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Abstract

Deploying graph neural networks (GNNs) on whole-graph classification or regression tasks
is challenging, often requiring node features that are mindful of both local interactions and
the graph global context. GNN architectures need to avoid pathological behaviours, such
as bottlenecks and oversquashing, while ideally having linear time and space complexity
requirements. In this work, we propose an elegant approach based on propagating infor-
mation over expander graphs. We provide an efficient method for constructing expander
graphs of a given size, and use this insight to propose the EGP model. We show that EGP
is able to address all of the above concerns, while requiring minimal effort to set up, and
provide evidence of its empirical utility on relevant datasets and baselines in the Open
Graph Benchmark. Importantly, using expander graphs as a template for message passing
necessarily gives rise to negative curvature. While this appears to be counterintuitive in light
of recent related work on oversquashing, we theoretically demonstrate that negatively curved
edges are likely to be required to obtain scalable message passing without bottlenecks.

Keywords: graph neural networks, graph representation learning, graph machine learning,
bottlenecks, oversquashing, curvature, expander graphs, cayley graphs, group theory

1. Introduction

Most GNNs rely on propagating information between neighbouring nodes in the graph
(Bronstein et al., 2021). However, in many areas of scientific interest, purely local interactions
are likely to be insufficient, while merely stacking more message passing layers over the input
graph is often inadequate, as it leaves GNNs vulnerable to pathological behaviours such
as oversquashing (Alon and Yahav, 2020), wherein nodes close to bottlenecks in the graph
would need to store quantities of information that are exponentially increasing with depth.

Precisely, we seek a method that satisfies four desirable criteria: (C1) it is capable of
propagating information globally in the graph; (C2) it is resistant to the oversquashing effect
and does not introduce bottlenecks; (C3) its time and space complexity remain subquadratic;
and (C4) it requires no dedicated preprocessing of the input. We survey prior methods in
detail within Appendix A, demonstrating they do not accomplish (C1–C4) simultaneously.

In this paper, we identify expander graphs as very attractive objects in this regard.
Specifically, they offer a family of graph structures that are fundamentally sparse, while
having low diameter : thus, any two nodes in an expander graph may reach each other in a
short number of hops, eliminating bottlenecks (Figure 1). Further, we will demonstrate an
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Figure 1: Left: The Cayley graph of SLp2,Z3q. It has |V | “ 24 and it is 4-regular. Despite
its sparsity, it is highly interconnected, with a diameter of 4. Right: The Cayley
graph of SLp2,Z5q, with |V | “ 120. A 2-hop neighbourhood of a node (red) is
highlighted, demonstrating its tree-like local structure.

efficient way to construct a family of expander graphs (leveraging known results on the special
linear group, SLp2,Znq). Once an expander graph of appropriate size is constructed, we
perform a certain number of GNN propagation steps over its structure to globally distribute
the nodes’ features. Accordingly, we name our method expander graph propagation (EGP).

We also show that, in spite of their negative curvature, our expander graphs never
trigger the conditions necessary for the oversquashing results in Topping et al. (2021) to
be applicable, and prove that the existence of negatively curved edges might in fact be
required in order to have sparse communication without bottlenecks.

2. Theoretical background

Definition 1 A collection tGiu of finite connected graphs is an expander family if there
is a constant c ą 0 such that for all Gi in the collection, λ1pGiq ě c, where λ1pGiq is the
second-smallest eigenvalue of the graph Laplacian of Gi.

Definition 2 Let G be a finite graph. For A Ă V pGq, its boundary BA is the collection of
edges connecting a node in A to a node not in A. The Cheeger constant hpGq is defined as

hpGq “ min

"

|BA|

|A|
: A Ă V pGq, 0 ă |A| ď |V pGq|{2

*

.

Having a small Cheeger constant is equivalent to the graph having a ‘bottleneck’.
Expander families can be reinterpreted using Cheeger constants, as follows (see, e.g., Alon
(1986); Alon and Milman (1985); Dodziuk (1984); Tanner (1984)):

Theorem 3 Let tGiu be a collection of finite connected graphs with a uniform upper bound
on their vertex degrees. Then tGiu is an expander family iff there is a constant ϵ ą 0 such
that for all graphs in the collection, hpGiq ě ϵ.

