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Abstract
There has been a growing interest in inter-001
preting the underlying dynamics of Transform-002
ers. While self-attention patterns were initially003
deemed as the primary choice, recent studies004
have shown that integrating other components005
can yield more accurate explanations. This pa-006
per introduces a novel token attribution analysis007
method that incorporates all the components in008
the encoder block and aggregates this through-009
out layers. We quantitatively and qualitatively010
demonstrate that our method can yield faithful011
and meaningful global token attributions. Our012
extensive experiments reveal that incorporating013
almost every encoder component results in in-014
creasingly more accurate analysis in both local015
(single layer) and global (the whole model) set-016
tings. Our global attribution analysis surpasses017
previous methods by achieving significantly018
higher results in various datasets.019

1 Introduction020

The stellar performance of Transformers (Vaswani021

et al., 2017) has garnered a lot of attention to ana-022

lyzing the reasons behind their effectiveness.The023

self-attention mechanism has been one of the main024

areas of focus (Clark et al., 2019; Kovaleva et al.,025

2019; Reif et al., 2019; Htut et al., 2019). But, there026

have been debates on whether raw attention weights027

are reliable anchors for explaining model’s behav-028

ior (Wiegreffe and Pinter, 2019; Serrano and Smith,029

2019; Jain and Wallace, 2019). Recently, it was030

shown that incorporating vector norms should be031

an indispensable part of any attention-based analy-032

sis (Kobayashi et al., 2020, 2021). However, these033

norm-based studies incorporate only the attention034

block into their analysis, whereas the encoder layer035

is composed of more components. We show that036

these components are essential for a more accurate037

analysis. Moreover, these studies are constrained038

to the analysis of single layer attributions.039

In order to expand the analysis to the entire040

model, an aggregation technique has to be em-041
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Figure 1: Aggregated attribution maps (NENC) for the
[CLS] token for fine-tuned BERT on SST2 dataset (sen-
timent analysis). Our method (GlobEnc) is able to accu-
rately quantify the global attribution of the model.

ployed. Abnar and Zuidema (2020) proposed two 042

aggregation methods, rollout and max-flow, which 043

combine raw attention weights across layers. De- 044

spite reporting improvements on the attributions, 045

the final results are still very low on fine-tuned mod- 046

els. Also, gradient-based alternatives have been 047

argued to provide a more robust basis for such anal- 048

ysis (Brunner et al., 2020; Pascual et al., 2021), 049

while being computationally intensive. 050

In this paper, we propose a new global token 051

attribution analysis method (GlobEnc), which in- 052

corporates not only the attention block, but also the 053

second layer normalization that produces the en- 054

coder layer’s output. Our results on BERT (Devlin 055

et al., 2019) show high correlations with gradient 056

based methods in both local and global settings. 057

To evaluate our approach, we compare the global 058

attribution with the input token attributions ob- 059

tained by gradient-based saliency scores. We show 060

that: (i) norm-based methods achieve higher cor- 061

relation than weight-based methods; (ii) incorpo- 062

rating residual connections plays an essential role 063

in token attribution; (iii) layer normalizations can 064

improve our analysis only if coupled together; and 065

(iv) aggregation across layers is crucial for an ac- 066
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curate whole-model attribution analysis. Based067

