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Abstract

Phenotype concept recognition (CR) is a funda-
mental task in biomedical text mining, enabling
applications such as clinical diagnostics and
knowledge graph construction. However, ex-
isting methods often require ontology-specific
training and struggle to generalize across di-
verse text types and evolving biomedical termi-
nology. We present AutoPCR, a prompt-based
phenotype CR method that does not require
ontology-specific training. AutoPCR performs
CR in three stages: entity extraction using a
hybrid of rule-based and neural tagging strate-
gies, candidate retrieval via SapBERT, and
entity linking through prompting a large lan-
guage model. Experiments on four benchmark
datasets show that AutoPCR achieves the best
average and most robust performance across
both mention-level and document-level evalua-
tions, surpassing prior state-of-the-art methods.
Further ablation and transfer studies demon-
strate its inductive capability and generalizabil-
ity to new ontologies.

1 Introduction

Biomedical text mining plays a key role in unlock-
ing clinical and scientific knowledge from unstruc-
tured data sources such as clinical notes and re-
search articles. A fundamental step in this pro-
cess is ontology-based concept recognition (CR),
which aims to identify textual mentions of con-
cepts defined in a given ontology from input text.
An ontology is a formal, structured representation
of domain-specific knowledge curated by experts,
consisting of standardized concepts with associated
names, definitions, synonyms, and hierarchical re-
lationships. Phenotype CR, a specific instance of
ontology-based CR using the Human Phenotype
Ontology (HPO) (Robinson et al., 2008; Kohler
et al., 2019), has become a central research focus.
This is largely due to the availability of richly an-
notated datasets (Weissenbacher et al., 2023; Lobo
etal., 2017; Anazi et al., 2017), yet the task remains

challenging because of the specialized and rapidly
evolving nature of biomedical terminology and on-
tologies. Phenotype CR plays a critical role in
downstream biomedical applications. For example,
genetic disease diagnostics require accurate iden-
tification of phenotype concepts in clinical notes
(Labbé et al., 2023), and biomedical knowledge
graph construction relies on robust CR from scien-
tific literature to support integrative data analysis
and knowledge discovery (Soman et al., 2024).
Traditionally, CR can be divided into two stages:
(1) entity extraction, which generates spans from
the input text for further linking to the ontology; (2)
entity linking, which links entities to semantically
similar concepts from the ontology. Different CR
methods adopt varying designs for these two stages,
resulting in distinct strengths and limitations.
Early CR methods are primarily dictionary-
based, which rely on lookup tables and string-
matching techniques to identify concept mentions.
While these approaches offer high precision, they
suffer from low recall due to limited vocabu-
lary coverage and inability to handle linguistic
variations (Jonquet et al., 2009; Taboada et al.,
2014). In recent years, researchers have increas-
ingly adopted machine learning models that ei-
ther employ biomedical named entity recognition
(bioNER) methods for accurate entity extraction or
domain-specific language models to enhance lan-
guage understanding in biology. However, as these
models are trained against a fixed ontology, they
must be re-trained to recognize new concepts, limit-
ing their usability for frequently updated ontologies
like HPO (updated monthly). In contrast, large lan-
guage models (LLMs), such as GPT-4 (Achiam
et al., 2023), have demonstrated strong zero-shot
learning capabilities, offering new possibilities for
phenotype CR. Recent studies have shown that
LLMs can effectively extract clinical information
without domain-specific fine-tuning (Agrawal et al.,
2022; Meoni et al., 2023). Despite their potential,



LLMs face challenges related to factual consistency
and reliability in knowledge-intensive tasks (Chen
et al., 2023; Reese et al., 2024). To address these
challenges, retrieval-augmented generation (Lewis
et al., 2020, RAG) has emerged as an effective
technique to improve LLM’s CR performance by
incorporating relevant information retrieved from
the ontology through semantic similarity-based re-
trieval mechanisms. However, to improve recall,
a large number of entities need to be generated,
which conflicts with the limited throughput of Ope-
nAD’s APL. This highlights the need for efficient
semantic similarity models to filter noisy entities
and prioritize high-quality candidate concepts.

