
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLASS-GROUPED-NORMALIZED-MOMENTUM AND
FASTER HYPERPARAMETER EXPLORATION TO TACKLE
CLASS IMBALANCE IN FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Local class imbalance rooted at global imbalance poses a critical challenge in
federated learning (FL), where underrepresented classes suffer from poor pre-
dictive performance yet cannot be addressed by standard centralized techniques
due to privacy and heterogeneity constraints. We propose FedCGNM (Federated
Class-Grouped Normalized Momentum), a client-side optimizer in FL that parti-
tions classes into a small number of groups, maintains a momentum per group,
normalizes each group momentum to unit length, and uses the summation of the
normalized group momentums as an update direction. This design both equalizes
gradient magnitude across majority and minority groups and mitigates the noise
inherent in rare-class gradients. Additionally, a resampling mechanism is employed
to further mitigate class imbalance. To select sampling rates at clients efficiently in
small-client federations, we propose FedHOO, an X-armed-bandit (XAB) based
algorithm that exploits federated parallelism that evaluates many combinations of
two candidate rates per client at linear cost. Empirical evaluation on four public
long-tailed benchmarks and a proprietary chip-defect dataset demonstrates that
FedCGNM consistently outperforms baselines and that coupling with FedHOO
yields further improvements in small-scale federation.

1 INTRODUCTION

Class imbalance remains a major challenge in federated learning (FL). When the global label
distribution aggregated over all clients is long-tailed, minority classes are underrepresented in
training, which degrades their predictive accuracy. We study this imbalance setting in FL, defined
as the situation where the aggregated class proportions remain highly skewed regardless of local
distributions. Prior works in centralized learning mitigate imbalance through loss reweighting,
advanced sampling, or generative augmentation, but these techniques are difficult to deploy in FL
because privacy constraints prevent data exchange and synthetic generators are either infeasible or
produce unrealistic samples for sparse regimes or domain-specific tasks such as defect detection. For
instance, when working with a chip-defect dataset, one of our primary evaluation tasks in this paper,
synthetic defect images fail to capture the true geometric details of actual defects.

Another strand of work, Per-Class Normalization (PCN), normalizes each class-specific gradient to
unit length, preventing any class from dominating the update (Francazi et al., 2023). PCN effectively
decreases the loss for all classes and, because it operates directly on gradients, integrates readily with
other techniques. However, PCN introduces two limitations: it is negatively affected by directional
noise (since minority class gradients often misalign with the true descent direction), and the sum of
many unit vectors can produce a scaling mismatch that destabilizes convergence when there are many
classes. PCN does not work well even for a moderate number of classes.

To address these issues, we propose Federated Class-Grouped Normalized Momentum (FedCGNM).
Instead of normalizing all C class-specific gradients, we partition classes into a few groups (typically
majority vs. minority) and maintain a momentum vector for each group. At each local step, the group
momentum is updated and normalized to unit length, and a client computes its final update direction
by summing the resulting unit vectors. By reducing the number of normalized vectors from C to
just a few, FedCGNM mitigates the scaling-mismatch problem while still giving every group equal

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

magnitude. Furthermore, incorporating momentum attenuates the directional noise from minority
classes. An additional benefit concerns client alignment, a primary cause of performance degradation
in FL (Dandi et al., 2022). Heterogeneous clients often produce gradients whose magnitudes per
class differ widely, amplifying misalignment. Because FedCGNM forces each group update to have
the same unit norm, the aggregated directions across clients become more aligned.

Furthermore, during local training, each client applies resampling to reduce directional noise, so
selecting the appropriate sampling rates is crucial. To find sampling rates efficiently, particularly for
small-client settings, we introduce FedHOO, an algorithm based on the X-armed bandit framework
that exploits the inherent parallelism in FL. In every communication round, FedHOO requests each
client to train with only two candidate rates, yet by linearly combining the returned updates the server
can infer the validation performance metric for all 2K rate combinations, where K is the number of
clients. The method therefore identifies effective sampling rates, while avoiding an exhaustive sweep
of the hyperparameter space corresponding to sampling rates.

Across four public benchmarks, our methods consistently outperforms traditional reweighting and
sampling baselines, with gains up to 29% over FedAvg combined with resampling. In a large-scale
industrial chip defect dataset, our method achieves a 16% improvement over the best baseline. Our
main contributions are as follows.

1. FedCGNM optimizer. We introduce FedCGNM, the first client-side optimizer that groups
labels, applies unit-norm momentum per group to balance majority and minority influence
while reducing noise and scale mismatch. We also prove convergence matching the best-
known FL rates under standard smoothness and variance assumptions.

2. Variance-aware grouping rule. We frame class partitioning as minimization of within-
group variance and design a hyperparameter-free, data-driven threshold search on the class-
frequency histogram. This is the first class grouping algorithm targeting class imbalance in
FL. Empirically, this rule produces the optimal split found by exhaustive search, yielding a
principled yet lightweight grouping strategy.

3. FedHOO sampling-rate tuner. While a grid search for sampling rates is common, more
refined strategies are advantageous when the number of clients is low. The proposed X-
armed-bandit-based exploration scheme is the first optimization based algorithm to determine
combinatorial local sampling rates in FL. The method performs rapid, privacy-preserving
search trading off exploration and exploitation.

4. Strong performance We validate our framework across multiple public benchmarks and a
real-world industrial semiconductor chip-defect dataset. Across all settings, it consistently
shows improvement over strong baselines.

2 RELATED WORKS

Class imbalance poses a significant challenge in supervised learning, where limited data from minority
classes leads to biased models and poor performance on those classes (Chen et al., 2024b; Johnson &
Khoshgoftaar, 2019). Common training-level solutions include re-weighting, which adjusts learning
based on class frequency, and resampling, which alters the class distribution in training data.

Reweighting Methods Most reweighting methods adjust each sample’s contribution within the loss
function to counteract class imbalance. In particular, weighted cross-entropy (Aurelio et al., 2019)
assigns higher loss weights to minority-class samples, and focal loss (Lin et al., 2017) further down-
weights well-classified majority instances to concentrate learning on harder, underrepresented cases.
Class-balanced loss (Cui et al., 2019) computes weights based on the effective number of samples per
class, thereby reflecting diminishing returns of additional samples. Beyond loss-level re-weighting,
PCN (Francazi et al., 2023) rescales each class-specific gradient to unit norm, equalizing per-class
influence during optimization. He (2024) introduces a technique to adjust the weight of gradient
dynamically in a class-incremental learning scenario. They consider reweighting in class-level which
works poorly as the number of classes increases, and only consider balance of the gradient magnitude.
Different from them, we focus on solving the scaling issue and the directional noise problem (in
addition to learning in the FL setting).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Several methods have tailored re-weighting to FL setting. FedGR (Guo et al., 2023) introduces
an imbalanced softmax function accompanied by a gravitational regularizer to pull minority-class
representations toward balanced decision boundaries. FL Ratio Loss (Wang et al., 2021) builds on
centralized Ratio Loss by estimating global class proportions via secure aggregation and adjusting
local losses accordingly. FedNoRo (Wu et al., 2023) leverages knowledge distillation and distance-
aware aggregation to align client models, and incorporates a logical adjustment mechanism to address
both data heterogeneity and class imbalance. Unlike these methods that focus on loss functions or
models, we tackle class imbalance at the gradient level, pairing with a simple resampling technique.

Resampling and Data Synthesis Traditional resampling methods balance class balance by remov-
ing majority samples (under-sampling) or replicating minority ones (over-sampling) (Carvalho et al.,
2025). More recent techniques like SMOTE (Chawla et al., 2002), GAMO (Mullick et al., 2019), and
I-GAN (Pan et al., 2024) generate synthetic minority data and show strong empirical performance.
However, when minority samples are extremely scarce (Chen et al., 2024a) or synthetic data risks
being unrealistic or mislabeled (Alkhawaldeh et al., 2023), such methods become less viable. Thus,
the paper confines itself to conventional under- and over-sampling without synthetic generation since
we focus on those situations.

Choosing how much to re-sample remains an open problem: systematic investigations in centralized
deep learning reveal that the optimal under- or over-sampling rate depends jointly on the dataset size
and the severity of class skew (Buda et al., 2018). Curriculum-based schemes, such as Dynamic
Curriculum Learning (Wang et al., 2019), further highlight the need to adapt sampling ratios over the
course of training rather than fixing them a priori. In the federated setting, Düsing et al. (2024) cast
client-side resampling as a tunable policy, optimized to minimize the global loss while respecting
privacy constraints. FAST (Wang et al., 2023) advances this idea by viewing each sampling ratio as an
arm in a multi-armed-bandit framework, enabling dynamic exploration during training. However, it
treats local sampling rates independently, overlooking the combinatorial nature of federated learning.
Our method adopts this adaptive philosophy, particularly suited to small-client federations, while
addressing the combinatorial optimization challenge.