Hence, expanders have higher Cheeger constants and will hence be bottleneck-free. We
also show expanders have favourable diameter ; see Mohar (1991, Theorem 2.3) for a proof.
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Theorem 4 The diameter diampGq of a graph G satisfies

diampGq ď 2

R

∆pGq ` λ1pGq

4λ1pGq
logp|V pGq| ´ 1q

V

,

where ∆pGq is the maximal degree of any vertex of G. Hence, if tGiu is an expander family
of finite graphs with a uniform upper bound on their vertex degrees, then there is a constant
k ą 0 such that for all graphs in the family, diampGiq ď k log V pGiq.

Therefore, globally propagating information over an expander with |V | nodes only requires
Oplog |V |q propagation steps—yielding subquadratic complexity. To efficiently construct
expanders of (roughly) |V | nodes, we leverage results from group theory (Appendix B).

Definition 5 Let Γ be a group with a finite generating set S. Then the associated Cayley
graph CaypΓ;Sq has vertex set Γ and it has an edge g Ñ gs for each g P Γ and each s P S.

The degree of each vertex of a Cayley graph CaypΓ;Sq is 2|S|. This is because each
vertex g is joined by edges to gs and gs´1 for each s P S. To preserve sparsity, we are
interested in the case where there is a uniform upper bound on |S|; the key example follows.

For n P N, the special linear group SLp2,Znq denotes the group of 2 ˆ 2 matrices with
entries that are integers modulo n and with determinant 1. One of its generating sets is

Sn “

"ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙*

. Central to our constructions is the following result, for which

proofs are given in Kowalski (2019); Davidoff et al. (2003), using result of Selberg (1965):

Theorem 6 The family of Cayley graph CaypSLp2,Znq;Snq forms an expander family.

3. Local structure of Cayley graphs, and the utility of negative curvature

Recent work (Topping et al., 2021) suggested that the local structure of the graph G used
by a GNN plays a major part in the oversquashing effect. Specifically, negatively curved
edges—using either the (balanced) Forman curvature (Forman, 2003) or Ollivier curvature
(Ollivier, 2007, 2009)—were shown to be the culprits. Firstly, and surprisingly, we prove in
Appendix C that edges in Gn are never positively curved, with curvatures as low as ´1.

However, further qualifying the findings in Topping et al. (2021), we contend that negative
Ricci curvature is not in itself an impediment to efficient propagation around a GNN. It was
shown in Topping et al. (2021, Theorem 4) that poor propagation arises when the balanced
Forman curvature is close to ´2, specifically if it is at most ´2 ` δ; however, with certainty,
δ “ 1 can never be satisfied in the hypotheses of Topping et al. (2021, Theorem 4).

Furthermore, positive Ricci curvature may have downsides when used for GNNs. Using
the main result of Salez (2021), we can show that the three properties of expansion, sparsity
and non-negative Ollivier curvature are incompatible, in the following sense.

Theorem 7 For any δ ą 0 and ∆ ą 0, there are only finitely many graphs with maximum
vertex degree ∆, Cheeger constant at least δ and non-negative Ollivier curvature.
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Table 1: Comparative evaluation on the four datasets studied.

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2

GIN 0.7558 ˘ 0.0140 0.2266 ˘ 0.0028 0.6892 ˘ 0.0100 0.1495 ˘ 0.0023
GIN + EGP 0.7934 ˘ 0.0035 0.2329 ˘ 0.0019 0.7027 ˘ 0.0159 0.1497 ˘ 0.0015

We prove Theorem 7 in Appendix E. In our view, it is highly desirable that graphs used
for GNNs have high Cheeger constants, in the sense of globally lacking bottlenecks. Having
bounded degree is useful too, as graphs will be sparse, and the nodes will not have to handle
larger neighbourhoods as graphs grow larger in size. As we have just shown, non-negative
Ollivier curvature is incompatible with these properties when the graph is sufficiently large.

4. Expander graph propagation

Our GNN input contains a node feature matrix X P R|V |ˆk, and an adjacency matrix
A P R|V |ˆ|V |. We ignore edge features for simplicity, without changing our findings.

The crux of our method is leveraging the computed Cayley graph CaypSLp2,Znq;Snq

for message propagation. We opt for a simple construction: interleave running a standard
GNN over the given input structure, followed by running another GNN layer over the Cayley
graph. If ACaypnq is the adjacency matrix derived from CaypSLp2,Znq;Snq, this implies
H “ GNNpGNNpX,Aq,ACaypnqq. Here, we use the GIN (Xu et al., 2018) as our GNN:

hu “ ϕ

˜

p1 ` ϵqxu `
ÿ

vPNu

xv

¸

(1)

where Nu is the neighbourhood of node u, i.e. in our setup, the set of all nodes v such that
avu ‰ 0. ϵ P R is a learnable scalar, and ϕ : Rk Ñ Rk1

is a two-layer MLP.

