
Iterated Deep Q-Network: Efficient Learning of
Bellman Iterations for Deep Reinforcement Learning

Théo Vincent1 ∗ Boris Belousov1 Carlo D’Eramo2,3 Jan Peters1,2,3

1DFKI GmbH, SAIROL, Germany 2University of Würzburg, Germany
3Hessian.ai, Germany 4TU Darmstadt, Germany

Abstract

Value-based reinforcement learning methods strive to obtain accurate approxima-
tions of optimal action-value functions. Notoriously, these methods heavily rely on
the application of the optimal Bellman operator, which needs to be approximated
from samples. Most approaches consider only a single Bellman iteration, which
limits their power. In this paper, we introduce iterated Deep Q-Network (iDQN), a
new DQN-based algorithm that incorporates several consecutive Bellman iterations
into the training loss. iDQN leverages the online network of DQN to build a target
for a second online network, which in turn serves as a target for a third online
network, and so forth, thereby taking into account future Bellman iterations. While
using the same number of gradient steps, iDQN allows for better learning of the
Bellman iterations than DQN. After providing some theoretical guarantees, we
evaluate iDQN against relevant baselines on 54 Atari 2600 games to showcase its
benefit in terms of approximation error and performance. iDQN outperforms DQN
while being orthogonal to more advanced DQN-based approaches.

1 Introduction

Deep value-based Reinforcement Learning algorithms have achieved remarkable success in various
fields, from nuclear physics (Degrave et al., 2022) to construction assembly tasks (Funk et al.,
2022). These algorithms aim at learning a function as close as possible to the optimal action-value
function, on which they can build a policy to solve the task at hand. To obtain an accurate estimate
of the optimal action-value function, the optimal Bellman operator is used to guide the learning
procedure in the space of Q-functions (Bertsekas, 2019) through successive iterations, starting from
any Q-function to the optimal action-value function. In Reinforcement Learning (RL), as opposed
to Dynamic Programing, the reward function and system dynamics are not assumed to be known
(Bertsekas, 2015). This forces us to approximate the optimal Bellman operator with an empirical
Bellman operator. This problem has received a lot of attention from the community (Fellows et al.
(2021), Van Hasselt et al. (2016)). On top of that, the use of function approximation results in the
necessity of learning the projection of the empirical Bellman operator’s iteration on the space of
approximators. In this work, we focus on the projection step.

We propose a way to improve the accuracy of the learned projection by increasing the number of
gradient steps and samples that each Q-function estimate has been trained on. This idea, implemented
in the training loss function, uses the same total number of gradient steps and samples than the
classical approaches. At a given timestep of the learning process, this new loss is composed of the
consecutive temporal differences corresponding to the following Bellman iterations needed to be

∗Correspondance to: theo.vincent@dfki.de

16th European Workshop on Reinforcement Learning (EWRL 2023).

learned, as opposed to DQN (Mnih et al., 2015), where only one temporal difference related to the
first projection step is considered. Each temporal difference is learned by a different neural network,
making this method part of the DQN variants using multiple Q estimates during learning. Those
consecutive temporal differences are computed in a telescopic manner, where the online network of
the first temporal difference is used to build a target for the second temporal difference and so on.
This loss implicitly incurs a hierarchical order between the Q estimates by forcing each Q estimate
to be the projection of the Bellman iteration corresponding to the previous Q estimate, hence the
name iterated Deep Q-Network (iDQN). In the following, we start by reviewing algorithms built
on top of DQN, highlighting their behavior in the space of Q-functions. We then introduce a new
approach to Q-learning that emerges naturally from a graphical representation of DQN. We provide a
theoretical grounding for this new approach. In Section 5, we show the benefit of our method on the
Arcade Learning Environment benchmark (Bellemare et al., 2013). Our approach outperforms DQN
while being orthogonal to other variants, establishing iDQN as a relevant method to consider when
aggregating significant advances to design a powerful value-based agent such as Rainbow (Hessel
et al., 2018). We also perform further experimental studies to bring evidence of the intuition on
which iDQN is built. We conclude the paper by discussing the limits of iDQN and pointing at some
promising follow-up ideas.

