
Architecture and System Support for Transformer Models (ASSYST), ISCA, 2023

TAP: Efficient Derivation of Tensor Parallel Plans
for Large Neural Networks

Ziji Shi∗†, Le Jiang†, Jie Zhang†, Xianyan Jia†, Yong Li†, Chencan Wu†, Jialin Li∗, Wei Lin†,
∗National University of Singapore

†Alibaba Group

Abstract—Model parallelism is essential to train large language
models efficiently. However, determining the optimal model
parallel schedule for a given neural network can be slow and
inefficient due to the vast choice space. To address this challenge,
we propose a tensor model parallelism framework called TAP,
which automatically searches for the best data and tensor parallel
schedules.

Our approach is based on the observation that a neural
network can be represented as a directed acyclic graph, within
which only exists a limited set of frequent subgraphs. With that,
we design a graph pruning algorithm that efficiently folds the
search space. As a result, TAP runs at sub-linear complexity
with respect to model size, which makes it a practical solution
for large-scale networks.

Experimental results demonstrate that TAP outperforms the
state-of-the-art automatic parallelism frameworks by 20− 160×
in searching time. Moreover, the performance of TAP’s discov-
ered schedules is competitive with expert-engineered ones. In
summary, TAP provides a powerful and efficient tool for model
parallelism that can help alleviate the burden of manual tuning.

I. INTRODUCTION

Recent years have witnessed a burgeoning of large deep
neural networks (DNNs) that deliver unprecedented accuracy
across a wide range of AI tasks. The rate of DNN model size
increase, however, has far surpassed the growth in accelerator
memory capacity. To address this challenge, model parallelism
has been proposed, where model weights are sharded onto
multiple devices during distributed DNN training.

There are two main paradigms in model parallelism:
pipeline parallelism and tensor parallelism. Pipeline paral-
lelism divides the model into layers. Only activations are
communicated during the forward pass, while gradient tensors
are exchanged in the backward phase. Pipeline parallelism
has recently drawn much attention, with many proposed al-
gorithms aiming to find the optimal pipeline schedule that
minimizes the pipeline idle time (i.e., ”bubble size”). However,
pipeline parallelism suffers from two significant drawbacks:
1) each layer must fit into a single accelerator’s memory,
and 2) interleaving different layers can be challenging for
models with imbalanced architectures. As an alternative, tensor
parallelism partitions the model weights and distributes them
to multiple devices, thus lifting the restriction on the size of
individual layers. In this work, we focus on tensor parallelism.

Manual specification of tensor parallelism is a daunting task,
given that the quality of a partitioning scheme depends on
the neural network architecture and the hardware system. To
address this challenge, automatic parallelism approaches have

been proposed which leverage user hints or guided searches
over the entire partitioning candidate space. We argue that a
brute-force search of the space is unnecessary in the majority
of cases. Our research makes two key observations: Firstly,
most neural networks include shared subgraphs that can sig-
nificantly reduce the search space. Secondly, communication
is the primary bottleneck during tensor parallelism training,
and contiguous partitions in a block cannot overlap. Therefore,
the search process can be accelerated by only searching for
unique neural network sub-modules and evaluating candidate
strategies based on their communication cost.

Based on those observations, we present TAP , a deep
learning framework that automatically derives tensor-parallel
plans for arbitrary neural networks without requiring expert
annotations. TAP first constructs a skimmed DAG by removing
auxiliary nodes, then it finds all of the shared subgraphs
and searches for the optimal sharding schedule for each of
them. In the end, TAP reconstructs the DAG by applying
the found solution to the original graph. TAP drastically
reduces the search space for tensor parallel plans, achieving
20×−160× speedup compared with the state-of-the-art auto-
parallel framework. Evaluations demonstrate that our approach
can also generate comparable solutions to the tensor parallel
schedules designed by an expert [17].