We assumed the number of nodes in our input graph to line up with the Cayley graph,
that is, ACaypnq P R|V |ˆ|V |. However, there is no guarantee that n P N exists, such that
CaypSLp2,Znq;Snq has |V | nodes. As an approximation, we choose the smallest n such that

the number of nodes of CaypSLp2,Znq;Snq is ě |V |, then consider A
Caypnq

1:|V |,1:|V |
—i.e. only the

subgraph containing the first |V | nodes in the Cayley graph. Further, in all our experiments
we construct the Cayley graph in a breadth-first manner, starting from the identity element
as “node zero”—this guarantees that we do not disconnect the graph by taking this subgraph.
Appendix I summarises the steps of our proposed EGP model in pseudocode.

5. Empirical evaluation

We provide direct comparative experiments in order to supplement our theory, and ascertain
that EGP can directly help existing graph classifiers, even without extensive tuning. We
leverage the Open Graph Benchmark (Hu et al., 2020, OGB) graph classification datasets:
ogbg-molhiv, ogbg-molpcba, ogbg-ppa and ogbg-code2.

In all four datasets, we want to directly evaluate the empirical gain of introducing an
EGP layer and completely rule out any effects from parameter count, or similar architectural
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decisions. Our baseline model is the GIN (Xu et al., 2018), with hyperparameters as given
by (Hu et al., 2020). We use the official publicly available model implementation from the
OGB authors (Hu et al., 2020), and modify all even layers of the architecture to operate
over the appropriately-sampled Cayley graph.

Note that our construction leaves both the parameter count and latent dimension of the
model unchanged, hence any benefits coming from optimising those have been diminished.

The results of our evaluation are presented in Table 1. It can be observed that, in all
four cases, propagating information over the Cayley graph yields improvements in mean
performance—these improvements are most apparent on ogbg-molhiv. We believe that
these results provide encouraging empirical evidence that propagating information over
Cayley graphs is an elegant idea for alleviating bottlenecks.
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Table 2: A summary of principal approaches to handling global context in graph repre-
sentation learning (Section A). “(✓)” indicates that a criterion may be satisfied,
depending on the method’s tradeoffs. Our proposal, the expander graph propaga-
tion (EGP) method, satisfies all four criteria.

Approach (C1) (C2) (C3) (C4)
(global prop.) (no bottlenecks) (subquadratic) (no dedicated preproc.)

GNNs ✗ ✗ ✓ ✓

Sufficiently deep GNNs ✓ ✗ ✗ ✓

Master node ✓ ✗ ✓ ✓

Fully connected ✓ ✓ ✗ ✓

Feature aug. ✓ (✓) (✓) ✗

Graph rewiring ✓ ✓ ✓ ✗

Hierarchical MP ✓ ✓ (✓) ✗

EGP (ours) ✓ ✓ ✓ ✓

Appendix A. An in-depth analysis of prior art

In this appendix, we survey many of prior approaches to handling global context in graph
representation learning, evaluating them carefully against our four desirable criteria (C1–C4;
cf. Table 2). This list is by no means exhaustive, but should be indicative of the most
important directions.

Stacking more layers. As already highlighted, one way to achieve global information
propagation is to have a deeper GNN. In this case, we are capable of satisfying (C1) and
(C4)—no dedicated preprocessing is needed. However, depending on the graph’s diameter,
we may need up to Op|V |q layers to cover the graph, leading to quadratic complexity
(violating (C3)) and introducing a vulnerability to bottlenecks (C2), as theoretically and
empirically demonstrated in (Alon and Yahav, 2020).

Master nodes. An attractive approach to introducing global context is to introduce
a master node to the graph, and connect it to all of the graph’s nodes. This can be done
either explicitly (Gilmer et al., 2017) or implicitly, by storing a “global” vector (Battaglia
et al., 2018). It trivially reduces the graph’s diameter to 2, introduces Op1q new nodes and
Op|V |q new edges, and requires no dedicated preprocessing, hence it satisfies (C1, C3, C4).
However, these benefits come at the expense of introducing a bottleneck in the master node:
it has a very challenging task (especially when graphs get larger) to continually incorporate
information over a very large neighbourhood in a useful way. Hence it fails to satisfy (C2).