3 METHODOLOGY

Consider a federated learning system with K clients for a C-class classification task. We assume that
n(1) ≥ n(2) ≥ · · · ≥ n(C) where n(c) is the number of samples in class c and the classes are indexed
as {1, 2, . . . , C}. The global loss function f : Rn → R is f(x) =

∑K
k=1 pk fk(x), where fk(x) is a

local loss, and pk is the weight of client k.

The overall algorithm is outlined in Algorithm 1. We first adopt a resampling strategy to adjust the
client-side data distribution, improving representation of minority classes. Any resampling scheme
that determines the local resampling rates can be used. After resampling, each client groups classes
based to its effective label distributions. Local training is then performed using FedCGNM.

3.1 FEDERATED CLASS-GROUPED-NORMALIZED-MOMENTUM

In multi-class settings, Per-Class Normalization (PCN) rescales every class gradient to unit norm,
equalizing magnitudes but leaving two major drawbacks. First, summing the resulting C norm-one
vectors produces an update whose norm varies between zero and C, creating severe scaling variability
and impeding convergence. Second, normalization does not mitigate directional noise, and handling
each class separately can overfit minority labels. Finally, when C is large, many classes may be
absent from a mini-batch, and computing/storing C separate gradients becomes computationally and
memory intensive.

The next-to-be-proposed FedCGNM addresses these issues by merging the classes into a small
number H ≪ C of groups (typically majority and minority) and maintaining a momentum per group.
At communication round t, the server broadcasts the global model x(t) and local sampling rates r(t)k

based on a sampling strategy (see Section 3.3), and each client constructs a partition {G(t)k,h}Hh=1 of the

classes. Section 3.2 details the grouping rule. The local loss decomposes as fk(x) =
∑H

h=1 f
(t)
k,h(x),

with f
(t)
k,h := fk,h(x

(t)) being the sum of the loss functions of x(t) over the samples in G(t)k,h.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 FedCGNM combined with Resampling Strategy

Require: global rounds T , local steps E, step size η, momentum factor β, client weights {pk}Kk=1

1: initialize global model x(0)

2: for t = 0, . . . , T − 1 do
3: server determines sampling rates {r(t)k }Kk=1 based on resampling strategy (Sec. 3.3)
4: server broadcasts (x(t), r

(t)
k) to every selected client k ∈ K(t)

5: for each client k ∈ K(t) in parallel do

6: resample each class c to have
(

n(1)

n(c)

)r(t)k

samples. Subsequent steps use the resampled data.

7: construct groups {G(t)k,h}Hh=1 via the Grouping rule (Sec. 3.2)

8: x
(t,0)
k ← x(t); m

(t,0)
k,h ← 0, ∀h

9: for i = 1 to E do
10: compute g

(t,i)
k,h

11: m
(t,i)
k,h ← βm

(t,i−1)
k,h + (1− β) g

(t,i)
k,h , ∀h

12: x
(t,i)
k ← x

(t,i−1)
k − η

H∑
h=1

m
(t,i)
k,h

∥m(t,i)
k,h ∥

13: end for
14: upload x

(t,E)
k to server

15: end for
16: x(t+1) ←

∑
k∈K(t)

pk x
(t,E)
k

17: end for
18: return final model x(T)

During local training, client k updates, for each group h and step i, the momentum

m
(t,i)
k,h = βm

(t,i−1)
k,h + (1− β) g

(t,i)
k,h , m

(t,0)
k,h = 0, (1)

where g
(t,i)
k,h (x) = ∇f (t)

k,h(x; ξ
(t,i)
k,h) is the stochastic gradient computed on samples in mini-batch

ξ
(t,i)
k drawn solely from group G(t)k,h, and β ∈ [0, 1) is the momentum factor. The per-step update

direction is obtained by normalizing each momentum and summing across the H groups as x(t,i)
k =

x
(t,i−1)
k − η

∑H
h=1

m
(t,i)
k,h

∥m(t,i)
k,h ∥

with learning rate η > 0. After E iterations the client returns x(t,E)
k to

the server, which aggregates by x(t+1) =
∑

k∈K(t) pkx
(t,E)
k where K(t) is the set of active clients at

round t. Operating on a handful of group momenta stabilizes the step norm, suppresses directional
noise, and remains computationally efficient even when the number of classes is large.

3.2 GROUPING OF CLASSES

We formulate the problem of partitioning {1, . . . , C} into H disjoint groups as one-dimensional
variance reduction on the class proportions. Let qc be the (resampled) proportion of class c, with∑C

c=1 qc = 1, and we assume q1 ≥ · · · ≥ qC . We treat {qc}Cc=1 as points on the real line and select
H − 1 thresholds to form contiguous groups in which proportions are as similar as possible.

For a partition G = {Gh}Hh=1, define the group mass Sh =
∑

c∈Gh
qc, group mean mass µh =

Sh/|Gh|, and the within-group distribution wc|h = qc/Sh. In a mini-batch of size B, let Nh ∼
Binomial(B,Sh) be the sample counts of group h and Nh,c be the sample counts of class c in
group h. Define the empirical share vector ŵh = (ŵc|h)c∈Gh

with ŵc|h = Nh,c/Nh, and compare
it with the uniform target uh = (1/|Gh|, . . . , 1/|Gh|) ∈ R|Gh|. We define group imbalance vector
∆h = Nh

B (ŵh − uh). Taking expectation, we obtain

E∥∆h∥2 =
(
S2
h + Sh(1−Sh)

B

)
∥wh − uh∥2 + Sh

B

(
1−

∑
c∈Gh

w2
c|h

)
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

so the dominant term is S2
h∥wh − uh∥2 with O(1/B) corrections.

We next link this imbalance to the variance of raw proportions. Using ∥wh − uh∥2 =
∑

c∈Gh

(
qc
Sh
−

1
|Gh|

)2
= |Gh|

S2
h
σ2
h where σ2

h = 1
|Gh|

∑
c∈Gh

(qc−µh)
2, the dominant term becomes S2

h∥wh−uh∥2 =

|Gh|σ2
h. Summing over groups and normalizing per class yields 1

C

∑H
h=1 |Gh|σ2

h =
∑H

h=1 ωhσ
2
h

with ωh = |Gh|/C, which is the within-group variance objective on the sorted {qc}Cc=1. Consequently,
selecting H − 1 thresholds by this strategy produces the partition that minimizes the class-balanced
within-group dispersion and, by the argument above, asymptotically minimizes expected per-batch
imbalance.

Figure 1: Test accuracy on CIFAR-
100-LT (ξ = 20,K = 5) w.r.t. the
number of classes assigned to the
minority group. The red line marks
the threshold selected by our group-
ing rule.

Figure 1 reports the test accuracy obtained when we exhaus-
tively vary the split point between majority and minority
classes. A threshold t assigns the t rarest classes to the minor-
ity group and the remaining C−t classes to the majority group.
Accuracy rises to a clear maximum near t = 69 and declines
when either too few or too many classes are treated as minority.
The red line marks the threshold chosen by our variance-based
grouping rule, which coincides with the empirical optimum.
Results of additional experiments in Appendix D.1 exhibit
the same pattern, confirming that minimizing within-group
variance serves as a reliable proxy for an exhaustive threshold
search.

In summary, variance-aware grouping via minimizing the
within-group variance on empirical class distribution provides

a data-driven, lightweight mechanism that, when coupled with normalized momentum, substan-
tially attenuates gradient noise while ensuring balanced directional contributions from majority and
minority classes.

3.3 RESAMPLING

We employ a resampling strategy to further mitigate directional noise and increase learning in minority
classes. In particular, we define the sampling rate r ≥ 0 such that, for the class distribution, we

oversample the class c so that it has
(

n(1)

n(c)

)r
samples. For example, if r = 0, we do not resample,

and if r = 1, we oversample so that all classes have the same rates of appearance in a mini-batch.

A possible way to find sampling rates is to view the problem through the lens of the X-armed bandit
(XAB) over the continuous domain X = [rmin, rmax]

K . An arm r = (r1, . . . , rK) ∈ X specifies
client rates, and pulling r consists of executing one FL round where client k trains with rk, aggregating
the local models, and evaluating the aggregated model. The reward f(r) is the performance of the
resulting aggregated model, and the learner must balance exploration and exploitation to identify a
near-optimal r ∈ X . Hierarchical Optimistic Optimization (HOO, Bubeck et al. (2011)) addresses
XAB by creating a hierarchical, tree-based partition of the search space X . The algorithm iteratively
navigates this tree, selecting the most promising subregions to explore based on an optimistic estimate
of their potential reward.