2 Preliminaries

We consider discounted Markov decision processes (MDPs) defined asM = ⟨S , A, P ,R, γ⟩, where
S is the state space,A is the action space, P : S×A×S → R is the transition kernel of the dynamics
of the system, R : S × A → R is a reward function, and γ ∈ [0, 1) is a discount factor (Puterman,
1990). A policy π : S → A is a function mapping a state to an action, inducing a value function
V π(s) ≜ E

[∑+∞
t=0 γ

tR(St, π(St))|S0 = s
]

representing the expected cumulative discounted reward

starting in state s and following policy π thereafter. Similarly, the action-value function Qπ(s, a) ≜

E
[∑+∞

t=0 γ
tR(St, At)|S0 = s,A0 = a,At = π(St)

]
is the expected discounted cumulative reward

executing action a in state s, following policy π thereafter. Q-learning aims to find a function
Q from which the greedy policy πQ(s) = argmaxa Q(·, a) yields the optimal value function
V ∗(·) ≜ maxπ:S→A V π(·) (Puterman, 1990). The optimal Bellman operator Γ∗ is a fundamental
tool in RL for obtaining optimal policies, and it is defined as:

(Γ∗Q)(s, a) ≜ R(s, a) + γ

∫
s′∈S
P(s, a, s′)max

a′∈A
Q(s′, a′)ds′, (1)

for all (s, a) ∈ S ×A. It is well-known that Bellman operators are contraction mappings in L∞-
norm, such that their iterative application leads to the fixed point Γ∗Q∗ = Q∗ in the limit (Bertsekas,
2015). We consider using function approximation to represent value functions and denote Θ the
space of their parameters. Thus, we define QΘ = {Q(·|θ) : S ×A → R|θ ∈ Θ} as the set of value
functions representable by parameters of Θ.

3 Related Work

To provide an overview of the related work, we propose to view the related algorithms from the
perspective of their behavior in the space of Q-functions, which we denote by Q. Due to the curse of
dimensionality, covering the whole space of Q-functions with function approximators is practically
infeasible, as it requires a large number of parameters. Therefore, the space of representable
Q-functions QΘ only covers a small part of the whole space Q. We illustrate this in Figure 1a
by depicting the space of representable Q-functions QΘ as a subspace of Q. One can deduce
two properties from this gap in dimensionality. First, the optimal Q-function Q∗ is a priori not
representable by any chosen function approximator. Second, the same is true for the optimal Bellman
operator Γ∗ applied to a representable Q-function. That is why in Figure 1a, both functions Q∗ and
Γ∗Q are drawn outside ofQΘ. Additionally, thanks to the contracting property of the optimal Bellman
operator ||Γ∗Q−Q∗||∞ ≤ γ||Q−Q∗||∞, we know that the distance between the iterated Q given
by Γ∗Q and the optimal Q∗ is shrunk by γ (Bertsekas, 2015). The goal of most value-based methods

2

loss

(a) Starting from a random Q-function Q̄0, the first
Bellman iteration is learned via an online network Q1.

lo
ss

(b) To learn a second Bellman iteration, the target net-
work is updated to the position of the online network.

Figure 1: Graphical representation of DQN in the space of Q-functions Q. DQN makes use of a
target network Q̄k−1 to learn its optimal Bellman iteration Γ∗Q̄k−1, called target, with an online
network Qk. Each iteration is learned by minimizing the distance between the target and the online
network.

is to learn a Q-function that is as close as possible to the projection2 of the optimal Q-function on the
space of representable Q-functions, shown with a dotted line in Figure 1a.

This perspective allows us to represent various Q-learning algorithms proposed so far in an intuitive
way in a single picture. For example, Figure 1a depicts how Deep Q-Network (DQN) by Mnih et al.
(2015) works. With a target network Q̄0, DQN aims at learning the iterated target network Γ∗Q̄0,
also called “target”, using an online network Q1. The loss used during training is shown in red. For
each Bellman iteration, the goal is to train the online network to be as close as possible to the target
computed from the target network. The equality is unlikely because, as previously discussed, the
target can be located outside of QΘ, shown in green in all figures. This is why, in the optimal case,
the online network is located at the projection of the target on the space of representable Q functions
(shown with a dotted line). This perspective also gives a way to understand the hyper-parameter
related to the frequency at which the target network is updated. It is the number of training steps
before learning the next Bellman iteration. When the target network is updated, it will be equal to the
online network, and the next Bellman iteration will be computed from there, as shown in Figure 1b.
It is important to note that in DQN, the empirical Bellman operator is used instead of the optimal
Bellman operator. The term included in the loss at every gradient step is a stochastic estimation of
the optimal Bellman iteration. In Figure 11 of the appendix, we practically show that DQN follows
the described behavior in a toy experiment.