Our paper makes the following contributions:
• A set of intermediate representations (IRs) of the compu-

tational graph that abstract away from low-level imple-
mentation details;

• A graph pruning algorithm that exploits the shared sub-
structure to facilitate efficient searching;

• A communication-based cost model that accurately cap-
tures the communication requirements for tensor-parallel
training.

II. BACKGROUND

A. Model Parallelism

Model parallelism distributes model weights onto different
devices and synchronizes the full model through collective
communication [6]. Model parallelism can be further divided
into categories, pipeline parallelism and tensor parallelism.

1) Tensor Parallelism: Tensor parallelism splits the model
layer and distributes it across multiple devices, thus dispersing
the computational overhead of the layer [17], [23], [26]. Each
device stores only a portion of the input tensors in its local

1

memory. Therefore, the final result needs to be aggregated
from partial results through collective communication. Tensor
parallelism can alleviate the challenge of training heteroge-
neous models using pipeline parallelism and can achieve better
performance.

B. Automatic Parallelism

Automatic parallelism is a recent line of research on auto-
matically distributing a local model from a single device to
multiple devices using the data and model parallel strategies.
Existing approaches for automatic parallelism rely on user
hints or brute-force searches across the entire space.

1) User hint: User-hint-based automatic parallelism scales
single-device programs to multi-device systems by incorpo-
rating user annotations. For instance, GSPMD [26] infers the
operator partitioning scheme based on user annotations, while
Whale [12] allows for the inclusion of user hints for semi-auto
parallelization of large models and introduces a hardware-ware
load balance algorithm. However, user-hint-based automatic
parallelism approaches require users to possess a deep under-
standing of both the system and model, and hard-coded user
hints may not be transferable when either the model or system
changes.

2) Search algorithm: Recent work has proposed fully auto-
matic approaches based on search algorithms to optimize dis-
tributed DNN training. For example, Tofu [25] uses a recursive
search algorithm based on dynamic programming and DNN-
specific heuristics to minimize communication for the entire
dataflow graph. Flexflow [13] employs randomized search to
find the best parallel strategy in the SOAP (Sample, Operator,
Attribute, and Parameter) space. Alpa [28] optimizes large
DL models through two-level optimizations: inter-operator and
intra-operator. It enables inter-operator parallelism using dy-
namic programming and intra-operator parallelism with integer
linear programming. Unity [24] represents parallelization and
algebraic transformations as substitutions on a unified graph
representation, uses a novel hierarchical search algorithm to
identify an optimized sequence of graph substitutions, and
scales to large numbers of GPUs and complex DNNs.

3) Challenge of exploding search space: Search-based ap-
proaches face the challenge of exploding search space as
model size scales, resulting in significant time costs. For
example, each tensor (assuming 2D) can be partitioned in
three ways: not sharded, sharded along the first dimension
(row-wise), or sharded along the second dimension (column-
wise). Given a neural network G(E, V) with V weight tensors,
there exists 3V possible sharding plans. Therefore, finding an
optimal sharding plan is an NP-hard problem.

III. APPROACH

In this section, we formulate the problem of searching for an
optimal tensor parallel schedule, followed by our observation
of the common presence of shared sub-structures in a large
neural network, leading to the motivation of our design.

A. Problem Formulation
A neural network can be represented as a directed acyclic

graph G(E, V) comprised of L layers. The set of vertices V
represents the operators, and the set of edges E represents the
data flow from producer to consumer operators. Operators can
optionally carry a weight tensor. During the forward pass, an
edge represents an activation tensor, while in the backward
phase, it represents a gradient tensor. A layer Li ∈ L is either
a layer or a cluster of operators with a similar composition.
Let the physical training system be S(m,n) where m is the
number of worker nodes, and n is the number of accelerators
per worker node. A parallel plan p is a new graph mathemati-
cally equivalent to G. The cost function, Cost(p, S), measures
training latency for a given plan and training system. The goal
is to find an optimal parallel plan p∗ where:

minimize
p

Cost(p, S)

subject to p(X) = G(X)∀X
How can an automated system find such a plan? Fig. 1

illustrates the typical workflow of an auto-parallel system. The
system first reduces the search space for model splitting using
pruning techniques. Next, a search algorithm is employed to
generate one or more candidate plans for evaluation. Finally,
a cost model evaluates all candidate plans and selects the one
with the lowest cost based on predefined evaluation criteria.