FedHOO However, standard XAB methods (e.g., exhaustive search or HOO) converge too slowly
under FL’s limited rounds and early sensitivity to hyperparameters. We introduce FedHOO, which
exploits the parallelism of FL and is suitable for a small number of clients. FedHOO retains HOO’s
tree of boxes and enables much faster exploration by letting clients perform local training with two
rates and exploring all combinations of local rates for validations.

The space X = [rmin, rmax]
K is organized as a 2K-ary tree. The root covers the entire search space,

and each child ν halves its parent’s range, and the midpoint c(ν) of node ν ’s interval acts as its
representative point. Each node ν in depth h stores a box I(ν) = {[Lk(ν), Uk(ν)]}Kk=1, an evaluation
count N(ν), a running reward estimate V (ν), and an optimistic score B(ν).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

At round t, the server selects the leaf ν with largest B(ν). Let I(ν) =
∏

k[Lk, Uk] be its box
and h be its depth in the tree. For each client k, the server sends two rates rLk = (3Lk + Uk)/4,
rUk = (Lk + 3Uk)/4, and the current model x(t). Client k trains two local models (one per rate) and
returns the deltas. By linearly combining these deltas, the server aggregates the models corresponding
to all 2K lower/upper choices, thereby evaluating the rewards of the 2K child nodes in one round.

The optimistic score of ν is

B(ν) = V (ν) + τ diam(ν)h +
√

α ln(t+1)
N(ν) , (2)

where diam(ν) is the diameter of I(ν) and τ, α > 0 are hyperparameters. The second term of B(ν)
is borrowed from UCB bandits (Auer et al., 2002) exploration. In FedHOO, server also keep track of
reward V (ν) which is updated as exponential moving average of validation accuracies. Finally, the
server expands ν into its 2K child nodes corresponding to all combinations of two rates per client,
and sets x(t+1) to the one with the highest reward among the 2K candidates just evaluated.

Doubling each client’s local training time unlocks an exponential exploratory gain. Enumerating
those combinations explicitly would be prohibitive, but FedHOO obtains the same information at
linear cost by utilizing parallelism of FL, making it vastly more efficient than existing search methods.

The strategy is especially advantageous in small federations, a configuration frequently encountered in
industrial deployments. We therefore apply FedHOO when the number of clients is low. When K is
large, we revert to a uniform global sampling rate because significant exploration cannot be completed
within a reasonable training budget and a single rate promotes update alignment, a consideration that
becomes increasingly critical as K grows. The entire algorithm is presented in Algorithm 2.

3.4 CONVERGENCE ANALYSIS OF FEDCGNM

We analyze the convergence of FedCGNM in isolation from the resampling component. In Algorithm
2, the resampling rates and groupings change by iteration, making our analysis complicated. Through-
out this section we therefore assume static rates and groupings, i.e., rk = r

(t)
k , Gk,h = G(t)k,h, for every

t. The resulting algorithm is still non-trivial to analyze because the update sums unit normalized
momenta and the per-group direction is a nonlinear biased transform of the stochastic gradient,
so E[m/∥m∥] ̸= ∇f/∥∇f∥. For the theoretical convergence analysis, we make the following
assumptions.
Assumption 3.1 (Smoothness). Each local loss function fk is L-smooth, that is, for all x and y,

∥∇fk(x)−∇fk(y)∥ ≤ L ∥x− y∥. (A.1)

Assumption 3.2 (Uniform bound). There exist G, δ > 0 such that, for all x and for any k, h, we have

E
∥∥∇fk,h(x; ξk)∥∥ ≤ G, E

∥∥mk,h

∥∥ ≥ δ. (A.2)

Assumption 3.3 (Unbiasedness and bounded variance). There exists σ2 > 0 such that for any x and
k, we have

E
[
∇fk(x; ξk)

]
= ∇fk(x), (A.3)

E
∥∥∇fk(x; ξk)−∇fk(x)∥∥2 ≤ σ2. (A.4)

Assumption 3.4. There exist γ∈(0, 1] and κ>0 such that for all x and for any k, h, either

⟨∇fk,h
(
x(t)
)
, mk,h⟩

∥∇fk,h
(
x(t)
)
∥ ∥mk,h∥

≤ 1− γ or
∣∣ ∥mk,h∥ − ∥∇fk,h

(
x(t)
)
∥
∣∣ ≥ κ. (A.5)

Assumption 3.4 asserts that, at each client–class update, the stochastic gradient cannot be both
perfectly aligned and equal in length to its exponentially averaged momentum. One of the two gaps is
virtually guaranteed in realistic training, and the assumption is strictly weaker than the simultaneous
angle-and-norm bounds adopted in earlier analyses of normalized momentum methods.

The following theorem shows that FedCGNM attains the standard O(T−1/2) stationary-point rate
under smoothness and bounded-variance assumptions. A complete proof is given in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 3.5. Let Assumptions 3.1–3.4 hold and let β = 1 − cη with a constant c > 0 satisfying
cη < 1. Let {xt}T+1

t=1 be the iterates produced by FedCGNM, and let each client perform E ≥ 1 local
steps. Define ∆0 = E

[
f(x(0))

]
− f⋆, with a finite lower bound f⋆ = minx f(x). Then we have

1

T

T∑
t=1

E
∥∥∇f(x(t))

∥∥2 ≤ 2∆0

ηE T
+

2D1η

E
+

2D2 η
2

E
, (3)

where D1 = 2cρσ2E2H2, D2 = 2
3ρE

2H4L2 + 2β2

1−β ρE2H4L2. Choosing the step size η =

O(T−1/2) yields
min
t<T

E[∥∇f(x(t))∥2] ≤ O(T−1/2). (4)

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Our experiments evaluate FedCGNM and FedHOO on five classification benchmarks: two long-tailed
image collections (CIFAR-10-LT and CIFAR-100-LT (Krizhevsky & Hinton, 2009)), two tabular
datasets (Adult Income (Becker & Kohavi, 1996) and UNSW-NB15 (Moustafa & Slay, 2015)), and a
semiconductor chip-defect dataset. The public image datasets CIFAR-10-LT and CIFAR-100-LT are
produced using the standard long-tail protocol (Liu et al., 2019). For an imbalance rate ξ, the number
of training samples in class c (sorted by frequency), if we let Nmax and Nmin denote the numbers of
samples of the majority and minority class, is

Nc = Nmax · ξ− c/(C−1), (5)
where C denotes the total number of classes. If a dataset has balanced classes, we randomly sample
from each class c to have Nc samples to make an imbalanced dataset. Test sets remain unaltered
to test the performance of algorithms to produce balanced performance. The Adult Income dataset
consists of 48,842 tabular records labeled as either “≤ $50 k" or “> $50 k” with the minority class
representing 23.9% of the total (the original imbalance rate of about 3.17). To test on stronger
imbalance, we subsample the minority class until the imbalance rate ξ = Nmax/Nmin reaches a
higher number. UNSW-NB15 provides 175,341 network-flow records spanning ten classes with a
natural imbalance of roughly 434. For Adult Income and UNSW datasets, we preserve the same class
imbalance in the test splits as in their corresponding training sets to mirror real-world conditions.

The semiconductor Chip-Defect-Detection (CDD) corpus consists of approximately 780,000 high-
resolution (224 × 224 after pre-processing) images captured on select years after 2020 from five
factories. The ratio of defect images is 1.7%, with seven defect categories observed across hundreds
of product types. Additional heterogeneity distributions are presented in Figure 2 and Figure 5. We
split seventy percent of the dataset to training, fifteen percent to validation, and the remaining fifteen
percent to test. We report the company’s weighted accuracy that balances defect recall and non-defect
precision. Some exact counts are withheld in accordance with the non-disclosure agreement. For full
details of the implementation, including the selection of hyperparameters, see Appendix C.

We compare FedCGNM against four alternatives: (1) FedAvg (McMahan et al., 2017) with standard
SGD, (2) FedAvg using class-weighted cross-entropy (Aurelio et al., 2019), (3) FedAvg with Ratio
Loss (Wang et al., 2021), and (4) FedCGN, which adapts Per-Class Normalization to a grouped setting
and employs CGN for local optimization. All methods share identical backbones and hyper-parameter
schedules, but see Appendix for details of models, initial learning rate, batch size, weight decay and
learning-rate scheduler. We use H = 2 for all grouping strategy implementations.