on these findings, we propose a global attribution068

method that provides faithful and plausible results069

(Figure 1). In summary, our main contributions are070

threefold:071

• We expand the scope of analysis from atten-072

tion block in Transformers to the whole en-073

coder.074

• Our method significantly improves over exist-075

ing techniques for quantifying global token076

attribution in BERT.077

• We qualitatively demonstrate that the attribu-078

tions obtained by our method are plausibly079

interpretable.080

2 Background081

In encoder-based language models (such as BERT),082

a Transformer encoder layer is composed of several083

components (Figure 2). The core component of the084

encoder is the self-attention mechanism (Vaswani085

et al., 2017), which is responsible for the informa-086

tion mixture of a sequence of token representations087

(x1, ...,xn). Each self-attention head computes a088

set of attention weights Ah = {αh
i,j |1 ≤ i, j ≤ n},089

where αh
i,j is the raw attention weight from the090

ith token to the jth token in head h ∈ {1, ...,H}.091

Therefore, the output representation (zi ∈ Rd) for092

the ith token of a multi-head (with H heads) self-093

attention module is computed by concatenating the094

heads’ outputs followed by a head-mixing WO095

projection:096

zi = CONCAT(z1
i , ...,z

H
i )WO (1)097

Where each head’s output vector is generated by098

performing a weighted sum over the transformed099

value vectors v(xj) ∈ Rdv :100

zh
i =

n∑
j=1

αh
i,jv

h(xj) (2)101

Norm-based attention. While one may inter-102

pret the attention mechanism using the attention103

weights A, Kobayashi et al. (2020) argued that do-104

ing so would ignore the norm of the transformed105

vectors multiplied by the weights, elucidating that106

the weights are insufficient for interpretation. Their107

solution enhanced the interpretability of attention108

weights by incorporating the value vectors v(xj)109

and the following projection WO. By reformulat-110

ing Equation 1, we can consider zi as a summation111
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Figure 2: The internal structure of a Transformer en-
coder layer. We show on the diagram the components
that are incorporated by each token attribution analysis
method. Our method incorporates the whole encoder
(NENC) except for the fully connected feed-forward mod-
ule. Diagram inspired by Alammar (2018).

over the attentions heads: 112

zi =
H∑

h=1

n∑
j=1

αh
i,j v

h(xj)W
h
O︸ ︷︷ ︸

fh(xj)

(3) 113

Using this reformulation1, Kobayashi et al. pro- 114

posed a norm-based token attribution analysis 115

method, N := (||zi←j ||) ∈ Rn×n, to measure 116

each token’s contribution in a self-attention mod- 117

ule: 118

zi←j =

H∑
h=1

αh
i,jf

h(xj) (4) 119

They showed that incorporating the magnitude of 120

the transformation function (fh(x)) is crucial in 121

assessing the input tokens’ contribution to the self- 122

attention output. 123

Residual connections & Layer Normalizations. 124

Kobayashi et al. (2021) added the attention block’s 125

Layer Normalization (LN #1) and Residual con- 126

nection (RES #1) to its prior norm-based analy- 127

sis to assess the impact of residual connections 128

and layer normalization inside an attention block. 129

NRES := (||z+i←j ||) ∈ Rn×n is the analysis method 130

which incorporates the attention block’s residual 131

1W h
O is a head-specific slice of the original WO projec-

tion. For more information about the reformulation process,
see Appendix C in Kobayashi et al. (2021)
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connection. The input vector x is added to the at-132

tribution of each token to itself to incorporate the133

influence of residual connection #1:134

z+i←j =
H∑

h=1

αh
i,jf

h(xi) + 1[i = j]xi (5)135

They proposed a method for decomposing LN2 into136

a summation of normalizations:137

LN(z+i ) =
n∑

j=1

gz+i (z
+
i←j) + β

gz+i (z
+
i←j) :=

z+i←j −m(z+i←j)

s(z+i )
⊙ γ

(6)138

where m(.) and s(.) are the element-wise mean and139

standard deviation of the input vector (cf. §A.1).140

The decomposition can be applied to the contribu-141

tion vectors:142

z̃i←j = gz+i (
H∑

h=1

αh
i,jf

h(xi) + 1[i = j]xi) (7)143

Accordingly, we can compute the magnitude144

NRESLN := (||z̃i←j ||) ∈ Rn×n, which represents145

the amount of influence of an encoder layer’s input146

token j on its output token i. Based on this formu-147

lation, a context-mixing ratio could be defined as:148

149

ri =
||
∑n

j=1,j ̸=i z̃i←j ||
||
∑n

j=1,j ̸=i z̃i←j ||+ ||z̃i←i||
(8)150

Experiments by Kobayashi et al. (2021) revealed151

considerably low r values which indicates the huge152

impact of the residual connections. In other words,153

the model tends to preserve token representations154

more than mixing them with each other.155

3 Methodology156

Our method for input token attribution analysis has157

a holistic view and takes into account almost ev-158

ery component within the encoder layer. To this159

end, we first extend the norm-based analysis of160

Kobayashi et al. (2021) by incorporating the en-161

coder’s output layer normalization #2. We then162

apply an aggregation technique to combine the in-163

formation flow throughout all layers.164

2γ ∈ Rd and β ∈ Rd are the trainable weights of LN.
Similar to Kobayashi et al. (2021) we ignore β.