3.1 DQN Variants

The DQN paper has inspired the community to develop further methods which improve its efficiency.
A large number of those algorithms focuses on using a better empirical Bellman operator (Van Hasselt
et al. (2016), Fellows et al. (2021), Sutton (1988)). For instance, double DQN (Van Hasselt et al.,
2016) uses an empirical Bellman operator designed to avoid overestimating the return. As shown in
Figure 2a, this results in a different location of the Bellman iteration Γ̃Q̄ compared to the classical
Bellman iteration Γ̂Q̄(s, a) = R(s, a)+γmaxa′ Q̄(s′, a′) for a state s, an action a and a next state s′.
Likewise, n-step return (Sutton, 1988) is another type of empirical Bellman operator that computes
the target as an interpolation between a one-step bootstrapping and a Monte-Carlo estimate. Other
approaches consider changing the space of representable Q-functions QΘ(Fatemi & Tavakoli (2022),
Wang et al. (2016), Osband et al. (2016)). The hope is that the projection of Q∗ on QΘ is closer
than for the classical neural network architecture chosen in DQN. It is important to note that adding
a single neuron to one architecture layer can significantly change QΘ. Wang et al. (2016) showed
that performance can be increased by including inductive bias in the neural network architecture.
This idea can be understood as a modification of QΘ, as shown in Figure 2a where the new space of
representable Q-function Q̃Ω is colored in yellow. Furthermore, algorithms such as Rainbow (Hessel
et al., 2018) leverage both ideas. Other approaches, however, such as prioritized replay buffer (Schaul
et al., 2015), cannot be represented in the picture.

2The question of whether a projection on QΘ exists depends only on the choice of the function approximators.
We point out that even if the projection does not exist, the presented abstraction still holds. The unicity of the
projection does not play a role here.

3

(a) Other empirical Bellman operators can be repre-
sented using another notation Γ̃ than the classical em-
pirical Bellman operator Γ̂. Changing the class of
function approximators QΘ results in a new space Q̃Θ.

loss

(b) In order to better explore the space QΘ, REM uses a
target Q-function computed as a convex combinations
of 3 networks (Q̄0

i)
2
i=0. The same goes for the online

Q-function that uses 3 online networks (Q0
i)

2
i=0.

Figure 2: Graphical representation of DQN variants in the space of Q-functions Q.

(a) Losses and neural networks architectures. The dotted lines link the
outputs of the neural networks to the mathematical objects they represent.
The flash signs stress how the information flows from the target(s) Γ̂Q̄,
considered fixed, to the online network(s) Q.

(b) After the same number of gradi-
ent steps, iDQN has already started
to learn the second Bellman itera-
tion, noted Q2.

Figure 3: Understanding the loss of iDQN.

3.2 Random Ensemble Mixture

Among the variants of DQN, ideas involving learning several Q-functions (Anschel et al. (2017), Lan
et al. (2020), Osband et al. (2016), An et al. (2021), Agarwal et al. (2020)) are particularly close to
our method. Even if they are close, they remain orthogonal in the sense that they can be combined
with our idea to create a more powerful agent. Random Ensemble Mixture (REM, Agarwal et al.
(2020)) has been shown to be state-of-the-art (SOTA) for DQN variants with several Q-functions.
Instead of exploring the space of Q-functions point by point as DQN does, REM moves in this space
by exploring area by area, where the areas are the convex hull of the Q-functions stored in memory.
As represented by the red line in Figure 2b, the loss used by REM is

L(θ) = E(s,a,r,s′)∼D [Eα∼∆[l(δ
α(s, a, r, s′|θ))]] ,

with δα(s, a, r, s′|θ) = Qα
1 (s, a|θ)− r − γmax

a′
Q̄α

0 (s
′, a′|θ̄)

where θ denotes the parameters of the online network and θ̄ the target parameters, D is the replay
buffer, ∆ is the standard simplex and l is the Huber loss (Huber, 1992), and Qα

i =
∑

k αkQ
k
i , i ∈

{0, 1}. For a Bellman iteration i, the kth learnt Q-function is noted Qk
i . Figure 3a shows how this

loss is computed with the neural network’s architecture used in REM.

4

lo
ss

loss

(a) iDQN after a few gradient steps and a few updates
of the target parameters has been done.

losslo
ss

(b) A rolling step is performed to learn the third Bell-
man iteration with Q3.

Figure 4: Graphical representation of iDQN with K = 2 in the space of Q-functions denotedQ. Each
iteration is learned by minimizing the distance between the target Γ∗Q̄k−1 and the online network
Qk (see the red lines). The update target frequency regulates the distance between the target network
and the online network corresponding to the same Bellman iteration (shown in dotted points).

