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Abstract001

Letters of recommendation (LoRs) can carry002
patterns of gendered language that can inad-003
vertently influence downstream decisions, e.g.004
in hiring and admissions. In this work, we005
investigate the extent that Transformer-based006
Large Language Models (LLMs) can infer the007
gender of applicants in academic LoRs after008
explicit identifiers like names and pronouns are009
de-gendered. When fine-tuning three LLMs010
(DistilBERT, RoBERTa, and Llama 2) to clas-011
sify the gender of anonymized and de-gendered012
LoRs, we find significant gender leakage evi-013
denced by up to 68% classification accuracy.014
Using text interpretation methods, TF-IDF and015
SHAP, we demonstrate that certain linguis-016
tic patterns are strong proxies for gender, e.g.017
“emotional” and “humanitarian” are commonly018
associated with LoRs for female applicants. As019
an experiment in creating truly gender-neutral020
LoRs, we remove these implicit gender cues021
and observed a drop of up to 7% accuracy and022
4% macro F1 score on re-training the classi-023
fiers. However, applicant gender prediction024
still remains better than chance. Our findings025
highlight that LoRs contain gender-identifying026
cues that are hard to remove and may activate027
bias in decision-making. While technical so-028
lutions may be a concrete step toward fairer029
academic and professional evaluations, future030
work is needed to ensure gender-agnostic LoR031
review.032

1 Introduction033

Letters of recommendation (LoRs) remain one of034

the most influential yet least structured components035

of academic and professional evaluation. While036

evaluators ostensibly focus on merit-based content,037

a growing body of work (Isaac et al., 2009; Rice038

and Barth, 2016; Dastin, 2018; Alexander, 2022)039

demonstrates the presence of seemingly innocu-040

ous linguistic cues in application materials that can041

indicate gender and systematically sway percep-042

tions of applicant competence, leadership, and fit.043

Detecting such patterns is therefore essential both 044

for understanding implicit bias and for engineer- 045

ing AI-supported professional evaluation pipelines 046

that can be safely and fairly deployed in real-world 047

selection processes. 048

In an academic admissions context, this work 049

explores this challenge along two fronts. First, cast- 050

ing gender identification as a supervised text clas- 051

sification task, we investigate the presence of im- 052

plicit gender cues in LoRs by comparing how much 053

gender signal is carried by explicitly gendered 054

applicant-focused language versus the broader nar- 055

rative. Specifically, we fine-tune several pre-trained 056

LLMs ( Sanh et al., 2020; Liu et al., 2019; Touvron 057

et al., 2023b) on a corpus of 8,992 LoRs submit- 058

ted to a medical residency program. These LLM 059

text classifiers are trained on the raw text from 060

anonymized LoRs, then subsequently on text with 061

explicit gender identifiers (pronouns, titles, kinship 062

terms, etc.) replaced with fixed gender alternatives. 063

From this experiment, we find that LLMs achieve 064

above-chance performance on classifying gender 065

of applicants in explicitly de-gendered LoRs (68% 066

accuracy and 60% macro F1), suggesting the pres- 067

ence of implicit gender cues in LoRs. 068

Second, we apply common interpretability meth- 069

ods (TF-IDF and SHAP) to identify linguistic pat- 070

terns associated with model decisions (i.e. possible 071

implicit cues for applicant gender). Upon removing 072

these implicit gender indicators, we then re-train 073

models and re-evaluate their performance on the 074

sanitized text. Significant drops in performance 075

(i.e., to 61% accuracy and 56% macro F1) indicate 076

a partially successful obscuration of gender, but 077

model predictions remain above chance. Comple- 078

menting aggregate metrics, we deploy SHAP value 079

decompositions to visualize which tokens the clas- 080

sifier leans on before and after de-gendering. These 081

explanations audit the fairness of model decisions 082

and may suggest iterative rules of refinement. 083

Collectively, this study yields (i) a repro- 084
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ducible discriminator for gender inference from085