Encoder layer output ̸= Attention block output. 165

While the residual connection #1 and the layer nor- 166

malization #1 from the attention block are included 167

in the analysis of Kobayashi et al. (2021), the subse- 168

quent FFN, residual connection #2, and output LN 169

#2 are ignored (see Fig. 2). Hence, NRESLN might 170

not be indicative of the entire encoder layer’s func- 171

tion. To address this issue, we additionally include 172

the encoder layer components from the attention 173

block outputs (z̃i) to the output representations (x̃i). 174

The output of each encoder (x̃i) is computed as fol- 175

lows: 176
z̃+i = FFN(z̃i) + z̃i

x̃i = LN(z̃+i )
(9) 177

We apply the LN decomposition rule in Eq. 7 to 178

separate the impacts of residual and FFN output: 179

x̃i =

n∑
j=1

(
gz̃+i (FFN(z̃i←j)) + gz̃+i (z̃i←j)

)
+ β

(10) 180

Given that the activation function between the two 181

fully connected layers in the FFN component is 182

non-linear (Vaswani et al., 2017), a linear decom- 183

position similar to Eq. 7 cannot be derived. As a 184

result, we omit FFN’s influence on the contribu- 185

tion of each token and instead consider residual 186

connection #2, approximating x̃i←j as gz̃+i (z̃i←j). 187

Nevertheless, it should be noted that the FFN still 188

preserves some influence on this new setting due 189

to the presence of s(z̃+i ) in gz̃+i (z̃i←j). Similar to 190

Eq. 7, we can introduce a more inclusive layerwise 191

analysis method NENC := (||x̃i←j ||) ∈ Rn×n from 192

input token j to output token i using: 193

x̃i←j ≈ gz̃+i (z̃i←j) =
z̃i←j −m(z̃i←j)

s(z̃+i )
⊙ γ

(11) 194

Aggregating multi-layer attention. To create an 195

aggregated attribution score, Abnar and Zuidema 196

(2020) proposed describing the model’s attentions 197

via modelling the information flow with a directed 198

graph. They introduced attention rollout method, 199

which linearly combines attention along all avail- 200

able paths in the pairwise attention graph. The 201

attention rollout of layer ℓ w.r.t. the inputs is com- 202

puted recursively as follows: 203

Ãℓ =

{
ÂℓÃℓ−1 ℓ > 1

Âℓ ℓ = 1
(12) 204

205

Âℓ = 0.5Āℓ + 0.5I (13) 206
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Āℓ is the raw attention map averaged across all207

heads in layer ℓ. This method assumes equal contri-208

bution from the residual connection and multi-head209

attention (See Fig. 2). Hence, an identity matrix is210

summed and renormalized, giving Âℓ.211

For aggregating the layerwise analysis methods,212

we use the rollout technique with minor modifi-213

cations. As many of the methods already include214

residual connections, we only use Eq. 12 (replac-215

ing Âℓ with the desired method’s attribution matrix216

in layer ℓ) to calculate the rollout of a given method.217

However, for methods that do not assume the resid-218

ual connection, we define a corresponding “FIXED”219

variation using Eq. 13 that incorporates a fixed220

value for the context mixing ratio (ri = 0.5).221

4 Experiments222

In this section, we introduce the datasets and the223

token attribution analysis methods used in our eval-224

uations, followed by the experimental setup and225

results.226

4.1 Datasets227

All analysis methods are evaluated on three differ-228

ent classification tasks. To cover sentiment detec-229

tion tasks we use SST2 (Socher et al., 2013), MNLI230

(Williams et al., 2018) for Natural Language Infer-231

ence and Hatexplain (Mathew et al., 2021) in hate232

speech detection.233

4.2 Analysis Methods234

We use two groups explainability approaches in235

our work: Weight-based and Norm-based.3 The236

Weight-based approaches employed in our experi-237

ments are as follows:238

• W : The raw attention maps averaged across239

all heads (See Aℓ in §2).240

• WFIXEDRES : Abnar and Zuidema’s assump-241

tion; add an identity matrix as a fixed residual242

to Aℓ (See Âℓ in Eq. 13).243

• WRES : To correct the W with only the accu-244

rate residuals, add the residual based on the245

context-mixing ratios of NENC:246

3Note that in our experiments, we use all these methods
within the rollout aggregation method.