Search Space Smaller
Space

Search
Algorithm

Cost Model

Candidate PlansBest Plan

Fig. 1. General recipe of automatic model parallelism frameworks.

The end-to-end duration to produce an optimal schedule
is a critical metric for an auto-parallel system. We identify
three primary factors that contribute to the overall completion
time: the size of the search space, the time complexity of the
searching algorithm, and the speed of the evaluation method.

B. Challenges and Observations
As mentioned earlier, a major challenge faced by auto-

parallel systems is the search space explosion problem. This
exponential increase in candidate space has led to impractical
search time for modern large models [28] (§ V-B). This creates
a dilemma: while auto-parallel systems aim to accelerate large
model training, if the derivation step itself is too slow, it may
offset the benefit of using an auto-parallel system.

How to effectively reduce this large candidate search space?
To answer this question, we studied common scaling tech-
niques for popular DNN models and summarized our find-
ings in Table I. We observe that these techniques can be

2

Scaling
Technique Task Model # Params Shared Subgraph (SS) # of SS

By width

Vision ResNet50 [11] 23M Conv 50×
Vision + Language CLIP-Base [18] 63M Transformer 12×
Language Model WideNet [27] 63M MoE layer 32×

Vision ViT-Huge [8] 632M Transformer 32×
Vision V-MoE [22] 15B MoE layer 24×

By depth

Speech wav2vec 2.0 [3] 317M Conv, Transformer 7×, 24×
Language Model BERT [7] 340M Transformer 24×
Language Model T5-Large [19] 770M Transformer 24×
Language Model GPT-3 [4] 175B Transformer 96×
Language Model Switch Transformer [10] 1571B MoE layer 15×

TABLE I
SHARED SUBGRAPHS EXIST ON MANY NEURAL NETWORK MODELS. ”CONV” MEANS CONVOLUTIONAL LAYER, ”MOE” MEANS MIXTURE-OF-EXPERT

LAYER.

grouped into two categories: scaling on the width, achieved
by increasing the dimension of layers (e.g., adding more
classes, attention heads, or convolutional channels), or scaling
on the depth by increasing the number of layers. Notably, both
techniques start with a base subgraph, a group of layers or
operators, and expand from it. For instance, large pre-trained
language models like BERT [7] and T5 [19] comprise tens
of transformer layers, while multi-class object classification
networks like ResNet-50 [11] are built from convolutional
layers.

Furthermore, upon analyzing expert-designed parallel
schedules ([17], [20], [21]), we notice that parallel schedules
are predominately similar for layers of the same type. This is
due to the fact that similar layers have comparable computa-
tional and memory consumption. This finding motivates us to
investigate reusing parallel schedules discovered for identical
layers, which can reduce the search effort.

IV. DESIGN AND IMPLEMENTATION

A. Overview

Fig. 2 illustrates the workflow of TAP . Given a neural
network represented as a graph, TAP first converts the graph
into an intermediate representation(§ IV-B) called GraphNode
and removes auxiliary nodes. TAP then performs graph prun-
ing(§ IV-C) to restrict the search space from the complete
graph to the subgraphs. After pruning, TAP explores the
possible sharding opportunities using pre-defined sharding
patterns(§ IV-D) and validates the candidate plans(§ IV-E).
If a valid plan is found, it is evaluated using the cost
model(§ IV-F). TAP takes the overall best plan, performs
additional communication-level optimizations, and rewrites the
model into a parallel version(§ IV-G). To use TAP , users only
need to specify the device mesh as shown in the example
below.

