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Abstract
As the climate is changing, large changes in veg-
etation distribution are already taking place and
expected to happen in the future. Our goal is to
explore the links between climate and vegetation,
and build a predictive model mapping climatic
conditions to vegetation cover, based on global
remote sensing data. The main challenge is that
many areas in the world are already significantly
impacted by human activities, and natural mosaic
of vegetation is altered, which makes natural vege-
tation data incomplete and increasingly inaccurate
after fractions of agricultural and urban activity
are removed. Here we employ multi-output feed-
forward neural networks for predicting natural
vegetation cover from local climatic conditions.
We conduct experiments to evaluate how accurate
predictions of the vegetation fraction can be and
how they are affected by human-altered observa-
tions. Results show that it is possible to make
such predictions with high accuracy even if the
training data are incomplete.

1. Introduction
Similar climatic conditions create environments where simi-
lar vegetation types can exist (Adams, 2009). Good under-
standing of such links can help to model and predict future
changes in vegetation distribution. In this study, we aim
to predict the fractions of natural land cover type for given
areas of land from local climatic conditions. The natural
land cover types here are the ones which are determined
only by climatic conditions and exist independently of or
without human intervention (Figure 1). The data we are
analyzing are remote sensing data. Each observation holds
values of climate variables and corresponding fractions of
land cover types. The main challenge of this prediction task
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Figure 1. Distribution of natural land cover by dominant type

is that many parts of the landscape are altered by excessive
human activities and changed into urban areas or croplands,
and it is unknown which natural vegetation types have been
replaced by human activity land cover types, and to what
extent. Therefore, part of the information on what would
be the real distribution of land vegetation, given current
climatic conditions, is not available. For example, in one
observation 5% of land is urban area, 15% grassland, 50%
forest and 30% shrublands. When we discard human activity
fraction, we are left with 95% covered grid cell. It is incom-
plete as we do not know how those 5% would have been
distributed. For example, these 5% could have been only
forest or maybe 2.5% was forest and 2.5% was grasslands,
or 1% forest, 1% grassland, 3% shrublands and so on. We
seek to find the global patterns with the intention to better
understand what would be the distribution of the vegetation
if the landscape would have not been excessively altered by
humans. We approach this in two main tasks. Firstly, we
need to predict the fraction of each vegetation type in rela-
tion with other vegetation types. This should be done under
the constraint that all fractions have to sum up unity. One
way to address the fraction prediction problem is to look
at it as a compositional data analysis problem (Aitchison,
1982; Pawlowsky-Glahn & Buccianti, 2011). Such data are
being analyzed in various fields: demography (Lloyd et al.,
2012), economics (Ferrer-Rosell et al., 2015), chemistry and
geology (Buchanan et al., 2012). For example, in (Buchanan
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et al., 2012) authors describe high resolution prediction of
the soil particle-size fractions and highlight that most com-
monly applied methods as multiple linear regression does
not follow the requirements (non-negativity and summation
to unity) of compositional data. Therefore, the authors of the
paper transform the data from simplex to real space by using
additive log-ratio transformation, which is widely used for
this purpose. However, log-ratio transformations fail in case
of presence of zero values in the composition (Wang et al.,
2007). Our vegetation fraction data has many sites where
one or more vegetation type is absent. Thus, if we would use
compositional data analysis approach, zero values would
require specific treatment. Another way is to define this
problem as a multi-output (multi-target) regression problem
(Borchani et al., 2015) which aims to simultaneously predict
multiple real-valued output/target variables. In (Kocev et al.,
2009) a multi-target regression tree was used for prediction
of the quality of the remnant indigenous vegetation across
an extensive area of south-eastern Australia. The authors
state that one of the main advantages of multi-target predic-
tion over separate models for each target is that multi-output
models can capture underlying relationships between the tar-
gets. It is an important advantage in case of the fraction data
as its compositional structure make the targets dependant
on each other. In addition, the multi-target models have a
smaller size and thereby are faster to learn and apply. In (Li
& Yeh, 2002) a three-layer neural network was employed
for the simulation of multiple land uses. The authors ex-
plain that, as many geographical phenomena variables are
correlated, the neural networks provide an advantage over
traditional regression models by not necessarily requiring
for spatial variables to be independent of one another, as
these dependencies are modeled by hidden layers. Secondly,
since only around 20% of all observations are in the areas
minimally impacted, or not impacted, by humans, we need
to infer the fraction of vegetation types reduced by human
activity or replaced by water, i.e., we need to deal with in-
complete data. In this article, the term incomplete data is
not used as an analogous term for the missing data problem.
The missing data problem is defined as lack of information
for some variables for some cases (Allison, 2001). However
the values of the vegetation fractions are not completely
missing. In most of the cases the fractions of the vegetation
are only reduced by unknown amount and does not sum up
exactly to unity. In around 1% of all observations in our
data the land cover is composed solely of human activity
types or/and water. Only in such cases the values of nat-
ural vegetation fractions are completely missing. For the
issue of incomplete data, if approached as a missing data
problem, we note that several different approaches could
be applied. In (Little & Rubin, 2019) these approaches are
broadly grouped into four categories: procedures based on
completely recorded units, weighting procedures, imputa-
tion, model based methods. However, the incompleteness