r̂i =

∥∥∥∑n
j=1,j ̸=i x̃i←j

∥∥∥∥∥∥∑n
j=1,j ̸=i x̃i←j

∥∥∥+ ∥x̃i←i∥

A′ℓ =diag (r̂1, · · · , r̂n) Āℓ+

diag (1− r̂1, . . . , 1− r̂n) I

(14) 247

The Norm-based analysis methods, namely N , 248

NRES and NRESLN are discussed in detail in §2. Our 249

proposed norm-based method NENC is discussed in 250

§3. For our ablation study, we introduce NFIXEDRES 251

which is N , corrected with a fixed residual similar 252

to WFIXEDRES
4. 253

N̂ =

(
||zi←j ||∑
j ||zi←j ||

)
∈ Rn×n

NFIXEDRES := 0.5 N̂ + 0.5 I

(15) 254

We refer to our proposed global 255

method—aggregated NENC by the rollout 256

method at the final layer—as GlobEnc. 257

4.3 Gradient-based Methods for Faithfulness 258

Analysis 259

Gradient-based methods are widely used as alter- 260

natives for attention-based counterparts for quanti- 261

fying the importance of a specific input feature 262

in making the right prediction (Li et al., 2016; 263

Atanasova et al., 2020). In this section we dis- 264

cuss the specific gradient-based methods we use, 265

namely saliency, HTA, and our adjusted HTA. 266

4.3.1 Saliency 267

Gradient-based saliency is based on the gradient 268

of the output (yc) w.r.t. the input embeddings 269

(e0i ). One of its most accurate variations is the 270

gradient×input method (Kindermans et al., 2016) 271

where the input embeddings is multiplied by the 272

gradients. Thus, the contribution score of input to- 273

ken i is determined by first computing the element- 274

wise product of the input embeddings (e0i ) and the 275

gradients of the true class output score (yc) w.r.t. 276

the input embeddings. Then, the L2 norm of the 277

scaled gradients is computed to derive the final 278

score: 279

Saliencyi =

∥∥∥∥ ∂yc∂e0i
⊙ e0i

∥∥∥∥
2

(16) 280

4The only difference is that we need to normalize N before
adding an identity matrix.
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Attention Rollout

SST2 MNLI HATEXPLAIN

Weight-based (W) –0.11 ± 0.26 –0.06 ± 0.22 +0.12 ± 0.26
w/ Fixed Residual (WFIXEDRES)

5 –0.24 ± 0.26 –0.05 ± 0.26 +0.13 ± 0.28
w/ Residual (WRES) +0.21 ± 0.26 +0.30 ± 0.24 +0.55 ± 0.23

Norm-based (N ) +0.44 ± 0.20 +0.47 ± 0.16 +0.43 ± 0.22
w/ Fixed Residual (NFIXEDRES) +0.48 ± 0.20 +0.55 ± 0.16 +0.48 ± 0.22
w/ Residual (NRES) +0.73 ± 0.13 +0.75 ± 0.10 +0.66 ± 0.17
w/ Residual + Layer Norm 1 (NRESLN) –0.21 ± 0.26 –0.06 ± 0.26 +0.08 ± 0.28
w/ GlobEnc: [Residual + Layer Norm 1, 2] (NENC) +0.77 ± 0.12 +0.78 ± 0.09 +0.72 ± 0.17

Table 1: Spearman’s rank correlation of attribution based importance (aggregated by rollout) with saliency scores
for the validation set for the BERT model fine-tuned on SST-2, MNLI, and HateXplain. In fixed residual cases, the
context-mixing ratio is 0.5, and in weight-based w/ residual (NRES), it is corrected with context-mixing ratio of
(NENC). The numbers are the average on all the validation set examples ± the standard deviation.