1. Example with TAP on 2 workers each with 8 GPUs
import tensor_auto_parallel as tap
mesh = [2, 8]
tap.auto_parallel(tap.split(mesh))
model_def()

B. Intermediate Representation

TAP defines a family of high-level Intermediate Represen-
tations (IRs) to facilitate the derivation of parallel schedules.
Compared to MLIR HLO [14], TAP IRs operate on a coarser
granularity while preserving the necessary information for
sharding.

Upon obtaining the original neural network graph, TAP first
trims the graph by deleting the auxiliary operators (Step 1
in Fig. 2). This will remove the initialization and checkpoint-
related operators, which will be recovered when converted
back to a neural network graph later. As a result, the remaining
graph will consist of only computing and communication
operators.

TAP IRs consists of:
a) GraphNode.: A GraphNode represents a group of

computing or communication operators. It can be a layer or a
logical group of operators, which is the basic unit for deriving
the sharding schedule. The TAP graph is made of GraphNode
while preserving the directed edges from the original DAG.
Using the GraphNode IR, we reduce the number of nodes in
the T5-large model from 60k to 1015 weight variables.

b) Sharding pattern.: A GraphNode could have multiple
ways of sharding. For instance, a 2D matrix weight can be split
on either dimension or replicated. TAP defines each sharding
pattern using the SRC abstraction. TAP also establishes the
cost of each sharding pattern based on communication cost.

c) Sharding plan.: A sharding plan is a set of subgraphs
(blocks of GraphNodes) with sharding patterns connecting
them.

C. Pruning using Shared Subgraph

It is common for DNN models to contain shared subgraphs.
If we could identify the shared subgraphs, we could prune
the search space by searching only within the subgraph. We
propose a graph pruning algorithm to compress the search
space into a shared structure (Step 2):

In deep learning frameworks like TensorFlow [2], each
variable is referred to by the operator that produces it. As such,
variables under the same layer share the same name scope
because they receive input from the same operator. Therefore,
it is possible to cluster operators that fall under the same name
scope.

3

Input

Output

Input

Neural Network

Sharding
Plan
Explorer

Cost
Model

Input

Parallelized Neural Network

① Convert ② Prune ③ Search

④Query

⑤ Rewrite

Output

Output

Compute/communication op Auxiliary op In/Out Entry point

Fig. 2. Overview of the TAP system.

Algorithm 1 Graph Pruning
1: procedure PRUNEGRAPH(modelDef,minDuplicate)
2: nodeTree← ∅
3: maxDepth← modelDef.depth
4: for all depth ∈ maxDepth · · · 1 do
5: nodeTree[depth] ←

longestCommonPrefix(modelDef.nodes.name)
6: opCount = findSimilarBlk(nodeTree[depth])
7: if opCount ≥ minDuplicate then
8: subgraphs.append(nodeTree[depth])
9: else

10: break
11: end if
12: end for
13: returnsubgraphs
14: end procedure

Algorithm 1 starts by constructing a nodeTree, which iden-
tifies and groups the GraphNodes on each level by using the
longest common prefix algorithm on the GraphNodes names
(line 2-5). After that, it finds the blocks of GraphNodes with
a similar composition of operators and compares the number
of operators with the minimum duplicate threshold (line 7).
As the depth decreases, we will see a larger subgraph with
less homogeneous compositions. Notice that multiple shared
subgraphs may exist since a neural network may have multiple
leaf nodes.

D. Sharding Plan Generator

A sharding pattern, defining the way a GraphNode can
be sharded, also serves as the directed edge between nodes.
According to the SRC abstractions, the communication pattern
is determined once the split/replica decision is made. Under

Algorithm 2 Derivation of Optimal Plan
1: procedure DERIVEPLAN(modelDef, shardingPatterns)
2: subgraphs← PruneGraph(modelDef)
3: candidateP lans ←

enumerateAllP lans(subgraphs)
4: validP lans← {}
5: for all p ∈ candidateP lans do
6: validated← PatternRouting(p)
7: if validated then
8: validP lans.insert(p)
9: end if

10: end for
11: bestP lan← min(QueryCost(validP lans))
12: returnbestP lan
13: end procedure

the hood, the sharding patterns connect to each other like a
chain.