Two federation regimes are considered. In the small-scale scenario includes five clients with full
participation. In the moderate-scale scenario, twenty clients are available but only half are sampled
each round. Public datasets are partitioned IID across clients, whereas the chip corpus is divided
according to natural factory boundaries, resulting in highly non-IID client data.

4.2 PRIMARY REAL-WORLD EVALUATION: CHIP-DEFECT DETECTION (CDD)

The semiconductor CDD task provides the realistic evaluation in our study since this dataset reflects
actual production condition, with only 1.7% of samples exhibiting defects. Figure 3 shows that the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Number of defect and non-defect sam-
ples across five factories for CDD dataset.

Figure 3: Test performance on the chip-defect
dataset, with the metric scaled from 0 to 100.

Table 1: F1 scores on public benchmarks under two federation regimes. “C10” and “C100” abbreviate
CIFAR-10 and CIFAR-100, and the trailing numbers denote the imbalance rates. The letter following
each baseline denotes the resampling method, with “U” indicating a uniform global sampling rate.
Gray numbers represent the standard deviation across three independent runs.

Algorithm C10-20 C10-100 C100-20 C100-100 Adult-3.17 Adult-10 Adult-20 UNSW-434

K = 5
FedAvg + U 0.8259 ±0.002 0.6177 ±0.003 0.4458 ±0.002 0.2466 ±0.004 0.8432 ±0.001 0.9037 ±0.001 0.9443 ±0.003 0.7702 ±0.001
Weighted CE + U 0.8186 ±0.006 0.5379 ±0.007 0.3610 ±0.006 0.2183 ±0.011 0.8399 ±0.003 0.9059 ±0.002 0.9208 ±0.005 0.7210 ±0.013
Ratio Loss + U 0.8274 ±0.007 0.6183 ±0.002 0.4402 ±0.004 0.2734 ±0.007 0.8436 ±0.003 0.9068 ±0.003 0.9411 ±0.004 0.7740 ±0.008
FedCGN + U 0.8335 ±0.003 0.7054 ±0.005 0.4925 ±0.004 0.3116 ±0.005 0.8416 ±0.002 0.9106 ±0.001 0.9405 ±0.002 0.7778 ±0.004
FedCGNM + U 0.8568 ±0.004 0.7432 ±0.002 0.4983 ±0.003 0.3165 ±0.004 0.8456 ±0.002 0.9139 ±0.002 0.9458 ±0.001 0.7808 ±0.002
FedCGNM + FedHOO 0.8628 ±0.003 0.7485 ±0.004 0.5021 ±0.004 0.3183 ±0.006 0.8462 ±0.001 0.9148 ±0.003 0.9468 ±0.003 0.7823 ±0.001

K = 20
FedAvg + U 0.7128 ±0.004 0.4697 ±0.003 0.3544 ±0.002 0.1932 ±0.003 0.8452 ±0.001 0.9128 ±0.001 0.9424 ±0.001 0.7468 ±0.003
Weighted CE + U 0.6625 ±0.003 0.4426 ±0.004 0.3213 ±0.001 0.1807 ±0.002 0.8362 ±0.002 0.9050 ±0.002 0.9212 ±0.004 0.7120 ±0.005
Ratio Loss + U 0.7159 ±0.002 0.4563 ±0.004 0.3583 ±0.002 0.1950 ±0.003 0.8458 ±0.003 0.9131 ±0.002 0.9443 ±0.004 0.7414 ±0.006
FedCGN + U 0.7915 ±0.003 0.5210 ±0.004 0.3827 ±0.001 0.2138 ±0.003 0.8434 ±0.001 0.9101 ±0.003 0.9461 ±0.001 0.7733 ±0.003
FedCGNM + U 0.8010 ±0.002 0.5294 ±0.003 0.4051 ±0.002 0.2257 ±0.002 0.8453 ±0.001 0.9134 ±0.004 0.9474 ±0.002 0.7774 ±0.003

standard FedAvg baseline stalls at around 73, while loss reweighting and Ratio Loss provide only
marginal improvements. FedCGN pushes performance into 85, and FedCGNM adds another improve-
ment. Using FedHOO as resampling strategy consistently improves training. This demonstrates that
variance-aware grouping, per-group momentum, and efficient rate exploration are not only effective
on public benchmarks but also critical for real industrial deployments.

4.3 EVALUATION ON PUBLIC DATASETS

Table 1 summarizes F1 under two federation regimes. Across both federation regimes, FedCGNM
outperforms all baselines by several points on average in all setting. In the small-client setting
(K = 5), coupling FedCGNM with FedHOO yields the best accuracy in every scenario. Even without
FedHOO, FedCGNM alone consistently beats competing optimizers. The only exception occurs
under mild skew on Adult Income, where Ratio Loss briefly matches FedCGNM, suggesting that
simple loss reweighting can suffice when imbalance is mild.

As the number of clients increases from five to twenty, accuracy declines for all methods due to
greater heterogeneity. However, FedCGNM exhibits noticeably milder degradation compared to
FedCGN, which is the best baseline: on average, FedCGN loses about 14–37% performance, while
FedCGNM drops by only 7–32%. This indicates that group momentum not only boosts performance
in small federations but also makes optimization more robust to client scaling.

4.4 SENSITIVITY ANALYSIS

Sensitivity to Imbalance Severity On the multi-class image benchmarks (CIFAR-10 and CIFAR-
100), all methods show declining F1 scores as the class distribution becomes more imbalanced, but
FedCGNM’s drop is noticeably milder. By contrast, on the Adult Income task, FedCGNM offers
only a slight improvement, reflecting the relative ease of a binary prediction problem.

Effect of Grouping and Number of Groups We examine the impact of the number of groups
using training and validation losses for H = 2, 3, 4 in Figure 4 and Table 2. For additional results,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: F1 score for FedCGNM with different
group counts H .

Dataset K H = 2 H = 3 H = 4

CF10-LT20 5 0.8565 0.8400 0.8341
20 0.7915 0.7916 0.7148

CF10-LT100 5 0.7432 0.7328 0.7171
20 0.5210 0.5185 0.4957

CF100-LT20 5 0.4983 0.4941 0.4485
20 0.4051 0.3916 0.3547

CF100-LT100 5 0.3165 0.3121 0.2721
20 0.2257 0.2253 0.2007

Figure 4: Training and validation loss on CIFAR-
100-LT (imbalance rate = 20, K = 20) for Fed-
CGNM with different group counts H .

see Appendix D.5). With two groups, validation loss remains lowest and most stable, whereas three
or four groups lead to earlier increases in validation loss despite continued training loss reduction,
indicating accelerated overfitting. On CIFAR-100, H = 3 occasionally yields slightly better accuracy,
but the gap is marginal, so two groups offer the best trade-off between balanced class influence
and generalization. Beyond the number of groups, our grouping strategy based on minimizing
within-group variance provides clear benefits compared to naive half-splits: on CIFAR-10-LT20 with
K = 5, our rule achieves an F1 score of 0.8565 versus 0.8382, and on CIFAR-100-LT20 with K = 5,
it improves from 0.4339 to 0.4983. These gains confirm that variance-aware grouping better balances
class contributions and yields superior generalization across datasets.

Table 3: Accuracy (%) across different β values.

Dataset K 0 0.1 0.3 0.5 0.7 0.9

C10-20 5 83.35 83.72 84.21 85.68 84.27 83.93
20 79.15 79.55 79.55 80.10 79.50 79.54

C10-100 5 70.54 71.11 71.11 74.32 71.11 71.11
20 52.10 52.34 52.35 52.94 52.65 52.68

C100-20 5 49.25 49.33 49.35 49.83 49.46 49.76
20 38.27 39.16 39.52 40.51 39.84 40.24

C100-100 5 31.16 31.22 31.08 31.65 30.95 30.03
20 21.38 21.92 22.22 22.57 22.56 22.48

Sensitivity to Group Momentum Factor
We perform an ablation study on the group
momentum factor β across multiple datasets
and client settings. The results in Table 3
show that very small (β = 0, which is Fed-
CGN) or very large (β = 0.9) values gen-
erally underperform, while moderate values
yield the strongest results. For example, on
CIFAR-10-LT20 with K = 5, accuracy im-
proves from 83.35 at β = 0 to a peak of
85.68 at β = 0.5, and on CIFAR-100-LT20
with K = 20, performance rises from 38.27
to 40.51 at the same setting. Similar trends appear consistently across datasets, indicating that
moderate momentum factors strike the right balance between stability and adaptivity, thereby offering
the best overall performance.

Additional experiments (Appendix D) confirm that FedHOO accelerates sampling-rate search com-
pared to standard HOO, and FedCGNM maintains its advantage under non-IID distributions, and
large-client federations. These results demonstrate the robustness and generality of our approach
across diverse and challenging federated learning conditions.