4.3.2 HTA x Inputs281

To determine an upper bound on the information282

mixing within each layer, we use a modified ver-283

sion of Hidden Token Attribution (Brunner et al.,284

2020, HTA). In the original version, HTA is the285

sensitivity between any two vectors in the model’s286

computational graph. However, inspired by the287

gradient×input method (Kindermans et al., 2016),288

which has shown more faithful results (Atanasova289

et al., 2020; Wu and Ong, 2021), we multiply the290

input vectors by the gradients and then apply a291

Frobenius norm. We compute the attribution from292

hidden embedding j (eℓ−1j ) to hidden embedding i293

(eℓi) in layer ℓ as:294

cℓi←j =

∥∥∥∥∥ ∂eℓi
∂eℓ−1j

⊙ eℓ−1j

∥∥∥∥∥
F

(17)295

Computing HTA-based attribution matrices is an296

extremely computationally intensive task (espe-297

cially for long texts) due to the high dimensionality298

of the hidden embeddings. Hence, we only use this299

method for 256 examples from the SST-2 task’s300

validation set. It is worth noting that extracting the301

HTA-based contribution maps for the aforemen-302

tioned data took approximately 2 hours, whereas303

computing the maps for the entire analysis methods304

stated in §4.2 took only 5 seconds.6305

5As mentioned in §4.2, this analysis method is based on
the original experiment by Abnar and Zuidema (2020). Our
experiments on SST2 differ from theirs in two aspects: (i)
We opted for gradient×input saliencies, while they used the
sum of gradients (sensitivity) (ii) Instead of BERT, they used
a DistillBERT fine-tuned model (Sanh et al., 2019). However,
it still yields lower results (Spearman Corr. = 0.13)

6Conducted on a 3070 GPU machine.

4.4 Setup 306

We employ HuggingFace’s transformers library7 307

(Wolf et al., 2020) and the BERT-base-uncased 308

model. For fine-tuning BERT, epochs vary from 3 309

to 5, and the batch size and learning rate are 32 and 310

3e-5, respectively.8 311

After rollout aggregation of each analysis 312

method, we obtain an accumulated attribution ma- 313

trix for every layer (ℓ) of BERT. These matrices 314

indicate the overall contribution of each input token 315

to all token representations in layer ℓ. Since the 316

classifier in a fine-tuned model is attached to the 317

final layer representation of the [CLS] token, we 318

consider the first row (corresponding to [CLS] at- 319

tributions) of the last layer attribution matrix. This 320

vector represents the contribution of each input to- 321

ken to the model’s final decision. As a measure of 322

faithfulness of the resulting vector with the saliency 323

scores, we report the Spearman’s rank correlation 324

between the two vectors. 325

4.5 Results 326

Table 1 shows the Spearman correlation of saliency 327

scores with the aggregated attribution scores from 328

[CLS] to input tokens at the final layer. In order 329

to determine the contribution of each component 330

of encoder layer to the overall performance, we 331

report results for multiple attribution analysis meth- 332

ods. Our results demonstrate that incorporating 333

the vector norms, residual connection, and both 334

layer normalizations yields the highest correlation 335

(NENC). In what follows next, we discuss the im- 336

7https://github.com/huggingface/transformers
8Recommended by Devlin et al. (2019).
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Figure 3: Spearman’s rank correlation of aggregated at-
tribution scores with saliency scores across layers. The
99% confidence intervals are shown as (narrow) shaded
areas around each line. NENC achieves the highest cor-
relation in almost every layer.