After pruning, TAP proceeds to derive the optimal plan
(Step 3 and 4) using Algorithm 2. In the first phase, TAP
enumerates all possible sharding plans given the subgraphs.
TAP only needs to work on hundreds of plans thanks to
pruning. However, not every plan is valid because we only
have weekly connected subgraphs. Therefore, the candidate
plans need to be validated by checking the connectivity (line
5-10). Upon checking, TAP evaluates the performance of each
plan using a cost model and selects the best plan.

E. Pattern Routing

In the pattern routing step (Algorithm 3), TAP tries to
assemble the weakly connected GraphNodes into a valid
sharding plan by checking the connectivity. This is to ensure
the success of graph rewriting (Step 5). TAP does so using
breadth-first-search (BFS) starting from the root node, and the

4

Algorithm 3 Plan Validation
1: procedure PATTERNROUTING(currP lan)
2: TopoSort(currP lan)
3: nodesQ← currP lan.root
4: while nodesQ ̸= ∅ do
5: currNode← nodesQ.dequeue()
6: for all childNode ∈ currNode.next() do
7: sp← lookUpShrdPatn(currNode, childNode)
8: if sp ̸= ∅ then
9: if childNode == currP lan.leaf then

10: return TRUE
11: else
12: nodeQ.enqueue(childNode)
13: end if
14: end if
15: end for
16: end while
17: return FALSE
18: end procedure

goal is to make sure there exists at least a connected path from
the root to the leaf chained using the sharding patterns.

One challenge is that a pair of contracting sharding patterns
may have different input and output tensors, and a consumer
operator’s input is not ready until its producer is ready. In
other words, dependencies exist between GraphNodes, but the
information was kept in the original edges and could be lost
when we perform pruning.

To solve it, we perform a topological search for the GraphN-
ode based on the readiness of the input tensor. We leverage
that neural networks can be represented using a directed
acyclic graph, and reconstruct the edges based on the order
of the producer-consumer relationship. This way, TAP avoids
checking the order for every pair of GraphNodes.

F. Cost Model

To build a cost model, we first profile different tensor
parallel plans to understand the bottleneck. Fig. 3 summarizes
the result. Data were collected from two nodes interconnected
by 32 Gbps Ethernet, each equipped with 8 GPUs. We observe
that inter-node communication is the main bottleneck for
tensor parallelism, and the best plan is not necessarily the
one that splits every weight tensor, in line with [6].

As the number of devices increases from 8× to 16×, the
difference between communication time and computation time
is further pronounced. This is because the bottleneck has
shifted from high-speed intra-node communication (PCI-e) to
slower inter-node communication (Ethernet).

Furthermore, the best tensor parallel plan for 16 GPUs
(16w-FFN) only shards the weight in the feed-forward layer.
We conjecture that with more tensors split instead of repli-
cated, there are fewer FLOPs per device and the computation
time is lower. However, this comes at the cost of having more
communication. In the case of training in the data center where
nodes are interconnected by Ethernet, the speed bottleneck

8w-DP
8w-MHA

8w-FFN

8w-Megatron
16w-DP

16w-MHA

16w-FFN

16w-Megatron
0

2500

5000

7500

10000

12500

S
ec

/it
er

at
io

n
(m

s)

Time breakdown for tensor parallel plans

Computation
Communication

Fig. 3. Time breakdown for tensor parallel plans on T5-large model on 8 and
16 GPUs (8w/16w). DP means data parallel, MHA means sharding the multi-
head attention, FFN means sharding the feed-forward layer, and Megatron
refers to the tensor sharding plan described in [17].

may shift from computation to communication instead. There-
fore, communication cost is the main consideration when we
design the cost model.