real human-written LoRs, (ii) a quantitative assess-086

ment of tokens associated with such inference, and087

(iii) an interpretable de-gendering strategy that can088

provide quantitative evaluation, and partial mitiga-089

tion, of pervasive implicit gender cues in LoRs.090

2 Related Works091

Prior work has long gathered empirical evidence092

of significant gender bias in professional contexts,093

such as hiring decisions (Isaac et al., 2009; Koch094

et al., 2015; Rice and Barth, 2016; Hoover et al.,095

2019; Keck and Tang, 2020). In the context of096

open-source software development, Imtiaz et al.097

(2019) found that women’s GitHub pull requests098

were, on average, accepted more frequently than099

men’s, unless the contributor’s gender was publicly100

identifiable, at which point acceptance rates fell101

significantly. The authors inferred that higher rejec-102

tion stems not from inferior code quality, but from103

bias activated by visible gender markers. Similarly,104

Simon et al. (2023) found systematic differences in105

patterns of language used in LinkedIn profiles by106

gender. AI language model-based text classifiers107

are effective tools to expose correlations between108

text data and various class labels and categories109

(Schwartz et al., 2017; Gururangan et al., 2018;110

Poliak et al., 2018; Niven and Kao, 2019). As such,111

they can identify implicit gender cues in applica-112

tion materials, and when used as hiring tools, they113

can leverage such cues to inadvertently perpetu-114

ate historical hiring bias reflected in training data115

(Dastin, 2018). Highly relevant to our work, Liu116

et al. (2022) used a large language model (LLM)117

to assess gender bias in human-written feedback118

for medical students, finding that terms related to119

family and children were more likely to be used120

in evaluating female students. These findings sup-121

port our concern that human-written text can en-122

code latent gender information undetected by naïve123

anonymization.124

Meanwhile, NLP technologies like LLMs them-125

selves often learn and reproduce societal stereo-126

types present in text corpora used to pre-train them,127

exacerbating concerns of bias. Prior work has128

found evidence of gender and other social bias129

across broad domains and tasks, including in distri-130

butional semantic representations (Bolukbasi et al.,131

2016; Zhao et al., 2019), coreference resolution132

systems (Zhao et al., 2019; Rudinger et al., 2018),133

text classifier decisions (De-Arteaga et al., 2019;134

Jentzsch and Turan, 2022), and LLM-generated 135

text (Bolukbasi et al., 2016; Kotek et al., 2023; 136

Wan et al., 2023; Dhingra et al., 2023; Soundarara- 137

jan and Delany, 2024; Wu and Ebling, 2024; Mirza 138

et al., 2025). In turn, growing attention has focused 139

on the behavior of LLMs in high-stakes selection 140

contexts (Hickman et al., 2024; Phillips and Robie, 141

2024; Henkel et al., 2024; Leong et al., 2024; Li 142

et al., 2024b,a; Wang et al., 2024; Karvonen and 143

Marks, 2025), developing resources to support safe 144

and fair application of LLMs in such areas. 145

Together, these studies establish the persistence 146

of gender cues in professional and meritocratic 147

artifacts and the potential of NLP and language 148

technologies to perpetuate social biases. Build- 149

ing on this foundation, we demonstrate the pres- 150

ence of implicit gender cues in letters of recom- 151

mendation (LoRs) and contribute an interpretable 152

de-gendering workflow that combines LLMs with 153

interpretable feature engineering to quantify (but 154

only partially mitigate) gender leakage in LoRs. 155

3 Methodology 156

3.1 Problem Formulation 157

Let D = {(xi, yi)}Ni=1 be a corpus of letters of 158

recommendation (LoRs), where xi ∈ X denotes 159

the i-th document and yi ∈ {0, 1} encodes the self- 160

identified gender of the applicant (0 for female, 1 161

for male). Our goal is twofold: 162

1. learn a mapping fθ : X → {0, 1} that predicts 163

the gender from x as ŷ = fθ(x), and 164

2. quantify features or tokens v ∈ V derived 165

from x using a function ϕ : V → R and 166

suppress the lexical evidence that enables such 167

prediction ŷ. 168

Formally, we view fθ as a text-based gender clas- 169

sifier with parameters θ built atop a pre-trained 170

Transformer encoder (Vaswani et al., 2017) and 171

optimized via. task-specific fine-tuning. Also, fea- 172

tures in our case are considered as tokens derived 173

from the LoR texts. 174

3.2 Training a Gender Classifier 175

3.2.1 Model Architecture 176

We experiment with three language model variants 177

on the LoR dataset to build our gender classifier. 178

DistilBERT. A six-layer student network dis- 179

tilled from BERT-BASE (∼ 66 M parameters vs. 180

110 M) that preserves ≥ 95% of the original 181

performance while being 40% smaller and 60% 182

faster (Sanh et al., 2020). 183
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Explicit and Implicit Degendering Methodology for Gender Leakage Evaluation

Explainability techniques to inspect residual gender leakage 
(implicitly gendered tokens)1 For eg. female - pediatric, social, compassionate, and warm, 

male: respectful, professional, 578
combat, and supervise

Topic Modeling

Accuracy

F1 Score

Male: respectful, professional,
combat, and supervise

Female: pediatric, social, 
compassionate, and warm 

Remove implicitly gendered words 

he is the father 
of...   

she was the  
president of  her 
sorority.

she is the mother 
of... 

she was the 
president of  her 
sorority.

Convert male-identifying words to female equivalents
Evaluate LLM on gender 

classification 

Evaluate gender 
classification difference 

between degendered texts 
(explicit, implicit)

LLM fine-tuned on 
degendered text (explicit)

LLM fine-tuned on 
degendered text 

(implicit)

LoRs

Text vectorization

SHAP

TF-IDF

Figure 1: Illustration of the De-Gendering workflow showing the steps for initial Explicit De-Gendering and training
followed by Implicit De-Gendering, fine-tuning and re-evaluation

RoBERTa. A robustly optimized BERT deriva-184

tive trained with larger mini-batches, dynamic185

masking, and the removal of the next-sentence186

objective, yielding superior downstream accu-187

racy (Liu et al., 2019).188

Llama 2. A 7B parameter decoder-only model189

pre-trained on 2T tokens (Touvron et al., 2023a),190

fine-tuned using parameter-efficient LoRA adapters191

(Hu et al., 2022) inserted into attention and feed-192

forward layers. This allows efficient classification193

on limited GPU memory while preserving the core194

weights.195

For all models, the final hidden state associated196

with the canonical [CLS] token (hi ∈ Rd) is passed197

through a trainable affine head ŷi=σ
(
w⊤hi) with198

parameters w where σ denotes the logistic func-199

tion and d is the dimension of the hidden state,200

predicting the gender category.201

3.2.2 Data Processing202

Our initial data processing pipeline includes a203

regex-based token matching filter, replacing all204

gender-identifying tokens (names, titles, pronouns,205

and kinship terms) with special tokens or their fe-206

male counterparts. The resultant filtered texts were207

used for training and evaluating the baseline classi-208

fier. Upon building a baseline classifier, each LoR209

was further subjected to an automatic de-gendering210

filter gϕ such that X̃ = gϕ(X), based on the the211

gender predictability factor ϕ as shown in Fig-212

ure. 1. The dataset was randomly partitioned into213

Dtrain:Dval:Dtest = 80 : 10 : 10. Tokenization fol-214

lows the standard BERT based tokenization scheme215

with a maximum sequence length of L=512.216

3.2.3 Evaluation Metrics 217

We report accuracy, precision, recall, and macro- 218

averaged F1 score on Dtest. TF-IDF and SHAP 219

values are qualitatively inspected to validate the 220

efficacy of the de-gendering filter. 221

3.3 Quantifying Implicitly Gendered Tokens 222

SHAP : To inspect residual gender leakage, 223

we employ SHAP (SHapley Additive exPlana- 224

tions) (Lundberg and Lee, 2017). Formally, let 225

f : Rn → R denote a predictive model, and let 226

x ∈ Rn represent an instance with n features. 227

The goal is to decompose the output f(x) as a 228

linear combination of feature contributions such 229

that f(x) = ϕ0 +
∑n

i=1 ϕi, where ϕ0 is the base 230

value (expected output over the dataset) and ϕi 231

represents the marginal contribution of feature i to 232

the deviation from the base. The SHAP value ϕi 233

for a feature i is computed by taking the average 234

marginal contribution of that feature over all possi- 235

ble subsets S ⊆ {1, . . . , n} \ {i}, defined as: ϕi = 236∑
S⊆N\{i}

|S|!(n−|S|−1)!
n!