4 Iterated Deep Q-Networks

We propose an approach built on top of DQN. In practice, this new idea consists of changing the loss
of DQN such that it is composed of a particular ensemble of K one-step temporal difference instead
of one:

L(s, a, r, s′|θ) =
K∑

k=1

(
Qk(s, a|θ)− r − γmax

a′
Q̄k−1(s

′, a′|θ̄)
)2

(2)

where θ is the online parameters and θ̄ the target parameters. The kth learned Q-function corresponds
to the kth Bellman iteration and is denoted Qk. The way the loss is computed from the neural
network’s architecture is presented in Figure 3a. One can see how the Q-functions are chained one
after the other to learn the Bellman iterations.

In iDQN, updating the target networks does not bring the target parameters to the next Bellman
iteration like in DQN. It simply refines their positions to be closer to the online networks to allow
better estimates of the iterated Q-functions. To be able to go further in the Bellman iterations, we
periodically consider a new online Q-function and discard the first target network. To learn the
K + 1th iteration, the index k in the loss would now go from 2 to K + 1. We call this procedure a
rolling step. In practice, the rolling step is simple to implement. A new head to the neural network of
Figure 3a is added, with the index K + 1, and the first head is removed (see Figure 12). The new
head is initialized with the same parameters as the head with index K. It leads us to introduce a new
hyper-parameter that indicates at which frequency the rolling step is performed. It is worth noticing
that if K is set to 1 and if the rolling step frequency is synchronized with the target update frequency
in DQN, then we recover DQN, i.e., iDQN with K = 1 is equal to DQN.

This main idea emerges naturally from the representation developed in Section 3. In DQN, Figure 1
illustrates that to learn 2 Bellman iterations, we first need to wait until the first iteration is learned,
and then we need to update the target before learning the second iteration. Conversely, we propose to
use a second online network that learns the second Bellman iteration while the first Bellman iteration
is being learned. The target for the second online network is created from a second target network
that is frequently updated to be equal to the first online network. Figure 4a shows how iDQN behaves
in the space of Q-function. It is important to understand that in iDQN with K = 2, both online
networks are learned at the same time. As explained earlier in this section, we can learn a following
Bellman iteration by adding a new online network Q3 that would use a new target network Q̄2 set to
be equal to the last online network Q2 as shown in Figure 4b. In the meantime, the target and online
network, Q̄0 and Q1, are discarded to keep the memory usage constant. In practice, the choice of K
can be increased until memory usage becomes an issue, as we will show in Section 4.1.

In DQN, the actions are drawn from the online network. For iDQN, one must choose from which
of the multiple online networks to sample. One could stick to DQN and choose the first online
network. One could also use the last online network since it is supposed to be the one that is closer
to the optimal Q-function, or one could pick an online neural network at random as it is done in
Bootstrapped DQN (Osband et al., 2016). We do not consider taking the mean as REM proposes

5

because the online Q-functions are expected to follow a specific arrangement in space. Taking their
mean could lead to unwanted behavior. We investigate these sampling strategies in Section 5.1.
Algorithm 1 shows how iDQN remains close to DQN, having only two minor modifications on the
behavioral policy and the loss.

4.1 Understanding the Loss of iDQN

We show that, in principle, iDQN is expected to improve upon the performance of DQN. Namely,
we can invoke Theorem 3.4 from Farahmand (2011) on error propagation for Approximate Value
Iteration (AVI):

Theorem 3.4. Let K ∈ N∗, ρ, ν two distribution probabilities over S × A. For any sequence
(Qk)

K
k=0 ⊂ B (S ×A, Rγ) where Rγ depends on reward function and discount factor, we have

∥Q∗ −QπK∥1,ρ ≤ CK,γ,Rγ
+ infr∈[0,1] F (r;K, ρ, γ)

(∑K
k=1 α

2r
k ∥Γ∗Qk−1 −Qk∥22,ν

) 1
2

where αk and CK,γ,Rγ do not depend on the sequence (Qk)
K
k=0. Function F (r;K, ρ, γ) depends on

the concentrability coefficients of the greedy policies w.r.t. the value functions.

In simpler words, this theorem bounds the approximation error at each iteration by a term that includes
the sum of approximation errors until the current timestep, i.e.,

∑K
k=1 α

2r
k ∥Γ∗Qk−1 −Qk∥22,ν .