In this study, we propose AutoPCR!, an auto-
mated phenotype CR method based on prompt-
ing, which consists of three sequential steps. First,
to ensure that extracted entities are biologically
meaningful while maintaining high recall, Au-
toPCR employs two complementary strategies for
entity extraction, namely a rule-based strategy for
shorter, free-form text, and a neural tagging ap-
proach for longer, standardized content. In the
second step, AutoPCR retrieves candidate con-
cepts using a semantic similarity model. Although
phenotype CR has been extensively studied, prior
work has largely overlooked advances in distantly-
supervised biomedical entity linking. As a popu-
lar choice, AutoPCR adopts SapBERT (Liu et al.,
2021a), a fine-tuned PubMedBERT (Gu et al.,
2021) on the UMLS ontology (Bodenreider, 2004,
a superset of HPO), to identify semantically rel-
evant concepts. In the final step, AutoPCR per-
forms entity linking by prompting an LLM. Each
entity and its associated candidate set are encoded
into a structured prompt that includes the entity
string along with detailed information of each can-
didate concept. This approach enables accurate en-
tity disambiguation without ontology-specific fine-
tuning. Being model-agnostic and easily adaptable,
it is well-suited for deployment in low-resource or
rapidly evolving biomedical domains.

Our key contributions are as follows.

 Superior and robust performance. AutoPCR
achieves the best average and most robust ranking
on both mention-level and document-level evalu-
ations across three benchmark datasets, changing
the fact that prompt-based methods have lagged
behind dictionary-based or neural approaches.

'0ur code is available at https://anonymous.4open.
science/r/AutoPCR-3520.

* Inductive capability. AutoPCR maintains supe-
rior performance even without prior exposure to
HPO, making it adaptable to the frequent updates
of the HPO ontology.

¢ Generalizability. AutoPCR transfers well to a
new ontology without reconfiguration and sup-
ports rapid deployment within minutes, offering
greater potential for real-world application in
other biomedical domains.

2 Related Work

2.1 Phenotype concept recognition

Phenotype CR has grown into multiple methodolog-
ical paradigms, including dictionary-based meth-
ods, neural methods, and prompt-based methods
using LLMs.

Dictionary-based methods identify entities by ex-
haustively matching input spans against ontology
concepts using lookup tables or string similarity
measures. Tools such as the NCBO annotator (Jon-
quet et al., 2009), the OBO annotator (Taboada
et al., 2014), Doc2HPO (Liu et al., 2019), and
ClinPhen (Deisseroth et al., 2019) exemplify this
strategy. More recently, FastHPOCR (Groza et al.,
2024b) utilizes groups of morphologically equiva-
lent words generated by GPT-4 to address lexical
variations and represents the state of the art.

Neural methods typically take advantage of deep
learning architectures, such as convolutional neural
networks (CNNs) and BERT (Devlin et al., 2019),
with supervised training on ontology concepts to
improve phenotype CR performance. There are
two common entity extraction strategies adopted
by neural methods, serving as the foundation for
subsequent entity linking. One line of methods,
e.g., PhenoTagger (Luo et al., 2021) and Pheno-
Tagger++ (Qi et al., 2024), adopts a rule-based
strategy that exhaustively generates entity spans
after removing punctuation and function words.
PhenoTagger predicts concepts from extracted en-
tities with a trainable BioBERT (Lee et al., 2020)
coupled with dictionary-based methods. Pheno-
Tagger++ further integrates concept embeddings
derived from the ontology structure using TransR
(Lin et al., 2015) into the BioBERT model. The
other line of methods adopts a neural tagging ap-
proach that leverages off-the-shelf bioNER tools,
e.g., Stanza (Zhang et al., 2021), to identify biomed-
ical textual segments and then exhaustively extract
entities from these segments. NCR (Arbabi et al.,
2019) matches CNN-encoded entities with ontol-
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ogy concepts represented by hierarchically aggre-
gated fastText (Bojanowski et al., 2017) embed-
dings. PhenoBERT (Feng et al., 2022) improves
NCR by using multiple CNNss to retrieve top can-
didate concepts for each phenotype subcategory
and then re-ranks them with a trainable BERT that
scores each entity-concept pair. Recently, Phe-
noBCBERT and PhenoGPT (Yang et al., 2024)
train Bio+ClinicalBERT (Alsentzer et al., 2019)
and GPT-3 (Brown et al., 2020) on manually la-
beled data to improve rare disease recognition.
LLMs, such as GPT-4, have enabled phenotype
CR without the need for ontology-specific training,
allowing for rapid adaptation to evolving biomedi-
cal vocabularies. Prompt-based methods, such as
Labbé et al. (2023) and Groza et al. (2024a), uti-
lize prompt engineering to guide LLMs in directly
extracting biomedical concepts from text. On the
other hand, the RAG-based method REAL (Shlyk
et al., 2024) relies on LLMs to extract biomed-
ical entities, generate their definitions, and per-
form entity linking. Candidate concepts are first
retrieved using a generalist embedding model based
on names and definitions, and then passed to a LLM
for final linking using concept-level information.