[
fS∪{i}(xS∪{i})− fS(xS)

]
237

where fS(xS) denotes the model trained (or ap- 238

proximated) using only features in subset S, 239

and xS is the projection of x onto S. Here, ϕi 240

denotes the SHAP value associated with token 241

vi, quantifying how much that token or word 242

contributes to the model’s deviation from the 243

base prediction over the dataset. Positive SHAP 244

values indicate that the word pushes the prediction 245

toward a particular gender, while negative values 246

push it away. For instance, high-magnitude SHAP 247

values associated with occupational terms ("nurse", 248

"engineer") reveal how the model associates 249

language features with gender. 250
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TF-IDF : By computing the TF-IDF (Term Fre-251

quency–Inverse Document Frequency) scores of252

words across documents labeled by gender, one253

can determine which terms are most characteris-254

tic or discriminative of each gender class. TF-IDF255

boosts terms that are frequent in a document but256

rare across the corpus. If certain terms consistently257

have higher TF-IDF scores in documents of a partic-258

ular gender, then those terms clearly show a strong259

contributing factor influencing the prediction to-260

wards that particular gender.261

4 Experiments262

4.1 Classification263

In our classification step, we begin by training a264

language model on the original LoR texts in which265

only the applicant names are anonymized. Since266

this version of the data contains explicit gender267

indicators such as pronouns (he, she) and titles (Mr.,268

Mrs.), we expect the model to predict applicant269

gender with near-perfect accuracy, serving as our270

baseline. The model used for this experiment was271

DistilBERT.272

We then train a series of models on de-gendered273

versions of the text X̃ , where all explicit gender-274

identifying tokens have been replaced with their275

female counterparts. This allows us to examine276

whether gender can still be inferred from more277

subtle linguistic patterns. For these experiments,278

we fine-tune transformer-based models, which in-279

cludes DistilBERT, RoBERTa, and Llama 2, to280

evaluate their performance on the gender classifi-281

cation task in the absence of overt gender signals282

(Sanh et al., 2020).283

4.1.1 Dataset284

Our dataset consists of 8, 992 recommendation let-285

ters, each written on behalf of candidates applying286

to a major U.S. anesthesiology residency program.287

Of these, 2, 787 letters were written for female288

applicants and 6, 205 for male applicants, mean-289

ing approximately 31% of the dataset represents290

female applicants and 69% represents male appli-291

cants. To preserve anonymity, applicant names in292

the letters were replaced with fixed special tokens293

such as FIRST_NAME, MIDDLE_NAME, LAST_NAME,294

or IDENTIFIER.295

4.1.2 Data Processing Pipeline296

To de-gender the original dataset, i.e. to neutralize297

explicit gender-identifying tokens, we compiled298

a comprehensive list of gendered terms by aggre- 299

gating entries from two publicly available sources: 300

Bias-BERT and GN-GloVe (Jentzsch and Turan, 301

2022; Zhao et al., 2018). These lists include both 302

obvious gender markers (e.g., he, she, Mr., Ms.) 303

and less immediately obvious terms with clear gen- 304

der associations (e.g., husband, father, brother, ac- 305

tor, actress, fraternity, sorority). By excluding 306

terms such as “father" or “sorority", we ensure that 307

gender cannot be inferred from sentences like “he 308

is the father of...” or “she was the president of her 309

sorority.” 310

To ensure comprehensive coverage, we used 311

regular expressions to capture variations of each 312

term, including plural forms, verb tenses, contrac- 313

tions, punctuation, and positioning within a sen- 314

tence. This allowed us to detect and replace forms 315

such as "she’s", "husband.", and "mothers!" with 316

high precision. We then replaced any token ap- 317

pearing in the aggregated list with its counterpart 318

from a single gender class to generate an Explicitly 319

De-Gendered (EDG) dataset. Specifically, all ex- 320

plicitly male-identifying terms were converted to 321

their female equivalents. While we considered us- 322

ing neutral placeholders (e.g., they, them), this ap- 323

proach risked disrupting the grammatical structure 324

of the letters and introducing unnatural linguistic 325

artifacts. By consistently converting all gendered 326

terms to female, we preserved grammatical fluency 327

while preventing the model from relying on overt 328

gender cues, thereby encouraging it to learn from 329

subtler, implicit gender signals embedded in the 330

language. 331

4.1.3 Training Setup 332

Using the EDG dataset, we trained DistilBERT, 333

RoBERTa, and fine-tuned Llama 2 models. These 334

Transformer-based pre-trained models were se- 335

lected due to their state-of-the-art performance on 336

a wide range of downstream classification tasks. 337

For each model architecture, we conducted in- 338

dependent hyper-parameter sweeps. DistilBERT 339

and RoBERTa were trained using HuggingFace’s 340

Trainer API, while Llama 2 used Parameter- 341

Efficient Fine-Tuning (PEFT) via Low-Rank Adap- 342

tion (LoRA). The parameters were optimized by 343

Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 10−8) 344

and a linear learning-rate schedule. Unless oth- 345

erwise noted, the training runs adopt the hyper- 346

parameters mentioned in Appendix A and were ex- 347

ecuted on Intel Xeon Gold processors and NVIDIA 348

A100 (40 GB) GPU hardware. 349
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We first trained DistilBERT model on the orig-350