5 CONCLUSION

We have introduced FedCGNM, a simple yet effective client-side optimizer that balances majority
and minority class influence by grouping labels and applying normalized momentum per group, and
FedHOO, an efficient federated sampling rate exploration strategy that exploits parallelism of FL to
explore sampling rates without exhaustive search. Our convergence analysis shows that FedCGNM
matches the best known rates for momentum-based FL under standard assumptions, and empirical
results on both public benchmarks and a chip-defect detection dataset demonstrate its consistent
superiority over prior reweighting, sampling, and per-class normalization methods. Together, these
components form a practical framework for mitigating global class imbalance in privacy-preserving
federated settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ibraheem M Alkhawaldeh, Ibrahem Albalkhi, and Abdulqadir Jeprel Naswhan. Challenges and
limitations of synthetic minority oversampling techniques in machine learning. World Journal of
Methodology, 13(5):373, 2023.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2):235–256, 2002.

Yuri Sousa Aurelio, Gustavo Matheus De Almeida, Cristiano Leite de Castro, and Antonio Padua
Braga. Learning from imbalanced data sets with weighted cross-entropy function. Neural Process-
ing Letters, 50:1937–1949, 2019.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal of
Machine Learning Research, 12(5), 2011.

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

Miguel Carvalho, Armando J Pinho, and Susana Brás. Resampling approaches to handle class
imbalance: a review from a data perspective. Journal of Big Data, 12(1):71, 2025.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002.

Chien-Chih Chen, Yao-San Lin, and Hung-Yu Chen. Tackling class-imbalanced learning issues based
on local neighborhood information and generative adversarial networks. Sensors & Materials, 36,
2024a.

Wuxing Chen, Kaixiang Yang, Zhiwen Yu, Yifan Shi, and CL Philip Chen. A survey on imbalanced
learning: latest research, applications and future directions. Artificial Intelligence Review, 57(6):
137, 2024b.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9268–9277, 2019.

Yatin Dandi, Luis Barba, and Martin Jaggi. Implicit gradient alignment in distributed and federated
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 6454–
6462, 2022.

Christoph Düsing, Philipp Cimiano, and Benjamin Paaßen. Leveraging local data sampling strategies
to improve federated learning. International Journal of Data Science and Analytics, pp. 1–20,
2024.

Emanuele Francazi, Marco Baity-Jesi, and Aurelien Lucchi. A theoretical analysis of the learning
dynamics under class imbalance. In International Conference on Machine Learning, pp. 10285–
10322. PMLR, 2023.

Songyue Guo, Xu Yang, Jiyuan Feng, Ye Ding, Wei Wang, Yunqing Feng, and Qing Liao. Fedgr:
Federated learning with gravitation regulation for double imbalance distribution. In International
Conference on Database Systems for Advanced Applications, pp. 703–718. Springer, 2023.

Jiangpeng He. Gradient reweighting: Towards imbalanced class-incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16668–16677,
2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance. Journal
of Big Data, 6(1):1–54, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision, pp.
2980–2988, 2017.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2537–2546, 2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection
systems (unsw-nb15 network data set). In 2015 Military Communications and Information Systems
Conference (MilCIS), pp. 1–6. IEEE, 2015.

Sankha Subhra Mullick, Shounak Datta, and Swagatam Das. Generative adversarial minority
oversampling. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1695–1704, 2019.

Tingting Pan, Witold Pedrycz, Jie Yang, and Jian Wang. An improved generative adversarial network
to oversample imbalanced datasets. Engineering Applications of Artificial Intelligence, 132:107934,
2024.

Zareen Tasnim Pear and Hafsa Binte Kibria. Enhanced network intrusion detection using a hybrid
cnn-lstm approach on the unsw-nb15 dataset. In 2024 21st International Conference on Electrical
Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE, 2024.

Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Addressing class imbalance in federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10165–10173,
2021.

Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan. Dynamic curriculum learning for
imbalanced data classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5017–5026, 2019.

Zhiyuan Wang, Hongli Xu, Yang Xu, Zhida Jiang, Jianchun Liu, and Suo Chen. Fast: enhancing
federated learning through adaptive data sampling and local training. IEEE Transactions on
Parallel and Distributed Systems, 35(2):221–236, 2023.

Nannan Wu, Li Yu, Xuefeng Jiang, Kwang-Ting Cheng, and Zengqiang Yan. Fednoro: Towards
noise-robust federated learning by addressing class imbalance and label noise heterogeneity. arXiv
preprint arXiv:2305.05230, 2023.

A PROOF

A.1 SUPPLEMENTARY LEMMAS

Lemma A.1. Let Assumptions 3.2 and 3.4 hold. For every client k, group index h, global round t,
and local step i,∥∥∥∇fk,h(x(t))−

m
(t,i)
k,h

∥m(t,i)
k,h ∥

∥∥∥2 ≤ ρ
∥∥∥∇fk,h(x(t))−m

(t,i)
k,h

∥∥∥2, ρ := max
{

G2+1+2G
δ2γ(2−γ) ,

G2+1+2G
κ2

}
.

(6)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Proof. Fix (k, h, t, i) and set a := ∇fk,h(x(t)), b := m
(t,i)
k,h , u := b/∥b∥, d := ∥a∥ ≤ G, r :=

∥b∥ ≥ δ, θ := ∠(a, b). Define

R(d, r, θ) :=
∥a− u∥2

∥a− b∥2
=

d2 + 1− 2d cos θ

d2 + r2 − 2dr cos θ
.

Since ∥a−u∥2 ≤ d2+1+2d ≤ Nmax := G2+1+2G, it suffices to lower–bound the denominator
in the two mutually exclusive cases of Assumption 3.4:

(i) Angle gap : 1− cos θ ≥ γ implies

∥a− b∥2 = (r − d)2 + 2dr(1− cos θ) ≥ (δ − d)2 + 2γδd ≥ δ2γ(2− γ).

(ii) Norm gap : |r − d| ≥ κ yields ∥a− b∥2 ≥ (r − d)2 ≥ κ2.

Hence R(d, r, θ) ≤ ρ with ρ given in equation 6; substituting R completes the proof.

Corollary A.2. Under Assumption 3.2 and 3.4, for every client k, class h, round t, and local step i,

E
∥∥∥∇fk,h(x(t))− m

(t,i)
k,h

∥m(t,i)
k,h ∥

∥∥∥2 ≤ ρE
∥∥∥∇fk,h(x(t))−m

(t,i)
k,h

∥∥∥2, ∀k, h, t, i. (7)

Proof. Because inequality equation 6 is valid pointwise, it holds for every outcome of the algorithm’s
randomness. Taking expectations on both sides preserves the inequality, yielding equation 7.

Lemma A.3. Let {x(t,s)
k }Es=0 and m

(t,i)
k,h be the local iterate and momentum of client k in communi-

cation round t, produced by FedCGNM. Under Assumption 3.1-3.3, for any group h ∈ {1, . . . ,H},
and local step i ∈ {1, . . . , E},

E
[
∥∇fk,h(x(t,0)

k)−m
(t,i)
k,h ∥

2
]
≤ 2(i− 1)2H2L2η2 +

2β2

1− β
iH2L2η2 + 2i (1− β)2σ2. (8)

Proof. Throughout the proof the fixed indices k, h, t are suppressed and the shorthands

gs = ∇fk,h(x(t,s−1)
k), gstoch

s = ∇fk,h
(
x
(t,s−1)
k ; ξ

(t,s)
k,h

)
, ms = m

(t,s)
k,h

are used, where ξ
(t,s)
k,h denotes the mini-batch sampled at the s-th local step and E[gstoch

s] = gs with
E∥gstoch

s − gs∥2 ≤ σ2 by Assumption 3.3. We note that, by assumption, the grouping remains fixed
throughout training.

During each local step s at round t, the model parameters of client k are moved by

η d
(t,s)
k = η

∑
h

m
(t,s)
k,h

∥m(t,s)
k,h ∥

,

where the update direction d
(t,s)
k satisfies

∥∥d(t,s)k

∥∥ ≤ H . After i − 1 such steps the cumulative
displacement is bounded by ∥∥x(t,i−1)

k − x
(t,0)
k

∥∥ ≤ (i− 1)H η.

