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NOISE INJECTION AS A PROBE OF DEEP LEARNING
DYNAMICS
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ABSTRACT

We propose a new method to probe the learning mechanism of Deep Neural
Networks (DNN) by perturbing the system using Noise Injection Nodes (NINs).
These nodes inject uncorrelated noise via additional optimizable weights to existing
feed-forward network architectures, without changing the optimization algorithm.
We find that the system displays distinct phases during training, dictated by the
scale of injected noise. We first derive expressions for the dynamics of the network
and utilize a simple linear model as a test case. We find that in some cases, the
evolution of the noise nodes is similar to that of the unperturbed loss, thus indicating
the possibility of using NINs to learn more about the full system in the future.

1 INTRODUCTION

The training of DNNs is a highly opaque procedure. Beyond curvature evolution (Hochreiter and
Schmidhuber, 1997; Sagun et al., 2016; Gur-Ari et al., 2018; Ghorbani et al., 2019; Yao et al., 2020;
Papyan, 2018; Li et al., 2020), few metrics are available to describe how a network evolves as it trains.
An interesting attempt at parameterizing the interplay between training dynamics and generalization
was explored in the seminal work of Zhang et al. (2016), which demonstrated that when input data
was corrupted by adding random noise, the generalization error deteriorated in correlation with its
strength. Noise injection has gained further traction in recent years, both as a means of effective
regularization (Graves, 2011; Ba and Frey, 2013; Goodfellow et al., 2013; Srivastava et al., 2014;
Kang et al., 2016; Wager et al., 2013; Li and Liu, 2018) , as well as a route towards understanding
DNN dynamics and generalization. For instance, label noise has been shown to affect the implicit
bias of Stochastic Gradient Descent (SGD) (Blanc et al., 2020; Damian et al., 2021) .
Here, we take another step along this direction by allowing the network to actively regulate the effects
of the injected noise during training. We define Noise Injection Nodes (NINs), whose output is a
random variable, connected to a feed-forward DNN via trainable Noise Injection Weights (NIWs).
The network is subsequently trained to perform a given task using vanilla SGD. Starting with a
detailed analysis of a simple linear network, we study such systems both numerically and analytically.
Our main results, partly summarized in Fig. 1, are as follows: (i) As a function of NIN variance, the
system exhibits 4 distinct phases. (ii) In two phases, the NIWs evolve to small values, implying that a
well-trained network can recognize that the noise contains no useful information within it. (iii) For
these phases, the NIW dynamics is dictated by the local curvature of the training loss function.

Item (ii) may be expected if the NIN is re-randomized at each training epoch, yet we find essentially
the same behavior repeated even when the NIN values are generated only once and fixed before
training, putting them on equal footing with actual data inputs, as shown in Fig. 1 (center,right). It
appears that while the system might in principle be able to memorize the specific noise samples,
optimization dyanamics still prefer to suppress them. This implies a relation between the NIN
reduction mechanism and the network’s ability to generalize, to be explored further in future works.

2 NOISE INJECTION WEIGHT EVOLUTION

Consider a DNN with parameters θ = {W (ℓ), b(ℓ) ∈ Rdℓ×dℓ+1 ,Rdℓ+1 |ℓ = 0, . . . , NL − 1}, cor-
responding to the weights and biases, and NL layers, defined by its single sample loss function
L : Rdin → R and optimized under SGD to perform a supervised learning task. Here, at each SGD
iteration, a mini-batch B consists of a set of labeled examples, {(xi,yi)}

|B|
i=1 ⊆ Rdin × Rdlabel .
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Figure 1: Left: Schematic of a generic DNN, with the addition of a single NIN connected via NIWs. Center:
Example evolution displaying a decay behavior for both the NIWs and the losses within the decay phase of
the system discussed below and with a fixed noise strength, σϵ. Two cases are shown: re-initialized NIN at
every epoch, and fixed value NIN. The similar behavior of the systems in both cases (blue and light blue points
respectively) hint at a potent relation between the NIWs evolution and generalization. The blue, green and violet
stars indicate the NIW, test loss and training loss decay time-scales. The three solid curves are fits to exponential
decays, while the data is represented with points. Right: The different decay times as a function of the noise
injection magnitude. The four shaded regions indicate the four phases of the system discussed in Sec. 3. The
results are shown for a 3-hidden layer ReLU MLP with CE loss, trained on FMNIST to 100% training accuracy.