inal corpus (non-EDG) - retaining all gender351

markers - to establish an upper bound on gen-352

der learnability, using an 80 : 10 : 10 stratified353

train–validation–test split, the same classification354

head, and only the first two encoder layers unfrozen.355

An identical configuration was then applied to the356

de-gendered corpus (EDG), this time keeping ev-357

ery sentence in each letter to preserve potential im-358

plicit gender cues. Finally, to assess model choice359

on the de-gendered data, we fine-tuned RoBERTa360

and Llama 2 on the same splits with their indi-361

vidually tuned best settings. Further details of the362

hyper-parameters optimization are provided in the363

Appendix A.364

4.2 Baseline Evaluation365

We evaluated our trained models on a held-out test366

set that was not used during training. By measur-367

ing the classification performance, we assess how368

effective our initial matching-based de-gendering369

method is at neutralizing explicit gender signals,370

and whether the model can still infer gender from371

implicit cues. This helps us evaluate both the372

strength of the remaining bias in the text and the373

robustness of the model’s predictions. To assess374

performance, we considered standard classifica-375

tion metrics, including accuracy, precision, recall,376

and F1 score. Given the class imbalance in our377

dataset—with a larger proportion of letters written378

for male applicants-we placed particular emphasis379

on the macro F1 score, which provides a more bal-380

anced evaluation by averaging the F1 scores across381

both classes independently. This ensures that the382

model’s performance on the minority class (female383

applicants) is not overshadowed by the majority384

class.385

4.3 Selecting Implicitly Gendered Tokens386

To interpret our classification results, we explored387

the linguistic artifacts and implicit signals the388

model may be using to identify gender, offering389

insight into the subtler ways in which gendered390

language cues can manifest in recommendation391

letters.392

4.3.1 SHAP Analysis393

To better understand the sources of gender leak-394

age within the de-gendered text, we used SHAP395

(Lundberg and Lee, 2017) values to interpret the396

model’s predictions. SHAP assigns importance397

scores to individual tokens, allowing us to iden-398

tify which words contributed most to the model’s 399

classification of an applicant as male or female. 400

These influential tokens offer insight into the subtle 401

linguistic cues the model relies on in the absence 402

of explicit gender indicators. SHAP analysis was 403

applied to all three of the models trained on our de- 404

gendered dataset. For DistilBERT and RoBERTa, 405

SHAP values were computed across the full set 406

of recommendation letters. For Llama, we used 407

a random sample of 100 letters due to the higher 408

computational cost. We then extracted the tokens 409

with the highest and lowest mean SHAP values 410

across letters-associated with male and female pre- 411

dictions, respectively. These were grouped by part 412

of speech to aid in our interpretation. To reduce 413

noise, we only considered tokens that appeared at 414

least 20 times across the dataset. 415

4.3.2 Interpretation using TF-IDF 416

In addition to model-based interpretation, we con- 417

ducted a complementary analysis using TF-IDF. 418

Rather than relying on model outputs, we applied 419

the TF-IDF algorithm directly to the EDG dataset 420

to identify terms that are most distinctive to male 421

and female applicant letters, respectively. This ap- 422

proach provides a model-agnostic view of potential 423

gendered patterns in the language used. We first 424

aggregated all de-gendered recommendation letters 425

for female applicants into a single document, and 426

all de-gendered letters for male applicants into an- 427

other. We then applied the TF-IDF algorithm to 428

these two documents, computing a score for each 429

token based on its frequency and uniqueness within 430

its respective group. Tokens with higher TF-IDF 431

scores are those that appear frequently and are par- 432

ticularly distinctive to one group, offering potential 433

insight into the subtle linguistic patterns that may 434

encode gender even after explicit identifiers have 435

been neutralized. More details are provided in Ap- 436

pendix C. 437

4.4 Effect of Implicit Gender Tokens 438

After identifying implicitly gendered tokens us- 439

ing the TF-IDF and SHAP methods described in 440

the previous sections, we selected the top 10 to- 441

kens for each part of speech (noun, verb, adjective), 442

identified separately for each gender and for each 443

method independently. This process produced two 444

distinct datasets: one based on TF-IDF-selected 445

tokens and another based on SHAP-selected to- 446

kens. In both cases, the selected tokens were al- 447

tered in texts that had already been stripped of 448
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(a) Adjectives (DistilBERT) (b) Nouns (DistilBERT) (c) Verbs (DistilBERT)

(d) Adjectives (RoBERTa) (e) Nouns (RoBERTa) (f) Verbs (RoBERTa)

(g) Adjectives (Llama 2) (h) Nouns (Llama 2) (i) Verbs (Llama 2)

Figure 2: Top 10 SHAP tokens with their corresponding values(+/-) for both genders (male/ female) grouped by
part-of-speech category, identified by DistilBERT(last two encoder layers unfrozen), RoBERTa and Llama 2

Token F → M Count M → F Count Absolute Difference
support 12 23.56 11.56
research 14 24.64 10.64
number 4 11.98 7.98
anesthesia 13 20.96 7.96
rotation 26 18.26 7.74
medicine 17 23.29 6.29
believe 8 14.2 6.2
leadership 3 9.02 6.02
professional 6 11.75 5.75
year 18 23.3 5.3

Table 1: Token-level gender prediction flips for TF-IDF
derived tokens: comparison of top 10 tokens whose
removal most frequently causes DistilBERT model pre-
diction to flip from female to male or vice versa.

explicit gender-identifying terms. For DistilBERT449

and RoBERTa, this involved substituting the to-450

kens with the model’s masked token; for Llama451

2, which does not support masking, we used the452

unknown token instead. This intervention was ap-453

plied consistently across both token sets, allowing454

us to evaluate the extent to which implicitly gen-455

dered language contributed to model performance,456

even in the absence of explicit gender cues. We457

then re-trained all three models on each of the new458

datasets (EDG w/o SHAP tokens and EDG w/o459

TF-IDF tokens).460

Token F → M Count M → F Count Absolute Difference
liked 6 0.38 5.62
impressed 14 8.93 5.07
bedside 6 2.8 3.2
stellar 3 0.37 2.63
summary 1 3.16 2.16
thoughtful 4 1.97 2.03
acquainted 2 0 2.00
women 2 0 2.00
reliable 1 2.78 1.78
united 2 0.38 1.62

Table 2: Token-level gender prediction flips for SHAP
derived tokens: comparison of top tokens whose re-
moval most frequently causes DistilBERT model pre-
diction to flip from female to male or vice versa.