By L-smoothness of∇fk,h this gives

E
∥∥g1 − gi

∥∥2 ≤ H2 L2 (i− 1)2 η2. (9)

For s ≥ 0 define the difference es := m
(t,s)
k,h −∇fk,h(x

(t,s−1)
k) and write Fs := E∥es∥2. Since we

have, using ms = βms−1 + (1− β)gs,

es = βes−1 + β
(
gs−1 − gs

)
+ (1− β)

(
gstoch
s − gs

)
,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

expanding ∥es∥2 and taking full expectation gives

Fs = β2Fs−1 + β2E∥gs−1 − gs∥2 + (1− β)2E∥gstoch
s − gs∥2

+ 2β2E⟨es, gs−1 − gs⟩ (I)

+ 2β(1− β)E⟨es−1, g
stoch
s − gs⟩ (II)

+ 2β(1− β)E⟨gs−1 − gs, g
stoch
s − gs⟩. (III)

Cross term (II). Let Fs be the σ–algebra generated by all randomness up to step s. es−1 is
measurable with respect to Fs−1, whereas gstoch

s − gs depends on the fresh mini-batch ξ
(t,s)
k,h . Hence

E[gstoch
s − gs | Fs−1] = 0 and

E⟨es−1, g
stoch
s − gs⟩ = 0.

Cross term (III). The same independence argument yields E⟨gs−1 − gs, g
stoch
s − gs⟩ = 0.

Cross term (I). For any α > 0, Young’s inequality gives

2⟨es−1, gs−1 − gs⟩ ≤ α∥es−1∥2 +
1

α
∥gs−1 − gs∥2.

Multiplying by β2 produces

2β2E⟨es−1, gs−1 − gs⟩ ≤ αβ2Fs−1 +
β2

α
E∥gs−1 − gs∥2.

Choose α = 1−β
β > 0, so that q := (1 + α)β2 = β ∈ [0, 1).

Combining all cross terms, and by using E∥gs−1 − gs∥2 ≤ H2L2η2 and E∥gstoch
s − gs∥2 ≤ σ2, we

have

Fs ≤ β Fs−1 +
β2

1− β
H2L2η2 + (1− β)2σ2. (10)

Iterating equation 10 from F0 = 0 gives

Fs ≤ (1− βs)(1− β)σ2 +
β2(1− βs)

(1− β)2
H2L2η2

≤ (1− β)2sσ2 +
β2

1− β
sH2L2η2.

Since g1 −mi = (g1 − gi) + (gi −mi), ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 together with equation 9 yields

E∥g1 −mi∥2 ≤ 2H2L2(i− 1)2η2 + 2Fi,

which, upon substituting the bound on Fi above, completes the proof of Lemma A.3.

A.2 PROOF OF THEOREM 3.5

Proof. For each client k and communication round t, the local update can be expressed as

x
(t,E)
k − x

(t,0)
k = −η

E∑
i=1

H∑
h=1

m
(t,i)
k,h

∥m(t,i)
k,h ∥

= −ηE∆
(t)
k , (11)

where we define ∆
(t)
k = 1

E

∑E
i=1

∑H
h=1

m
(t,i)
k,h

∥m(t,i)
k,h ∥

as the average local update of client k in the

communication round t.

By L-smoothness assumption,

E
[
f(x(t+1))

]
≤ E

[
f(x(t))

]
+ E

[
⟨∇f(x(t)), x(t+1) − x(t)⟩

]
+

L

2
E∥x(t+1) − x(t)∥2. (12)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

For the third term, by using Jensen’s Inequality, we have

E∥x(t+1) − x(t)∥2 = E

∥∥∥∥∥∑
k

pk · η
E∑
i=1

H∑
h=1

m
(t,i)
k,h

∥m(t,i)
k,h ∥

∥∥∥∥∥
2

≤ η2
∑
k

pkE

∥∥∥∥∥
E∑
i=1

H∑
h=1

m
(t,i)
k,h

∥m(t,i)
k,h ∥

∥∥∥∥∥
2

≤ η2
∑
k

pkE
2H2

≤ η2E2H2.

(13)

By plugging (11) and (13) into (12), we have

E
[
f(x(t+1))

]
− E

[
f(x(t))

]
≤ −ηE E

[
⟨∇f(x(t)),

∑
k

pk∆
(t)
k ⟩

]
+

η2E2H2L

2
. (14)

We apply ⟨a, b⟩ = ∥a∥2

2 + ∥b∥2

2 − ∥a− b∥2, then we have

E
[
f(x(t+1))

]
− E

[
f(x(t))

]
≤ −ηE

1
2
E∥∇f(x(t))∥2 + 1

2
E

∥∥∥∥∥∑
k

pk∆
(t)
k

∥∥∥∥∥
2

− E

∥∥∥∥∥∇f(x(t))−
∑
k

pk∆
(t)
k

∥∥∥∥∥
2
+

η2E2H2L

2

≤ −ηE

2
E∥∇f(x(t))∥2 + ηE E

∥∥∥∥∥∇f(x(t))−
∑
k

pk∆
(t)
k

∥∥∥∥∥
2

+
η2E2H2L

2
.

(15)

Rewrite the discrepancy in equation 15 as

∇f(x(t))−
∑
k

pk∆
(t)
k =

1

E

K∑
k=1

pk

E∑
i=1

H∑
h=1

(
∇fk,h(x(t))− m

(t,i)
k,h

∥m(t,i)
k,h ∥

)
(16)

Applying Cauchy–Schwarz and then Corollary A.2,

E
∥∥∥∇f(x(t))−

∑
k

pk∆
(t)
k

∥∥∥2 ≤ H

E

∑
k

pk

E∑
i=1

H∑
h=1

E
∥∥∥∇fk,h(x(t))− m

(t,i)
k,h

∥m(t,i)
k,h ∥

∥∥∥2
≤ ρH

E

∑
k

pk

E∑
i=1

H∑
h=1

E
∥∥∥∇fk,h(x(t))−m

(t,i)
k,h

∥∥∥2.
(17)

Combining the descent bound equation 15, discrepency bound equation 17, and the moment-difference
bound of Lemma A.3 yields for every global round t

E
[
f(x(t+1))

]
− E

[
f(x(t))

]
≤ −ηE

2
E
∥∥∇f(x(t))

∥∥2 + ηE

(
ρH

E

∑
k

pk

E∑
i=1

H∑
h=1

E
[
∥∇fk,h(x(t))−m

(t,i)
k,h ∥

2
])

+
η2E2H2L

2

≤ − ηE

2
E
∥∥∇f(x(t))

∥∥2 +D1η
2 +D2η

3 (18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where the deterministic coefficients are

D1 := 2cρσ2E2H2,

D2 :=
2

3
ρE2H4L2 +

2β2

1− β
ρE2H4L2.

Re-arrainging equation 18 and summation over T yields

1

T

T∑
t=1

E
∥∥∇f(x(t))

∥∥2 ≤ 2(E[f(x(1))]− E[f(x(T+1)])

ηET
+

2D1η

E
+

2D2η
2

E
. (19)

Set 1− β = cη for some c > 0 satisfying cη < 1. Then, for η = η0T
−1/2, we have

2(E[f(x(1))]− E[f(x(T+1)])

ηET
=

2(E[f(x(1))]− f∗)

η0E
√
T

= O(T−1/2)

2D1η

E
= 2cρσ2E2H2η = O(T−1/2)

2D2η
2

E
=

(
4

3
η +

2β2

c

)
ρEH4L2η = O(T−1/2),

Therefore, the RHS of equation 19 is O(T−1/2). Taking the minimum over t = 1, . . . , T on the left
and observing that each term is nonnegative gives the same upper bound for mint<T E[∥∇f(x(t))∥2].
Hence,

min
t<T

E[∥∇f(x(t))∥2] ≤ O(T−1/2), (20)

which completes the proof of Theorem 3.5.

B DETAIL OF FEDHOO

We present the pseudocode of FedHOO in Algorithm 2. We write diam(ν) = maxk
(
Uk(ν)−Lk(ν)

)
corresponding to the ℓ∞ width of the interval and use ⊙ as element-wise product.

Intuition with an example. To illustrate how FedHOO works, consider a simple setting with
K = 2 clients, and the search space is [0, 1]2. The root node of the search tree corresponds to the full
box [0, 1]× [0, 1]. If we split this root into four quadrants, the child nodes are

[0, 0.5]× [0, 0.5], [0, 0.5]× [0.5, 1.0], [0.5, 1.0]× [0, 0.5], [0.5, 1.0]× [0.5, 1.0].

Exploring further, the child [0, 0.5]× [0, 0.5] can itself be split into four sub-boxes such as [0, 0.25]×
[0, 0.25] and [0, 0.25]× [0.25, 0.5], and so on. This recursive partitioning continues as the algorithm
zooms in on promising regions.

