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Abstract

There has been a growing interest in inter-
preting the underlying dynamics of Transform-
ers. While self-attention patterns were initially
deemed as the primary choice, recent studies
have shown that integrating other components
can yield more accurate explanations. This pa-
per introduces a novel token attribution analysis
method that incorporates all the components in
the encoder block and aggregates this through-
out layers. We quantitatively and qualitatively
demonstrate that our method can yield faithful
and meaningful global token attributions. Our
extensive experiments reveal that incorporating
almost every encoder component results in in-
creasingly more accurate analysis in both local
(single layer) and global (the whole model) set-
tings. Our global attribution analysis surpasses
previous methods by achieving significantly
higher results in various datasets.

1 Introduction

The stellar performance of Transformers (Vaswani
et al., 2017) has garnered a lot of attention to ana-
lyzing the reasons behind their effectiveness.The
self-attention mechanism has been one of the main
areas of focus (Clark et al., 2019; Kovaleva et al.,
2019; Reif et al., 2019; Htut et al., 2019). But, there
have been debates on whether raw attention weights
are reliable anchors for explaining model’s behav-
ior (Wiegreffe and Pinter, 2019; Serrano and Smith,
2019; Jain and Wallace, 2019). Recently, it was
shown that incorporating vector norms should be
an indispensable part of any attention-based analy-
sis (Kobayashi et al., 2020, 2021). However, these
norm-based studies incorporate only the attention
block into their analysis, whereas the encoder layer
is composed of more components. We show that
these components are essential for a more accurate
analysis. Moreover, these studies are constrained
to the analysis of single layer attributions.

In order to expand the analysis to the entire
model, an aggregation technique has to be em-
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Figure 1: Aggregated attribution maps (Ngxc) for the
[CLS] token for fine-tuned BERT on SST?2 dataset (sen-
timent analysis). Our method (GlobEnc) is able to accu-
rately quantify the global attribution of the model.

ployed. Abnar and Zuidema (2020) proposed two
aggregation methods, rollout and max-flow, which
combine raw attention weights across layers. De-
spite reporting improvements on the attributions,
the final results are still very low on fine-tuned mod-
els. Also, gradient-based alternatives have been
argued to provide a more robust basis for such anal-
ysis (Brunner et al., 2020; Pascual et al., 2021),
while being computationally intensive.

In this paper, we propose a new global token
attribution analysis method (GlobEnc), which in-
corporates not only the attention block, but also the
second layer normalization that produces the en-
coder layer’s output. Our results on BERT (Devlin
et al., 2019) show high correlations with gradient
based methods in both local and global settings.

To evaluate our approach, we compare the global
attribution with the input token attributions ob-
tained by gradient-based saliency scores. We show
that: (i) norm-based methods achieve higher cor-
relation than weight-based methods; (ii) incorpo-
rating residual connections plays an essential role
in token attribution; (iii) layer normalizations can
improve our analysis only if coupled together; and
(iv) aggregation across layers is crucial for an ac-



curate whole-model attribution analysis. Based
on these findings, we propose a global attribution
method that provides faithful and plausible results
(Figure 1). In summary, our main contributions are
threefold:

* We expand the scope of analysis from atten-
tion block in Transformers to the whole en-
coder.

* Our method significantly improves over exist-
ing techniques for quantifying global token
attribution in BERT.

* We qualitatively demonstrate that the attribu-
tions obtained by our method are plausibly
interpretable.

2 Background

In encoder-based language models (such as BERT),
a Transformer encoder layer is composed of several
components (Figure 2). The core component of the
encoder is the self-attention mechanism (Vaswani
et al., 2017), which is responsible for the informa-
tion mixture of a sequence of token representations
(x1, ..., xy). Each self-attention head computes a
set of attention weights A" = {aZjH <1,7 <n},
where aﬁ ; 1s the raw attention weight from the
i token to the j" token in head h € {1,..., H}.
Therefore, the output representation (z; € R?) for
the i™ token of a multi-head (with H heads) self-
attention module is computed by concatenating the
heads’ outputs followed by a head-mixing Wop
projection:

z; = CONCAT(2}, ..., 2 YWo (1)