4.4.1 Analyzing Prediction Flips from Token 461

Removal 462

A deeper analysis of implicitly gendered tokens 463

was conducted by focusing on a subset of recom- 464

mendation letters that met two criteria: (1) they 465

were correctly classified by the model trained on 466

letters with only explicit gender-identifying tokens 467

replaced (the EDG dataset), and (2) they were mis- 468

classified by the model trained on letters with both 469

explicit and implicit tokens replaced. For this anal- 470

ysis, we used only the DistilBERT model due to its 471

strong performance and computational efficiency. 472
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This allowed us to examine how implicitly biased473

tokens influenced model predictions when neutral-474

ized.475

For each such token, we counted how often re-476

placing it with the model’s masked token (or un-477

known token in the case of Llama) caused the478

model’s prediction to flip from female to male or479

from male to female. A flip in prediction direction480

suggests that the replaced token may have carried481

meaningful gender-associated information that in-482

fluenced the model’s original prediction.483

To mitigate the effects of class imbalance, we484

performed random sub-sampling of the majority485

class within this subset, repeated the token-flip486

counting process across multiple runs, and aver-487

aged the results. This approach provided a more488

balanced view of the influence of individual to-489

kens. Table 1 & 2 presents the TF-IDF and490

SHAP–derived tokens along with their correspond-491

ing flip counts respectively.492

5 Results & Discussion493

From Table 4, we see that when explicit gender494

markers were preserved, the DistilBERT baseline495

achieved an almost perfect macro F1 > 0.95,496

confirming that surface cues such as "he" or pro-497

fessional titles like "Ms." virtually guarantee cor-498

rect gender classification. After converting all499

explicit gender-identifying tokens to their female500

equivalents (the EDG dataset) and retraining, the501

same model architecture still obtained a macro F1502

score of 0.6 with an overall accuracy of 0.68 on a503

held-out test set, indicating that subtler linguistic504

patterns continue to signal applicant gender. Alter-505

native models performed worse: RoBERTa reached506

a macro F1 score of 0.547, and the considerably507

larger Llama 2 yielded a comparable F1 score of508

0.561 while incurring far greater computational509

cost.510

The classification results of re-evaluation with511

their comparison to the model trained on the text512

with only the explicit gender identifying tokens513

replaced, are also shown in Table 4. For the Dis-514

tilBERT model, replacing the implicitly gendered515

tokens identified via SHAP and TF-IDF with a516

masked token leads to a drop in macro F1 score by517

∼ 5% and ∼ 2% respectively. This decline high-518

lights the extent to which these tokens contributed519

to the model’s ability to predict applicant gender in520

the absence of explicit gender-identifying terms.521

5.1 Replacing Explicit Gender Identifying 522

Tokens 523

When we replace all explicit gender-identifying 524

tokens in the recommendation letters with their 525

female equivalents, the performance of our baseline 526

classifier drops significantly. This confirms that our 527

de-gendering process is effective and substantially 528

limits the model’s ability to infer applicant gender 529

from overt cues. However, the fact that the macro 530

F1 score remains above random chance suggests 531

that the model trained on de-gendered text can still 532

identify subtle, implicit gender signals. In other 533

words, even after neutralizing explicit gendered 534

language, the way writers describe male and female 535

applicants still carries implicit bias that the model 536

can detect. 537

5.2 Implicit Gender Signals 538

Using our SHAP and TF-IDF analyses, we iden- 539

tify tokens that may carry implicit gender signals 540

within the text. The top 10 SHAP values of adjec- 541

tives, nouns and verbs for male and female candi- 542

dates are shown in Figure 2a, Figure 2b, and Fig- 543

ure 2c respectively. Tokens more commonly asso- 544

ciated with female recommendation letters include 545

words like “humanitarian", “delightful", “wonder- 546

ful", and “children". In contrast, tokens more fre- 547

quently linked to male recommendation letters in- 548

clude “respectful", “military", “combat", and “hum- 549

ble". These patterns suggest subtle differences in 550

how male and female applicants are described, even 551

after explicit gender markers have been obscured. 552

5.3 Replacing Implicit Gender Identifying 553

Tokens 554

Across all three models, replacing the implicitly 555

gendered tokens identified by SHAP and TF-IDF 556

with the corresponding model’s masked token (or 557

the unknown token in the case of Llama 2) resulted 558

in drops in macro F1 scores. This decline indi- 559

cates that, even in the absence of explicit gender 560

identifiers, the models trained on the EDG dataset 561

relied heavily on implicit gender cues to make their 562

predictions. 563

A closer analysis of the tokens whose replace- 564

ment caused prediction flips further illustrates this 565

point. For example, the token “leadership", when 566

replaced, caused the model to flip its prediction 567

from male to female 9 times, compared to just 3 568

flips in the opposite direction. This suggests that 569

the presence of “leadership" strongly contributes to 570
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Model Gender Precision Recall F1 Acc. Macro Precision Macro Recall Macro F1 Wtd. Precision Wtd. Recall Wtd. F1

DistilBERT
Female 0.481 0.394 0.432

0.681 0.615 0.604 0.606 0.665 0.684 0.673
Male 0.750 0.815 0.781

RoBERTa
Female 0.384 0.333 0.357

0.627 0.551 0.547 0.547 0.614 0.627 0.620
Male 0.717 0.760 0.738

Llama 2
Female 0.395 0.444 0.418

0.612 0.560 0.563 0.561 0.623 0.612 0.615
Male 0.725 0.682 0.703

Table 3: Comparison of DistilBERT, RoBERTa, and Llama 2 performance on test EDG(Explicitly De-Gendered)
dataset including individual class metrics (Precision, Recall and F1) and aggregate metrics(Macro + Weighted
Precision, Recall and F1).