TAP addresses these issues using an analytical cost model
based on the tensor’s communication method, shape, and data
format. Each sharding pattern is associated with a cost, and
the total cost is calculated by summing all pattern costs along
the critical path.

G. Graph Rewriting

After evaluating the cost of each sharding plan, TAP assem-
bles the parallel plan. It does so by first restoring the original
order of operators. Then, TAP identifies optimization opportu-
nities that can be performed through gradient packing. In the
end, TAP passes the resulting parallelized neural network plan
to the deep learning framework runtime.

H. Limitation and Future Work

To further optimize the memory consumption, TAP could
leverage other orthogonal techniques such as Auto Mixed
Precision (AMP) [1], recomputation [5], and pipeline par-
allelism. Since both AMP and TAP optimize on the graph
representation of the neural network, they can be made into
different passes. Also, gradient checkpointing can be used to
offload the selected GraphNode onto the main memory. TAP
may also be used with pipeline parallelism through automatic
[9], [12], [15], [16] or manual placements.

V. PRELIMINARY EVALUATION

A. Setup

We first evaluate the pruning algorithm and the use of Just-
In-Time compilation for TAP . Then, for comparison with
another auto-parallel framework, we use Alpa version 0.7
running with JAX 0.3.5. Next, we use Megatron running on
PyTorch to compare against expert-engineered tensor parallel

5

plans. Finally, we present the training convergence running
gigantic neural networks.

The evaluation was performed on Company A’s public cloud
node with 756GB main memory, 2× Intel 8163 CPUs at
24 cores each, and 8× Nvidia V100 SXM2 32GB GPUs.
Additionally, TAP builds on top of TensorFlow 1.12.

B. End-to-End Evaluation

In this section, we compare TAP with auto-parallel frame-
work Alpa on search time and performance of the discovered
plan.

1) Search time.: As explained in § ??, TAP has a sub-
linear time complexity, which is desirable when the models’
size scales up. In the experiments with Alpa, we present the
end-to-end search time with respect to model scaling, defined
by the duration from the start of the experiment till the moment
that the training process begins. Due to time constraints, we
shortlisted a search space of 16 plans for T5 and 5 plans for
ResNet, while we did not restrict the search space for TAP .

100M 200M 350M 770M 1.4B
Number of Parameters

0

200

lin
ea

r s
ca

le

Search time (minutes) - T5 Model

Alpa
TAP

100M 200M 350M 770M 1.4B
Number of Parameters

10
0

10
1

10
2

lo
g

sc
al

e

Fig. 4. End-to-end search time when scaling on the number of parameters
for dense transformer model.

To scale the model along the depth, we increase the number
of transformer layers for T5, an encoder-decoder transformer
architecture for language modeling. Increasing the depth of
dense transformer models is a common practice to improve
performance. Fig. 4 shows that, with rising parameters, TAP
can still find a plausible schedule in under 15 mins, which is
21×−67× faster than Alpa.

To scale the model size along the width for the ResNet50
model, we choose to increase the size of the classification
layer. The original ResNet50 model has 1024 classes in the
classification layer. As we increase the dimensions for the
classification layer, the total number of parameters also scales
up. As shown in Fig. 5, TAP is two orders of magnitude
faster than Alpa in finding the optimal solution. Our system
outperforms it by 103×−162×.

We further analyze the time breakdown during the search.
For example, for 24-layer T5-large (770M parameters), Alpa
spent 5 mins profiling the operators and 5 mins constructing

1024 10k 100k 250k 400k
Number of Classes

0

50

100

lin
ea

r s
ca

le

Search time (minutes) - ResNet50 Model

Alpa
TAP

1024 10k 100k 250k 400k
Number of Classes

10
0

10
1

10
2

lo
g

sc
al

e

Fig. 5. End-to-end search time when scaling on the number of parameters
for the large-scale classification model.

the pipeline stages out of the operators. Instead, TAP reduces
the architecture to one transformer block and searches for
shardable parameters within that only, drastically reducing the
search space. As a result, Alpa takes 197 minutes to search
for 16 candidate plans, while TAP requires only 6 minutes to
examine 729 candidate plans.