Where each head’s output vector is generated by
performing a weighted sum over the transformed
value vectors v(x;) € R

n
2l =)ol ol (a)) )
j=1

Norm-based attention. While one may inter-
pret the attention mechanism using the attention
weights A, Kobayashi et al. (2020) argued that do-
ing so would ignore the norm of the transformed
vectors multiplied by the weights, elucidating that
the weights are insufficient for interpretation. Their
solution enhanced the interpretability of attention
weights by incorporating the value vectors v(x;)
and the following projection W . By reformulat-
ing Equation 1, we can consider z; as a summation
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Figure 2: The internal structure of a Transformer en-
coder layer. We show on the diagram the components
that are incorporated by each token attribution analysis
method. Our method incorporates the whole encoder
(MVEnc) except for the fully connected feed-forward mod-
ule. Diagram inspired by Alammar (2018).

over the attentions heads:
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Using this reformulation', Kobayashi et al. pro-
posed a norm-based token attribution analysis
method, N := (||zij|]) € R™*", to measure
each token’s contribution in a self-attention mod-
ule:

H
Zicj = Zagjfh(wj) “)
h=1

They showed that incorporating the magnitude of
the transformation function (f"(x)) is crucial in
assessing the input tokens’ contribution to the self-
attention output.

Residual connections & Layer Normalizations.
Kobayashi et al. (2021) added the attention block’s
Layer Normalization (LN #1) and Residual con-
nection (RES #1) to its prior norm-based analy-
sis to assess the impact of residual connections
and layer normalization inside an attention block.
Nres = (|[z{,_;1|) € R"*™ is the analysis method
which incorporates the attention block’s residual

'WL is a head-specific slice of the original W o projec-

tion. For more information about the reformulation process,
see Appendix C in Kobayashi et al. (2021)



connection. The input vector @ is added to the at-
tribution of each token to itself to incorporate the
influence of residual connection #1:

H
Zioj = ol fi @)+ 1i = jla (5
h=1

They proposed a method for decomposing LN? into
a summation of normalizations:

LN(2)) = Y gz (27 ) + B
= (6)

+ L Z’:—(—] - m(z+ )
gz:(zﬂ—j) T S(Zi-—)
7
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where m(.) and s(.) are the element-wise mean and
standard deviation of the input vector (cf. §A.1).
The decomposition can be applied to the contribu-
tion vectors:

H

Ziej = gz;(z a?,jfh(ivi) +1[i = jlx;) (7)
h=1

Accordingly, we can compute the magnitude
NresiN = (]|Zi—;l]) € R™ ™, which represents
the amount of influence of an encoder layer’s input
token j on its output token 7. Based on this formu-
lation, a context-mixing ratio could be defined as:

. I Z?:l,j;éi £i<—jH
| Z?:l,j;éi 2i<—j|’ + |[Zil|

®)

T

Experiments by Kobayashi et al. (2021) revealed
considerably low 7 values which indicates the huge
impact of the residual connections. In other words,
the model tends to preserve token representations
more than mixing them with each other.

3 Methodology

Our method for input token attribution analysis has
a holistic view and takes into account almost ev-
ery component within the encoder layer. To this
end, we first extend the norm-based analysis of
Kobayashi et al. (2021) by incorporating the en-
coder’s output layer normalization #2. We then
apply an aggregation technique to combine the in-
formation flow throughout all layers.

2y € R% and B € R? are the trainable weights of LN.
Similar to Kobayashi et al. (2021) we ignore 3.

Encoder layer output # Attention block output.
While the residual connection #1 and the layer nor-
malization #1 from the attention block are included
in the analysis of Kobayashi et al. (2021), the subse-
quent FFN, residual connection #2, and output LN
#2 are ignored (see Fig. 2). Hence, Nrgsp N might
not be indicative of the entire encoder layer’s func-
tion. To address this issue, we additionally include
the encoder layer components from the attention
block outputs (Z;) to the output representations (Z;).
The output of each encoder (Z;) is computed as fol-
lows:
2: = FFN(Z;) + 2;