Dataset DistilBERT RoBERTa Llama 2
Acc. Macro P Macro R Macro F1 Acc. Macro P Macro R Macro F1 Acc. Macro P Macro R Macro F1

Original (non-EDG) 0.999 1.000 0.996 0.999 – – – – – – – –
EDG (baseline) 0.68 0.615 0.604 0.60 0.627 0.551 0.547 0.547 0.612 0.560 0.563 0.561
EDG w/o SHAP Tokens 0.63 0.550 0.550 0.55 (↓ 5.0%) 0.633 0.533 0.525 0.521 (↓ 2.6%) 0.690 0.345 0.500 0.408 (↓ 15.3%)
EDG w/o TF-IDF Tokens 0.68 0.600 0.580 0.58 (↓ 2.0%) 0.661 0.563 0.541 0.535 (↓ 1.2%) 0.685 0.344 0.497 0.407 (↓ 15.4%)

Table 4: Comparison of DistilBERT, RoBERTa, and Llama 2 performance across three datasets: EDG (Explicitly
De-Gendered), EDG with top SHAP-identified gender tokens removed, and EDG with top TF-IDF-identified gender
tokens removed showing improvements(lowering) in macro precision, recall, and F1 scores

the model associating the letter with a male appli-571

cant. Similarly, tokens like “rotation" and “liked"572

more often flipped predictions from female to male573

when replaced, indicating that their presence is574

more commonly associated with female applicants.575

6 Conclusion576

In this paper, we investigated the presence of gen-577

dered language in academic LoRs for a medi-578

cal residency program. Despite the replacement579

of explicit gender identifiers, such as names and580

gendered pronouns, with their female equivalents,581

our results demonstrated that LLMs could achieve582

above-chance accuracy in applicant gender classi-583

fication. Our TF-IDF and SHAP analysis showed584

that specific adjectives, verbs, and nouns served585

as implicit indicators of gender and contributed586

heavily to this performance, and classification per-587

formance dropped sharply when replacing them588

with the model’s masked token (or the unknown589

token in the case of Llama 2).590

These findings raise important questions about591

the role of AI in professional evaluation and re-592

cruitment. Dastin (2018) highlight the risk of using593

naïve strategies like erasing explicit cues of gender594

or other sensitive attributes to prevent bias in AI re-595

cruitment solutions, especially where training data596

already reflects historical bias in recruitment. Our597

work supports this concern by revealing persisting598

implicit cues of gender in LoRs.599

Limitations 600

We discuss some broader concerns around de- 601

gendering in Section 6. However, another lim- 602

itation of our approach for neutralizing implicit 603

gender cues is that the semantic integrity and evalu- 604

ative content of letters may not be preserved. This 605

approach replaces nouns, verbs, and adjectives with 606

masked (or unknown) tokens; thus the resulting let- 607

ters may contain incomplete and ungrammatical 608

sentences. As such, this approach is more appropri- 609

ate for machine evaluation of letters, as human eval- 610

uators may have difficulties understanding some 611

parts of the letters. 612

Additionally, we found that SHAP occasionally 613

highlights words that are split into subtokens during 614

tokenization. Although SHAP applies heuristics 615

to collapse these subtokens back into full words 616

for easier interpretation, this collapsing does not 617

always align precisely with how the model pro- 618

cesses inputs internally. This misalignment can 619

lead to cases where attribution scores are assigned 620

to fragments rather than complete tokens, introduc- 621

ing some ambiguity into the interpretability analy- 622

sis. We note this as a limitation of our approach. 623

More broadly, we recognize the limitations in- 624

herent in a purely technical approach to addressing 625

bias in the evaluation and selection of candidates. 626

Recruitment methods that attempt to neutralize any 627

cues (explicit or implicit) for applicant attributes 628

such as gender may trivialize candidate identities as 629

attributes that can simply be switched off. This may 630

prevent the consideration of important information 631

about the experiences of candidates from marginal- 632
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ized backgrounds, and ultimately may serve to by-633

pass or outsource diversity, equity, and inclusion634

efforts that should instead occur within organiza-635

tions (Drage and Mackereth, 2022; Tilmes, 2022).636

In fact, our work highlights the challenge of637

truly removing traces of identities like gender in638

professional evaluations; even after neutralizing639

implicit cues of gender, our LLM-based gender640

classifiers achieve above-chance accuracy, suggest-641

ing that gender signals remain. Moreover, while642

neutralizing these cues may prevent gender iden-643

tification from LoRs, this may also mask positive644

qualities and experiences of candidates. As such,645

while we believe that de-gendering strategies like646

those explored in this work may be one component647

of fairer AI-supported evaluation of LoRs (e.g., as648

a flag to reviewers to be aware of the amount of649

gendered language in a LoR), this should be paired650

with increased investment in human evaluators and651

institutional change, e.g., implicit bias training.652

Ethical Considerations653

This work analyzes academic letters of recommen-654

dation, which contain identifiable and possibly sen-655

sitive human subjects data. As such, the collection656

of these data was IRB-approved, and all applicant657

names were anonymized before analysis.658
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A Hyper-parameter Optimization 918

To maximize classification performance on de- 919

gendered data, we conducted a limited grid search 920

over batch size ∈ {4, 16, 32}, learning rate ∈ 921

[10−5, 3.7×10−5], and weight decay ∈ {0.0, 0.03} 922

for both DistilBERT and RoBERTa. For Llama 923

2, we additionally tuned LoRA parameters (r, α, 924

dropout). Validation performance was monitored 925

using macro-averaged F1. The resulting best set- 926

tings are reported in Tables 5, 6 and 7. 927

Parameter Value

Batch size (train / eval) 32 / 32
Epochs 10
Learning rate 3.7× 10−5

Weight decay 0.03

Table 5: Best DistilBERT fine-tuning hyper-parameters

Parameter Value

Batch size (train / eval) 16 / 16
Epochs 6
Learning rate 2.0× 10−5

Weight decay 0.0

Table 6: Best RoBERTa fine-tuning hyper-parameters

Parameter Value

Batch size (train / eval) 4 / 4
Epochs 5
Learning rate 3.0× 10−5

Weight decay 0.02
LoRA rank (r) 16
LoRA alpha 48
LoRA dropout 0.15

Table 7: Best Llama 2 fine-tuning hyper-parameters
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B Topic Modeling928