Fully connected graphs. The converse approach is to make every node a master node:
in this case, we make all pairs of nodes connected by an edge—this was initially proposed as a
powerful method to alleviate oversquashing by (Alon and Yahav, 2020). This strategy proved
highly popular in the recent surge of Graph Transformers (Kreuzer et al., 2021; Mialon et al.,
2021; Ying et al., 2021), and is common for GNNs used in physical simulation (Battaglia
et al., 2016) or reasoning (Santoro et al., 2017) tasks. The graph’s diameter is reduced to
1, no bottlenecks remain, and the approach does not require any dedicated preprocessing.
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Hence (C1, C2, C4) are trivially satisfied. The main downside of this approach is the
introduction of Op|V |2q edges, which means (C3) can never be satisfied—and this approach
will hence be prohibitive even for modestly-sized graphs.

Feature augmentation. An alternative approach is to provide additional features to
the GNN which directly identify the structural role each node plays in the graph structure
(Bouritsas et al., 2022). If done properly (i.e., if the computed features are directly relevant
to the target task), this can drastically improve expressive power. Hence, in theory, it is
possible to satisfy (C1) while not violating (C2, C3). However, computing appropriate
features requires either specific domain knowledge, or an appropriate pre-training procedure
(Grover and Leskovec, 2016; Perozzi et al., 2014; Tang et al., 2015; Thakoor et al., 2021;
Veličković et al., 2018) to be applied, in order to obtain such embeddings. Hence all of these
gains come at the expense of failing to satisfy (C4).

Graph rewiring. Another promising line of research involves modifying the edges of
the original graph, in order to alleviate bottlenecks. Popular examples of this approach
involve using diffusion (Gasteiger et al., 2019)—which diffuse additional edges through the
application of kernels such as the personalised PageRank, and stochastic discrete Ricci
flows (Topping et al., 2021)—which surgically modify a small quantity of edges to alleviate
the oversquashing effect on the nodes with negative Ricci curvature. If realised carefully,
such approaches will not deviate too far from the original graph, while provably alleviating
oversquashing; hence it is possible to satisfy (C1, C2, C3). However, this comes at a cost
of having to examine the input graph structure, with methods that do not necessarily scale
easily with the number of nodes. As such, dedicated preprocessing is needed, failing to
satisfy (C4).

Hierarchical message passing. Lastly, going beyond modifying the edges, it is also
possible to introduce additional nodes in the graph—each of them responsible for a particular
substructure in the graph1. If done carefully, it has the potential to drastically reduce the
graph’s diameter while not introducing bottlenecked nodes (hence, allowing us to satisfy
(C1, C2)). However, in prior work, a cost has to be paid for this, usually in the need for
dedicated preprocessing. Prior proposals for hierarchical GNNs that remain scalable require
a dedicated pre-processing step (Bodnar et al., 2021a,b; Fey et al., 2020), sometimes coupled
with domain knowledge (Fey et al., 2020)—thus failing to satisfy (C4). In addition, such
methods may require adding prohibitively large numbers of substructures (Morris et al.,
2020, 2019) or expensive pre-computation, e.g. computing the graph Laplacian eigenvectors
(Stachenfeld et al., 2020). This might make even (C3) hard to satisfy.

We remark that our work is not the first to study expander graph-related topics in the
context of GNNs. Specifically, the ExpanderGNN (Lutzeyer et al., 2021) leverages expander
graphs over neural network weights to sparsify the update step in GNNs, and the Cheeger
constant has been previously used to quantify oversquashing in (Topping et al., 2021). With
respect to our contributions, neither of these cases discuss expander graphs in the context
of the computational graph for a GNN, nor attempt to propagate messages over such a
structure. Further, neither of these proposals successfully satisfies all four of our desired
criteria (C1–C4).

1. The master node approach discussed before is a special case of this, wherein a single node is responsible
for a “substructure” spanning the entire graph.
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Appendix B. Extended theoretical background

Definition 8 For a finite connected graph G “ pV pGq, EpGqq, we consider functions
f : V pGq Ñ R. The Laplacian Lf : V pGq Ñ R of such a function is defined to be

Lfpvq “ degpvqfpvq ´
ÿ

vwPEpGq

fpwq,

where degpvq is the degree of the vertex v.