of our vegetation fraction data resembles weakly supervi-
sion learning problem (Zhou, 2017), common, for instance
in computer vision tasks. Although, it has not been exten-
sively analyzed for regression problems. We design and
experiment with neural networks architectures to evaluate
how accurate predictions of the vegetation types can be, as
well as how much are they affected by incomplete observa-
tions. Results show that with our approach it is possible to
achieve high prediction accuracy. Additionally, we analyze
which fractions of different types of vegetation are difficult
to predict or not predicted as accurately as others.

2. Problem Definition
We have a matrix

X ∈ R52297×47

where each row corresponds to 47 climatic features for a
given area of land; 52297 areas in total.

The aim is to produce an output matrix

Ŷ ∈ [0, 1]52297×13

under the constraint that each row [ŷi,1, . . . , ŷi,13] represents
a distribution over vegetation types (listed in Figure 1 and
Table 2); i.e., under the constraint

∑
j ŷi,j = 1 so as to be a

valid distribution. However, the output matrix which we use
for training is:

Ỹ ∈ [0, 1]52297×13

under the assumption that

ỹi,1 + ỹi,2 + · · ·+ ỹi,13 + hi + wi = 1 (1)

where

hi = hi,1 + hi,2 + · · ·+ hi,13, h ∈ [0, 1], and

wi = wi,1 + wi,2 + · · ·+ wi,13, w ∈ [0, 1]

represent the fractions of human impact and water bodies,
respectively, in the i-th region.

On top of the constraint of ensuring a valid distribution
that sums to unity for each row of output, the main chal-
lenge is that it is not known how h and w are distributed
over different vegetation types, hence the incomplete data
problem.

3. Data
Our data set consists of climatic variables and correspond-
ing vegetation fraction variables. Climatic variables are
from two open access data sources: BIOCLIM data (Fick
& Hijmans, 2017) and Climdex Climate extreme indices
(CEI) (Sillmann et al., 2013a;b), as well as the Precipitation
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minus Potential Evaporation (PET) variable derived from
the cru ts4.01 dataset (Mitchell & Jones, 2005; Harris et al.,
2014). PET variable was added to our data set for capturing
the aridity of the environment. BIOCLIM data set is made
of observations averaged over thirty years (1970-2000) and
includes annual averages, ranges or max-min values, for
example, mean annual temperature, mean annual rainfall or
max temperature of warmest month. CEI data set consists of
observations which are averaged over a twenty-year period
(1979-2010) and includes various climate extremes such as
maximum length of dry spell (consecutive days without a
rainfall), monthly minimum value of daily maximum tem-
perature. The vegetation fraction variables are from MODIS
(Channan et al., 2014) land cover product (MCD12C1), year
2001. BIOCLIM, CEI and MODIS data as well as PET
variable were interpolated onto a 10min× 10min grid then
nearest interpolation onto 50km× 50km grid.

