Jiayi Geng, Adithya Bhaskar, Dan Fried-639
man, and Danqi Chen. 2024a. Continual memoriza-640
tion of factoids in large language models. arXiv641
preprint arXiv:2411.07175.642

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.643
2024b. Benchmarking large language models in644
retrieval-augmented generation. In Proceedings of645
the AAAI Conference on Artificial Intelligence, vol-646
ume 38, pages 17754–17762.647

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 648
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 649
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 650
Brockman, and 1 others. 2021. Evaluating large 651
language models trained on code. arXiv preprint 652
arXiv:2107.03374. 653

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen- 654
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle- 655
moyer. 2018. Quac: Question answering in context. 656
arXiv preprint arXiv:1808.07036. 657

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 658
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 659
Barham, Hyung Won Chung, Charles Sutton, Sebas- 660
tian Gehrmann, and 1 others. 2023. Palm: Scaling 661
language modeling with pathways. Journal of Ma- 662
chine Learning Research, 24(240):1–113. 663

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 664
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 665
Wang, Mostafa Dehghani, Siddhartha Brahma, and 666
1 others. 2024. Scaling instruction-finetuned lan- 667
guage models. Journal of Machine Learning Re- 668
search, 25(70):1–53. 669

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 670
Ashish Sabharwal, Carissa Schoenick, and Oyvind 671
Tafjord. 2018. Think you have solved question an- 672
swering? try arc, the ai2 reasoning challenge. arXiv 673
preprint arXiv:1803.05457. 674

OpenCompass Contributors. 2023. Opencompass: 675
A universal evaluation platform for foundation 676
models. https://github.com/open-compass/ 677
opencompass. 678

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi 679
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, 680
and Bowen Zhou. 2023. Enhancing chat language 681
models by scaling high-quality instructional conver- 682
sations. arXiv preprint arXiv:2305.14233. 683

Jörg K.H. Franke, Michael Hefenbrock, and Frank Hut- 684
ter. 2024. Preserving principal subspaces to reduce 685
catastrophic forgetting in fine-tuning. In ICLR 2024 686
Workshop on Mathematical and Empirical Under- 687
standing of Foundation Models. 688

Robert M French. 1999. Catastrophic forgetting in con- 689
nectionist networks. Trends in cognitive sciences, 690
3(4):128–135. 691

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 692
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen 693
Wang. 2023. Retrieval-augmented generation for 694
large language models: A survey. arXiv preprint 695
arXiv:2312.10997. 696

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 697
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 698
Feng, Hanlin Zhao, and 1 others. 2024. Chatglm: A 699
family of large language models from glm-130b to 700
glm-4 all tools. arXiv preprint arXiv:2406.12793. 701

9

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://openreview.net/forum?id=XoWtroECJU
https://openreview.net/forum?id=XoWtroECJU
https://openreview.net/forum?id=XoWtroECJU


Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-702
pat, and Mingwei Chang. 2020. Retrieval augmented703
language model pre-training. In International confer-704
ence on machine learning, pages 3929–3938. PMLR.705

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and706
Sai Qian Zhang. 2024. Parameter-efficient fine-707
tuning for large models: A comprehensive survey.708
arXiv preprint arXiv:2403.14608.709

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,710
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.711
2020. Measuring massive multitask language under-712
standing. arXiv preprint arXiv:2009.03300.713

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul714
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-715
cob Steinhardt. 2021. Measuring mathematical prob-716
lem solving with the math dataset. arXiv preprint717
arXiv:2103.03874.718

Geoffrey Hinton. 2015. Distilling the knowledge in a719
neural network. arXiv preprint arXiv:1503.02531.720

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao721
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert722
with adaptive width and depth. Advances in Neural723
Information Processing Systems, 33:9782–9793.724

Yen-Chang Hsu, James Smith, Yilin Shen, Zsolt Kira,725
and Hongxia Jin. 2022. A closer look at knowledge726
distillation with features, logits, and gradients. arXiv727
preprint arXiv:2203.10163.728

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan729
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,730
and Weizhu Chen. 2021. Lora: Low-rank adap-731
tation of large language models. arXiv preprint732
arXiv:2106.09685.733