The mapping L : RV pGq Ñ RV pGq sending a function f to its Laplacian Lf is a linear
transformation. It is not hard to show Chung (1997) that L is symmetric with respect to
the standard basis for RV pGq and positive semi-definite and hence has non-negative real
eigenvalues

0 “ λ0pGq ă λ1pGq ď λ2pGq ď . . . .

The smallest eigenvalue is 0 and its associated eigenspace consists of the constant functions
(assuming G is connected). The smallest positive eigenvalue, λ1pGq, is central to the
definition of expander graphs, as the next definition shows.

Definition 9 A group pΓ, ˝q is a set Γ equipped with a composition operation ˝ : ΓˆΓ Ñ Γ
(written concisely by omitting ˝, i.e. g ˝h “ gh, for g, h P Γ), satisfying the following axioms:

• (Associativity) pghql “ gphlq, for g, h, l P Γ.

• (Identity) There exists a unique e P Γ satisfying eg “ ge “ g for all g P Γ.

• (Inverse) For every g P Γ there exists a unique g´1 P Γ such that gg´1 “ g´1g “ e.

Definition 10 Let Γ be a group. A subset S Ď Γ is a generating set for Γ if it can be used
to “generate” all of Γ via composition. Concretely, any element g P Γ can be expressed
by composing elements in the generating set, or their inverses; that is, we can express
g “ s˘1

1 s˘1
2 s˘1

3 ¨ ¨ ¨ s˘1
n´1s

˘1
n for si P S.

Appendix C. Cayley graphs never have positive curvature

The various notions of curvature we discussed are defined for each e of the graph G. Since,
as defined by (Topping et al., 2021), the balanced Forman curvature of an edge depends only
on local structures (i.e. triangles and squares) around that edge, they can be determined by
only observing the immediate 2-hop surrounding of that edge. Formally, for an edge e of a
graph G, let N2peq be the induced subgraph with vertices that are at most two hops away
from at least one endpoint of e. Then the curvature of e only depends on the isomorphism
type of N2peq. More specifically, if e and e1 are edges in possibly distinct graphs, and there
is a graph isomorphism between N2peq and N2pe1q that sends e to e1, then this guarantees
that the curvatures of e and e1 are equal.

This situation arises prominently in the Cayley graphs that we are considering, as follows.

11



Extended Abstract Track
Deac Lackenby Veličković

Proposition 11 Let s be one of

ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Let n, n1 ą 18 and let e and e1 be s-labelled edges in Gn and Gn1. Then there is a graph
isomorphism between N2peq and N2pe1q taking e to e1.

We prove Proposition 11 in Appendix D. This immediately allows us to characterise the
balanced Forman curvature and Ollivier curvature for all of the Cayley graphs we generate:

Proposition 12 The balanced Forman curvatures Ricpnq, and the Ollivier curvatures κpnq

of all edges of Cayley graphs Gn are given by:

Ricpnq “

$

’

’

’

’

&

’

’

’

’

%

0 if n “ 2

´1{4 if n “ 3

´1{2 if n “ 4

´1 if n ě 5,

κpnq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if n “ 2

´1{8 if n “ 3

´1{4 if n “ 4

´3{8 if n “ 5

´1{2 if n ě 6.

Proof Proposition 11 implies that the balanced Forman and Ollivier curvatures are all
equal for n ą 18. Their values for 2 ď n ď 19 can all be empirically computed, and are
given as above.

Appendix D. Proof of Proposition 11

Let s be one of
ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Let n, n1 ą 18 and let e and e1 be s-labelled edges in Gn and Gn1. Then there is a graph
isomorphism between N2peq and N2pe1q taking e to e1.
Proof Note first that, by the homogeneity of the Cayley graphs Gn and Gn1 , we may
assume that e and e1 emanate from the identity vertex of each graph.

Let G8 be the Cayley graph of SLp2,Zq with respect to the generators

S8 “

"ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙*

.

Let e8 be the s-labelled edge emanating from the identity vertex of G8. The quotient
homomorphism

SLp2,Zq Ñ SLp2,Znq

induces a graph homomorphism G8 Ñ Gn sending e8 to e. We will show that it restricts
to a graph isomorphism

N2pe8q Ñ N2peq.

12
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As there is a similar graph isomorphism N2pe8q Ñ N2pe1q, the proposition will follow.