We study the simple case of connecting a given NIN to a specific layer, denoted as ℓNI, via a NIW
vector WNI ∈ R1×dℓNI+1 (see Fig. 1, left). In this setup, the injected noise is taken as a random scalar
variable, ϵ, sampled repeatedly at each SGD training epoch from a chosen distribution. The NIWs’
evolution is best studied via their effect on preactivations, defined as z(ℓ) = W (ℓ) ·x(ℓ) + b(ℓ). When
a NIN is added, the preactivations at layer ℓNI are subsequently shifted to z(ℓNI) → z(ℓNI) +WNIϵ.

For a single NIN connected at layer ℓNI, the batch-averaged loss function can be written as a series
expansion in the noise translation parameter1

L(θ,WNI)=
1
|B|

∑
{x,ϵ,y}
∈B

L(θ̃, z(ℓNI)+WNIϵ,y) = L(θ)+ 1
|B|

∑
{x,ϵ,y}

∈B

∞∑
k=1

(ϵW
T
NI·∇

z
(ℓNI)

)
k

k! L(θ;x, ϵ,y), (1)

where θ̃ = θ \ {W (ℓNI)} and L(θ) is the loss function in the absence of a NIN. Focusing on a
distribution with zero mean for the NIN (e.g., ϵ ∼ N (0, σ2

ϵ )) and performing the batch averaging on
each term, we arrive at the update rule for the NIWs from the noisy loss expansion2

W
(t+1)
NI = W

(t)
NI − η

σϵΦ√
|B|

√
⟨(g(t)ℓNI

)2⟩ − ησ2
ϵ

2

〈
H(t)

ℓNI

〉
W

(t)
NI + · · · . (2)

Here, batch averaging is denoted by ⟨· · ·⟩, Φ is a random variable with zero mean and unit variance,
and σ2

ϵ is the variance of the injected noise. We denote the network-dependent local gradient
and Hessian at the NIN layer as gℓNI

= ∇
z
(ℓNI)L(θ,x,y) and HℓNI

= ∇
z
(ℓNI)∇

T

z
(ℓNI)L(θ,x,y),

respectively. A more complete derivation is given in App. C.
Terminating the expansion in Eq. (2) at 2nd order need not be valid for large σϵ. We thus proceed by
studying a linear test case for which the 2nd order expansion is precise. The persistence of analogous
network behavior, and in particular its phases, for a more realistic setup is confirmed empirically.

3 LINEAR TOY MODEL

Consider a two-layer DNN with linear activations and layer widths (d0,1 = 1) and no biases (b = 0),
tasked with univariate linear regression3, and with a single NIN connected to the first layer (ℓNI = 0).
The data consists of a set of training samples {(xi, yi) ∈ R × R}mi=1, and we sample xi and the
noise ϵi from the normal distributions, xi, ϵi ∼ N (0, σ2

x,ϵ). The corresponding data labels are

1 In practice, it is often the case that one uses piece-wise analytic activation functions such as ReLU, and so if the
noise causes the crossing of a non-analytic point, the above formal expansion is invalid. This subtlety does not
change any of our conclusions and empirically we recognize the same phases when using ReLU activations.

