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Abstract001

Phenotype concept recognition (CR) is a funda-002
mental task in biomedical text mining, enabling003
applications such as clinical diagnostics and004
knowledge graph construction. However, ex-005
isting methods often require ontology-specific006
training and struggle to generalize across di-007
verse text types and evolving biomedical termi-008
nology. We present AutoPCR, a prompt-based009
phenotype CR method that does not require010
ontology-specific training. AutoPCR performs011
CR in three stages: entity extraction using a012
hybrid of rule-based and neural tagging strate-013
gies, candidate retrieval via SapBERT, and014
entity linking through prompting a large lan-015
guage model. Experiments on four benchmark016
datasets show that AutoPCR achieves the best017
average and most robust performance across018
both mention-level and document-level evalua-019
tions, surpassing prior state-of-the-art methods.020
Further ablation and transfer studies demon-021
strate its inductive capability and generalizabil-022
ity to new ontologies.023

1 Introduction024

Biomedical text mining plays a key role in unlock-025

ing clinical and scientific knowledge from unstruc-026

tured data sources such as clinical notes and re-027

search articles. A fundamental step in this pro-028

cess is ontology-based concept recognition (CR),029

which aims to identify textual mentions of con-030

cepts defined in a given ontology from input text.031

An ontology is a formal, structured representation032

of domain-specific knowledge curated by experts,033

consisting of standardized concepts with associated034

names, definitions, synonyms, and hierarchical re-035

lationships. Phenotype CR, a specific instance of036

ontology-based CR using the Human Phenotype037

Ontology (HPO) (Robinson et al., 2008; Köhler038

et al., 2019), has become a central research focus.039

This is largely due to the availability of richly an-040

notated datasets (Weissenbacher et al., 2023; Lobo041

et al., 2017; Anazi et al., 2017), yet the task remains042

challenging because of the specialized and rapidly 043

evolving nature of biomedical terminology and on- 044

tologies. Phenotype CR plays a critical role in 045

downstream biomedical applications. For example, 046

genetic disease diagnostics require accurate iden- 047

tification of phenotype concepts in clinical notes 048

(Labbé et al., 2023), and biomedical knowledge 049

graph construction relies on robust CR from scien- 050

tific literature to support integrative data analysis 051

and knowledge discovery (Soman et al., 2024). 052

Traditionally, CR can be divided into two stages: 053

(1) entity extraction, which generates spans from 054

the input text for further linking to the ontology; (2) 055

entity linking, which links entities to semantically 056

similar concepts from the ontology. Different CR 057

methods adopt varying designs for these two stages, 058

resulting in distinct strengths and limitations. 059

Early CR methods are primarily dictionary- 060

based, which rely on lookup tables and string- 061

matching techniques to identify concept mentions. 062

While these approaches offer high precision, they 063

suffer from low recall due to limited vocabu- 064

lary coverage and inability to handle linguistic 065

variations (Jonquet et al., 2009; Taboada et al., 066

2014). In recent years, researchers have increas- 067

ingly adopted machine learning models that ei- 068

ther employ biomedical named entity recognition 069

(bioNER) methods for accurate entity extraction or 070

domain-specific language models to enhance lan- 071

guage understanding in biology. However, as these 072

models are trained against a fixed ontology, they 073

must be re-trained to recognize new concepts, limit- 074

ing their usability for frequently updated ontologies 075

like HPO (updated monthly). In contrast, large lan- 076

guage models (LLMs), such as GPT-4 (Achiam 077

et al., 2023), have demonstrated strong zero-shot 078

learning capabilities, offering new possibilities for 079

phenotype CR. Recent studies have shown that 080

LLMs can effectively extract clinical information 081

without domain-specific fine-tuning (Agrawal et al., 082

2022; Meoni et al., 2023). Despite their potential, 083
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LLMs face challenges related to factual consistency084