Note that two elements of SLp2,Zq map to the same element of SLp2,Znq if and only if
they differ by multiplication by an element of the kernel Kn. This is

Kn “

"ˆ

a b
c d

˙

P SLp2,Zq : a ” d ” 1 mod n and b ” c ” 0 mod n

*

.

The graph homomorphism sends edges to edges, and so it is distance non-increasing.
Hence it certainly sends N2pe8q to N2peq. It is also clearly surjective, because any element
of N2peq is reached from an endpoint of e by a path of length at most 2, and there is a
corresponding path in N2pe8q.

We just need to show that this is an injection. If not, then two distinct vertices g1 and
g2 in N2pe8q map to the same vertex in N2peq. Note then that as elements of SLp2,Zq,
g2 “ g1k for some k P Kn. There are paths with length at most 3 joining the identity 1 to g1
and g2 respectively. Hence, the distance in G8 between g1 and g2 is at most 6. Therefore,
the distance between 1 and g´1

1 g2 is at most 6. This element g´1
1 g2 lies in Kn. We will show

that when n ą 18, the only element of Kn that has distance at most 6 from the identity is
the identity itself. This will imply that g´1

1 g2 “ 1 and hence g1 “ g2. But this contradicts
the assumption that g1 and g2 are distinct vertices. Our argument follows that of Margulis
(1982).

The operator norm ||A|| of a matrix A P SLp2,Zq is

||A|| “ supt|Apvq| : v P R2, |v| “ 1u.

This is submultiplicative: ||AB|| ď ||A|| ||B|| for matrices A and B. It can be calculated as
the square root of the largest eigenvalue of AtA. In our case, the operator norms satisfy

›

›

›

›

ˆ

1 1
0 1

˙
›

›

›

›

“

›

›

›

›

ˆ

1 0
1 1

˙
›

›

›

›

“
1 `

?
5

2
.

Consider an element

K “

ˆ

a b
c d

˙

of Kn that is not the identity. Since a ” d ” 1 modulo n and b ” c ” 0 modulo n, we deduce
that at least one |a|, |b|, |c| and |d| is at least n ´ 1. Therefore, this matrix acts on one of
the vectors p1, 0qt or p0, 1qt by scaling its length by at least n ´ 1. Therefore, ||K|| ě n ´ 1.
Suppose now that K has distance at most 6 from the identity. Then K can be written as a
word in the generators of SLp2,Zq with length at most 6. Therefore, we obtain the inequality

||K|| ď

ˆ

1 `
?
5

2

˙6

ă 17.95.

Hence, n ă 18.95 and therefore, as n is integral, n ď 18.

13
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Appendix E. Proof of Theorem 7

For any δ ą 0 and ∆ ą 0, there are only finitely many graphs with maximum vertex degree
∆, Cheeger constant at least δ and non-negative Ollivier curvature.
Proof This is a consequence of the main result of Salez (Salez, 2021, Theorem 3). This
states if Gn “ pVn, Enq is a sequence of graphs with the following properties:

sup
ně1

#

1

|Vn|

ÿ

vPVn

degpvq log degpvq

+

ă 8 (2)

@ϵ ą 0,
1

|En|
|te P En : κpeq ă ´ϵu| Ñ 0 as n Ñ 8, (3)

then

@ρ ă 1, lim inf
nÑ8

"

1

|Vn|
|ti : µipGnq ě ρu|

*

ą 0.

Here, κpeq is the Ollivier curvature of an edge e and

1 “ µ0pGq ě µ1pGq ě ¨ ¨ ¨ ě 0

are the eigenvalues of the lazy random walk operator. To prove the theorem, we suppose
that on the contrary, there are infinitely many distinct graphs Gn “ pVn, Enq with maximum
vertex degree ∆, Cheeger constant at least δ and non-negative Olliver curvature. Then

ÿ

vPVn

degpvq log degpvq ď |Vn|∆ log∆

and so condition 2 is satsfied. Condition 3 is trivially satisfied because the Ollivier curvature
of each graph is non-negative. Thus, we deduce that the conclusion of Salez’ theorem holds.
Setting ρ “ 1 ´ pδ2{4∆2q, we deduce that a definite proportion of the eigenvalues of the
lazy random walk operator are at least 1 ´ pδ2{4∆2q. In particular, µ1pGnq ě 1 ´ pδ2{4∆2q.
Denote the eigenvalues of the normalised Laplacian by

0 “ λ1
0pGnq ď λ1

1pGnq ď . . .