2.2 Distantly-supervised biomedical entity
linking
Distant supervision has emerged as a practical so-
lution for biomedical entity linking, where manual
annotation is costly and often infeasible. These
methods leverage ontology-derived supervision, en-
abling large-scale training without labeled corpora.
BioSyn (Sung et al., 2020) aligns entities with
concept aliases using a combination of character-
level features and dense embeddings trained from
UMLS alias tables. SapBERT (Liu et al., 2021a)
further improves generalizability by fine-tuning
PubMedBERT through contrastive learning over
concept name pairs to align synonyms. KrissBERT
(Zhang et al., 2022) incorporates context into con-
trastive learning by using PubMed-derived concept
contexts and employs a cross-attention encoder to
re-rank candidate concepts. Its inference strategy
retains multiple context embeddings per concept,
enabling context-aware matching. Sasse et al.’s
(2024) recent work shows that synthetic entities
generated by LLMs like Llama-2 (Touvron et al.,
2023) can further enhance normalization perfor-
mance, especially under distribution shifts, high-
lighting the complementary role of generative meth-
ods in distant supervision frameworks.

3 Method

In this section, we present AutoPCR, an automated
method for phenotype CR based on prompting. We
first provide a formal definition of the CR task and
describe how it is decomposed into three sequential
sub-tasks. We then define each sub-task rigorously
and detail how AutoPCR addresses them through
an integrated and modular design. The architecture
of AutoPCR is shown in Figure 1.

3.1 Problem formulation

Definition 3.1 (Concept Recognition) Given a
domain ontology O=(C,I) containing concepts
C={ci,...,cn} and related concept-level infor-
mation I (e.g., definition and synonyms) and a
piece of input text T, the task is to find f satisfying

0, T) ={(i,5,0) | 1,5 € [0,]T], "
Tli:j] ~ce C}
which extracts entities from the input text with start
and end offsets that can be mapped to semantically
similar concepts in the ontology.

We decompose the CR task f into three sequen-
tial sub-tasks, namely entity extraction fgg, candi-
date concept retrieval fccr, and entity linking fgr,
i.e., f = feL o focr © fEE, as detailed respectively
in the next three sections.

3.2 Entity extraction

Definition 3.2 (Entity Extraction) Given an on-
tology O=(C, I) and a piece of input text T, the
task is to find fgr satisfying

Tli:j] ~3Jec e C}
which extracts entity spans from the text that may
correspond to ontology concepts.

We adopt two complementary strategies for ex-
tracting entities, tailored to different types of input
text. For shorter, free-form text such as clinical
notes, we follow a rule-based strategy inspired by
PhenoTagger. The input text is split into sentences,
tokenized, POS-tagged using NLTK (Bird et al.,
2009), and converted to lowercase. All n-gram
spans (n€[2, 10]) are then enumerated as candidate
entities, excluding unigrams due to their limited
variability and tendency to be misclassified as false
positives. A part-of-speech filter is applied to elim-
inate spans that begin or end with punctuation or
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Figure 1: Architecture of AutoPCR. It performs concept recognition in three stages: entity extraction using a hybrid
of rule-based and neural tagging strategies (e.g., extracted entities e, es, and e3), candidate concept retrieval via
SapBERT initialized from PubMedBERT (e.g., retrieved concepts c; and cy for e3), and entity linking through
prompting an LLM (e.g., linked concept c;). The detailed prompt template is shown in Section 3.4.

function words, including prepositions, conjunc-
tions, and determiners.