and reliability in knowledge-intensive tasks (Chen085

et al., 2023; Reese et al., 2024). To address these086

challenges, retrieval-augmented generation (Lewis087

et al., 2020, RAG) has emerged as an effective088

technique to improve LLM’s CR performance by089

incorporating relevant information retrieved from090

the ontology through semantic similarity-based re-091

trieval mechanisms. However, to improve recall,092

a large number of entities need to be generated,093

which conflicts with the limited throughput of Ope-094

nAI’s API. This highlights the need for efficient095

semantic similarity models to filter noisy entities096

and prioritize high-quality candidate concepts.097

In this study, we propose AutoPCR1, an auto-098

mated phenotype CR method based on prompt-099

ing, which consists of three sequential steps. First,100

to ensure that extracted entities are biologically101

meaningful while maintaining high recall, Au-102

toPCR employs two complementary strategies for103

entity extraction, namely a rule-based strategy for104

shorter, free-form text, and a neural tagging ap-105

proach for longer, standardized content. In the106

second step, AutoPCR retrieves candidate con-107

cepts using a semantic similarity model. Although108

phenotype CR has been extensively studied, prior109

work has largely overlooked advances in distantly-110

supervised biomedical entity linking. As a popu-111

lar choice, AutoPCR adopts SapBERT (Liu et al.,112

2021a), a fine-tuned PubMedBERT (Gu et al.,113

2021) on the UMLS ontology (Bodenreider, 2004,114

a superset of HPO), to identify semantically rel-115

evant concepts. In the final step, AutoPCR per-116

forms entity linking by prompting an LLM. Each117

entity and its associated candidate set are encoded118

into a structured prompt that includes the entity119

string along with detailed information of each can-120

didate concept. This approach enables accurate en-121

tity disambiguation without ontology-specific fine-122

tuning. Being model-agnostic and easily adaptable,123

it is well-suited for deployment in low-resource or124

rapidly evolving biomedical domains.125

Our key contributions are as follows.126

• Superior and robust performance. AutoPCR127

achieves the best average and most robust ranking128

on both mention-level and document-level evalu-129

ations across three benchmark datasets, changing130

the fact that prompt-based methods have lagged131

behind dictionary-based or neural approaches.132

1Our code is available at https://anonymous.4open.
science/r/AutoPCR-3520.

• Inductive capability. AutoPCR maintains supe- 133

rior performance even without prior exposure to 134

HPO, making it adaptable to the frequent updates 135

of the HPO ontology. 136

• Generalizability. AutoPCR transfers well to a 137

new ontology without reconfiguration and sup- 138

ports rapid deployment within minutes, offering 139

greater potential for real-world application in 140

other biomedical domains. 141

2 Related Work 142

2.1 Phenotype concept recognition 143

Phenotype CR has grown into multiple methodolog- 144

ical paradigms, including dictionary-based meth- 145

ods, neural methods, and prompt-based methods 146

using LLMs. 147

Dictionary-based methods identify entities by ex- 148

haustively matching input spans against ontology 149

concepts using lookup tables or string similarity 150

measures. Tools such as the NCBO annotator (Jon- 151

quet et al., 2009), the OBO annotator (Taboada 152

et al., 2014), Doc2HPO (Liu et al., 2019), and 153

ClinPhen (Deisseroth et al., 2019) exemplify this 154

strategy. More recently, FastHPOCR (Groza et al., 155

2024b) utilizes groups of morphologically equiva- 156

lent words generated by GPT-4 to address lexical 157

variations and represents the state of the art. 158

Neural methods typically take advantage of deep 159

learning architectures, such as convolutional neural 160

networks (CNNs) and BERT (Devlin et al., 2019), 161

with supervised training on ontology concepts to 162

improve phenotype CR performance. There are 163

two common entity extraction strategies adopted 164

by neural methods, serving as the foundation for 165

subsequent entity linking. One line of methods, 166

e.g., PhenoTagger (Luo et al., 2021) and Pheno- 167

Tagger++ (Qi et al., 2024), adopts a rule-based 168

strategy that exhaustively generates entity spans 169

after removing punctuation and function words. 170

PhenoTagger predicts concepts from extracted en- 171

tities with a trainable BioBERT (Lee et al., 2020) 172

coupled with dictionary-based methods. Pheno- 173

Tagger++ further integrates concept embeddings 174

derived from the ontology structure using TransR 175

(Lin et al., 2015) into the BioBERT model. The 176

other line of methods adopts a neural tagging ap- 177

proach that leverages off-the-shelf bioNER tools, 178

e.g., Stanza (Zhang et al., 2021), to identify biomed- 179

ical textual segments and then exhaustively extract 180

entities from these segments. NCR (Arbabi et al., 181

2019) matches CNN-encoded entities with ontol- 182
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ogy concepts represented by hierarchically aggre-183