2 Additional σ2
ϵ/

√
|B| corrections coming from the variance of the 2nd order term emerge from batch-averaging,

and are assumed to be negligible throughout this work.
3 We use this toy model as a proxy for a diagonal linear network as in Gunasekar et al. (2018). A more general

treatment including width and depth effects will be presented in future work.
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Figure 2: Evolution for a DNN with a NIN coupled to the first hidden layer, for two different models. Top
bar: Regions for the phases as a function of the noise strength σϵ. The top darker shaded and bottom lighter
shaded bar regions correspond to the linear and Multi-Layer Perceptron (MLP) models respectively. The stars
and diamonds indicate the values of σϵ used in the bottom plots. Top plots: Numerical solutions for the various
phases of Eq. (3), describing the linear model. The data weights (black and red lines), NIW (blue) and loss
functions (purple) are shown. In the decoupled and decay phases, data weights approach optimum values while
the NIW decays slowly, whereas a larger noise magnitude results in a longer relaxation time. In the initial
stages of the catapult phase no learning is achieved until the NIW sufficiently decays, when standard learning is
resumed. In the divergent phase the system fails to learn, with breakdown after a few epochs. Bottom plots:
Various phases of NIW dynamics during training for a 1-hidden layer MLP with MSE loss and ReLU activations,
trained on FMNIST. Solid (dashed) curves represent the loss (accuracy) values, for training (purple) and test
(green) instances. The behavior displayed by the loss function, the NIWs (blue) and the subsequent layer
weights (red) norms, verifies the predictions of the linear model of Sec. 2. For experimental details, see App. B.

given by a linear transformation of the inputs yi = M · xi with a fixed M ∈ R. This regression
problem is solved by minimizing the empirical loss, taken as the Mean Squared Error (MSE),
LMSE = 1

2|B|
∑

i∈B(w
(1)(w(0) ·xi+wNIϵi)−yi)

2, with optimal solution w(1)
∗ w(0)

∗ = M,wNI,∗ = 0.

The evolution of the system can be studied by focusing on the coupled SGD equations for the hidden
layer weight and the NIW, parameterized as

w
(1)
t+1 = Atσϵ + w

(1)
t (1−Btσ

2
ϵ )− Ct, wNI,t+1 = Ãtσϵ + wNI,t(1− B̃tσ

2
ϵ ). (3)

Here, the various terms are given explicitly by4 At = ηΦtσx/
√
|B|wNI,t(2w

(1)
t w

(0)
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ηΦtσx/
√

|B|w(1)
t (w

(1)
t w

(0)
t −M), Bt = η w2

NI,t, B̃t = η(w
(1)
t )2, Ct = η(w

(1)
t w

(0)
t −M)w

(0)
t σ2

x,
and are functions of the NIW, the data weights, the learning rate η and the batch size |B|.
While non-linear, the solution to Eq. (3) is rather simple and is dictated by σϵ and the initial conditions.
We identify four different phases, demonstrated in Fig. 1 (right) and Fig. 2:

Decoupled phase. When the scale of injected noise is sufficiently small, σϵ ≤ σϵ,dec ≡ 2Ã0/B̃0, the
original optimization trajectory, driven by the Ct term, is on average unaffected by the NIN, and the
NIWs evolve according to a random walk, with step size dictated by the local gradient, Ãt

5.

Decay phase. For σ2
ϵ,dec < σ2

ϵ ≪ σ2
ϵ,cat ≡ min[2/B0, 2/B̃0] the dynamics is initially dominated by

the B̃t and Ct terms, and as a consequence wNI exponentially falls. Once wNI is sufficiently small,
the A-terms dominate and the dynamics is decoupled from the noise as in the previous phase.

The above two phases occur for rather small noise injection and, as discussed above, the noise is a mere
small perturbation to the dynamics. However, for σϵ > σϵ,cat, the equations become noise-dominated
at initialization and the early dynamics becomes insensitive to the original learning objective. Early
time evolution can then be understood by neglecting the A- and C-terms. Consequently, the equations
describe a DNN, trained using completely random data with no labels or learning objectives. The
network evolution can then be separated into the following two distinct phases:

4 We match the local gradient
√

⟨g2
0⟩ = σxw

(1)
t (w

(1)
t w

(0)
t −M) and Hessian ⟨H(t)

0 ⟩ = 2(w
(1)
t )