; = LN(2]) ©

We apply the LN decomposition rule in Eq. 7 to
separate the impacts of residual and FFN output:

n
Fi= 3 (92 (FAN(Zic ) + 95 (Ficy)) + B
j=1
(10)
Given that the activation function between the two
fully connected layers in the FFN component is
non-linear (Vaswani et al., 2017), a linear decom-
position similar to Eq. 7 cannot be derived. As a
result, we omit FFN’s influence on the contribu-
tion of each token and instead consider residual
connection #2, approximating &;.; as gz: (Zicyj)-
Nevertheless, it should be noted that the FFN still
preserves some influence on this new setting due
to the presence of s(Z;) in gz:(Zi;). Similar to
Eq. 7, we can introduce a more inclusive layerwise
analysis method NVgxc := (||Zi—;||) € R™*" from
input token j to output token ¢ using:
- - Ziej — m(Zi—j)
Licj = gzg(zz«—j) = =7

s(2;)

O
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Aggregating multi-layer attention. To create an
aggregated attribution score, Abnar and Zuidema
(2020) proposed describing the model’s attentions
via modelling the information flow with a directed
graph. They introduced attention rollout method,
which linearly combines attention along all avail-
able paths in the pairwise attention graph. The
attention rollout of layer ¢ w.r.t. the inputs is com-
puted recursively as follows:

~ AgAg_l {>1
Ap=1 . (12)
Ay (=1
Ay =05A,+ 051 (13)



Ay is the raw attention map averaged across all
heads in layer ¢. This method assumes equal contri-
bution from the residual connection and multi-head
attention (See Fig. 2). Hence, an identity matrix is
summed and renormalized, giving A,

For aggregating the layerwise analysis methods,
we use the rollout technique with minor modifi-
cations. As many of the methods already include
residual connections, we only use Eq. 12 (replac-
ing A, with the desired method’s attribution matrix
in layer £) to calculate the rollout of a given method.
However, for methods that do not assume the resid-
ual connection, we define a corresponding “FIXED”
variation using Eq. 13 that incorporates a fixed
value for the context mixing ratio (r; = 0.5).

4 Experiments

In this section, we introduce the datasets and the
token attribution analysis methods used in our eval-
uations, followed by the experimental setup and
results.

4.1 Datasets

All analysis methods are evaluated on three differ-
ent classification tasks. To cover sentiment detec-
tion tasks we use SST2 (Socher et al., 2013), MNLI
(Williams et al., 2018) for Natural Language Infer-
ence and Hatexplain (Mathew et al., 2021) in hate
speech detection.

4.2 Analysis Methods

We use two groups explainability approaches in
our work: Weight-based and Norm-based.> The
Weight-based approaches employed in our experi-
ments are as follows:

* W: The raw attention maps averaged across
all heads (See Ay in §2).

* Wrixepres © Abnar and Zuidema’s assump-
tion; add an identity matrix as a fixed residual
to A, (See A, in Eq. 13).

* Whkes : To correct the VW with only the accu-
rate residuals, add the residual based on the
context-mixing ratios of Mgyc:

3Note that in our experiments, we use all these methods
within the rollout aggregation method.

A~

n _
HZJ:LJ'# Licj H
;

i pr—
Ale :diag (rf‘l? e 77§n) A_E+
diag (1 —71,...,1 —7,) [

The Norm-based analysis methods, namely N/,
NRres and NVrgspn are discussed in detail in §2. Our
proposed norm-based method Ngyc is discussed in
§3. For our ablation study, we introduce NgxepRes
which is V, corrected with a fixed residual similar
to WFIXEDRES4-

i [zl ) o grxn
(Zj |zl (15)
MNFixepREs := 0~5N+ 051

We refer to our proposed
method—aggregated MNgxe by the
method at the final layer—as GlobEnc.

global
rollout

4.3 Gradient-based Methods for Faithfulness
Analysis

Gradient-based methods are widely used as alter-
natives for attention-based counterparts for quanti-
fying the importance of a specific input feature
in making the right prediction (Li et al., 2016;
Atanasova et al., 2020). In this section we dis-
cuss the specific gradient-based methods we use,
namely saliency, HTA, and our adjusted HTA.