pact of incorporating various parts in the analysis.337

4.5.1 On the role of vector norms338

As also suggested by Kobayashi et al. (2020), vec-339

tor norms play an important role in determining340

attention outputs. This is highlighted by the signif-341

icant gap between weight-based and norm-based342

settings across all datasets in Table 1.343

We also show the correlation of the aggregated344

attention for all layers in Figure 3. The norm-based345

settings (N and NRES) attain higher correlation346

than the weight-based counterparts (W and WRES)347

almost in all layers, confirming the importance of348

incorporating vector norms.349

4.5.2 On the role of residual connections350

Kobayashi et al. (2021) showed that in the encoder351

layer, the output representations of each token is352

mainly determined by its own representation, and353

the contextualization from other tokens’ plays a354

marginal role. This is in contrary to the simplifying355

assumption made by Abnar and Zuidema (2020)356

who used a fixed context-mixing ratio of 0.5 (as-357

suming that BERT equally preserves and mixes the358

representations). This setting is shown as weight-359

based with fixed residual (WFIXEDRES) in Table 1.360

We compare this setting against WRES (see §4.2).361

WRES is similar to WFIXEDRES (in that it does not362

take into account vector norms) but differs in that363

it considers a dynamic mixing ratio (the one from364

NENC). The huge performance gap between the365

two settings in Table 1 clearly highlights the im-366

portance of considering accurate context-mixing367

ratios. Therefore, it is crucial to consider the resid-368

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
ar

so
n 

Co
rre

la
tio

n

HTA Pearson Correlation on SST2 Dataset

N-Res
N-ResLN
N-Enc

Figure 4: Single layer Pearson correlation of HTA maps
with attribution maps. The 99% confidence intervals are
shown as shaded areas around each line. NRESLN shows
considerably less association with HTA.

ual connection in the attention block for input token 369

attribution analysis. 370

To further demonstrate the role of residual con- 371

nections, we utilize the introduced method in §4.2, 372

where we corrected the norm-based attentions with 373

fixed residual (r = 0.5). The comparison of norm- 374

based without any residual (N ) and with a fixed 375

residual (NFIXEDRES) shows a consistent improve- 376

ment for the latter across all the datasets. This 377

provides evidence on that having a fixed uniform 378

context-mixing ratio is better than neglecting the 379

residual connection altogether. 380

Finally, when we aggregate the norm-based anal- 381

ysis with an accurate dynamic context-mixing ratio 382

(NRES), we observe the highest correlation up to 383

this point, without layer normalization. 384

4.5.3 On the role of layer normalization 385

In Table 1 we see a sudden drop in correlations for 386

NRESLN. Although this method considers vector 387

norms and residuals, incorporating LN #1 in the 388

encoder seems to have deteriorated the accuracy for 389

token attribution analysis. To determine whether 390

this deterioration of correlation in aggregated attri- 391

butions is also present in individual single layers, 392

we compare the HTA maps as a baseline with the 393

attribution matrices extracted from different anal- 394

ysis methods. Figure 4 shows the correlation of 395

HTA attribution maps with the maps obtained by 396

NRES, NRESLN, and NENC methods. The results 397

indicate that NRESLN exhibits a significantly lower 398

association. 399

The question that arises here is that how incor- 400

porating an additional component of the encoder 401

(LN #1) in NRESLN degrades the results (compared 402
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to NRES). To answer this question, we inves-403

tigate the learned weights of layer norm #1 and404

#2. The outlier weights9 in specific dimensions of405

LNs are shown to be significantly influential on the406

model’s performance (Kovaleva et al., 2021; Luo407

et al., 2021). It is interesting to note that based408

on our observations, the outlier weights of the two409

layer norms seem to be the opposite of each other.410

Figure 5 demonstrates the exact weights in layer411

11 and also the correlation of the outlier weights412

across layers. The large negative correlations con-413

firm that the outlier weights work contrary to each414

other. We speculate that the effect of outliers in the415

two layer norms is partly cancelled out when both416

are considered.417

As shown in Figure 2, the FFN and the sec-418

ond layer normalization are on top of the attention419

block. However, NRESLN does not incorporate the420

components outside of the attention block. As de-421

scribed in §3, in our local analysis method NENC422

we incorporate the second layer normalization in423

the transformer’s encoder (Figure 2), thus consider-424

ing the whole encoder block (except FFN). Overall,425

our global method noted as GlobEnc yields the426

best results among all the methods evaluated in427

our experiments. In general, Table 1 suggests that428

incorporating each component of the encoder will429

increase the correlation; however, the two layer430

normalizations should be considered together.431

4.5.4 On the role of aggregation432

We carried out an additional analysis to verify if433

incorporating vector norms, residual connection434

and layer normalizations in individual layers is ade-435

9We identify the dimensions where the weights are at least
3σ from the mean as outliers (Kovaleva et al., 2021).