B.1 Explainability via Topic Modeling929

In addition to token-level interpretability methods,930

we explored topic modeling as a way to uncover931

higher-level thematic patterns that may reflect gen-932

dered language in recommendation letters. Using933

this approach, we identified recurring topics across934

the corpus and analyzed which ones were most pre-935

dictive of each gender. This allowed us to examine936

broader narrative trends and associations, offering937

a complementary perspective to the more granular938

insights provided by token-level analysis.939

B.2 BERTopic940

We used BERTopic to identify topics across our rec-941

ommendation letters (Grootendorst, 2022). Each942

letter was first split into individual sentences, which943

were then embedded and clustered based on seman-944

tic similarity. In total, BERTopic extracted 251945

distinct topics, capturing a broad range of recurring946

themes. To create a topic-level representation for947

each letter, we mapped the identified topics of in-948

dividual sentences back to their originating letter.949

This resulted in a binary topic vector for each let-950

ter, where each entry indicates the presence (1) or951

absence (0) of a specific topic.952

B.3 Topic-Only Classification953

We created train and test splits using the topic vec-954

tors for each letter and trained a random forest955

classifier to predict gender based on these topic956

representations. Model performance was evaluated957

on the held-out test set, with results summarized in958

Table 8.959

To better understand which topics were most960

predictive of gender, we used SHAP to interpret961

the random forest model. Figure 3 displays the top962

contributing topics and their relative impact on the963

model’s predictions. Topic labels on the left were964

generated by aggregating all sentences assigned to965

each topic into a single document, then applying966

TF-IDF to extract the five most distinctive unigrams967

and bigrams. These are separated by underscores968

for readability. The number at the start of each label969

corresponds to the topic ID assigned by BERTopic.970

Each dot in the plot represents a single recom-971

mendation letter. The horizontal position of the972

dot reflects the SHAP value, which quantifies how973

much that topic influenced the model’s prediction974

for that letter. Positive SHAP values indicate a975

push toward predicting "male", while negative val-976

ues indicate a push toward "female". The dot color 977

reflects the feature value: since our input features 978

are binary topic vectors, red dots represent letters 979

in which the topic was present, and their position 980

indicates the strength and direction of its influence. 981

Blue dots represent letters where the topic was ab- 982

sent. 983

Figure 3: SHAP summary plot showing the most in-
fluential topics in predicting gender from recommenda-
tion letters using a Random Forest classifier trained on
BERTopic vectors. Each row represents a topic, labeled
with its BERTopic ID followed by the top five unigrams
or bigrams (joined with underscores) extracted via TF-
IDF. Each dot corresponds to a single letter; the hori-
zontal position indicates the SHAP value, reflecting the
topic’s contribution to the prediction (positive values
push toward "male" negative toward "female"). Red
dots represent the presence of a topic in a letter, while
blue dots represent its absence.

B.4 Topic and Text Embedding Infusion 984

In addition to using topic vectors alone to predict 985

the applicant’s gender, we also concatenated them 986

with the contextualized embedding representations 987

produced by our fine-tuned DistilBERT model dur- 988

ing training. This fusion allowed the classifier to 989

leverage both the high-level thematic structure cap- 990

tured through topic modeling and the nuanced con- 991

textual signals encoded by the transformer. We 992

used an 80:10:10 train, validation, and test split, 993

and trained the model using the same hyperparam- 994

eters outlined in Table 5. Final evaluation results 995

on the held-out test set are reported in Table 8. 996

C Analysis of TF-IDF Tokens 997

For each gender-specific document, the top 10 to- 998

kens were extracted for each part of speech (ad- 999

jectives, verbs, and nouns). The top 10 adjectives 1000

for male and female letters are shown in Table 9 1001

and Table 10, respectively. The top verbs are pre- 1002

sented in Table 11 and Table 12, and the top nouns 1003

in Table 13 and Table 14. 1004
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Model Gender Precision Recall F1 Acc. Macro Precision Macro Recall Macro F1 Wtd. Precision Wtd. Recall Wtd. F1

Topic Vectors Only
Female 0.370 0.480 0.420

0.580 0.550 0.560 0.550 0.620 0.580 0.600
Male 0.730 0.630 0.680

Topic + DistilBERT Embeddings
Female 0.410 0.440 0.430

0.630 0.580 0.580 0.580 0.640 0.630 0.640
Male 0.740 0.720 0.730

Table 8: Classification performance of Random Forest models using (1) only topic vectors and (2) a combination of
topic vectors and DistilBERT embeddings.

Token Female Male Diff

calm 0.021404 0.031890 0.010486
young 0.030375 0.040406 0.010310
medical 0.609714 0.619496 0.009782
good 0.144768 0.154044 0.009275
professional 0.064924 0.074169 0.009246
ethic 0.055420 0.064632 0.009211
long 0.057019 0.065654 0.008635
internal 0.056397 0.064164 0.007766
appropriate 0.033128 0.040831 0.007703
respectful 0.016786 0.024482 0.007696
great 0.198324 0.205860 0.007536
able 0.143258 0.150765 0.007507
critical 0.059950 0.067016 0.007066
humble 0.014122 0.021033 0.006911
interested 0.029487 0.035552 0.006065
right 0.038190 0.044025 0.005834
willing 0.018029 0.023801 0.005771
inpatient 0.024513 0.030145 0.005632
happy 0.030908 0.036446 0.005538
hard 0.035348 0.040746 0.005398