gated fastText (Bojanowski et al., 2017) embed-184

dings. PhenoBERT (Feng et al., 2022) improves185

NCR by using multiple CNNs to retrieve top can-186

didate concepts for each phenotype subcategory187

and then re-ranks them with a trainable BERT that188

scores each entity-concept pair. Recently, Phe-189

noBCBERT and PhenoGPT (Yang et al., 2024)190

train Bio+ClinicalBERT (Alsentzer et al., 2019)191

and GPT-3 (Brown et al., 2020) on manually la-192

beled data to improve rare disease recognition.193

LLMs, such as GPT-4, have enabled phenotype194

CR without the need for ontology-specific training,195

allowing for rapid adaptation to evolving biomedi-196

cal vocabularies. Prompt-based methods, such as197

Labbé et al. (2023) and Groza et al. (2024a), uti-198

lize prompt engineering to guide LLMs in directly199

extracting biomedical concepts from text. On the200

other hand, the RAG-based method REAL (Shlyk201

et al., 2024) relies on LLMs to extract biomed-202

ical entities, generate their definitions, and per-203

form entity linking. Candidate concepts are first204

retrieved using a generalist embedding model based205

on names and definitions, and then passed to a LLM206

for final linking using concept-level information.207

2.2 Distantly-supervised biomedical entity208

linking209

Distant supervision has emerged as a practical so-210

lution for biomedical entity linking, where manual211

annotation is costly and often infeasible. These212

methods leverage ontology-derived supervision, en-213

abling large-scale training without labeled corpora.214

BioSyn (Sung et al., 2020) aligns entities with215

concept aliases using a combination of character-216

level features and dense embeddings trained from217

UMLS alias tables. SapBERT (Liu et al., 2021a)218

further improves generalizability by fine-tuning219

PubMedBERT through contrastive learning over220

concept name pairs to align synonyms. KrissBERT221

(Zhang et al., 2022) incorporates context into con-222

trastive learning by using PubMed-derived concept223

contexts and employs a cross-attention encoder to224

re-rank candidate concepts. Its inference strategy225

retains multiple context embeddings per concept,226

enabling context-aware matching. Sasse et al.’s227

(2024) recent work shows that synthetic entities228

generated by LLMs like Llama-2 (Touvron et al.,229

2023) can further enhance normalization perfor-230

mance, especially under distribution shifts, high-231

lighting the complementary role of generative meth-232

ods in distant supervision frameworks.233

3 Method 234

In this section, we present AutoPCR, an automated 235

method for phenotype CR based on prompting. We 236

first provide a formal definition of the CR task and 237

describe how it is decomposed into three sequential 238

sub-tasks. We then define each sub-task rigorously 239

and detail how AutoPCR addresses them through 240

an integrated and modular design. The architecture 241

of AutoPCR is shown in Figure 1. 242

3.1 Problem formulation 243

Definition 3.1 (Concept Recognition) Given a 244

domain ontology O=(C, I) containing concepts 245

C={c1, . . . , cn} and related concept-level infor- 246

mation I (e.g., definition and synonyms) and a 247

piece of input text T , the task is to find f satisfying 248

f(O, T ) = {(i, j, c) | i, j ∈ [0, |T |],
T [i:j] ∼ c ∈ C}

(1) 249

which extracts entities from the input text with start 250

and end offsets that can be mapped to semantically 251

similar concepts in the ontology. 252

We decompose the CR task f into three sequen- 253

tial sub-tasks, namely entity extraction fEE, candi- 254

date concept retrieval fCCR, and entity linking fEL, 255

i.e., f = fEL ◦ fCCR ◦ fEE, as detailed respectively 256

in the next three sections. 257

3.2 Entity extraction 258

Definition 3.2 (Entity Extraction) Given an on- 259

tology O=(C, I) and a piece of input text T , the 260

task is to find fEE satisfying 261

fEE(O, T ) ⊃ {(i, j) | i, j ∈ [0, |T |],
T [i:j] ∼ ∃c ∈ C}

(2) 262

which extracts entity spans from the text that may 263

correspond to ontology concepts. 264

We adopt two complementary strategies for ex- 265

tracting entities, tailored to different types of input 266

text. For shorter, free-form text such as clinical 267

notes, we follow a rule-based strategy inspired by 268

PhenoTagger. The input text is split into sentences, 269

tokenized, POS-tagged using NLTK (Bird et al., 270

2009), and converted to lowercase. All n-gram 271

spans (n∈[2, 10]) are then enumerated as candidate 272

entities, excluding unigrams due to their limited 273

variability and tendency to be misclassified as false 274

positives. A part-of-speech filter is applied to elim- 275

inate spans that begin or end with punctuation or 276
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Figure 1: Architecture of AutoPCR. It performs concept recognition in three stages: entity extraction using a hybrid
of rule-based and neural tagging strategies (e.g., extracted entities e1, e2, and e3), candidate concept retrieval via
SapBERT initialized from PubMedBERT (e.g., retrieved concepts c1 and c2 for e3), and entity linking through
prompting an LLM (e.g., linked concept c1). The detailed prompt template is shown in Section 3.4.