100M 200M 300M 760M
Number of Parameters

0.0

0.2

0.4

0.6

0.8

Ite
ra

tio
n

tim
e

(s
ec

)

Iteration time - T5

Alpa
TAP

Fig. 6. Training time per iteration for T5 (batch size=16). The blue band
represents the standard derivation.

2) Training speed.: We also evaluate the performance of
the best plans produced by Alpa and TAP . We observe that
Alpa favors pipeline parallel schedules, while the optimal
schedule found by TAP is similar to the Megatron-style tensor
parallel schedule. Since the plans using pipeline parallelism
require less communication, the plans from Alpa have a higher
throughput.

We also observe that as the width of the model increases, the
performance of TAP plans is better and more consistent. Fig. 7
shows the time to finish one iteration of training for parallel
plans of ResNet50. We first observe that TAP consistently

6

1024 10k 100k 250k 400k
Number of classes

0.0

0.5

1.0

1.5

2.0
Ite

ra
tio

n
tim

e
(s

ec
)

Iteration time - ResNet50

Alpa
TAP

Fig. 7. Training time per iteration for ResNet50 (batch size=1024).

outperforms Alpa. Further, the variance (blue band) in plans
discovered by Alpa shows that it struggles to find consistently
good plans.

VI. CONCLUSION

We present TAP, an automatic parallelism framework that
efficiently discovers tensor parallel plans for large models.
Leveraging the observation that shared subgraphs widely exist
in neural networks, we design a pruning algorithm that effi-
ciently reduces the search space with a sub-linear end-to-end
complexity. The best plans found by TAP are comparable with
the state-of-the-art expert-engineered plans while only taking
minutes to discover.

REFERENCES

[1] “Automatic mixed precision for deep learning,” https://developer.nvidia.
com/automatic-mixed-precision.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems,”
2016. [Online]. Available: http://arxiv.org/abs/1603.04467

[3] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A frame-
work for self-supervised learning of speech representations,” Advances
in Neural Information Processing Systems, vol. 33, pp. 12 449–12 460,
2020.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[5] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[6] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” Tech. Rep., 2012.

[7] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
Tech. Rep., 2019. [Online]. Available: https://github.com/tensorflow/
tensor2tensor

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[9] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu,
G. Long, J. Yang, L. Xia, L. Diao, X. Liu, and W. Lin, “DAPPLE: A
pipelined data parallel approach for training large models,” Proceedings
of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP, vol. 21, pp. 431–445, 2021. [Online].
Available: https://doi.org/10.1145/3437801.3441593

[10] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” 2021.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol.
2016-Decem, 2016, pp. 770–778. [Online]. Available: http://image-
net.org/challenges/LSVRC/2015/

[12] X. Jia, L. Jiang, A. Wang, W. Xiao, Z. Shi, J. Zhang, X. Li, L. Chen,
Y. Li, Z. Zheng, X. Liu, and W. Lin, “Whale: Efficient giant model train-
ing over heterogeneous gpus,” in USENIX Annual Technical Conference.
USENIX, 2022.

[13] Z. Jia, M. Zaharia, and A. Aiken, “Beyond Data and Model
Parallelism for Deep Neural Networks,” arXiv, 2018. [Online].
Available: http://arxiv.org/abs/1807.05358

[14] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2021, pp. 2–14.

[15] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song,
and I. Stoica, “TeraPipe: Token-Level Pipeline Parallelism for
Training Large-Scale Language Models,” 2021. [Online]. Available:
http://arxiv.org/abs/2102.07988

[16] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for DNN training,” SOSP 2019 - Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pp. 1–15,
2019. [Online]. Available: https://doi.org/10.1145/3341301.3359646

[17] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient Large-Scale Language
Model Training on GPU Clusters Using Megatron-LM,” International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, 2021. [Online]. Available: http://arxiv.org/abs/2104.04473

[18] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
Conference on Machine Learning. PMLR, 2021, pp. 8748–8763.