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi734
Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and735
Jinsong Su. 2024. Mitigating catastrophic forget-736
ting in large language models with self-synthesized737
rehearsal. arXiv preprint arXiv:2403.01244.738

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang,739
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun740
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024.741
Qwen2. 5-coder technical report. arXiv preprint742
arXiv:2409.12186.743

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.744
2024. Genegpt: Augmenting large language models745
with domain tools for improved access to biomedical746
information. Bioinformatics, 40(2):btae075.747

Xisen Jin and Xiang Ren. Demystifying language748
model forgetting with low-rank example associations.749
In NeurIPS 2024 Workshop on Scalable Continual750
Learning for Lifelong Foundation Models.751

Xisen Jin and Xiang Ren. 2024a. What will my model752
forget? forecasting forgotten examples in language753
model refinement. In Forty-first International Con-754
ference on Machine Learning.755

Xisen Jin and Xiang Ren. 2024b. What will my model 756
forget? forecasting forgotten examples in language 757
model refinement. arXiv preprint arXiv:2402.01865. 758

Ronald Kemker, Marc McClure, Angelina Abitino, 759
Tyler Hayes, and Christopher Kanan. 2018. Mea- 760
suring catastrophic forgetting in neural networks. In 761
Proceedings of the AAAI conference on artificial in- 762
telligence, volume 32. 763

Md Kowsher, Nusrat Jahan Prottasha, and Prakash Bhat. 764
2024. Propulsion: Steering llm with tiny fine-tuning. 765
arXiv preprint arXiv:2409.10927. 766

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, 767
Trang Pham, Linh Van Ngo, and Nhat Ho. 2024. 768
Mixture of experts meets prompt-based continual 769
learning. arXiv preprint arXiv:2405.14124. 770

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 771
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 772
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 773
täschel, and 1 others. 2020. Retrieval-augmented 774
generation for knowledge-intensive nlp tasks. Ad- 775
vances in Neural Information Processing Systems, 776
33:9459–9474. 777

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan 778
Cheng, Lei Duan, Jie Zuo, Cal Yang, and Mingjie 779
Tang. 2024a. Mixlora: Enhancing large language 780
models fine-tuning with lora based mixture of experts. 781
arXiv preprint arXiv:2404.15159. 782

Tianhao Li, Shangjie Li, Binbin Xie, Deyi Xiong, 783
and Baosong Yang. 2024b. Moe-ct: a novel ap- 784
proach for large language models training with re- 785
sistance to catastrophic forgetting. arXiv preprint 786
arXiv:2407.00875. 787

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. 788
2023. Large language models in finance: A survey. 789
In Proceedings of the fourth ACM international con- 790
ference on AI in finance, pages 374–382. 791

Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng 792
He, Weizhu Chen, and Tuo Zhao. 2023. Less is 793
more: Task-aware layer-wise distillation for language 794
model compression. In International Conference on 795
Machine Learning, pages 20852–20867. PMLR. 796

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jian- 797
meng Liu, Jipeng Zhang, Rui Pan, Haoxiang Wang, 798
Wenbin Hu, Hanning Zhang, and 1 others. 2024. Mit- 799
igating the alignment tax of rlhf. In Proceedings of 800
the 2024 Conference on Empirical Methods in Natu- 801
ral Language Processing, pages 580–606. 802

Chengyuan Liu, Yangyang Kang, Shihang Wang, Lizhi 803
Qing, Fubang Zhao, Changlong Sun, Kun Kuang, and 804
Fei Wu. 2024a. More than catastrophic forgetting: 805
Integrating general capabilities for domain-specific 806
llms. arXiv preprint arXiv:2405.17830. 807

Wanlong Liu, Junying Chen, Ke Ji, Li Zhou, Wenyu 808
Chen, and Benyou Wang. 2024b. Rag-instruct: 809
Boosting llms with diverse retrieval-augmented in- 810
structions. arXiv preprint arXiv:2501.00353. 811

10

https://openreview.net/forum?id=bzNwexOPWm
https://openreview.net/forum?id=bzNwexOPWm
https://openreview.net/forum?id=bzNwexOPWm
https://openreview.net/forum?id=bzNwexOPWm
https://openreview.net/forum?id=bzNwexOPWm


Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo812
Luo, and Jingdong Wang. 2019. Structured knowl-813
edge distillation for semantic segmentation. In Pro-814
ceedings of the IEEE/CVF conference on computer815
vision and pattern recognition, pages 2604–2613.816

Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Chankyu817
Lee, Mohammad Shoeybi, and Bryan Catanzaro.818
2024c. Chatqa: Surpassing gpt-4 on conversational819
qa and rag. In The Thirty-eighth Annual Conference820
on Neural Information Processing Systems.821

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-822
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei823
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-824
ardmath: Empowering mathematical reasoning for825
large language models via reinforced evol-instruct.826
arXiv preprint arXiv:2308.09583.827

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie828
Zhou, and Yue Zhang. 2023b. An empirical study829
of catastrophic forgetting in large language mod-830
els during continual fine-tuning. arXiv preprint831
arXiv:2308.08747.832

Zheda Mai, Arpita Chowdhury, Ping Zhang, Cheng-Hao833
Tu, Hong-You Chen, Vardaan Pahuja, Tanya Berger-834
Wolf, Song Gao, Charles Stewart, Yu Su, and 1 oth-835
ers. 2024. Fine-tuning is fine, if calibrated. arXiv836
preprint arXiv:2409.16223.837

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,838
Younes Belkada, Sayak Paul, and B Bossan. 2022.839
Peft: State-of-the-art parameter-efficient fine-tuning840
methods. URL: https://github. com/huggingface/peft.841

Daniel Marczak, Bartłomiej Twardowski, Tomasz Trz-842
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A Experimental Setup1042