These are related to the eigenvalues of the lazy random walk operator by λ1
ipGnq “ 2´2µipGnq.

Hence, λ1
1pGnq ď δ2{p2∆2q. There is a variation of Cheeger’s inequality that relates λ1

1 to
the conductance of the graph. To define this, one considers subsets A of the vertex set, and
defines their volume to be volpAq “

ř

vPA degpvq. The conductance ϕpGq of a graph G is

ϕpGq “ min

"

|BA|

volpAq
: A Ă V pGq, 0 ă volpAq ď volpV pGqq{2

*

.

Then, by Chung (1997, Theorem 2.2),

ϕpGq ď

b

2λ1
1pGq

Hence, in our case,
ϕpGnq ď δ{∆.

14
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Consider any subset An of the vertex set that realises ϕpGnq. Thus 0 ă volpAnq ď volpVnq{2
and |BAn|{volpAnq “ ϕpGnq ď δ{∆. If An is at most half the vertices of Gn, then this
implies that the Cheeger constant hpGnq ď δ. On the other hand, if An is more than half
the vertices of Gn, we consider its complement Ac

n. Its cardinality |Ac
n| satisfies

|Ac
n| ě volpAc

nq{∆.

Hence,

hpGnq ď
|BAc

n|

|Ac
n|

ď
|BAn|∆

volpAc
nq

ď
|BAn|∆

volpAnq
“ ϕpGnq∆ ď δ.

In either case, we deduce that the Cheeger constant of Gn is at most δ, contradicting one
of our hypotheses. Hence, there must have been only finitely many graphs satisfying the
conditions of the theorem.

Appendix F. Cayley graphs are locally ‘tree-like’

The negative curvature of each edge in Gn implies that they are locally ‘tree-like’. In
Appendix G, we make this statement precise by showing that Gn is ‘tree-like’ up to scale
c logpnq about each node, for c » p1{2qplogpp1 `

?
5q{2qq´1 (see Figure 1 (Right) for a

schematic view).

This tree-like structure might seem, at first, to be counter-productive for good propagation
across the graphs Gn. Indeed, GNNs based on trees have been shown to have provably poor
performance (Alon and Yahav, 2020). The reason for this seems to be two-fold. On the one
hand, trees have small Cheeger constant. Indeed, any tree G on n vertices has a Cheeger
constant 1{tn{2u, since we may find an edge that, when removed, decomposes the graph
into subgraphs with tn{2u and rn{2s vertices. As discussed in Section 2 and in Topping
et al. (2021), when a graph has small Cheeger constant, its performance when used as a
template for a GNN is likely to become poor. Secondly, GNNs based on trees are susceptible
to oversquashing. For a k-regular infinite tree, there are kpk ´ 1qr´1 vertices at distance r
from a given vertex. Hence, if information is to be propagated at least distance r from a
given vertex, then seemingly an exponential amount of information is required to be stored.

However, neither of these issues are problematic for a GNN based on the Cayley graph
Gn. By Theorem 6, their Cheeger constants are bounded away from 0. Secondly, although
they are tree-like locally, this is only true up to scale Oplog nq. In fact, the r-neighbourhood
of any vertex is the whole graph Gn as soon as r ą C log n, for some constant C, by Theorem
4. Being tree-like up to distance Oplog nq does not lead to a requirement to store too much
information as the message propagates. This is because kpk ´ 1qr´1 is polynomial in n when
r ď Oplog nq.

Appendix G. Cayley graph at infinity is quasi-isometric to a tree

As all vertices of Gn look the same, we focus attention on Nrp1q, the r-neighbourhood of
the identity vertex. The proof of Proposition 11 immediately gives the following.

15
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Proposition 13 Let r be a positive integer satisfying

r ă
1

2

ˆ

log

ˆ

1 `
?
5

2

˙˙´1

logpn ´ 1q.

Then there is a graph isomorphism between the r-neighbourhood of the identity vertex in Gn

and the r-neighbourhood of the identity vertex in G8. This isomorphism takes the identity
vertex to the identity vertex.

Proof As shown in the proof of Proposition 11, there is a graph homomorphsm from Nrp1q

in G8 to Nrp1q in Gn that is a surjection. If it fails to be an injection, then there is a
non-trivial element K in the kernel Kn of SLp2,Zq Ñ SLp2,Znq satisfying

||K|| ď

ˆ

1 `
?
5

2

˙2r

.