4.3.1 Saliency

Gradient-based saliency is based on the gradient
of the output (y.) w.r.t. the input embeddings
(e?). One of its most accurate variations is the
gradient x input method (Kindermans et al., 2016)
where the input embeddings is multiplied by the
gradients. Thus, the contribution score of input to-
ken ¢ is determined by first computing the element-
wise product of the input embeddings (e?) and the
gradients of the true class output score (y.) W.r.t.
the input embeddings. Then, the L2 norm of the
scaled gradients is computed to derive the final
score:

: Jy, 0
Saliency; = H@eg © e;

7

(16)

2

“The only difference is that we need to normalize A before
adding an identity matrix.



Attention Rollout

SST2 MNLI HATEXPLAIN

Weight-based (W) -0.11+0.26 -0.06+0.22 +0.12+0.26
w/ Fixed Residual (Weixeores) ° -0.24 +£0.26 -0.05+026 +0.13+0.28

w/ Residual (Wkss) +0.21 £0.26 +0.30 +0.24 +0.55+0.23
Norm-based (V) +0.44 +£0.20 +0.47 £0.16 +0.43+0.22
w/ Fixed Residual (Meixepres) +0.48 £0.20 +0.55+0.16 +0.48 £0.22

w/ Residual (NVres) +0.73 +£0.13 +0.75+0.10 +0.66+0.17

w/ Residual + Layer Norm 1 (AMgesin) -0.21+0.26 -0.06+0.26 +0.08 £0.28

w/ GlobEnc: [Residual + Layer Norm 1, 2] (MVexe) +0.77 £0.12 +0.78 £ 0.09 +0.72 £ 0.17

Table 1: Spearman’s rank correlation of attribution based importance (aggregated by rollout) with saliency scores
for the validation set for the BERT model fine-tuned on SST-2, MNLI, and HateXplain. In fixed residual cases, the
context-mixing ratio is 0.5, and in weight-based w/ residual (Mggs), it is corrected with context-mixing ratio of
(MNexc)- The numbers are the average on all the validation set examples + the standard deviation.

4.3.2 HTA x Inputs

To determine an upper bound on the information
mixing within each layer, we use a modified ver-
sion of Hidden Token Attribution (Brunner et al.,
2020, HTA). In the original version, HTA is the
sensitivity between any two vectors in the model’s
computational graph. However, inspired by the
gradient X input method (Kindermans et al., 2016),
which has shown more faithful results (Atanasova
et al., 2020; Wu and Ong, 2021), we multiply the
input vectors by the gradients and then apply a
Frobenius norm. We compute the attribution from
hidden embedding j (eﬁ_l) to hidden embedding ¢

(ef) in layer £ as:

y4
aei © el!
del™! J
J

£
Civj =

A7)

F

Computing HTA-based attribution matrices is an
extremely computationally intensive task (espe-
cially for long texts) due to the high dimensionality
of the hidden embeddings. Hence, we only use this
method for 256 examples from the SST-2 task’s
validation set. It is worth noting that extracting the
HTA-based contribution maps for the aforemen-
tioned data took approximately 2 hours, whereas
computing the maps for the entire analysis methods
stated in §4.2 took only 5 seconds.’

3 As mentioned in §4.2, this analysis method is based on
the original experiment by Abnar and Zuidema (2020). Our
experiments on SST2 differ from theirs in two aspects: (i)
We opted for gradient X input saliencies, while they used the
sum of gradients (sensitivity) (ii) Instead of BERT, they used
a DistilIBERT fine-tuned model (Sanh et al., 2019). However,
it still yields lower results (Spearman Corr. = 0.13)

8Conducted on a 3070 GPU machine.

4.4 Setup

We employ HuggingFace’s transformers library’
(Wolf et al., 2020) and the BERT-base-uncased
model. For fine-tuning BERT, epochs vary from 3
to 5, and the batch size and learning rate are 32 and
3e-5, respectively.®

After rollout aggregation of each analysis
method, we obtain an accumulated attribution ma-
trix for every layer (¢) of BERT. These matrices
indicate the overall contribution of each input token
to all token representations in layer ¢. Since the
classifier in a fine-tuned model is attached to the
final layer representation of the [CLS] token, we
consider the first row (corresponding to [CLS] at-
tributions) of the last layer attribution matrix. This
vector represents the contribution of each input to-
ken to the model’s final decision. As a measure of
faithfulness of the resulting vector with the saliency
scores, we report the Spearman’s rank correlation
between the two vectors.