A.1 Baselines.1043

In our empirical investigation, we conduct ex-1044

tensive experiments using Qwen2.5-7B-Instruct1045

(Team, 2024) as our base model for fine-tuning. To1046

systematically evaluate the effectiveness of our pro-1047

posed method, we compare it with representative1048

approaches from four major categories: instruc-1049

tion synthesis methods, knowledge reconstruction1050

approaches, model modifications, and parameter1051

constraint methods. We consider the following five1052

baseline methods as our comparative benchmarks,1053

as shown in Figure 1(a)-(e):1054

• Vanilla Fine-Tuning: We provide experimental1055

results for both full-parameter fine-tuning and1056

Low-Rank Adaptation (LoRA) (Hu et al., 2021)1057

fine-tuning for comparison.1058

• MAGPIE (Xu et al., 2024b): In this approach,1059

the LLM autonomously generates instructions1060

when provided with pre-query templates as in-1061

put, and subsequently produces corresponding1062

responses for these instructions. The synthesized1063

instruction-response pairs are utilized as alter-1064

native training samples for general instruction1065

fine-tuning during data replay.1066

• SDFT (Yang et al., 2024d): This method bridges1067

the distribution gap by fine-tuning with a dataset1068

generated from the model’s distribution. The1069

guiding model regenerates responses and vali-1070

dates their correctness to ensure alignment with1071

the original data distribution.1072

• Orthogonal Loss: Inspired by the concept of1073

O-LoRA (Wang et al., 2023), this approach con-1074

strains the parameters of the LoRA modules to be1075

orthogonal to the original model parameters, with1076

the goal of minimizing the impact of fine-tuning1077

on the model’s distribution.1078

A.2 Datasets. 1079

Our experimental evaluation consists of three main 1080

components: RAG capability evaluation, down- 1081

stream task evaluation, and foundation knowledge 1082

evaluation. Each component assesses the perfor- 1083

mance of our approach across distinct domains. 1084

RAG Ability Evaluation. We focus on enhanc- 1085

ing core RAG capabilities: document-based infor- 1086

mation retrieval and question answering, robust- 1087

ness against irrelevant or noisy documents, and 1088

the ability to abstain from answering given erro- 1089

neous queries or insufficient context. For vali- 1090

dation, we fine-tune our models on two datasets: 1091

CRAG (Yang et al., 2024c) and RAG-Instruct 1092

(Liu et al., 2024b), and evaluate on two bench- 1093

marks: CRAG and ChatRAGBench (Liu et al., 1094

2024c). The CRAG dataset contains 2.7k question- 1095

answer pairs with retrieved reference documents, 1096

structured into validation and public test sets. The 1097

evaluation protocol in CRAG implements a ternary 1098

scoring mechanism, where responses are evalu- 1099

ated by GPT-4o to assign scores of 1, -1, and 0 1100

to accurate, incorrect, and missing answers, respec- 1101

tively. The overall score is calculated as the mean 1102

score across all responses, with a range of [-1, 1]. 1103

RAG-Instruct provides a publicly available 40K in- 1104

struction dataset covering various RAG scenarios. 1105

For evaluating multi-turn conversational QA with 1106

extensive document contexts, we employ QuAC 1107

(Choi et al., 2018), QReCC (Anantha et al., 2020), 1108

and INSCIT (Wu et al., 2023b) following the ex- 1109

perimental settings in ChatRAGBench. 1110

Domain-specific RAG Evaluation. We evalu- 1111

ate RAG capabilities in the biomedical and finan- 1112

cial domains using BioASQ (Nentidis et al., 2024) 1113

and OmniEval (Wang et al., 2024b), respectively. 1114

BioASQ is a series of international competitions de- 1115

signed to advance large-scale biomedical semantic 1116

indexing and question answering. For evaluation, 1117

we use Task b from BioASQ 2024 and employ 1118

ideal answers as ground truth. OmniEval serves as 1119

a RAG benchmark encompassing 5 task categories 1120

and 16 financial topics. We rely on GPT-4o for 1121

correctness assessment. 1122

Foundational Ability Evaluation. For math- 1123

ematical reasoning, we utilize the MATH 1124

(Hendrycks et al., 2021), which comprises 12,500 1125

competition-level mathematics problems. For code 1126

generation Ability, we employ the HumanEval 1127

(Chen et al., 2021) to evaluate the model’s pro- 1128
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gramming proficiency. We evaluate the model’s1129