2 to Eq. (2).
5 If wNI,t sufficiently grows, this phase could potentially be exited, however it is quickly restored due to B̃t.
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Catapult phase. When σϵ,cat < σϵ < σϵ,div ≡ max(2/B0, 2/B̃0), some, but not all, of the network
weights begin diverging, as a stiff equation regime ensues due to the discrete nature of the SGD
algorithm. Generally, this divergence can be driven by either the data or the NIWs, though in realistic
scenarios the latter is more common and we therefore discuss for concreteness the 2/B̃0 < σϵ < 2/B0

case. While the NIW (and the loss function) diverges, w(1)
t decays fast enough for the Hessian to be

reduced, allowing for the network to recover, and resulting in a catapult effect (Lewkowycz et al.,
2020). At this point the dynamics of the system behave similarly to the Decay Phase, albeit typically
at a slower rate since the Hessian is now significantly smaller. These results are visible in Fig. 2(c).

Divergent phase. Once σ2
ϵ ≥ σ2

ϵ,div, the NIN overwhelms the network, and all weights (and loss
function) diverge resulting in a failed training process. In non-linear networks, this phase can also
occur if the second order perturbative approximation for the loss function breaks down6.

The bottom row of Fig. 2 demonstrates the persistence of our predicted phase diagram for an over-
parameterized DNN trained on the FMNIST dataset (Xiao et al., 2017). While the decoupled and
decay phases occur for similar σϵ values as those in the linear model, the large noise behavior is
altered by the choice of non-linearities, loss function, batch size and number of layers. In particular,
the noise variance values dictating the phase boundaries are somewhat different than those predicted
by the linear model, however the existence of the boundaries themselves persists throughout our
experiments 7 . Some of these effects are partially explored in App. A.

4 RELATING THE EVOLUTION OF THE NIWS AND LOSS
As discussed in Sec. 1, during the decay and catapult phases, the NIWs decay as the network attempts
to learn, a phenomena which repeats for re-randomized as well as fixed value NINs. Since the latter
can be interpreted as the suppression of uncorrelated data features, understanding the relationship
between the NIWs and loss evolutions could provide future insights regarding generalization.

Here, we take a step towards connecting the NIW dynamics with the loss dynamics, for the simple
linear model, hinting that more complicated constructions could allow a more direct relationship be-
tween the two. With no NINs and for small enough learning rates, L(t+1)−L(t) ≈ −η(∂L(t)/∂θij)2,
which simplifies in the linear case to the trace of the global Hessian, multiplied by the loss, as shown
in App. D. We demonstrate that a similar behavior holds for a realistic DNN in Fig. 1(center, right).

To show how this relates to the NIN, it is easier to take the continuous time limit (η → 0) of Eq. (3),
resulting in a set of coupled Langevin equations (Lemons and Gythiel, 1997). In App. D, we show
that, neglecting the effect of the NIN on the loss, the solution of the full continuous time equations is

Lϵ=0(t) ∼ Lϵ=0(0)e
−2σ

2
x

∫ t

0

[
(w

(0)
(t

′
))

2
+(w

(1)
(t

′
))

2
]
dt

′

, wNI(t) ∼ e−σ
2
ϵ

∫ t

0
(w

(1)
(t

′
))

2
dt

′

. (4)
Defining τnoise = −wNI/ẇNI|t=0, τloss = −Lϵ=0/L̇ϵ=0|t=0, the two time scales differ both by a
multiplicative factor and by the magnitude of the weight connecting the input with the first layer. The
first comes from the difference between data and noise distributions, while the second is due to the
NINs being connected at the same layer as the input (ℓNI = 0), such that the local Hessian which
controls their evolution is insensitive to first layer contributions to the loss evolution. Adding multiple
NINs in more complicated constructions which would be sensitive to the input layer’s weights could
provide a novel probe for how various local parts of the Hessian affect the evolution of loss functions.