For longer, standardized content such as scien-
tific abstracts, we adopt a neural tagging approach
inspired by PhenoBERT. Each sentence is first pro-
cessed using Stanza with the “ner-i2b2” processor
and the “mimic” package to extract clinically rel-
evant segments. To improve coverage, additional
segments are generated by further splitting the sen-
tences on punctuation and conjunctions. All result-
ing segments are then used as windows for n-gram
extraction (n€[2, 10]) to generate entities.

3.3 Candidate concept retrieval

Definition 3.3 (Candidate Concept Retrieval)
Given an ontology O=(C, I), an entity e=Ti:j]
from text T, and a maximum number of candidates
k, the task is to find fccr satisfying

fCCR(Ov €, k) - Cccmd ccC
S.1. ’Ccand’ < k'7
\ Ccund = Q),

e~ dc € Ceuna

etVeeC

3)
which retrieves a small set of potentially match-
ing concepts from the ontology for each extracted
entity.

To retrieve candidate concepts for each extracted
entity e from the input text, we adopt an embedding-
based retrieval strategy using SapBERT, which
encodes semantically similar ontology terms into
neighboring vectors. All ontology concepts and

their synonyms are pre-encoded and indexed as
dense vectors. Each extracted entity is also en-
coded with SapBERT and then compared against
the index using cosine similarity. If the top simi-
larity exceeds a high-confidence threshold 71, the
entity is directly linked to the most similar concept.
Otherwise, if the similarity falls within a relaxed
interval (7o, 71|, we retrieve the top-k most sim-
ilar concepts to form the candidate set Ccang for
downstream entity linking. This two-stage thresh-
olding allows us to balance precision and recall
while avoiding unnecessary disambiguation when
the match is unambiguous.

3.4 Entity linking

Definition 3.4 (Entity Linking) Given an ontol-
ogy O=(C, 1), an entity e=T'[i:j] from text T, and
candidate concepts Cunq, the task is to find fgr
satisfying

fEL(Oa €, Ccand) =c € Cegna ~ € 4

which selects the most semantically similar con-
cept from the retrieved candidate concepts.

Inspired by the prompt-based method REAL, we
perform entity linking by prompting GPT-40-mini.
For each extracted entity e and its retrieved candi-
date concept set Ccang, We construct a structured
prompt that includes the entity name along with the
list of candidate concepts. Each concept is repre-
sented by its ID, name, definition, synonyms, and



cross-referenced UMLS synonyms. Specifically,
the following prompt template is used.

System prompt:

As an expert clinician, your task is to accu-
rately link the entity using the concepts listed
below. Accuracy is paramount. If the entity
does not precisely refer to any of the concepts
listed below, please return “None”’; otherwise,
return the corresponding concept ID in the fol-
lowing format:

answer:<concept ID or None>
confidence:<one of HIGH, LOW, MEDIUM>

Here are the concepts:
{candidate concepts with ID, name, definition,
synonyms, UMLS synonyms}

User prompt:
Here is the entity to link:
label: {entity string}

The output contains both a concept ID and a
confidence level, and only predictions with “HIGH”
confidence are retained to ensure precision and
reduce false positives.

3.5 Post-processing

AutoPCR may generate overlapping entity spans,
as different n-grams or segments can cover inter-
secting text regions. These overlapping entities
may link to the same or different concepts and thus
require conflict resolution. If they are linked to
different concepts, we retain all of them. If they
are linked to the same concept, we apply resolution
strategies corresponding to the used entity extrac-
tion strategy (Luo et al., 2021; Feng et al., 2022).
When using the rule-based strategy for entity ex-
traction, we keep the span with the highest match-
ing score. When using the neural tagging approach,
we retain the longest span, based on the intuition
that longer spans typically convey more precise
semantic meaning in standardized texts.

4 Experiments

We carry out extensive experiments to answer three
research questions regarding our AutoPCR model.
(RQ-1) How does AutoPCR perform against other
baselines on various datasets? (RQ-2) How much
does each module of AutoPCR contribute to its
performance? (RQ-3) Can AutoPCR generalize
effectively and efficiently to a different ontology
other than HPO? Section 4.1 introduces the CR

benchmark datasets. Section 4.2 describes imple-
mentation details. Section 4.3 presents the baseline
systems. Sections 4.4, 4.5, and 4.6 correspond to
our answers to the three research questions.