L1 L6 L12 MAX

In
di

v. N −.50 ± .18 +.28 ± .23 +.40 ± .21 +.41 ± .21
NRES −.48 ± .18 +.29 ± .24 +.41 ± .19 +.41 ± .19
NENC −.47 ± .18 +.29 ± .24 +.41 ± .19 +.41 ± .19

R
ol

lo
ut N −.50 ± .18 +.44 ± .20 +.44 ± .20 +.44 ± .20

NRES −.48 ± .18 +.70 ± .14 +.73 ± .13 +.73 ± .13
NENC −.47 ± .18 +.74 ± .14 +.77 ± .12 +.78 ± .12

Table 2: Spearman’s rank correlation of attribution-
based scores (individual and aggregated by rollout)
with saliency scores for the validation set for the BERT
model fine-tuned on SST-2. The results are reported for
layers 1, 6, 12, and the maximum of all layers. Rollout
aggregation achieves the highest correlations.

quate for achieving high correlations, or if it is also 436

necessary to aggregate them via rollout. Table 2 437

shows the correlation results in different layers for 438

raw attributions (without aggregation) and for the 439

aggregated attributions using the rollout method. 440

Applying rollout method on attribution maps up to 441

each layer results in higher correlations with the 442

saliency scores than the raw single layer attribution 443

maps, especially in deeper layers. Therefore, atten- 444

tion aggregation is essential for global input token 445

attribution analysis. 446

An interesting point in Figure 3, which shows 447

the correlation of the aggregated methods through- 448

out the layers, is that the correlation curves flatten 449

out after only a few layers.10 This indicates that 450

BERT identifies decisive tokens only after the first 451

few layers. The final layers only make minor ad- 452

justments to this order. Nevertheless, it is worth 453

noting that the order of attribution does not nec- 454

essarily imply the model’s final decision and the 455

final result may still change for the better or worse 456

(Zhou et al., 2020). 457

4.5.5 Qualitative analysis 458

To qualitatively answer if the aggregated attribu- 459

tion maps provide plausible and meaningful inter- 460

pretations, we take a closer look at the attribution 461

maps generated by GlobEnc. Figure 1 shows the 462

GlobEnc attribution of the model trained on SST-2. 463

Each layer demonstrates the [CLS] token’s aggre- 464

gated attribution to input tokens up to the corre- 465

sponding layer. The example inputs are “people 466

cinema at its finest.” and “big fat waste of time.”, 467

both correctly classified by the model. In both 468

cases, GlobEnc focuses on the relevant words for 469

10WRES is the only exception with a constant increase; this
method is gradually and artificially corrected by NENC context
mixing ratios.
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sentiment classification, i.e., “finest” and “waste”.470