4.5 Results

Table 1 shows the Spearman correlation of saliency
scores with the aggregated attribution scores from
[CLS] to input tokens at the final layer. In order
to determine the contribution of each component
of encoder layer to the overall performance, we
report results for multiple attribution analysis meth-
ods. Our results demonstrate that incorporating
the vector norms, residual connection, and both
layer normalizations yields the highest correlation
(NVEnc). In what follows next, we discuss the im-

"https://github.com/huggingface/transformers
8Recommended by Devlin et al. (2019).
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Figure 3: Spearman’s rank correlation of aggregated at-
tribution scores with saliency scores across layers. The
99% confidence intervals are shown as (narrow) shaded
areas around each line. Ngyc achieves the highest cor-
relation in almost every layer.

pact of incorporating various parts in the analysis.

4.5.1 On the role of vector norms

As also suggested by Kobayashi et al. (2020), vec-
tor norms play an important role in determining
attention outputs. This is highlighted by the signif-
icant gap between weight-based and norm-based
settings across all datasets in Table 1.

We also show the correlation of the aggregated
attention for all layers in Figure 3. The norm-based
settings (N and Nggs) attain higher correlation
than the weight-based counterparts (VV and Wggs)
almost in all layers, confirming the importance of
incorporating vector norms.

4.5.2 On the role of residual connections

Kobayashi et al. (2021) showed that in the encoder
layer, the output representations of each token is
mainly determined by its own representation, and
the contextualization from other tokens’ plays a
marginal role. This is in contrary to the simplifying
assumption made by Abnar and Zuidema (2020)
who used a fixed context-mixing ratio of 0.5 (as-
suming that BERT equally preserves and mixes the
representations). This setting is shown as weight-
based with fixed residual Wexepres) in Table 1.
We compare this setting against Wggs (see §4.2).
Whres 1s similar to Wrixepres (in that it does not
take into account vector norms) but differs in that
it considers a dynamic mixing ratio (the one from
NEgnc). The huge performance gap between the
two settings in Table 1 clearly highlights the im-
portance of considering accurate context-mixing
ratios. Therefore, it is crucial to consider the resid-

HTA Pearson Correlation on SST2 Dataset

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Figure 4: Single layer Pearson correlation of HTA maps
with attribution maps. The 99% confidence intervals are
shown as shaded areas around each line. NVggsin sShows
considerably less association with HTA.

ual connection in the attention block for input token
attribution analysis.

To further demonstrate the role of residual con-
nections, we utilize the introduced method in §4.2,
where we corrected the norm-based attentions with
fixed residual (r = 0.5). The comparison of norm-
based without any residual (N') and with a fixed
residual (Ngxepres) sShows a consistent improve-
ment for the latter across all the datasets. This
provides evidence on that having a fixed uniform
context-mixing ratio is better than neglecting the
residual connection altogether.

Finally, when we aggregate the norm-based anal-
ysis with an accurate dynamic context-mixing ratio
(MVRres), we observe the highest correlation up to
this point, without layer normalization.

4.5.3 On the role of layer normalization

In Table 1 we see a sudden drop in correlations for
NresLN. Although this method considers vector
norms and residuals, incorporating LN #1 in the
encoder seems to have deteriorated the accuracy for
token attribution analysis. To determine whether
this deterioration of correlation in aggregated attri-
butions is also present in individual single layers,
we compare the HTA maps as a baseline with the
attribution matrices extracted from different anal-
ysis methods. Figure 4 shows the correlation of
HTA attribution maps with the maps obtained by
NRes, NresLN, and Ngye methods. The results
indicate that Nrgspn exhibits a significantly lower
association.

The question that arises here is that how incor-
porating an additional component of the encoder
(LN #1) in NrgsLn degrades the results (compared
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Figure 5: The Pearson correlation between outlier
weights of layer normalization #1 and #2 across lay-
ers. The exact weights for layer 11 are shown as well.

to NMres). To answer this question, we inves-
tigate the learned weights of layer norm #1 and
#2. The outlier weights® in specific dimensions of
LNs are shown to be significantly influential on the
model’s performance (Kovaleva et al., 2021; Luo
et al., 2021). It is interesting to note that based
on our observations, the outlier weights of the two
layer norms seem to be the opposite of each other.
Figure 5 demonstrates the exact weights in layer
11 and also the correlation of the outlier weights
across layers. The large negative correlations con-
firm that the outlier weights work contrary to each
other. We speculate that the effect of outliers in the
two layer norms is partly cancelled out when both
are considered.