4.1 Concept recognition benchmark

To evaluate the performance of AutoPCR, we
conduct experiments on four widely-used bench-
mark datasets: (i) BIOC-GS, the development set
from BioCreative VIII Track 3 (Weissenbacher
et al., 2023), consisting of 382 clinical observa-
tion records from dysmorphology physical exami-
nations, with an average length of 8.5 words. It
includes 607 phenotype mentions covering 315
unique HPO concepts. An example record is “AB-
DOMEN: Small umbilical hernia. Mild distention.
Soft.” (ii) GSC-2024, a refined GSC+ (Lobo et al.,
2017) dataset given by FastHPOCR, which com-
prises 228 scientific abstracts from PubMed. We
follow PhenoTagger’s data split, using 22 abstracts
for development. The test split contains 2,034 phe-
notype mentions linked to 451 unique HPO con-
cepts, with an average of 150 words. (iii) ID-68,
which contains 68 real clinical notes from families
with intellectual disabilities (Anazi et al., 2017),
and is manually annotated by PhenoBERT in the
same way as GSC+. It includes 857 phenotype
mentions covering 433 unique HPO concepts, with
an average length of 157 words. (iv) The NCBI dis-
ease corpus (Dogan et al., 2014), consisting of 100
PubMed abstracts, with an average length of 205
words. It includes 960 phenotype mentions cover-
ing 198 unique MEDIC concepts. These datasets
involve both free-form and standardized phenotype
mentions, covering a wide range of use cases.

We follow the evaluation pipeline of PhenoTag-
ger, a popular baseline. BIOC-GS, GSC-2024, and
ID-68 are grounded on HPO release “20240208”
under the root node “phenotypic abnormality.”
NCBI is grounded on MEDIC, a curated disease
ontology integrating MeSH (Lipscomb, 2000) and
OMIM (Amberger et al., 2019), under the root node
“diseases.” Mention-level and document-level pre-
cision (P), recall (R), and F1 scores are employed
as evaluation metrics. For mention-level evaluation,
a predicted entity is considered correct only if there
exists a ground-truth entity with the same linked
concept and overlapping offsets. For document-
level evaluation, linked concepts are treated as a
set per document, and metrics are computed by
comparing these sets, followed by micro-averaging
across all documents.



4.2 Implementation details

We adopt different entity extraction strategies for
each dataset, as described in Section 3.2. For BIOC-
GS, we use the rule-based strategy from PhenoTag-
ger, which suits shorter, free-form clinical text. For
GSC-2024, ID-68, and NCBI, we apply the neu-
ral tagging approach from PhenoBERT, as these
datasets consist of longer, standardized content.

For candidate concept retrieval, we set
71=0.95 € [0.9,0.92,0.95,0.98] and 75=0.85 €
[0.8,0.82,0.85,0.88,0.9] to distinguish between
high- and low-confidence matches. For similar-
ity scores in the range (72,71], we retain up to
k=5 € [3,5, 10] candidates. All hyperparameters
are tuned on the GSC-2024 development set.

All experiments are run once with fixed seeds
and zero temperature on a Linux server with an
Intel Xeon Gold 6242R CPU (16 cores, 3.1GHz),
128 GB RAM, and one NVIDIA Tesla V100 (32
GB). The total cost of running AutoPCR is < $1.

4.3 Baseline systems

We compare AutoPCR against various phenotype
CR baselines across three categories. Dictionary-
based methods include NCBO (Jonquet et al.,
2009), OBO (Taboada et al., 2014), ClinPhen (Deis-
seroth et al., 2019), and FastHPOCR (Groza et al.,
2024b). Neural methods include NCR (Arbabi
et al., 2019), PhenoTagger (Luo et al., 2021), Phe-
noBERT (Feng et al., 2022), and PhenoTagger++
(Qi et al., 2024). Prompt-based methods, based
on GPT-40-mini, include direct prompting with
Groza et al.’s (2024a) template 4 and REAL (Shlyk
et al., 2024). All baselines are evaluated with their
default parameter settings. Mention-level results
are omitted for ClinPhen, since it does not provide
offsets for extracted entities.