4. The Proposed Approach
For solving the vegetation fraction prediction problem we
employ feed-forward multi-output neural networks. We
perform the analysis from two perspectives: training the
neural network for evaluation of prediction accuracy and
learning how different strategies of dealing with incomplete
data affects these prediction results.

4.1. Baseline Methods and Neural Network

To compare the results of the neural network, we selected
three trivial solutions as baselines. The first approach is
equivalent to the majority class concept. We predict each
fraction value to be equal to one for the land cover type,
which occupies the biggest territory worldwide, and zero
for the other types. The second approach predicts fractions
of all types to be equal. That is, all vegetation types are
predicted to occupy approximately 0.077 fraction of the grid
cell. The third approach predicts the fractions to be of the
same size as the distribution of each type in the training
data. For example, Grasslands are predicted to occupy
approximately 0.16 part of the grid cell.

The proposed feed-forward neural network comprises of
three layers. The first layer consists of 47 input neurons for
each climatic feature. The hidden layer has 20 neurons and
is activated by the Rectified Linear Unit (ReLU) activation
function. The third layer consists of 13 output neurons for
each vegetation type. In order to satisfy the constraint of the
outputs summing up to unity, we apply the softmax function
in the output layer. The architecture of the neural network
was chosen based on the values of ten-fold cross-validation
errors (root mean squared error, mean absolute error) of
the initial experiments. The neural networks were trained
using the mean absolute error loss function, and RMSProp
optimizer. All experiments were carried out using the Keras

(Chollet, 2015) library. Computing resources were provided
by the Finnish Grid and Cloud Infrastructure (persistent
identifier urn:nbn:fi:research-infras-2016072533).

4.2. Incomplete Data Approaches

We tested several approaches to deal with incomplete data:

1. Basic approach of the missing data. That is, discarding
incomplete observations and conducting analysis only
on complete data.

2. Re-scaling each observation to sum up to unity.
3. Imputation based on latitudes. For each latitude, we

calculate averages of the vegetation fractions in com-
plete observations. Instead of substituting incomplete
observations of the same latitude with these averages,
we only fill in the missing parts. The difference be-
tween averaged observation and incomplete observa-
tion is used as proportion guideline of how much of
each vegetation type should be filled in.

4. Imputation based on latitudes and elevation. The dif-
ference from the previous approach is that we calculate
averages for each combination of latitude and elevation.
Elevation values are divided into 5 range categories.

5. Using incomplete data without alterations together
with complete observations (all observations).

6. Using asymmetric Loss Function when training neural
networks. We expect the neural network to predict
the true fractions which would be either of the same or
higher value than in incomplete observation. Therefore,
we consider asymmetric loss function described in (El-
liott et al., 2005). We penalize MAE loss multiplying
by real number p = 2 in case of under-prediction when
predicted value is smaller than the ground-true value.

4.3. Performance Evaluation

The results of the experiments are compared using root
mean squared (RMSE) and mean absolute (MAE) errors.
We evaluate the performance of all the fraction prediction
experiments only on complete (C) observations as these
errors would be misleading computed on incomplete (INC)
data when the outputs are trained to sum up to unity. How-
ever, the complete observations are not uniformly distributed
across the world. For evaluating models performance on
both complete and incomplete data, we compare how well
the dominant vegetation type is predicted and measure the
prediction accuracy as in classification task. The dominant
vegetation type is considered to be the one which occu-
pies the largest fraction in a grid cell. In this approach, we
consider only those observations where dominant type re-
mains the same even if the human activity fraction would
be added to the second largest vegetation type. In this case,
we are able to evaluate predictions on around 80% of all
observations.
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Table 1. Prediction errors (×102) on the test set and accuracy for the dominant type