Table 9: Male Adjectives

Token Female Male Diff

identifi 0.404463 0.382980 -0.021483
outstanding 0.126650 0.111211 -0.015439
clinical 0.320622 0.308854 -0.011768
pediatric 0.043608 0.033721 -0.009887
public 0.013766 0.007025 -0.006741
global 0.011546 0.005663 -0.005883
identifier 0.053733 0.048580 -0.005153
numerous 0.028154 0.023204 -0.004950
new 0.057019 0.052242 -0.004777
social 0.017408 0.012731 -0.004677
future 0.051513 0.046962 -0.004550
compassionate 0.036858 0.032529 -0.004329
academic 0.096187 0.092222 -0.003965
pre 0.018385 0.014434 -0.003951
bright 0.035260 0.031337 -0.003923
efficient 0.015187 0.011496 -0.003692
competitive 0.013056 0.009367 -0.003689
specific 0.015099 0.011751 -0.003347
warm 0.016075 0.012731 -0.003345
fantastic 0.013322 0.010048 -0.003274

Table 10: Female Adjectives

Token Female Male Diff

show 0.105123 0.121443 0.016321
like 0.046116 0.058660 0.012544
feel 0.104389 0.114893 0.010504
believe 0.092022 0.100338 0.008316
learn 0.221565 0.228380 0.006815
display 0.034482 0.041047 0.006565
know 0.153859 0.160210 0.006351
spend 0.071375 0.077291 0.005916
supervise 0.021800 0.026783 0.004982
build 0.016140 0.020863 0.004723
enjoy 0.046221 0.050800 0.004579
ask 0.116652 0.120910 0.004258
benefit 0.005764 0.009801 0.004036
maintain 0.021171 0.024890 0.003719
begin 0.022534 0.026152 0.003618
attend 0.070117 0.073652 0.003535
write 0.226701 0.230223 0.003523
read 0.049574 0.052934 0.003360
answer 0.017713 0.021009 0.003296
require 0.049889 0.053128 0.003240

Table 11: Male Verbs

Token Female Male Diff

take 0.133840 0.123918 -0.009922
complete 0.102293 0.093642 -0.008651
stand 0.038150 0.030276 -0.007874
support 0.052719 0.044977 -0.007741
organize 0.035530 0.027947 -0.007583
present 0.078292 0.071420 -0.006872
excel 0.065715 0.059096 -0.006619
match 0.034377 0.028432 -0.005945
care 0.054291 0.048568 -0.005723
recruit 0.029032 0.023483 -0.005549
include 0.115289 0.109896 -0.005393
hope 0.038779 0.033430 -0.005349
shadow 0.017608 0.012275 -0.005332
evaluate 0.028403 0.023144 -0.005259
try 0.021591 0.016448 -0.005143
run 0.020857 0.015963 -0.004894
waive 0.081960 0.077291 -0.004669
manage 0.036683 0.032217 -0.004466
encourage 0.014044 0.009655 -0.004389
reach 0.023896 0.019699 -0.004198

Table 12: Female Verbs
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Token Female Male Diff

medicine 0.151597 0.165628 0.014031
staff 0.047931 0.059773 0.011843
knowledge 0.114200 0.125307 0.011107
physician 0.063732 0.072574 0.008842
practice 0.024229 0.031521 0.007292
time 0.136849 0.143022 0.006173
anesthesia 0.105677 0.111843 0.006166
year 0.201395 0.207183 0.005789
number 0.028825 0.034538 0.005713
rotation 0.166823 0.172302 0.005479
demeanor 0.014796 0.020069 0.005273
base 0.019392 0.024618 0.005225
residency 0.225863 0.230636 0.004773
training 0.079150 0.083820 0.004670
week 0.046255 0.050836 0.004581
discussion 0.018770 0.023269 0.004499
question 0.089732 0.094151 0.004419
resident 0.153272 0.157651 0.004378
topic 0.017046 0.020983 0.003937
anesthesiologist 0.059422 0.063293 0.003871

Table 13: Male Nouns

Token Female Male Diff

health 0.047691 0.032527 -0.015164
research 0.121909 0.108163 -0.013746
identifier 0.356199 0.342753 -0.013446
student 0.314541 0.305929 -0.008612
applicant 0.024851 0.019063 -0.005788
surgery 0.063780 0.058059 -0.005721
education 0.034571 0.029075 -0.005496
community 0.034380 0.029189 -0.005190
leadership 0.032991 0.028001 -0.004990
patient 0.342936 0.338182 -0.004754
child 0.014604 0.010012 -0.004592
clerkship 0.050947 0.046424 -0.004523
meeting 0.019105 0.014629 -0.004476
study 0.027293 0.022995 -0.004298
skill 0.141541 0.137261 -0.004280
passion 0.022792 0.018515 -0.004277
department 0.053820 0.049762 -0.004059
team 0.142882 0.138999 -0.003883
care 0.164429 0.160873 -0.003556
project 0.052240 0.048733 -0.003507

Table 14: Female Nouns

D Computational Frameworks 1005

We used several standard software libraries in our 1006

experiments. All model loading and tokenization 1007

were performed using the HuggingFace Transform- 1008

ers library (Wolf et al., 2020), and model fine- 1009

tuning was carried out using PyTorch (Paszke et al., 1010

2019). For evaluation, we used scikit-learn (Pe- 1011

dregosa et al., 2011), including its implementa- 1012

tions of standard metrics such as accuracy and F1 1013

score. For model interpretability, we applied SHAP 1014

(Lundberg and Lee, 2017) to compute token-level 1015

attributions. 1016

E Artifact Licenses 1017

Our experiments leverage the Llama2-7B-chat 1018

large language model (Touvron et al., 2023a). 1019

This model was accessed via the Hugging Face 1020

transformers library and is distributed under the 1021

Llama 2 Community License. We acknowledge 1022

and adhere to the terms of this license for our re- 1023

search. Further details on Llama2 are available at 1024

Meta AI’s official Llama webpage. 1025
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