4.4 Main results

We report mention-level and document-level results
for all methods across three benchmark datasets
grounded on HPO in Tables 1 and 2. AutoPCR
consistently achieves top-tier performance, ranking
second in five out of six settings and third in the re-
maining one, resulting in the best average mention-
level rank of 2.33 and document-level rank of 2.00.
Its performance is also the most stable, with the
smallest rank variance among all methods. The
second-best method is FastHPOCR, a dictionary-
based approach that ranks third on average for both
evaluation levels. However, its performance drops

notably on BIOC-GS, indicating reduced stabil-
ity across datasets. The third-best performers are
PhenoTagger and PhenoBERT, two neural mod-
els each with an average rank of 4.00. PhenoTag-
ger performs better on BIOC-GS but worse on
ID-68, whereas PhenoBERT shows the opposite
trend, with stronger results on ID-68 and weaker
performance on BIOC-GS. Both models exhibit
higher variability compared to AutoPCR. Tradi-
tional dictionary-based methods such as NCBO,
OBO, and ClinPhen consistently achieve high pre-
cision, but suffer from low recall, leading to lower
F1 score rankings. The early neural model NCR
is outperformed by its successor PhenoBERT as
expected, while PhenoTagger++, intended as an
improved version of PhenoTagger, does not yield
any notable performance gain. The naive prompt-
ing method using GPT-40-mini performs poorly
compared to all other baselines. In contrast, the
retrieval-augmented method REAL achieves the
best result on BIOC-GS, but ranks near the bottom
on the other datasets, highlighting the limitations
of its model design. These results comprehensively
address RQ-1, demonstrating the performance su-
periority and robustness of AutoPCR. We further
analyze these outcomes in detail, showing how the
design of AutoPCR contributes to its performance
under varying dataset characteristics.

On BIOC-GS, which consists of noisy clinical
observations, we observe a clear performance trend
across method categories: prompt-based methods
outperform neural methods, which in turn outper-
form dictionary-based ones, consistent with prior
findings (Groza et al., 2024a; Qi et al., 2024; Shlyk
et al., 2024). This pattern reflects their respec-
tive modeling capabilities. Prompt-based methods
rely on LLMs with strong language understanding
abilities for entity linking, enabling them to better
handle free-form and lexically diverse clinical text.
Neural methods, typically fine-tuned on structured,
ontology-aligned corpora, struggle to generalize
to such noisy input. Dictionary-based methods
perform worst, as they lack semantic understand-
ing and rely solely on exact or approximate string
matching. Within the prompt-based category, for
the same reason, REAL performs better than Au-
toPCR due to its use of LLM-generated definition-
similarity-based concept retrieval, which relies less
on the surface forms of the entities.

On GSC-2024 and ID-68, which feature longer
and more standardized text with less surface-level
variation in entities, AutoPCR remains highly com-



Performace (%) BIOC-GS GSC-2024 1D-68 Ave. Rk
Method P R F1 (Rk.) P R F1 (Rk.) P R F1 (Rk.) T
NCBO 71.80 4580 5592 9 96.62 51.57 6725 7 86,53 6523 7439 7 7.67
Dictionary OBO 73.89 4531 56.17 8 8741 52,66 6572 8 8255 63.01 7147 8 8.00
-based ClinPhen - - - 11 - - - 11 - - - 11 11.00
FastHPOCR 60.53 6046 6050 5 91.66 7925 8501 1 8723 71.76 7875 3 3.00
NCR 5590 60.96 5832 7 81.14 7488 7788 6 78.64 78.18 7841 4 5.67
Neural PhenoTagger 56.56 7035 6270 3 86.16 78.12 8195 4 8349 7375 7832 5 4.00
PhenoBERT 6450 5585 5986 6 88.04 7498 8099 5 9433 7876 8585 1 4.00
PhenoTagger++ 56.87 69.52 6257 4 87.71 7827 8272 2 79.52 7386 7659 6 4.00
Prompt GPT-40-mini 2.89 247 266 10 1531 7.62 10.18 10 18.00 1552 16.67 10 10.00
“based REAL 7520 6293 6852 1 7627 4759 5861 9 7633 6546 7048 9 6.33
AutoPCR (ours) 62.54 6738 64.87 2 91.17 7542 8255 3 8554 73.16 7887 2 2.33

Table 1: Mention-level performance of all methods on three benchmark datasets.
and most robust ranking across datasets and methods.