5 CONCLUSIONS
Studying the relationship between training dynamics and learning capabilities of DNNs by injecting
noise through optimizable connections can provide a novel path towards interpretable deep learning.
In the future, NINs could have many possible technological applications. For instance, one could
distinguish NIWs evolution from regular data weights to identify features which are uncorrelated
with the labels, and thus build normalization schemes (Ioffe and Szegedy, 2015; Arpit et al., 2016; Xu
et al., 2021) to suppress such weights in an effort to tackle internal covariate shift. Furthermore, it’s
possible that tracking the NIWs evolution could inform one about generalization, as the NIWs cannot
be memorized by the network, only suppressed. Thus, landing in distinct points on the loss landscape
due to noise mitigation could inform us on how loss curvature relates to noise resistant networks.

6 In theory, there may be intermediate steps in unique scenarios (e.g., the NIW decays, but without effect on the
data weights’ evolution), however we have not found these cases to empirically matter and ignore them here.

7 We find that divergence is replaced by learning process failure due to neuron saturation for bounded activations.
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REPRODUCIBILITY STATEMENT
In Sec. 2, we state our theoretical results, ensuring that we assert our assumptions and the limitations
of the approximations we make at every step. In several instances, we rely on proofs, as well as
supplement our analyses in Apps. C and D; The models and tools used for analysis in our experiments
are provided in the following anonymous link: https://anonymous.4open.science/r/
NoiseInjectionNodeCode-2A68, while explicit details regarding our experimental setup
as well as a complete description of the data processing steps for the datasets we used, are given
in App. B. All experiments were performed on a 20 node cluster, each consisting of 24-48 CPUs using
Intel® Xeon® E5-2650 v4 CPU @ 2.20GHz, with further implementation details given in App. B.
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A ADDITIONAL EMPIRICAL RESULTS

Here, we present additional results not included in the main text.

In Fig. 3 below, we show the different phases predicted in Sec. 2, for a 3 layer MLP with ReLU
activations, trained on FMNIST using cross-entropy (CE) loss. These results are similar to the ones
obtained for a network which was trained using the MSE loss, shown in Fig. 2(bottom), demonstrating
the persistence of the phase structure regardless of the loss function.

Figure 3: Dynamical evolution of a network with a NIN coupled to the first hidden layer of a DNN. Top bar: The
light shaded regions separating the four phases as a function of the noise strength, σϵ. The colored diamonds
indicate the values of σϵ used in the bottom plots. Bottom plots: Various phases of the NIW dynamics during
training for a 1-hidden layer MLP with Cross-Entropy loss and ReLU activations, trained on the full FMNIST
dataset. The data weights (black and red lines), NIW (blue) and loss functions (purple) are shown. In the
decoupled and decay phases, data weights approach optimum values while the NIW decays slowly. Larger noise
implies longer time for this process to end. In the initial stages of the catapult phase no learning is achieved until
the NIW sufficiently decays, when standard learning is resumed. Lastly, in the divergent phase the system fails
to learn, reaching a breakdown after only a few epochs. Solid (dashed) curves represent the loss (accuracy)
values, for training (violate) and test (green) instances. The behavior displayed by the loss function, the norms
of the NIWs (blue) and the weights connected to the subsequent layer (red), corroborates the predictions of the
linear model, as well as the results obtained on the same network, trained using an MSE loss function, discussed
in Sec. 2. For experimental details, see App. B.

B EXPERIMENTAL DETAILS

In the main text we present results for models trained on the Fashion-MINST (FMNIST) dataset (Xiao
et al., 2017). FMNIST contains 70,000 grayscale images in 10 categories. The images show individual
articles of clothing at low resolution (28 × 28 pixels). We preprocess the data by subtracting the
mean and dividing by the variance of the training data, and train using a 60/40 training/validation
split. All test accuracy evaluations are done with the NIN output set to 0, i.e., ϵ = 0.

Implementation Details : For all of our experiments, we utilize a Multi-Layer Perceptron (MLP).

We optimize using vanilla SGD with either MSE or Sparse Cross-Entropy loss. The model parameters
θ,wNI are initialized at iteration t = 0 using a normal distribution as w0,wNI,0 = 1/

√
Nfan−in

unless otherwise specified.

Here we describe experimental settings specific to a figure.