function words, including prepositions, conjunc-277

tions, and determiners.278

For longer, standardized content such as scien-279

tific abstracts, we adopt a neural tagging approach280

inspired by PhenoBERT. Each sentence is first pro-281

cessed using Stanza with the “ner-i2b2” processor282

and the “mimic” package to extract clinically rel-283

evant segments. To improve coverage, additional284

segments are generated by further splitting the sen-285

tences on punctuation and conjunctions. All result-286

ing segments are then used as windows for n-gram287

extraction (n∈[2, 10]) to generate entities.288

3.3 Candidate concept retrieval289

Definition 3.3 (Candidate Concept Retrieval)290

Given an ontology O=(C, I), an entity e=T [i:j]291

from text T , and a maximum number of candidates292

k, the task is to find fCCR satisfying293

fCCR(O, e, k) = Ccand ⊂ C

s.t. |Ccand| ≤ k, e ∼ ∃c ∈ Ccand

∨ Ccand = ∅, e ̸∼ ∀c ∈ C
(3)294

which retrieves a small set of potentially match-295

ing concepts from the ontology for each extracted296

entity.297

To retrieve candidate concepts for each extracted298

entity e from the input text, we adopt an embedding-299

based retrieval strategy using SapBERT, which300

encodes semantically similar ontology terms into301

neighboring vectors. All ontology concepts and302

their synonyms are pre-encoded and indexed as 303

dense vectors. Each extracted entity is also en- 304

coded with SapBERT and then compared against 305

the index using cosine similarity. If the top simi- 306

larity exceeds a high-confidence threshold τ1, the 307

entity is directly linked to the most similar concept. 308

Otherwise, if the similarity falls within a relaxed 309

interval (τ2, τ1], we retrieve the top-k most sim- 310

ilar concepts to form the candidate set Ccand for 311

downstream entity linking. This two-stage thresh- 312

olding allows us to balance precision and recall 313

while avoiding unnecessary disambiguation when 314

the match is unambiguous. 315

3.4 Entity linking 316

Definition 3.4 (Entity Linking) Given an ontol- 317

ogy O=(C, I), an entity e=T [i:j] from text T , and 318

candidate concepts Ccand, the task is to find fEL 319

satisfying 320

fEL(O, e, Ccand) = c ∈ Ccand ∼ e (4) 321

which selects the most semantically similar con- 322

cept from the retrieved candidate concepts. 323

Inspired by the prompt-based method REAL, we 324

perform entity linking by prompting GPT-4o-mini. 325

For each extracted entity e and its retrieved candi- 326

date concept set Ccand, we construct a structured 327

prompt that includes the entity name along with the 328

list of candidate concepts. Each concept is repre- 329

sented by its ID, name, definition, synonyms, and 330
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cross-referenced UMLS synonyms. Specifically,331