AutoPCR achieves the best average

Performace (%) BIOC-GS GSC-2024 1D-68 Ave. Rk
Method P R F1 (Rk.) P R F1 (Rk.) P R F1 (Rk.) T
NCBO 7290 45.86 5630 10 99.33 5226 6849 7 89.06 64.69 7495 7 8.00
Dictionary OBO 74.46 4536 5638 9 8598 5240 65.12 8 8336 6255 7147 8 8.33
-based ClinPhen 64.78 51.16 57.17 8 8620 4499 59.12 10 7496 6192 67.82 10 9.33
FastHPOCR 60.56 60.76 60.66 5 9515 77.61 8549 1 8775 7138 7872 3 3.00
NCR 55.16 61.09 5797 7 81.88 73.09 7724 6 79.18 77.68 7842 4 5.67
Neural PhenoTagger 5778 70.70 6359 3 8757 76.62 81.73 4 8329 73,52 78.10 5 4.00
PhenoBERT 65.07 56.13 6027 6 90.33 7387 8127 5 9411 78.56 85.64 1 4.00
PhenoTagger++ 5821 69.87 6351 4 8938 76.70 8255 3 7940 7390 76.55 6 4.33
Prompt GPT-40-mini 50.77 44.15 4723 11 1825 9.75 1271 11 19.53 16.77 18.05 11 11.00
“based REAL 7594 6325 69.02 1 8021 5466 6502 9 76.64 6620 71.04 9 6.33
AutoPCR (ours) 64.11 67.72 6586 2 9391 7401 8278 2 8565 7301 7883 2 2.00

Table 2: Document-level performance of all methods on three benchmark datasets.

AutoPCR achieves the best

average and most robust ranking across datasets and methods.

petitive, even though the advantage of language
understanding becomes less pronounced. The top-
performing baselines on these two datasets, FastH-
POCR and PhenoBERT, are both evaluated on data
partially labeled by their respective research teams,
potentially introducing bias in their favor. Also,
neither method achieves top performance on the
other’s dataset. AutoPCR, by contrast, consistently
ranks just behind these baselines and achieves the
(second) best average rank across mention-level
and document-level evaluations. Unlike in BIOC-
GS, AutoPCR significantly outperforms REAL in
this setting. This advantage stems from its more
comprehensive entity extraction strategy, which
improves recall, and a candidate concept retrieval
module that efficiently models semantic similar-
ity by filtering noisy entities and prioritizing high-
quality candidates based on surface forms.

4.5 Ablation studies

To assess the contribution of each module in Au-
toPCR and answer RQ-2, we conduct ablation ex-
periments, as summarized in Table 3. We evaluate
the following three variants of AutoPCR.

e Variant 1. This variant simulates a scenario
where the target ontology is newly introduced
and unseen during model training. We re-train
SapBERT (initialized from PubMedBERT) on
UMLS excluding all HPO-related concepts.

e Variant 2. This variant examines whether
domain-specific alignment in SapBERT is essen-
tial for candidate concept retrieval. We replace
SapBERT with PubMedBERT for embedding,
without any contrastive fine-tuning on UMLS.

* Variant 3. This variant evaluates the importance
of the entity linking module. We remove the link-
ing module entirely and rely solely on candidate
concept retrieval. If the top candidate exceeds
the similarity threshold 7, it is directly assigned
as the final prediction, bypassing the GPT-based
disambiguation step.

The full AutoPCR model overall outperforms
all ablated variants across datasets and metrics,
confirming the importance of each module. Vari-
ant 2 exhibits the most severe performance drop,
especially on GSC-2024 and ID-68, highlighting
the importance of domain-specific alignment in



Mention-level F1% Document-level F1%

Prior Knowledge Candidate Retrieval ~Entity Linking BIOC-GS GSC-2024 ID-68 BIOC-GS GSC-2024 ID-68
Variant 1 Vv V4 64.77 81.79 78.28 65.76 81.95 78.22
Variant 2 Vv v 58.03 67.29 71.29 58.99 67.31 71.34
Variant 3 v V4 61.89 81.07 79.34 62.91 80.83 79.14
AutoPCR (ours) v v v 64.87 82.55 78.87 65.86 82.78 78.83

Table 3: Ablation studies on the impact of prior ontology knowledge, SapBERT-based candidate concept retrieval,
and entity linking. Removing any single module leads to overall performance degradation.