[19] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Tech. Rep., 2020. [Online].
Available: http://jmlr.org/papers/v21/20-074.html.

[20] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, vol. 2020-Novem, 2020.

[21] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang,
M. Zhang, D. Li, and Y. He, “ZeRO-offload: Democratizing billion-
scale model training,” 2021 USENIX Annual Technical Conference, pp.
551–564, 2021. [Online]. Available: https://www.deepspeed.ai/tutorials/

[22] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton,
A. Susano Pinto, D. Keysers, and N. Houlsby, “Scaling vision with
sparse mixture of experts,” Advances in Neural Information Processing
Systems, vol. 34, pp. 8583–8595, 2021.

[23] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism,” 2019. [Online]. Available:
http://arxiv.org/abs/1909.08053

[24] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. Efrain, Q. Narvaez,
V. Ramakrishnaiah, N. Prajapati, P. Mccormick, J. Mohd-yusof,
J. Park, M. Smelyanskiy, A. Aiken, P. Mccormick, J. M.-y. Xi, and
L. Dheevatsa, “Unity : Accelerating DNN Training Through Joint
Optimization of Algebraic Transformations and Parallelization This

7

https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/automatic-mixed-precision
http://arxiv.org/abs/1603.04467
https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor
https://doi.org/10.1145/3437801.3441593
http://image-net.org/challenges/LSVRC/2015/
http://image-net.org/challenges/LSVRC/2015/
http://arxiv.org/abs/1807.05358
http://arxiv.org/abs/2102.07988
https://doi.org/10.1145/3341301.3359646
http://arxiv.org/abs/2104.04473
http://jmlr.org/papers/v21/20-074.html.
https://www.deepspeed.ai/tutorials/
http://arxiv.org/abs/1909.08053

paper is included in the Proceedings of the,” 2022. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/unger

[25] M. Wang, C. c. Huang, and J. Li, “Supporting very large models using
automatic dataflow graph partitioning,” Proceedings of the 14th EuroSys
Conference 2019, 2019.

[26] Y. Xu, H. Lee, D. Chen, B. Hechtman, Y. Huang, R. Joshi, M. Krikun,
D. Lepikhin, A. Ly, M. Maggioni, R. Pang, N. Shazeer, S. Wang,
T. Wang, Y. Wu, and Z. Chen, “GSPMD: General and Scalable
Parallelization for ML Computation Graphs,” 2021. [Online]. Available:
http://arxiv.org/abs/2105.04663

[27] F. Xue, Z. Shi, F. Wei, Y. Lou, Y. Liu, and Y. You, “Go wider
instead of deeper,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 8, 2022, pp. 8779–8787.

[28] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang,
Y. Xu, D. Zhuo, J. E. Gonzalez, and I. Stoica, “Alpa: Automating
Inter- and Intra-Operator Parallelism for Distributed Deep Learning,”
2022. [Online]. Available: http://arxiv.org/abs/2201.12023

8

https://www.usenix.org/conference/osdi22/presentation/unger
http://arxiv.org/abs/2105.04663
http://arxiv.org/abs/2201.12023

	Introduction
	Background
	Model Parallelism
	Tensor Parallelism

	Automatic Parallelism
	User hint
	Search algorithm
	Challenge of exploding search space

	Approach
	Problem Formulation
	Challenges and Observations

	Design and Implementation
	Overview
	Intermediate Representation
	Pruning using Shared Subgraph
	Sharding Plan Generator
	Pattern Routing
	Cost Model
	Graph Rewriting
	Limitation and Future Work

	Preliminary Evaluation
	Setup
	End-to-End Evaluation
	Search time.
	Training speed.

	Conclusion
	References