the following prompt template is used.332

System prompt:333

As an expert clinician, your task is to accu-334

rately link the entity using the concepts listed335

below. Accuracy is paramount. If the entity336

does not precisely refer to any of the concepts337

listed below, please return “None”; otherwise,338

return the corresponding concept ID in the fol-339

lowing format:340

answer:<concept ID or None>341

confidence:<one of HIGH, LOW, MEDIUM>342

Here are the concepts:343

{candidate concepts with ID, name, definition,344

synonyms, UMLS synonyms}345

User prompt:346

Here is the entity to link:347

label: {entity string}348

The output contains both a concept ID and a349

confidence level, and only predictions with “HIGH”350

confidence are retained to ensure precision and351

reduce false positives.352

3.5 Post-processing353

AutoPCR may generate overlapping entity spans,354

as different n-grams or segments can cover inter-355

secting text regions. These overlapping entities356

may link to the same or different concepts and thus357

require conflict resolution. If they are linked to358

different concepts, we retain all of them. If they359

are linked to the same concept, we apply resolution360

strategies corresponding to the used entity extrac-361

tion strategy (Luo et al., 2021; Feng et al., 2022).362

When using the rule-based strategy for entity ex-363

traction, we keep the span with the highest match-364

ing score. When using the neural tagging approach,365

we retain the longest span, based on the intuition366

that longer spans typically convey more precise367

semantic meaning in standardized texts.368

4 Experiments369

We carry out extensive experiments to answer three370

research questions regarding our AutoPCR model.371

(RQ-1) How does AutoPCR perform against other372

baselines on various datasets? (RQ-2) How much373

does each module of AutoPCR contribute to its374

performance? (RQ-3) Can AutoPCR generalize375

effectively and efficiently to a different ontology376

other than HPO? Section 4.1 introduces the CR377

benchmark datasets. Section 4.2 describes imple- 378

mentation details. Section 4.3 presents the baseline 379

systems. Sections 4.4, 4.5, and 4.6 correspond to 380

our answers to the three research questions. 381

4.1 Concept recognition benchmark 382

To evaluate the performance of AutoPCR, we 383

conduct experiments on four widely-used bench- 384

mark datasets: (i) BIOC-GS, the development set 385

from BioCreative VIII Track 3 (Weissenbacher 386

et al., 2023), consisting of 382 clinical observa- 387

tion records from dysmorphology physical exami- 388

nations, with an average length of 8.5 words. It 389

includes 607 phenotype mentions covering 315 390

unique HPO concepts. An example record is “AB- 391

DOMEN: Small umbilical hernia. Mild distention. 392

Soft.” (ii) GSC-2024, a refined GSC+ (Lobo et al., 393

2017) dataset given by FastHPOCR, which com- 394

prises 228 scientific abstracts from PubMed. We 395

follow PhenoTagger’s data split, using 22 abstracts 396

for development. The test split contains 2,034 phe- 397

notype mentions linked to 451 unique HPO con- 398

cepts, with an average of 150 words. (iii) ID-68, 399

which contains 68 real clinical notes from families 400

with intellectual disabilities (Anazi et al., 2017), 401

and is manually annotated by PhenoBERT in the 402

same way as GSC+. It includes 857 phenotype 403

mentions covering 433 unique HPO concepts, with 404

an average length of 157 words. (iv) The NCBI dis- 405

ease corpus (Doğan et al., 2014), consisting of 100 406

PubMed abstracts, with an average length of 205 407

words. It includes 960 phenotype mentions cover- 408

ing 198 unique MEDIC concepts. These datasets 409

involve both free-form and standardized phenotype 410

mentions, covering a wide range of use cases. 411

We follow the evaluation pipeline of PhenoTag- 412

ger, a popular baseline. BIOC-GS, GSC-2024, and 413

ID-68 are grounded on HPO release “20240208” 414

under the root node “phenotypic abnormality.” 415

NCBI is grounded on MEDIC, a curated disease 416

ontology integrating MeSH (Lipscomb, 2000) and 417

OMIM (Amberger et al., 2019), under the root node 418

“diseases.” Mention-level and document-level pre- 419

cision (P), recall (R), and F1 scores are employed 420

as evaluation metrics. For mention-level evaluation, 421

a predicted entity is considered correct only if there 422

exists a ground-truth entity with the same linked 423

concept and overlapping offsets. For document- 424

level evaluation, linked concepts are treated as a 425

set per document, and metrics are computed by 426

comparing these sets, followed by micro-averaging 427

across all documents. 428
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4.2 Implementation details429