instruction-following ability using IFEval (Zhou1130

et al., 2023), which assesses the model’s capability1131

to follow various types of instructions.1132

General Knowledge Evaluation. To evaluate1133

the preservation of foundation knowledge, we1134

employ three established benchmarks: MMLU1135

(Hendrycks et al., 2020), ARC (Clark et al., 2018),1136

and HellaSwag (Zellers et al., 2019).1137

The evaluations on the MATH, HumanEval,1138

MMLU, ARC, and HellaSwag datasets are con-1139

ducted using the standardized OpenCompass (Con-1140

tributors, 2023) evaluation framework to ensure1141

consistency and reproducibility.1142

A.3 Implementation Details.1143

For the CRAG dataset, we strictly adhere to the1144

official configuration, utilizing the validation set1145

for fine-tuning and the public test set for evaluation1146

under Task 1 settings. The model is trained for 11147

epoch with a batch size of 16 and a learning rate1148

of 5e-4. Regarding the RAG-Instruct dataset, we1149

configure the training with a batch size of 512 and1150

a learning rate of 5e-5 over 3 epochs. To mitigate1151

potential model collapse during full parameter fine-1152

tuning at high learning rates, we adopt reduced1153

learning rates of 1e-5 and 5e-6 for CRAG and1154

RAG-Instruct, respectively. Throughout the train-1155

ing process, we employ the AdamW optimizer with1156

a cosine learning rate schedule, setting the weight1157

decay to 0.1 and the warmup ratio to 5%. In the1158

implementation of MAGPIE, we maintain a mix-1159

ing ratio of 1:9 between MAGPIE-generated data1160

and original training samples. Unless otherwise1161

specified, we set the KL divergence loss weight1162

in SelfAug to 0.5 in experiments, as our ablation1163

studies confirm that 0.5 is a reasonable value. To1164

ensure fair comparisons across tasks and metrics,1165

score normalization is applied when computing the1166

overall average performance. We conducted five1167

repeated experiments to obtain the best value and1168

determined the above hyperparameters through a1169

hyperparameter grid search. The experiment was1170

conducted using 4 A100 GPUs.1171

B Ablation Studies on Model1172

Configurations1173

B.1 Generalizability of SelfAug Across1174

different Model Scales.1175

Our investigation into the scalability of SelfAug1176

across different model sizes reveals intriguing pat-1177

Table 4: Model Performance with Different Model Sizes

CRAG IFEval

Size Base +LoRA +SelfAug Base +LoRA +SelfAug

3B -46.82 6.37 7.19 0.82↑ 61.37 49.54 57.86 8.32↑

7B -13.11 8.76 11.24 2.48↑ 71.90 48.80 62.11 13.31↑

14B -26.29 14.31 15.81 1.50↑ 79.67 45.84 67.47 21.63↑

32B -40.90 17.98 19.10 1.12↑ 77.45 60.81 75.60 14.79↑

72B -20.30 19.92 19.93 0.01↑ 83.73 52.87 62.85 9.98↑

Figure 4: Model Performance with Respect to LoRA
Rank. Increasing trainable parameters through LoRA
rank amplifies catastrophic forgetting severity.

terns, as illustrated in Table 4 through evaluation re- 1178

sults on the CRAG benchmark. Contrary to conven- 1179

tional expectations, our experiments demonstrate 1180

that the relationship between model size and CRAG 1181

performance is not monotonically positive for base 1182

models. This counter-intuitive phenomenon can be 1183

attributed primarily to the prevalence of hallucina- 1184

tion cases in the CRAG dataset, where questions 1185

are either inadequately contextualized or funda- 1186

mentally unanswerable. Particularly noteworthy 1187

is our observation that larger base models exhibit 1188

diminished performance when encountering such 1189

hallucination scenarios, resulting in degraded over- 1190

all performance metrics. 1191

However, upon fine-tuning with both LoRA and 1192

our proposed SelfAug method, we observe a sig- 1193

nificant paradigm shift in model behavior. The 1194

fine-tuned models demonstrate markedly improved 1195

capabilities in handling hallucination cases, with 1196

performance scaling consistently with model size. 1197

Most significantly, our SelfAug approach exhibits 1198

superior effectiveness in preserving general capabil- 1199

ities compared to conventional LoRA, effectively 1200

mitigating catastrophic forgetting across all model 1201

scales. These findings not only validate the scala- 1202

bility of our approach but also underscore its robust 1203

performance advantages over existing methods, par- 1204

ticularly in addressing the challenging aspects of 1205

hallucination management in LLMs. 1206
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Figure 5: Evaluation Results of Math and Code Tasks.
SelfAug exhibits robust forgetting mitigation effective-
ness.

B.2 Generalizability of SelfAug Across1207

different Lora Ranks.1208

Having established the correlation between distri-1209

bution shift and catastrophic forgetting, we investi-1210

gate the impact of trainable parameters on forget-1211

ting severity. Table 1 shows that SFT exhibits more1212

severe forgetting than LoRA, suggesting larger1213

trainable parameter sets lead to greater distribu-1214

tion shift. Through controlled experiments with1215

varying LoRA ranks, Figure 4 reveals that increas-1216

ing trainable parameters consistently deteriorates1217

instruction-following ability, while our SelfAug1218

method effectively mitigates this across parame-1219

ter scales. Notably, downstream task performance1220

improves with parameters within an optimal range1221

but degrades beyond a threshold due to redundancy1222

(Wang et al., 2024a).1223

B.3 Generalizability of SelfAug On Tasks with1224

Low Distribution Shift.1225

To thoroughly assess our approach, we applied Self1226

Aug to mathematical reasoning and code gener-1227

ation tasks, fine-tuning on the MATH and Magi-1228

Coder (Wei et al., 2023) datasets. As shown in1229

Figure 5, given the model’s extensive pre-training1230

and strong baseline in these areas, additional fine-1231

tuning minimally improved performance, with1232

gains mostly under 1 percentage point. While the1233

conventional LoRA approach showed some decline1234

in instruction-following, SelfAug prevented this1235

and slightly enhanced overall capabilities. This1236

demonstrates SelfAug’s effectiveness in maintain-1237

ing model stability and expanding its benefits1238

across various application domains, even in low1239

distribution shift scenarios.1240
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