Figure 1. Fully connected, 3 hidden layers, Nw = 1024, ReLU non-linearity trained using SGD
(no momentum) on FMNIST using a Sparse-Cross-Entropy loss function. Batch size = 128, with
learning rate η = 0.05, using weight normalization w(ℓ) ∼ N (0, 1/dℓ), b = 0. The hyperparameters
are chosen to obtain good generalization performance without a NIN.

Figure 2. (top row): Numerical solution of Eq. (3). Learning rate set at η = 0.01. Intialization
values for the weights were chosen to mimic a standard over-parameterized regime, i.e. w(0), w

(0)
NI ∼

N (0, 1), while w(0), w
(0)
NI ∼ N (0, 1/100). The target is the identity, i.e. M = 1, as the equations

are invariant under reparameterization with respect to M . The only values of consequence are then
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Decoupled (σ2
ϵ ) Decay (σ2

ϵ ) Catapult (σ2
ϵ ) Divergent (σ2

ϵ )
MSE 10−4 · dInput/(Nwη) 30 · dInput/(Nwη) 47 · dInput/(Nwη) 50 · dInput/(Nwη)

CE 10−4 · dInput/η 0.1 · dInput/η dInput/η 1.8 · dInput/η

Table 1: Noise injection strength (σ2
ϵ ) used in Fig. 2(bottom), denoted as MSE, and Fig. 3, denoted as CE.

the ratios of weights at initialization and the learning rate. Therefore the actual values of the learning
rate and noise variance are chosen to make the effects visible to the eye for a short training period but
do not affect the final results in any way.

Figure 2 (bottom row), Fig. 3. Fully connected, one hidden layer Nw = 1024, ReLU non-linearity
trained using SGD (no momentum) on FMNIST. Batch size = 1000, with learning rate η = 0.01,
using weight normalization W (ℓ) ∼ N (0, 1/dℓ), b = 0. The hyperparameters are chosen to obtain
good generalization performance without a NIN.

In Fig. 2(bottom) and Fig. 3 we use different loss functions, namely, MSE and Cross-Entropy,
respectively. We detail the amount of noise injection used in each of the two figures in Table 1.

C FURTHER DETAILS ON THE NOISE PARAMETER EXPANSION

Here we provide additional details on the theoretical analysis of the general model in Sec. 2. Starting
with the noise translated loss function

L(θ,WNI) =
1

|B|
∑

{x,ϵ,y}∈B

L(θ,WNI;x, ϵ,y) =
1

|B|
∑

{x,ϵ,y}∈B

e
ϵW

T
NI∇

z
(ℓNI)L(θ;x,y)

= L(θ) +
1

|B|
∑

{x,ϵ,y}
∈B

∞∑
k=1

1
k! (ϵW

T
NI · ∇z

(ℓNI))
kL(θ;x, ϵ,y).

Expanding in powers of ϵWNI, we obtain an infinite series given by

L(θ,WNI) = L(θ) +
1

|B|
∑

{x,ϵ,y}∈B

∞∑
k=1

1

k!
(ϵWT

NI · ∇z
(ℓNI))

kL(θ;x, ϵ,y). (5)

Performing the batch averaging explicitly amounts to averaging over the statistics of the data and
noise, resulting in the loss

⟨L(θ,WNI)⟩ = ⟨L(θ)⟩+WT
NI · ⟨ϵgℓNI

⟩+ 1

2
WT

NI⟨ϵ
2HℓNI

⟩WNI + . . . (6)

Here, batch averaging is denoted by ⟨..⟩, the local gradient is gℓNI
= ∇

z
(ℓNI)L(θ,x,y) and Hessian

HℓNI
= ∇

z
(ℓNI)∇

T

z
(ℓNI)L(θ,x,y) are network-dependent functions, pertaining to the NIN layer.