In the standard HOO algorithm, only one node can be explored in each round. For example, at round
1, HOO would select just a single quadrant, say [0, 0.5]× [0.5, 1.0], and update its statistics based on
a single evaluation. Over many rounds, this gradually builds information, but the search may proceed
slowly because each evaluation provides feedback for only one region of the tree.

By contrast, FedHOO leverages the federated setting to explore many regions at once using parallelism
of FL. Because each client performs two local runs (with two different probe rates), the server can
synthesize outcomes corresponding to all corner combinations of the current interval. In the two-
client example, this means that in a single round, FedHOO obtains rewards for all four quadrants
simultaneously. For instance, at round 1, FedHOO evaluates the four children at depth h = 1:

[0, 0.5]× [0, 0.5], [0, 0.5]× [0.5, 1.0], [0.5, 1.0]× [0, 0.5], [0.5, 1.0]× [0.5, 1.0].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 FedHOO

Require: bounds rmin, rmax, global rounds T , optimism constant α
1: initialize νroot with interval I(νroot) = [rmin, rmax]

K ; set V (νroot) = 0, N(νroot) = 0,
B(νroot) = +∞

2: initialize global model x(0)

3: for t = 0, . . . , T − 1 do
4: ν ← argmaxleaf B(ν); let I(ν) =

∏K
k=1[Lk, Uk]

5: broadcast x(t) and send rLk = (3Lk + Uk)/4, rUk = (Lk + 3Uk)/4 to each client k
6: for each client k in parallel do
7: train with rate rLk starting from x(t) to obtain local update ∆L

k = x(t) − x̄L; x̄L is the
resulting solution of the local training with rLk

8: train with rate rUk starting from x(t) to obtain local update ∆U
k = x(t) − x̄U ; x̄U is the

resulting solution of the local training with rUk
9: return (∆L

k ,∆
U
k)

10: end for
11: for each s ∈ {0, 1}K do
12: Define r̂(s) = (1− s)⊙ L+ s⊙ U and r̃(s) = s⊙ L+ (1− s)⊙ U

13: ∆(s) =

K∑
k=1

pk
[
(1− sk)∆

L
k + sk∆

U
k

]
14: x(s) ← x(t) +∆(s), R(s) ← Validate(x(s))

15: create leaf νs with parent node ν with I(ν) = Πk[r̂
(s)
k , r̃

(s)
k]

16: set V (νs)← R(s), N(νs)← 1, B(νs)← V (νs)
17: end for
18: s⋆ ← argmaxs R

(s), x(t+1) ← x(s⋆)

19: R̄← 2−K
∑

s R
(s)

20: for node ν′ on path from ν to root do
21: N(ν′)← N(ν′) + 2K

22: V (ν′)← V (ν′) +
2K

N(ν′)

(
R̄− V (ν′)

)
23: B(ν′)← V (ν′) + τ diam(ν)h +

√
α ln(t+ 1) /N(ν′)

24: end for
25: end for

This parallel evaluation dramatically accelerates the search. Rather than spending four rounds to
cover these quadrants (as in HOO), FedHOO requires only one. As the depth increases, the same
principle applies: four sub-intervals at depth h = 2 can be evaluated together by reusing the two local
runs per client.

Summary and limitation. The main advantage of FedHOO is that the federated setting allows the
server to combine a small number of local runs into exponentially many synthetic evaluations. In
the two-client example, two runs per client yield four corner evaluations in each round, and more
generally 2K corners can be evaluated from only two runs per client. This exponential coverage
greatly accelerates the search compared to classical HOO, which can only evaluate a single node per
round.

A limitation of this approach is the overhead of validating 2K candidate models at each round, which
may become expensive for large K. In addition, extending the procedure to partial participation is not
straightforward, since missing client updates can prevent consistent synthesis of all corners. These
issues suggest that while FedHOO is powerful for moderate K or cluster-level dimensions, further
work is needed to make it scalable to very large federations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C DETAIL OF THE EXPERIMENT SETTING

In this appendix, we provide full details of our experimental setup, including datasets, model
architectures, training hyperparameters, and federated protocols.

C.1 DATASETS AND MODELS

We evaluate on five benchmarks. CIFAR-10-LT and CIFAR-100-LT are long-tailed variants of
CIFAR-10/100 with imbalance rates 20 and 100, constructed via the protocol of Liu et al. Liu
et al. (2019). Adult Income is a binary classification task with original imbalance ratio 3.17 and
additional settings of 10 and 20 obtained by subsampling the minority class Becker & Kohavi (1996).
UNSW-NB15 is a ten-class network-flow dataset with natural imbalance 434 Moustafa & Slay (2015).
The proprietary Chip-Defect-Detection (CDD) corpus comprises of approximately 780k optical
micrographs (224×224) from five semiconductor fabs, in which only 1.7% of samples contain defects.
CDD dataset is split by factory into 70% train, 15% validation, and 15% test. To expose the class
imbalance inherent in our dataset, Figure 5 reports the number of defect and non-defect samples
recorded by each factory.

We train a ResNet18 (He et al., 2016) model from scratch on all public image benchmarks using batch
normalization for FedAvg, Ratio Loss, and Weighted Cross Entropy and using group normalization
for FedCGN and FedCGNM. For tabular tasks we employ a four layer fully connected network
with hidden dimensions of 32, 16, 8, and 2 and ReLU activations on the Adult Income data and we
adopt the CNN–LSTM architecture of Pear & Kibria (2024), consisting of stacked one-dimensional
convolutional filters feeding into an LSTM to capture temporal correlations in network-flow features
for UNSW-NB15. For CDD, we use ResNet-34. Table 4 summarizes each architecture.

Table 4: Model specifications for each dataset used in our experiments.

Dataset Input Backbone Principal Layers

CDD 224×224 RGB ResNet-34 conv 7× 7–BN–ReLU; 4× residual stages
CIFAR-10-LT 32×32 RGB ResNet-18 conv 3× 3; 8× basic blocks
CIFAR-100-LT 32×32 RGB ResNet-18 conv 3× 3; 8× basic blocks
Adult Income 104-dim tabular 4-layer FFNN 32→16→8→2 with ReLU and BN/GN
UNSW-NB15 196-length sequence CNN–LSTM Conv1D[128,256,512] → LSTM → FC

C.2 IMPLEMENTATION AND TRAINING DETAILS

All algorithms—FedAvg (SGD), weighted cross-entropy, Ratio Loss, FedCGN, and Fed-
CGNM—share the same training search strategy. We tune the initial learning rate over the set
{0.4, 0.2, 0.1, 0.05, 0.01} by grid search and then decay it with a cosine annealing curve that reaches
10−4 at the final round. Weight decay is selected from {10−4, 10−3} and the batch size is selected
from {32, 64, 128}. For FedCGNM we additionally test the group momentum coefficient β over
{0.5, 0.6, 0.7, 0.8, 0.9}. Each communication round runs three local epochs when five clients partici-
pate and five local epochs when twenty clients participate on the image benchmarks; Adult Income
and UNSW NB15 use a single local epoch per round because their training sets are comparatively
small. All jobs are executed with PyTorch 2.4.1 and CUDA 11.4 on four NVIDIA TITAN Xp GPUs.

Sampling rates rk ∈ [0.4, 0.8] are tuned via FedHOO when K = 5, initializing a hierarchical tree
over [0.4, 0.8]K with optimism constant α = 1.0. In each round, clients evaluate two candidate rates
(rLk , r

U
k), return update deltas, and the server extrapolates rewards for all 2K combinations at linear

cost. For K = 20, a uniform global rate is used. In implementation, we perform three rounds of
training without expanding tree to tackle cold start problem, since the initial training rounds are
sensitive to sampling rate choices, and cap the FedHOO search tree at depth 5. This provides a fine
enough resolution of sampling rates while keeping the exponential branching factor computationally
manageable. Empirically, we found that deeper trees do not yield meaningful accuracy gains, as the
noise inherent in federated training outweighs the benefit of additional granularity, whereas depth 5
provides a stable balance between exploration and efficiency.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: Distribution of sample counts by factory and defect code. Each row represents one factory;
the left panel displays defect counts and the right panel shows non-defect counts, both on a logarithmic
y-axis.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In the small-scale regime (K = 5), all clients participate each round. In the moderate-scale regime
(K = 20), we sample 50 % of clients per round. Public datasets are split IID across clients; the CDD
corpus is partitioned by factory based on real meta data to simulate non-IID conditions.

D ADDITIONAL EXPERIMENT RESULTS

In this appendix, we provide supplementary analyses to validate our design choices and assess
the proposed algorithms under more challenging conditions. We first verify the optimality of our
variance-based grouping threshold, then evaluate the effectiveness of FedHOO, analyze its resampling
rate behavior compared to standard HOO, and further test FedCGNM under non-IID data, large-client
federations, and varying numbers of groups.