NCBI
Method M-level F1 (%) D-level F1 (%) Deployment Time
FastHPOCR 43.08 52.25 24m10s
NCR 36.29 29.95 ~28h
PhenoTagger 47.75 64.03 15h8m2s
AutoPCR (ours) 51.47 66.08 2m38s

Table 4: Performance and deployment time of selected
phenotype concept recognition methods on the NCBI
dataset using the MEDIC ontology.

embedding-based retrieval. Variant 3 performs
reasonably well on standardized abstracts such
as GSC-2024 and ID-68, suggesting that surface-
form matching alone may suffice for low-ambiguity
datasets. However, it underperforms notably on
BIOC-GS, which contains noisier clinical narra-
tives with higher ambiguity, underscoring the value
of LLM-based reasoning in resolving fine-grained
semantic distinctions. Notably, Variant 1 maintains
relatively strong performance despite the complete
removal of HPO-specific knowledge. This finding
demonstrates that AutoPCR can perform inductive
inference over entirely new or rapidly evolving on-
tologies, such as HPO.

4.6 Generalizability

To evaluate the generalizability and deployment
efficiency of AutoPCR, we conduct an additional
experiment on the NCBI dataset using the MEDIC
ontology. Table 4 reports both mention-level and
document-level results, along with the time re-
quired to deploy each method. We define deploy-
ment time as the total time needed to prepare a
method for inference on a new ontology, including
ontology-specific index construction or re-training.
We compare AutoPCR with three strong and rep-
resentative baselines: FastHPOCR, NCR, and Phe-
noTagger. PhenoTagger++ and PhenoBERT are
excluded due to the lack of publicly available train-
ing pipelines for adapting to new ontologies.
AutoPCR achieves the highest F1 scores on both
mention-level and document-level, while also be-
ing the most efficient to deploy, requiring only 2
minutes and 38 seconds to build the ontology index

of embedded concepts for retrieval. In contrast,
neural methods such as PhenoTagger and NCR re-
quire several hours of retraining and still fall short
in performance. FastHPOCR deploys more quickly
than neural methods but performs substantially
worse than both PhenoTagger and AutoPCR, in-
dicating limited generalizability. These results an-
swer RQ-3 and demonstrate that AutoPCR can gen-
eralize effectively and efficiently to a new ontology
without reconfiguration. Its ability to support rapid
deployment makes it well suited for real-world,
off-the-shelf use in other biomedical domains.

5 Conclusion and Future Work

In this work, we introduce AutoPCR, an automated
method for phenotype concept recognition. It ex-
tracts entities using a hybrid of rule-based and
neural tagging strategies, retrieves candidate con-
cepts via biomedical pre-trained embeddings, and
links entities to ontology concepts through large
language models. Our experiments demonstrate
that AutoPCR achieves not only superior accuracy
and robustness in phenotype recognition, but also
remarkable inductiveness and generalizability to
unseen ontologies—hence the name “automated.”

Future work will explore several directions to
further enhance the adaptability and scalability of
AutoPCR. First, we plan to support multilingual on-
tologies and cross-lingual concept recognition by
incorporating cross-lingual variants of SapBERT
(Liu et al., 2021b), enabling broader application to
non-English biomedical corpora. Second, we aim
to leverage richer contextual signals to improve en-
tity linking in complex scenarios. Third, we plan to
replace the API-based LLM with a locally deployed
model fine-tuned to reject unlinkable entities, elim-
inating the need for manual threshold tuning and
offering a more efficient and cost-effective alterna-
tive. Finally, we are interested in integrating Au-
toPCR into downstream pipelines such as biomedi-
cal knowledge graph construction and phenotype-
driven disease diagnosis, in order to assess its utility
in real-world biomedical applications.



Limitations

The current implementation of AutoPCR relies on
the OpenAl API for entity linking, which intro-
duces latency due to external service calls and in-
curs usage costs. While this setup enables strong
zero-shot generalization, it may hinder scalabil-
ity in large-scale or time-sensitive applications.
Additionally, AutoPCR assumes access to well-
structured biomedical ontologies with informative
definitions and synonyms; performance may be
affected when such resources are sparse or incon-
sistently curated. Finally, although AutoPCR is
ontology-agnostic by design, the candidate concept
retrieval step depends on embedding-based similar-
ity, which may be less effective for highly abstract
or semantically overloaded concepts.
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