Taking ϵ sampled from a distribution with zero mean, the local gradient and Hessian contributions

simplify as ⟨ϵgℓNI
⟩ ∼

√
⟨g2ℓNI

⟩Φσϵ/
√

|B|, where ⟨g2
ℓNI

⟩ is the vector of the batch-averaged absolute

value of the gradient and Φ is a random variable with mean 0 and variance 1, and ⟨ϵ2HℓNI
⟩ ∼

σ2
ϵ ⟨HℓNI

⟩, where we define σ2
ϵ ≡ ⟨ϵ2⟩ as the variance of the injected noise.

This result, as proven below, makes explicit that odd terms in the expansion are suppressed by
|B|−1/2.

The last step in the derivation is performed by taking the SGD update step with respect to the NIWs,
which is simply

W
(t+1)
NI = W

(t)
NI − η

∂L(θ(t),W
(t)
NI )

∂W
(t)
NI

. (7)

Finally, utilizing Eq. (6) we arrive at

8
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W
(t+1)
NI = W

(t)
NI − η

σϵΦ√
|B|

√
⟨(g(t)

ℓNI
)2⟩ − ησ2

ϵ

2

〈
H(t)

ℓNI

〉
W

(t)
NI + . . . , (8)

which is given in the main text as Eq. (2).

We now turn to discuss our estimation of batch-averaged terms which are proportional to powers of ϵ.
Generically, such terms can be written as qϵn, where n is an integer, and q is some sample-dependent
variable, possibly with other indices. The goal of this appendix is to prove the following theorem:

Theorem 1. Let q be a sample-dependent variable, with a finite mean ⟨q⟩ and with Q ≡
√
⟨q2⟩. And

let ϵ be the output of some NIN, which has a PDF symmetric around zero (and consequentially of zero
mean), and for some integer n, ⟨ϵn⟩ = (σn,ϵ)

n, and ⟨ϵ2n⟩ = (σ2n,ϵ)
2n. For such a case, the average

of qϵn over a batch B has a mean of ⟨q⟩(σn,ϵ)
n, and a variance of

(
σ2n
2n,ϵQ

2 − ⟨q⟩2σ2n
n,ϵ

)
/
√
|B|.

For odd ns, this simplifies to having zero mean, and a standard deviation of Qσn
2n,ϵ/

√
|B|.

We note that this theorem is the reasoning for the estimate | ⟨qϵn⟩B | ∼ O(1)(σϵ,2n)
nQ/

√
|B| for

odd ns, as well as the estimate of ⟨qϵn⟩B ≈ σ2n
n,ϵ ⟨q⟩, for an even n and a large enough |B|. We also

note that for a large enough |B|, this theorem immediately follows from the law of large numbers,
however we prove it for any |B|.

Proof. We can see that for a single term, and the average over the entire distribution
⟨qϵn⟩ = ⟨q⟩ ⟨ϵn⟩ . (9)

This is due to the fact that ϵ is a random output that is independent of q, and thus ⟨qϵn⟩ = ⟨q⟩⟨ϵn⟩. For
an odd n, this is simply equal to 0, since ϵ’s PDF is symmetric around zero, so for odd ns, ⟨ϵn⟩ = 0.

Similarly, we may note that

Var(qϵn) =
〈
(qϵn)2 − ⟨(qϵn)⟩2

〉
= Q2σ2n

ϵ,n − ⟨q⟩⟨ϵn⟩. (10)

Where we once again use the independence of q and ϵ, and this time also use the definitions of Q and
σϵ,n.

We can now see that

⟨⟨qϵn⟩B⟩ =
1

|B|

〈 |B|∑
i=1

qiϵ
n
i

〉
=

1

|B|

|B|∑
i=1

⟨qϵn⟩ = ⟨q⟩⟨ϵn⟩, (11)

and similarly,

Var (⟨qϵn⟩B) =
〈
⟨qϵn⟩2B − ⟨qϵn⟩2B

〉
. (12)

We have already computed the second term, so now let us compute the first one,

〈
⟨qϵn⟩2B

〉
=

1

|B|2

〈 |B|∑
j=1

|B|∑
i=1

(qjϵ
n
j )(qiϵ

n
i )