D.1 VALIDATION OF THE VARIANCE-BASED GROUPING THRESHOLD

To confirm that our grouping rule reliably identifies the optimal split, we sweep the threshold
t ∈ {1, . . . , 9}, i.e. the number of rarest classes assigned to the minority group, and record test
accuracy on CIFAR-10-LT under imbalance rates 20 and 100. As shown in Figure 6, the threshold
t = 6 selected by minimizing within-group variance (vertical dashed red line) coincides with the
highest performance in both settings, demonstrating that our data-driven rule matches the empirical
optimum without exhaustive search.

(a) CIFAR-10 - Imbalance rate=20 (b) CIFAR-10 - Imbalance rate=100

Figure 6: Test accuracy versus the number of rarest classes assigned to the minority group on CIFAR-
10-LT. The dashed red line at t = 6 marks the threshold chosen by our variance-based grouping rule,
which aligns with the peak test accuracy in both imbalance scenarios.

D.2 EFFECTIVENESS OF FEDHOO

Table 5 compares the company’s metric obtained on the proprietary CDD benchmark when each
federated optimizer runs with a fixed uniform resampling rate versus when per-client rates are tuned
by our FedHOO strategy. We include this result to demonstrate that FedHOO remains effective
even when integrated with alternative training paradigms. FedHOO consistently boosts performance,
confirming that our method is beneficial even when combined with optimizers other than FedCGNM.

Table 5: Performance improvement on CDD benchmark with a uniform global sampling rate versus
the FedHOO.

Algorithm Global Rate FedHOO improvement %

FedAvg 72.83 85.37 17.22
Weighted CE 76.58 87.20 13.86
Ratio Loss 77.68 87.59 12.76
FedCGN 85.37 88.25 3.37
FedCGNM 86.88 90.87 4.59

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) CIFAR-10-LT20 (b) CIFAR-10-LT100 (c) CIFAR-100-LT20 (d) CIFAR-100-LT100

(e) Adult-LT3 (f) Adult-LT10 (g) Adult-LT20 (h) UNSW

Figure 7: Per-client resampling rate trajectories selected by FedHOO across datasets and imbalance
settings.

D.3 RESAMPLING RATES IN FEDHOO

To better understand and illustrate the benefit of FedHOO, we plot and compare the trajectories of
sampling rate selection under FedHOO and standard HOO. In FedHOO, the selected sampling rates
correspond to the candidates yielding the best-performing model in each round, which is then adopted
as the subsequent training initialization. As outlined in the implementation details, we restrict the
search tree to a maximum depth of five.

Figure 7 illustrates how FedHOO adaptively selects per-client resampling rates across different
datasets and imbalance severities, and Figure 8 shows how HOO selects per-client resampling rates on
CIFAR-10-LT20 dataset. Each curve corresponds to one client, with the y-axis showing its selected
sampling rate, and the x-axis showing the communication rounds.

Figure 8: Per-client resampling rate trajectories selected by standard HOO on CIFAR-10 iid setting
with imbalance rate ξ = 20.

Under standard HOO, the algorithm explores only one branch of the search tree per round. As a
result, the sampling rate assigned to each client fluctuates heavily throughout training, and fail to
converge in reasonable training time. The per-client trajectories remain noisy even after hundreds of
rounds, reflecting the limited feedback that HOO gathers in each step.

In contrast, FedHOO leverages federated parallelism: by evaluating two candidate rates per client and
linearly combining their updates, it effectively observes all 2K combinations at once. This parallel
exploration dramatically accelerates the search. The sampling rates quickly stabilize after the initial
rounds, with each client settling into a distinct but consistent rate. The stabilized patterns observed
across datasets in Figure 7 confirm that FedHOO both reduces variance and identifies effective
configurations much earlier in training.

Overall, these plots highlight the key difference: while HOO suffers from slow and noisy adaptation
due to sequential exploration, FedHOO achieves rapid and stable convergence by exploiting the
structure of federated training.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.4 FEDCGNM IN NON-IID AND LARGE-FEDERATION REGIMES

To further assess robustness, we evaluate FedCGNM under two challenging conditions beyond
the main experiments: (i) non-IID data distributions and (ii) large numbers of clients with partial
participation.

Non-IID distributions. We simulate client heterogeneity using Dirichlet partitioning with con-
centration α = 0.5. Table 6 shows results on CIFAR-10 and CIFAR-100 with imbalance rate 20.
Across both small (K = 5) and moderate (K = 20) federations, FedCGNM consistently outperforms
FedAvg, FedCGN, and other strong baselines, demonstrating its ability to remain effective even when
client data distributions are highly skewed.

Table 6: Performance under non-IID distributions (Dirichlet α = 0.5).

Dataset K Imbalance FedAvg FedCGNM FedCGN Weighted CE Ratio Loss

CIFAR-10 5 20 0.7845 0.8316 0.8223 0.8071 0.7952
20 20 0.6942 0.7437 0.7361 0.5616 0.6518

CIFAR-100 5 20 0.4150 0.4351 0.4210 0.3511 0.4083
20 20 0.3347 0.3463 0.3390 0.2604 0.2977

Large-client regime with partial participation. We also evaluate FedCGNM when the number
of clients is large and only small fraction participate per round, which is a scenario that amplifies
variance and typically harms optimization. Table 7 reports results on CIFAR-10-LT and CIFAR-
100-LT with imbalance rates 20 and 100. While all methods degrade in this setting, FedCGNM
consistently achieves the best performance, surpassing both reweighting-based and per-group gradient-
normalization baselines.

Table 7: Performance in large-client federations with partial participation.

Method C10-LT20 C10-LT100 C100-LT20 C100-LT100

FedAvg 0.3324 0.2267 0.0830 0.0471
FedWL 0.4423 0.3131 0.0962 0.0533
FedRL 0.3306 0.2266 0.0847 0.0464
FedCGN 0.4441 0.2994 0.1226 0.0696
FedCGNM 0.4675 0.3331 0.1227 0.0725

Together, these results demonstrate that FedCGNM retains its advantage in more challenging federated
environments: it scales to non-IID data and large-client regimes where baseline methods suffer the
most.

D.5 THE EFFECT OF THE NUMBER OF GROUPS

To confirm that two groups offer the best bias–variance trade-off beyond the setting in Figure 4, we
repeat the analysis on other settings. Figure 9 shows the training and validation losses when the
number of groups H is set to {2, 3, 4} for CIFAR-10 and CIFAR-100.

In both benchmarks the pattern mirrors our earlier finding: validation loss stays lowest and most
stable for H = 2, whereas H = 3, 4 starts to drift upward sooner, which is a signal of accelerated
over-fitting. The training loss, by contrast, continues to fall for all values of H , which widens the
train–validation gap when more than two groups are used. These results reinforce the conclusion that
splitting classes into exactly two groups strikes the right balance between reducing gradient variance
and controlling over-fitting for CIFAR-10 and CIFAR-100.

D.6 PER-CLASS ACCURACY DISTRIBUTION

From Figure 10, FedCGNM (blue) shifts the per-class accuracy distribution markedly to the right
compared to FedAvg (orange), substantially reducing the number of near-zero classes. Whereas

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) CIFAR-10-LT, imbalance 20, K = 5 (b) CIFAR-100-LT, imbalance 20, K = 20

Figure 9: Training and validation loss for different numbers of groups H ∈ {2, 3, 4}.

FedAvg produces a heavy tail of classes below 0.1 accuracy, FedCGNM elevates most classes into
a moderate accuracy range. FedCGN also achieves a more balanced distribution, confirming the
effectiveness of the grouping strategy in balancing class-wise performance.

Figure 10: Distribution of per-class test accuracies on CIFAR-100-LT (imbalance rate=100, K=5).

22

	Introduction
	Related Works
	Methodology
	Federated Class-Grouped-Normalized-Momentum
	Grouping of Classes
	Resampling
	Convergence Analysis of FedCGNM

	Experiments
	Experiment Settings
	Primary Real-World Evaluation: Chip-Defect Detection (CDD)
	Evaluation on Public Datasets
	Sensitivity Analysis

	Conclusion
	Proof
	Supplementary Lemmas
	Proof of Theorem 3.5

	Detail of FedHOO
	Detail of the Experiment Setting
	Datasets and Models
	Implementation and Training Details

	Additional Experiment Results
	Validation of the Variance‐Based Grouping Threshold
	Effectiveness of FedHOO
	Resampling Rates in FedHOO
	FedCGNM in Non-IID and Large-Federation Regimes
	The Effect of the Number of Groups
	Per-Class Accuracy Distribution