We adopt different entity extraction strategies for430

each dataset, as described in Section 3.2. For BIOC-431

GS, we use the rule-based strategy from PhenoTag-432

ger, which suits shorter, free-form clinical text. For433

GSC-2024, ID-68, and NCBI, we apply the neu-434

ral tagging approach from PhenoBERT, as these435

datasets consist of longer, standardized content.436

For candidate concept retrieval, we set437

τ1=0.95 ∈ [0.9, 0.92, 0.95, 0.98] and τ2=0.85 ∈438

[0.8, 0.82, 0.85, 0.88, 0.9] to distinguish between439

high- and low-confidence matches. For similar-440

ity scores in the range (τ2, τ1], we retain up to441

k=5 ∈ [3, 5, 10] candidates. All hyperparameters442

are tuned on the GSC-2024 development set.443

All experiments are run once with fixed seeds444

and zero temperature on a Linux server with an445

Intel Xeon Gold 6242R CPU (16 cores, 3.1GHz),446

128 GB RAM, and one NVIDIA Tesla V100 (32447

GB). The total cost of running AutoPCR is < $1.448

4.3 Baseline systems449

We compare AutoPCR against various phenotype450

CR baselines across three categories. Dictionary-451

based methods include NCBO (Jonquet et al.,452

2009), OBO (Taboada et al., 2014), ClinPhen (Deis-453

seroth et al., 2019), and FastHPOCR (Groza et al.,454

2024b). Neural methods include NCR (Arbabi455

et al., 2019), PhenoTagger (Luo et al., 2021), Phe-456

noBERT (Feng et al., 2022), and PhenoTagger++457

(Qi et al., 2024). Prompt-based methods, based458

on GPT-4o-mini, include direct prompting with459

Groza et al.’s (2024a) template 4 and REAL (Shlyk460

et al., 2024). All baselines are evaluated with their461

default parameter settings. Mention-level results462

are omitted for ClinPhen, since it does not provide463

offsets for extracted entities.464

4.4 Main results465

We report mention-level and document-level results466

for all methods across three benchmark datasets467

grounded on HPO in Tables 1 and 2. AutoPCR468

consistently achieves top-tier performance, ranking469

second in five out of six settings and third in the re-470

maining one, resulting in the best average mention-471

level rank of 2.33 and document-level rank of 2.00.472

Its performance is also the most stable, with the473

smallest rank variance among all methods. The474

second-best method is FastHPOCR, a dictionary-475

based approach that ranks third on average for both476

evaluation levels. However, its performance drops477

notably on BIOC-GS, indicating reduced stabil- 478

ity across datasets. The third-best performers are 479

PhenoTagger and PhenoBERT, two neural mod- 480

els each with an average rank of 4.00. PhenoTag- 481

ger performs better on BIOC-GS but worse on 482

ID-68, whereas PhenoBERT shows the opposite 483

trend, with stronger results on ID-68 and weaker 484

performance on BIOC-GS. Both models exhibit 485

higher variability compared to AutoPCR. Tradi- 486

tional dictionary-based methods such as NCBO, 487

OBO, and ClinPhen consistently achieve high pre- 488

cision, but suffer from low recall, leading to lower 489

F1 score rankings. The early neural model NCR 490

is outperformed by its successor PhenoBERT as 491

expected, while PhenoTagger++, intended as an 492

improved version of PhenoTagger, does not yield 493

any notable performance gain. The naive prompt- 494

ing method using GPT-4o-mini performs poorly 495

compared to all other baselines. In contrast, the 496

retrieval-augmented method REAL achieves the 497

best result on BIOC-GS, but ranks near the bottom 498

on the other datasets, highlighting the limitations 499

of its model design. These results comprehensively 500

address RQ-1, demonstrating the performance su- 501

periority and robustness of AutoPCR. We further 502

analyze these outcomes in detail, showing how the 503

design of AutoPCR contributes to its performance 504

under varying dataset characteristics. 505

On BIOC-GS, which consists of noisy clinical 506

observations, we observe a clear performance trend 507

across method categories: prompt-based methods 508

outperform neural methods, which in turn outper- 509

form dictionary-based ones, consistent with prior 510

findings (Groza et al., 2024a; Qi et al., 2024; Shlyk 511

et al., 2024). This pattern reflects their respec- 512

tive modeling capabilities. Prompt-based methods 513

rely on LLMs with strong language understanding 514

abilities for entity linking, enabling them to better 515

handle free-form and lexically diverse clinical text. 516

Neural methods, typically fine-tuned on structured, 517

ontology-aligned corpora, struggle to generalize 518

to such noisy input. Dictionary-based methods 519

perform worst, as they lack semantic understand- 520

ing and rely solely on exact or approximate string 521

matching. Within the prompt-based category, for 522

the same reason, REAL performs better than Au- 523

toPCR due to its use of LLM-generated definition- 524

similarity-based concept retrieval, which relies less 525

on the surface forms of the entities. 526

On GSC-2024 and ID-68, which feature longer 527

and more standardized text with less surface-level 528

variation in entities, AutoPCR remains highly com- 529
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Performace (%) BIOC-GS GSC-2024 ID-68
Avg. Rk.

Method P R F1 (Rk.) P R F1 (Rk.) P R F1 (Rk.)

Dictionary
-based

NCBO 71.80 45.80 55.92 9 96.62 51.57 67.25 7 86.53 65.23 74.39 7 7.67
OBO 73.89 45.31 56.17 8 87.41 52.66 65.72 8 82.55 63.01 71.47 8 8.00
ClinPhen – – – 11 – – – 11 – – – 11 11.00
FastHPOCR 60.53 60.46 60.50 5 91.66 79.25 85.01 1 87.23 71.76 78.75 3 3.00

Neural

NCR 55.90 60.96 58.32 7 81.14 74.88 77.88 6 78.64 78.18 78.41 4 5.67
PhenoTagger 56.56 70.35 62.70 3 86.16 78.12 81.95 4 83.49 73.75 78.32 5 4.00
PhenoBERT 64.50 55.85 59.86 6 88.04 74.98 80.99 5 94.33 78.76 85.85 1 4.00
PhenoTagger++ 56.87 69.52 62.57 4 87.71 78.27 82.72 2 79.52 73.86 76.59 6 4.00

Prompt
-based

GPT-4o-mini 2.89 2.47 2.66 10 15.31 7.62 10.18 10 18.00 15.52 16.67 10 10.00
REAL 75.20 62.93 68.52 1 76.27 47.59 58.61 9 76.33 65.46 70.48 9 6.33
AutoPCR (ours) 62.54 67.38 64.87 2 91.17 75.42 82.55 3 85.54 73.16 78.87 2 2.33

Table 1: Mention-level performance of all methods on three benchmark datasets. AutoPCR achieves the best average
and most robust ranking across datasets and methods.