As shown in Figure 2, the FFN and the sec-
ond layer normalization are on top of the attention
block. However, Nrgs.n does not incorporate the
components outside of the attention block. As de-
scribed in §3, in our local analysis method Ngyc
we incorporate the second layer normalization in
the transformer’s encoder (Figure 2), thus consider-
ing the whole encoder block (except FFN). Overall,
our global method noted as GlobEnc yields the
best results among all the methods evaluated in
our experiments. In general, Table 1 suggests that
incorporating each component of the encoder will
increase the correlation; however, the two layer
normalizations should be considered together.

4.5.4 On the role of aggregation

We carried out an additional analysis to verify if
incorporating vector norms, residual connection
and layer normalizations in individual layers is ade-

"We identify the dimensions where the weights are at least
3o from the mean as outliers (Kovaleva et al., 2021).

| LI | L6 | LI2 | MAX
o N [=50+.18|+.28+.23 | +.40+ 21 | +41 £ .21
B Nes |—482 .18 [+29+ .24 | +41 +.19 | +.41 £ .19
Z None |—47£ 18| +29+ 24 | +41+.19 | +.41 .19
5 N —50+.18|+.44+ 20| +.44 + 20| +.44 + 20
S MNies | —48 .18 | +.70 % .14 | +73 £ .13 | +.73 £.13
S None |-47£ 18| +74+ 14 | +77+ 12 | +.78 + .12

Table 2: Spearman’s rank correlation of attribution-
based scores (individual and aggregated by rollout)
with saliency scores for the validation set for the BERT
model fine-tuned on SST-2. The results are reported for
layers 1, 6, 12, and the maximum of all layers. Rollout
aggregation achieves the highest correlations.

quate for achieving high correlations, or if it is also
necessary to aggregate them via rollout. Table 2
shows the correlation results in different layers for
raw attributions (without aggregation) and for the
aggregated attributions using the rollout method.
Applying rollout method on attribution maps up to
each layer results in higher correlations with the
saliency scores than the raw single layer attribution
maps, especially in deeper layers. Therefore, atten-
tion aggregation is essential for global input token
attribution analysis.

An interesting point in Figure 3, which shows
the correlation of the aggregated methods through-
out the layers, is that the correlation curves flatten
out after only a few layers.!? This indicates that
BERT identifies decisive tokens only after the first
few layers. The final layers only make minor ad-
justments to this order. Nevertheless, it is worth
noting that the order of attribution does not nec-
essarily imply the model’s final decision and the
final result may still change for the better or worse
(Zhou et al., 2020).

4.5.5 Qualitative analysis

To qualitatively answer if the aggregated attribu-
tion maps provide plausible and meaningful inter-
pretations, we take a closer look at the attribution
maps generated by GlobEnc. Figure 1 shows the
GlobEnc attribution of the model trained on SST-2.
Each layer demonstrates the [CLS] token’s aggre-
gated attribution to input tokens up to the corre-
sponding layer. The example inputs are “people
cinema at its finest.” and “big fat waste of time.”,
both correctly classified by the model. In both
cases, GlobEnc focuses on the relevant words for

'“YWkes is the only exception with a constant increase; this
method is gradually and artificially corrected by NVgxc context
mixing ratios.



sentiment classification, i.e., “finest”” and “waste”.
An interesting observation in Figure 1 is that in
the first few layers, the [CLS] token mostly at-
tends to itself while other tokens have marginal
impact. As the representations get more contex-
tualized in deeper layers, the attribution correctly
shifts to the words which indicate the sentiment
of the sentence.!! More examples are shown in
Figure A.1. Our qualitative analysis suggests that
GlobEnc can be useful for a reasonable interpreta-
tion of attention mechanism in BERT and possibly
any other transformer-based model.