An interesting observation in Figure 1 is that in471

the first few layers, the [CLS] token mostly at-472

tends to itself while other tokens have marginal473

impact. As the representations get more contex-474

tualized in deeper layers, the attribution correctly475

shifts to the words which indicate the sentiment476

of the sentence.11 More examples are shown in477

Figure A.1. Our qualitative analysis suggests that478

GlobEnc can be useful for a reasonable interpreta-479

tion of attention mechanism in BERT and possibly480

any other transformer-based model.481

5 Related Work482

While numerous studies have used attention483

weights to analyze and interpret the self-attention484

mechanism (Clark et al., 2019; Kovaleva et al.,485

2019; Reif et al., 2019; Htut et al., 2019), the use486

of mere attention weights to explain a model’s in-487

ner workings has been an active topic of debate488

(Serrano and Smith, 2019; Jain and Wallace, 2019;489

Wiegreffe and Pinter, 2019). Several solutions have490

been proposed to address this issue, usually through491

converting raw attention weights to scores that pro-492

vide better explanations. Brunner et al. (2020) used493

the transformation function fh(xj) to introduce494

effective attentions—the orthogonal component of495

the attention matrix in fh(xj) null space—to ex-496

plain the inner workings of each layer. However,497

this technique ignores other components in the en-498

coder and is computationally expensive due to the499

SVD required to compute the effective attentions.500

Kobayashi et al. (2020) incorporated the modified501

vector and introduced a vector norms-based analy-502

sis. This was later extended by integrating residual503

connections and layer normalization components to504

enhance the accuracy of explanations (Kobayashi505

et al., 2021). But, as discussed in §4.5, relying506

solely on LN #1 does not produce accurate results.507

While these methods can be employed for single-508

layer (local) analysis, multi-layer attributions are509

not necessarily correlated with single-layer attribu-510

tions due to the significant degree of information511

combination through multi-layer language mod-512

els (Pascual et al., 2021; Brunner et al., 2020).513

Various saliency methods exist for explaining the514

model’s decision based on the input (Li et al., 2016;515

Bastings and Filippova, 2020; Atanasova et al.,516

2020; Wu and Ong, 2021; Mohebbi et al., 2021).517

11Complete attention maps in Figure A.2 show that, simi-
larly to [CLS], other tokens also focus on sentiment tokens.

However, these approaches are not primarily de- 518

signed for computing inter-token attributions. To 519

fill this gap, Brunner et al. (2020) proposed HTA, 520

which is based on the gradient of each hidden em- 521

bedding in relation to the input embeddings. In 522

§4.3.2, we extend HTA to incorporate the impact 523

of the input vectors. However, HTA is extremely 524

computationally intensive. Attention rollout (see 525

§3) and attention flow—which involve solving a 526

max-flow problem on the attention graph—are two 527

aggregation approaches introduced by Abnar and 528

Zuidema (2020), in which raw attention weights 529

(with equally weighted residual weights) are ag- 530

gregated within multiple layers. We showed that 531

attention rollout does not perform well on a BERT 532

model fine-tuned on downstream tasks and that this 533

problem can be resolved by utilizing attribution 534

norms. 535

6 Conclusions 536

In this work, we proposed a novel method for single 537

layer token attribution analysis which incorporates 538

the whole encoder layer, i.e., the attention block 539

and the output layer normalization. When aggre- 540

gated across layers using the rollout method, our 541

technique achieves quantitatively and qualitatively 542

plausible results. Our evaluation of different analy- 543

sis methods provided evidence on roles played by 544

individual components of the encoder layer, i.e., 545

the vector norms, the residual connections, and the 546

layer normalizations. Furthermore, our in-depth 547

analysis suggested that the two layer normaliza- 548

tions in the encoder layer counteract each other; 549

hence, it is important to couple them for an accu- 550

rate analysis. 551

Additionally, using a newly proposed and im- 552

proved version of Hidden Token Attribution, we 553

demonstrated that encoder-based attribution analy- 554

sis is more accurate when compared to other partial 555

solutions in a single layer (local-level). This is con- 556

sistent with our global observations. Quantifying 557

global input token attribution based on our work 558

can provide a meaningful explanation of the whole 559

model’s behavior. In future work, one can apply 560

our global analysis method on various datasets and 561

models, to provide valuable insights into model 562

decisions and interpretability. 563
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A Appendix 748

A.1 LN Formulation 749

m(a) := 1
d

∑
k a

(k), 750

751

s(a) :=
√

1
d

∑
k(m(a)− a(k) + ϵ)2 752

where ϵ is a small constant 753

A.2 More examples 754

Aggregated attributions by different methods 755

throughout layers is shown in Figure A.1. Our 756

proposed method shows more plausible results. 757

Aggregated attribution map for layer 12 is shown 758

in Figure A.2. In this figure, the effect of each 759

token can be seen on all other tokens and not just 760

the [CLS] token. 761
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Figure A.1: Spearman correlation for aggregated attributions via rollout with different methods across layers. The
model is fine-tuned on SST2 dataset and the attention of the CLS token is shown in each layer.
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[SEP]
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[SEP]
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[SEP]

W-Res

0.2

0.4

0.6

0.8

1.0

[C
LS

]
bi

g fa
t

wa
st

e of
tim

e .
[S

EP
]

[CLS]

big

fat

waste

of

time

.

[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure A.2: Spearman correlation for aggregated attributions via rollout with different methods in layer 12. The
model is fine-tuned on SST2 dataset. Each row indicates how much other tokens impact the token written on the
row.
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