Performace (%) BIOC-GS GSC-2024 ID-68
Avg. Rk.

Method P R F1 (Rk.) P R F1 (Rk.) P R F1 (Rk.)

Dictionary
-based

NCBO 72.90 45.86 56.30 10 99.33 52.26 68.49 7 89.06 64.69 74.95 7 8.00
OBO 74.46 45.36 56.38 9 85.98 52.40 65.12 8 83.36 62.55 71.47 8 8.33
ClinPhen 64.78 51.16 57.17 8 86.20 44.99 59.12 10 74.96 61.92 67.82 10 9.33
FastHPOCR 60.56 60.76 60.66 5 95.15 77.61 85.49 1 87.75 71.38 78.72 3 3.00

Neural

NCR 55.16 61.09 57.97 7 81.88 73.09 77.24 6 79.18 77.68 78.42 4 5.67
PhenoTagger 57.78 70.70 63.59 3 87.57 76.62 81.73 4 83.29 73.52 78.10 5 4.00
PhenoBERT 65.07 56.13 60.27 6 90.33 73.87 81.27 5 94.11 78.56 85.64 1 4.00
PhenoTagger++ 58.21 69.87 63.51 4 89.38 76.70 82.55 3 79.40 73.90 76.55 6 4.33

Prompt
-based

GPT-4o-mini 50.77 44.15 47.23 11 18.25 9.75 12.71 11 19.53 16.77 18.05 11 11.00
REAL 75.94 63.25 69.02 1 80.21 54.66 65.02 9 76.64 66.20 71.04 9 6.33
AutoPCR (ours) 64.11 67.72 65.86 2 93.91 74.01 82.78 2 85.65 73.01 78.83 2 2.00

Table 2: Document-level performance of all methods on three benchmark datasets. AutoPCR achieves the best
average and most robust ranking across datasets and methods.

petitive, even though the advantage of language530

understanding becomes less pronounced. The top-531

performing baselines on these two datasets, FastH-532

POCR and PhenoBERT, are both evaluated on data533

partially labeled by their respective research teams,534

potentially introducing bias in their favor. Also,535

neither method achieves top performance on the536

other’s dataset. AutoPCR, by contrast, consistently537

ranks just behind these baselines and achieves the538

(second) best average rank across mention-level539

and document-level evaluations. Unlike in BIOC-540

GS, AutoPCR significantly outperforms REAL in541

this setting. This advantage stems from its more542

comprehensive entity extraction strategy, which543

improves recall, and a candidate concept retrieval544

module that efficiently models semantic similar-545

ity by filtering noisy entities and prioritizing high-546

quality candidates based on surface forms.547

4.5 Ablation studies548

To assess the contribution of each module in Au-549

toPCR and answer RQ-2, we conduct ablation ex-550

periments, as summarized in Table 3. We evaluate551

the following three variants of AutoPCR.552

• Variant 1. This variant simulates a scenario 553

where the target ontology is newly introduced 554

and unseen during model training. We re-train 555

SapBERT (initialized from PubMedBERT) on 556

UMLS excluding all HPO-related concepts. 557

• Variant 2. This variant examines whether 558

domain-specific alignment in SapBERT is essen- 559

tial for candidate concept retrieval. We replace 560

SapBERT with PubMedBERT for embedding, 561

without any contrastive fine-tuning on UMLS. 562

• Variant 3. This variant evaluates the importance 563

of the entity linking module. We remove the link- 564

ing module entirely and rely solely on candidate 565

concept retrieval. If the top candidate exceeds 566

the similarity threshold τ1, it is directly assigned 567

as the final prediction, bypassing the GPT-based 568

disambiguation step. 569

The full AutoPCR model overall outperforms 570

all ablated variants across datasets and metrics, 571

confirming the importance of each module. Vari- 572

ant 2 exhibits the most severe performance drop, 573

especially on GSC-2024 and ID-68, highlighting 574

the importance of domain-specific alignment in 575
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Mention-level F1% Document-level F1%
Prior Knowledge Candidate Retrieval Entity Linking BIOC-GS GSC-2024 ID-68 BIOC-GS GSC-2024 ID-68

Variant 1
√ √

64.77 81.79 78.28 65.76 81.95 78.22
Variant 2

√ √
58.03 67.29 71.29 58.99 67.31 71.34

Variant 3
√ √

61.89 81.07 79.34 62.91 80.83 79.14
AutoPCR (ours)

√ √ √
64.87 82.55 78.87 65.86 82.78 78.83

Table 3: Ablation studies on the impact of prior ontology knowledge, SapBERT-based candidate concept retrieval,
and entity linking. Removing any single module leads to overall performance degradation.