5 Related Work

While numerous studies have used attention
weights to analyze and interpret the self-attention
mechanism (Clark et al., 2019; Kovaleva et al.,
2019; Reif et al., 2019; Htut et al., 2019), the use
of mere attention weights to explain a model’s in-
ner workings has been an active topic of debate
(Serrano and Smith, 2019; Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019). Several solutions have
been proposed to address this issue, usually through
converting raw attention weights to scores that pro-
vide better explanations. Brunner et al. (2020) used
the transformation function f”(x;) to introduce
effective attentions—the orthogonal component of
the attention matrix in f”(z;) null space—to ex-
plain the inner workings of each layer. However,
this technique ignores other components in the en-
coder and is computationally expensive due to the
SVD required to compute the effective attentions.
Kobayashi et al. (2020) incorporated the modified
vector and introduced a vector norms-based analy-
sis. This was later extended by integrating residual
connections and layer normalization components to
enhance the accuracy of explanations (Kobayashi
et al., 2021). But, as discussed in §4.5, relying
solely on LN #1 does not produce accurate results.

While these methods can be employed for single-
layer (local) analysis, multi-layer attributions are
not necessarily correlated with single-layer attribu-
tions due to the significant degree of information
combination through multi-layer language mod-
els (Pascual et al., 2021; Brunner et al., 2020).
Various saliency methods exist for explaining the
model’s decision based on the input (Li et al., 2016;
Bastings and Filippova, 2020; Atanasova et al.,
2020; Wu and Ong, 2021; Mohebbi et al., 2021).

"'Complete attention maps in Figure A.2 show that, simi-
larly to [CLS], other tokens also focus on sentiment tokens.

However, these approaches are not primarily de-
signed for computing inter-token attributions. To
fill this gap, Brunner et al. (2020) proposed HTA,
which is based on the gradient of each hidden em-
bedding in relation to the input embeddings. In
§4.3.2, we extend HTA to incorporate the impact
of the input vectors. However, HTA is extremely
computationally intensive. Attention rollout (see
§3) and attention flow—which involve solving a
max-flow problem on the attention graph—are two
aggregation approaches introduced by Abnar and
Zuidema (2020), in which raw attention weights
(with equally weighted residual weights) are ag-
gregated within multiple layers. We showed that
attention rollout does not perform well on a BERT
model fine-tuned on downstream tasks and that this
problem can be resolved by utilizing attribution
norms.

6 Conclusions

In this work, we proposed a novel method for single
layer token attribution analysis which incorporates
the whole encoder layer, i.e., the attention block
and the output layer normalization. When aggre-
gated across layers using the rollout method, our
technique achieves quantitatively and qualitatively
plausible results. Our evaluation of different analy-
sis methods provided evidence on roles played by
individual components of the encoder layer, i.e.,
the vector norms, the residual connections, and the
layer normalizations. Furthermore, our in-depth
analysis suggested that the two layer normaliza-
tions in the encoder layer counteract each other;
hence, it is important to couple them for an accu-
rate analysis.

Additionally, using a newly proposed and im-
proved version of Hidden Token Attribution, we
demonstrated that encoder-based attribution analy-
sis is more accurate when compared to other partial
solutions in a single layer (local-level). This is con-
sistent with our global observations. Quantifying
global input token attribution based on our work
can provide a meaningful explanation of the whole
model’s behavior. In future work, one can apply
our global analysis method on various datasets and
models, to provide valuable insights into model
decisions and interpretability.
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A Appendix
A.1 LN Formulation
m(a) := : >k al®),

T d
s(a) == /5 Ty(m(a) — al®) + )2

where € is a small constant

A.2 More examples

Aggregated attributions by different methods
throughout layers is shown in Figure A.1. Our
proposed method shows more plausible results.

Aggregated attribution map for layer 12 is shown
in Figure A.2. In this figure, the effect of each
token can be seen on all other tokens and not just
the [CLS] token.
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Figure A.1: Spearman correlation for aggregated attributions via rollout with different methods across layers. The
model is fine-tuned on SST?2 dataset and the attention of the CLS token is shown in each layer.
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Figure A.2: Spearman correlation for aggregated attributions via rollout with different methods in layer 12. The
model is fine-tuned on SST2 dataset. Each row indicates how much other tokens impact the token written on the
TOW.
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