〉
=

1

|B|

〈
q2ϵ2n

〉
+

1

|B|2

〈 |B|∑
j=1

|B|∑
i=1,i̸=j

(qjϵ
n
j )(qiϵ

n
i )

〉
,

(13)
where we divided the two sums to the contribution from i = j and the contribution from i ̸= j. The
second term in Eq. (13) is simply |B|2 − |B| times the same term, and is therfore equal to,

1

|B|2

〈 |B|∑
j=1

|B|∑
i=1,i̸=j

(qjϵ
n
j )(qiϵ

n
i )

〉
=

|B|2 − |B|
|B|2

〈
(qjϵ

n
j )(qiϵ

n
i )
〉
i ̸=j

. (14)

We assume there is an arbitrarily large space of samples, which we may name as A. Let us write its
size as |A|, and assume that |A| → ∞ and therefore,

9
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〈
(qjϵ

n
j )(qiϵ

n
i )
〉
i̸=j

=
1

|A|
∑

i,j∈A,i̸=j

(qjϵ
n
j )(qiϵ

n
i ) =

1

|A|2
∑
i,j∈A

(qjϵ
n
j )(qiϵ

n
i )−

1

|A|2
∑
j∈A

(qjϵ
n
j )

2

(15)

= ⟨qϵn⟩2 − 1

|A|
⟨(qϵn)⟩ = ⟨qϵn⟩2 ,

where in the last equality we used |A| → ∞. We can now write the variance of the batch averaged
quantity, by collecting all the different terms, and find tha

Var (⟨qϵn⟩B) =
1

|B|

(〈
q2ϵ2n

〉
− ⟨qϵn⟩2

)
, (16)

as originally postulated.

D DECAY TIME-SCALE DERIVATION

Here, we derive the timescale for the NIW to decay, while the loss converges to its minimum, for the
linear example given in Sec. 2.

Assuming that the system is in the decay phase, i.e. the SGD equations are given by

w
(1)
t+1 = w

(1)
t − η(w

(1)
t w

(0)
t −M)w

(0)
t σ2

x, (17)

wNI,t+1 = wNI,t(1− η(w
(1)
t )2σ2

ϵ ). (18)
Since the noise injection does not cause the system to diverge at this stage, the continuous time limit
(η → 0) is expected to hold, simplifying the equations as

ẇ(1) = −(w(1)w(0) −M)w(0)σ2
x, (19)

ẇNI = −(w(1))2σ2
ϵwNI, (20)

where it is implied that all weights are functions of time, w = w(t). Next, we can define the loss
function in the absence of noise, which will be the quantity we wish to track. This function is simply

L =
1

2

(
(w(1)w(0) −M)σx

)2

, (21)

which results in the continuous time update equation for the loss and the data weights

L̇ = σ2
x

(
(w(1)w(0) −M)

)(
ẇ(1)w(0) + ẇ(0)w(1)

)
= σx

√
2L

(
ẇ(1)w(0) + ẇ(0)w(1)

)
, (22)

ẇ(1) = −sign(w(1)w(0) −M)
√
2Lσxw

(0), ẇ(0) = −sign(w(1)w(0) −M)
√
2Lσxw

(1), (23)

combining these equations we obtain for the loss function and the NIW we have

L̇ = −2σ2
x

(
(w(0))2 + (w(1))2

)
L, (24)

ẇNI = −σ2
ϵ (w

(1))2wNI, (25)

where we identify that the loss function evolves according to the trace of the full Hessian
Tr (Hθ) = σ2

x

(
(w(0))2 + (w(1))2

)
, while the NIW evolves according to the trace of the local

Hessian Tr (Hz) = (w(1))2.

These equations imply an exponential evolution for both the loss function and the NIW. The relevant
timescales can be read by integrating the equations, hence

L(t) ∼ e
−2σ

2
x

∫ t

0

(
(w

(0)
(t

′
))

2
+(w

(1)
(t

′
))

2
)
dt

′

, (26)

wNI(t) ∼ e−σ
2
ϵ

∫ t

0
(w

(1)
(t

′
))

2
dt

′

. (27)

as presented in the main text.
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