NCBI
Method M-level F1 (%) D-level F1 (%) Deployment Time
FastHPOCR 43.08 52.25 24m10s
NCR 36.29 29.95 ∼28h
PhenoTagger 47.75 64.03 15h8m2s
AutoPCR (ours) 51.47 66.08 2m38s

Table 4: Performance and deployment time of selected
phenotype concept recognition methods on the NCBI
dataset using the MEDIC ontology.

embedding-based retrieval. Variant 3 performs576

reasonably well on standardized abstracts such577

as GSC-2024 and ID-68, suggesting that surface-578

form matching alone may suffice for low-ambiguity579

datasets. However, it underperforms notably on580

BIOC-GS, which contains noisier clinical narra-581

tives with higher ambiguity, underscoring the value582

of LLM-based reasoning in resolving fine-grained583

semantic distinctions. Notably, Variant 1 maintains584

relatively strong performance despite the complete585

removal of HPO-specific knowledge. This finding586

demonstrates that AutoPCR can perform inductive587

inference over entirely new or rapidly evolving on-588

tologies, such as HPO.589

4.6 Generalizability590

To evaluate the generalizability and deployment591

efficiency of AutoPCR, we conduct an additional592

experiment on the NCBI dataset using the MEDIC593

ontology. Table 4 reports both mention-level and594

document-level results, along with the time re-595

quired to deploy each method. We define deploy-596

ment time as the total time needed to prepare a597

method for inference on a new ontology, including598

ontology-specific index construction or re-training.599

We compare AutoPCR with three strong and rep-600

resentative baselines: FastHPOCR, NCR, and Phe-601

noTagger. PhenoTagger++ and PhenoBERT are602

excluded due to the lack of publicly available train-603

ing pipelines for adapting to new ontologies.604

AutoPCR achieves the highest F1 scores on both605

mention-level and document-level, while also be-606

ing the most efficient to deploy, requiring only 2607

minutes and 38 seconds to build the ontology index608

of embedded concepts for retrieval. In contrast, 609

neural methods such as PhenoTagger and NCR re- 610

quire several hours of retraining and still fall short 611

in performance. FastHPOCR deploys more quickly 612

than neural methods but performs substantially 613

worse than both PhenoTagger and AutoPCR, in- 614

dicating limited generalizability. These results an- 615

swer RQ-3 and demonstrate that AutoPCR can gen- 616

eralize effectively and efficiently to a new ontology 617

without reconfiguration. Its ability to support rapid 618

deployment makes it well suited for real-world, 619

off-the-shelf use in other biomedical domains. 620

5 Conclusion and Future Work 621

In this work, we introduce AutoPCR, an automated 622

method for phenotype concept recognition. It ex- 623

tracts entities using a hybrid of rule-based and 624

neural tagging strategies, retrieves candidate con- 625

cepts via biomedical pre-trained embeddings, and 626

links entities to ontology concepts through large 627

language models. Our experiments demonstrate 628

that AutoPCR achieves not only superior accuracy 629

and robustness in phenotype recognition, but also 630

remarkable inductiveness and generalizability to 631

unseen ontologies–hence the name “automated.” 632

Future work will explore several directions to 633

further enhance the adaptability and scalability of 634

AutoPCR. First, we plan to support multilingual on- 635

tologies and cross-lingual concept recognition by 636

incorporating cross-lingual variants of SapBERT 637

(Liu et al., 2021b), enabling broader application to 638

non-English biomedical corpora. Second, we aim 639

to leverage richer contextual signals to improve en- 640

tity linking in complex scenarios. Third, we plan to 641

replace the API-based LLM with a locally deployed 642

model fine-tuned to reject unlinkable entities, elim- 643

inating the need for manual threshold tuning and 644

offering a more efficient and cost-effective alterna- 645

tive. Finally, we are interested in integrating Au- 646

toPCR into downstream pipelines such as biomedi- 647

cal knowledge graph construction and phenotype- 648

driven disease diagnosis, in order to assess its utility 649

in real-world biomedical applications. 650
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Limitations651

The current implementation of AutoPCR relies on652

the OpenAI API for entity linking, which intro-653

duces latency due to external service calls and in-654

curs usage costs. While this setup enables strong655

zero-shot generalization, it may hinder scalabil-656

ity in large-scale or time-sensitive applications.657

Additionally, AutoPCR assumes access to well-658

structured biomedical ontologies with informative659

definitions and synonyms; performance may be660

affected when such resources are sparse or incon-661

sistently curated. Finally, although AutoPCR is662

ontology-agnostic by design, the candidate concept663

retrieval step depends on embedding-based similar-664

ity, which may be less effective for highly abstract665

or semantically overloaded concepts.666
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