But any non-trivial element K in Kn satisfies

||K|| ě n ´ 1.

Rearranging gives the required inequality.

This raises the question of the local structure of G8. The answer is well-known: it is
‘tree-like’. Specifically, it is quasi-isometric to a tree. The formal definition of quasi-isometry
is as follows.

Definition 14 A quasi-isometry between two metric spaces pX1, d1q and pX2, d2q is a func-
tion f : X1 Ñ X2 that satisfies the following two conditions:

1. there are constants c, C ą 0 such that, for every x, x1 P X1

c d1px, x1q ´ c ď d2pfpxq, fpx1qq ď C d1px, x1q ` C,

2. there is a constant K ě 0 such that for every y P X2, there is an x P X1 with
d2pfpxq, yq ď K.

If there is such a quasi-isometry, we say that pX1, d1q and pX2, d2q are quasi-isometric.

This forms an equivalence relation on metric spaces. When two metric spaces are
quasi-isometric, they are viewed as being ‘essentially the same’ at large scales.

When S and S1 are finite generating sets for a group Γ, the graphs CaypΓ;Sq and
CaypΓ;S1q are quasi-isometric. Hence, the quasi-isometry type of a finitely generated group
is well-defined, and this is the central object of study in geometric group theory.

The group SLp2,Zq has a finite-index subgroup that is a free group F (Trees, 2003).
If S1 denotes a free generating set for F , then CaypF ;S1q is a tree. As passing to a
finite-index subgroup preserves its quasi-isometry class, we deduce that the Cayley graph
G8 “ CaypSLp2,Zq;S8qq is indeed quasi-isometric to a tree, as claimed above.
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Appendix H. Mixing time properties of expander graphs

Expanders are well known to have small mixing time, in the following sense.
Let G be a graph. We will consider probability distributions π on V pGq. The lazy

random walk operator M acts on probability distributions as follows. We think of πpvq as
being the probability of the random walk being at vertex v. If the current location of the
walk is at v, then at the next step of the walk, either we stay put with probability 1{2 or
we move to one of its neighbours with equal probability. Then Mπ is the new probability
distribution.

In the case when G is k-regular, this takes a particular simple form. The operator M is
represented by the matrix p1{2qI ` p1{2kqA, where A is the adjacency matrix. In that case,
any initial distribution π converges under powers of M to the uniform distribution.

This is true for any reasonable notion of convergence, but we will use the } ¨ }1 norm,
where for two probability distributions π and π1,

›

›π ´ π1
›

›

1
“

ÿ

vPV pGq

|πpvq ´ π1pvq|.

Definition 15 The mixing time for a regular graph G is the minimum value of ℓ such that
for any starting probability distribution π on the vertex set of G,

›

›M ℓπ ´ u
›

›

1
ď

1

4
.

Here, u is the uniform probability distribution on the vertex set, and M is the lazy random
walk operator.

Expanders have small mixing times in the following very strong sense.

Theorem 16 For any k ą 0 and δ ą 0, there is a constant c ą 0 with the following
property. If G is a connected k-regular graph on n vertices with Cheeger constant at least
δ ą 0, then the mixing time for G is at most c logpnq.

Appendix I. EGP forward pass pseudocode

In Algorithm 1, we provide the forward pass for our EGP layer, linking it back to previous
equations.
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Algorithm 1: Expander graph propagation (EGP) forward pass
Inputs :Node features X P R|V |ˆk, Adjacency matrix A P R|V |ˆ|V |

Output :Node embeddings H

// Choose the smallest Cayley graph from our family that has number of

nodes equal to, or greater than, |V |

n Ð argminmPN|V pCaypSLp2,Zmq;Smqq| ě |V |

GCaypnq Ð CaypSLp2,Znq;Snq

A
Caypnq
uv Ð

#

1 pu, vq P EpGCaypnqq

0 otherwise
; // Populate adjacency matrix of the Cayley

graph

Hp0q Ð X; // Initialise GNN inputs

for t P t1, . . . , T u do
if t mod 2 “ 0 then

Hptq Ð GNNptqpHpt´1q,Aq ; // GNN layer over input graph; e.g. Equation

1

end
else

Hptq Ð GNNCay
´

Hpt´1q,A
Caypnq

1:|V |,1:|V |

¯

; // GNN layer over Cayley graph; e.g.

Equation 1

end

end

return HpT q ; // Return final embeddings for downstream use
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