APPROACH TRAINING DATA MAE RMSE ACC. (C / INC)

NEURAL NETS ONLY COMPLETE OBSERVATIONS 1.36 3.20 94% / 63%
RE-SCALED OBSERVATIONS 2.14 5.07 88% / 80%
MISSING PARTS IMPUTED (LATITUDE) 2.16 5.19 93% / 80%
MISSING PARTS IMPUTED (LATITUDE & ELEVATION) 1.30 3.01 93% / 80%
ALL OBSERVATIONS 2.12 4.94 93% / 80%

NEURAL NETS (ASYMM. LOSS) ONLY COMPLETE OBSERVATIONS 1.39 3.23 93% / 63%
NEURAL NETS (ASYMM. LOSS) ALL OBSERVATIONS 1.25 2.89 93% / 80%
BIGGEST TYPE - 8.0 18.1 -
EQUAL PROPORTION - 13.8 19.6 -
DISTRIBUTION OF DATA - 11.5 17.0 -

Table 2. Prediction errors (×102) on the test set

VEGETATION TYPE MAE RMSE

EVERGREEN NEEDLELEAF FORESTS 0.30 3.38
EVERGREEN BROADLEAF FORESTS 0.51 4.91
DECIDUOUS NEEDLELEAF FORESTS 0.14 1.32
DECIDUOUS BROADLEAF FORESTS 0.13 3.10
MIXED FORESTS 0.29 2.61
CLOSED SHRUBLANDS 0.18 1.87
OPEN SHRUBLANDS 4.59 12.69
WOODY SAVANNAS 1.33 5.89
SAVANNAS 1.10 5.06
GRASSLANDS 4.02 10.93
PERMANENT WETLANDS 0.11 1.01
PERMANENT SNOW & ICE 0.35 3.31
BARREN OR SPARSELY VEGETATED 3.25 11.16

5. Results and Implications
The predictions of our neural network yields lower errors
than chosen baseline approaches (Table 1). Therefore, we
consider our model to be reasonably informative. The exper-
iments with different incomplete data approaches show that
the most accurate results can be achieved by using asymmet-
ric loss function in model training when both complete and
incomplete observations are used. Prediction errors of using
only complete observations in model training are one of the
lowest. However, experimental results on evaluating the
prediction accuracy of dominant vegetation types (Table 1)
show that using this approach the prediction accuracy of
incomplete observations is only 62%. This suggests that
complete observations does not carry full information about
distribution of the natural vegetation worldwide as removing
incomplete observations leads to the loss of majority of data
points in Europe, North America as well as India. Imputa-
tion based on only latitude and re-scaling approaches did
not lead to any improvement in prediction errors. However,
combining elevation with latitude seems to yield similar to
asymmetric loss function approach results. Values in Ta-

ble 2 represent the mean errors of different predicted types
of land cover. If we analyze the errors of each vegetation
type separately, it is clear that not all fractions of land cover
types can be predicted equally well. For instance, fractions
of Grasslands, Open Shrublands and Sparsely vegetated
land covers are predicted with at least four times higher
error than any other land cover type. One of the possible
reasons for this could be that these land cover types can
exist in very similar or, in some cases, the same climatic
conditions.

6. Conclusions
We analyzed vegetation type from climatic conditions, and
employed a neural network architecture suitable for predict-
ing the composition of vegetation cover in the presence of
incomplete data. Our experimental results show that we can
predict vegetation fractions with high accuracy. However,
for some of the vegetation types prediction error is higher
than for others. Those types can coexist in very similar
climatic conditions, and thus, their proportions can be easily
mixed by the model. The results also indicate that by using
asymmetric loss function or imputing incomplete data based
on latitude and elevation, it is possible to train the model on
both complete and incomplete data at the same time without
increasing prediction error of complete observations. When
we include incomplete data into the training set, different
parts of the world are more equally represented and the
model is not adapted only to complete observations. In this
way, we can model potentially more accurate worldwide
links between vegetation and climate.
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