It can be seen that at iteration k, the loss of DQN (r + γmaxa′ Qk−1(s
′, a′) − Qk(s, a))

2 is an
unbiased estimator of the approximation error ∥Γ∗Qk−1 − Qk∥22. Likewise, the loss of iDQN∑K

k=1(r+ γmaxa′ Qk−1(s
′, a′)−Qk(s, a))

2 is an unbiased estimator of the sum of approximation
errors

∑K
k=1 ∥Γ∗Qk−1 −Qk∥22. From there, one can see that at each gradient step, DQN minimizes

only one term of the bound, while iDQN minimizes the whole sum of terms we have influence over3.
Hence, at each gradient step, iDQN can lower the approximation error bound more than DQN.

0 3 6 9 12 15 18
Bellman iteration k

0.01

0.02

0.03

0.04

0.05

||V * V k||2
K=1
K=2
K=4
K=5
K=10
K=20

Figure 5: Distance between the op-
timal value function V ∗ and V πi ,
the value function obtained at each
iteration, for different values of K.
For K < 20, we simply repeat the
process until we reach 20 Bellman
iterations.

We complement this theoretical analysis with an empirical
evaluation on a low-dimensional offline problem, Car-On-Hill
(Ernst et al., 2005), where the agent needs to drive an under-
powered car to the top of a hill. It has a continuous state space
and two possible actions: moving left or right. In this problem,
the optimal value function V ∗ can be computed via brute force
(Ernst et al., 2005). Figure 5 shows the distance between the
optimal value function V ∗ and V πi , i.e., the value function of
the greedy policy of the current action-value function estimate
obtained with iDQN. This distance is plotted according to the
Bellman iterations computed during the training for several
values of K. We recall that iDQN with K = 1 is equivalent to
DQN or, more precisely FQI since it is an offline problem. The
plot clearly shows that for higher values of K, iDQN performs
better in the sense that it reaches lower approximation errors
earlier during the training. This relates to the theorem previ-
ously described. By increasing the value of K, we increase the
number of Bellman iterations taken into account for each gra-
dient step. Hence, we decrease the upper bound on the distance
between the optimal value function and the current estimate,
which is what is happening in the plot.

In practice, with iDQN, each Bellman iteration is learned with K times more gradient steps than
in DQN while having the same overall number of gradient steps. This means that each selected
sample is used K times more or, in other words, that each network sees K times more samples. As
mentioned earlier, updating the target in DQN moves the learning procedure one Bellman iteration
further. The same goes for the rolling step for iDQN. Since each Bellman iteration is learned with
K times more gradient steps than in DQN, we can allow iDQN to perform the rolling step more
frequently than DQN updates the target. This means that iDQN will do more Bellman iterations at
the end of the training, while still learning each iteration better than DQN. Figure 3b pinpoints the

3We do not consider the weights αk here and leave it for future works.

6

advantage of iDQN with K = 2 over DQN. There, we assume that the update target frequency of
DQN is equal to the rolling step frequency in iDQN. When DQN updates its target network Q0 to
Q̄1, the new online network Q2 is located at Q̄1. When the rolling step is performed for iDQN, Q̄1

is located at the same position as the Q̄1 of DQN4 but Q2 has already been learnt and is closer to
the optimal Q-function than the Q2 of DQN. This phenomenon is even stronger when K increases.
Another way to understand iDQN is to see iDQN as a way to pre-train the next online Q-functions
instead of taking them equal to the online network as it is done in DQN.

5 Experiments

We evaluate our proposed algorithm on 54 Atari 2600 Games (Bellemare et al., 2013). Many
implementations of Atari environments along with classical baselines are available online (Castro
et al. (2018), D’Eramo et al. (2021), Raffin et al. (2021), Huang et al. (2022)). We choose to mimic
the implementation choices made in Dopamine (Castro et al., 2018) since it is the only one to release
the evaluation metric for all relevant baselines to our work and the only one to use the evaluation
metric recommended by Machado et al. (2018). Namely, we use the game over signal to terminate
an episode instead of the life signal. The input given to the neural network is a concatenation of 4
frames in gray scale of dimension 84 by 84. To get a new frame, we sample 4 frames from the Gym
environment (Brockman et al., 2016) configured with no frame skip, and we apply a max pooling
operation on the 2 last gray scale frames. We use sticky actions to make the environment stochastic
(with p = 0.25). The training performance is the one obtained during learning. By choosing an
identical setting as Castro et al. (2018) does, we can take the baselines’ training performance of
Dopamine without the need to train them again ourselves. To certify that the comparison is fair,
we compared our version of DQN to their version and concluded positively (see Figure 13 of the
appendix).

Hyperparameter tuning. The hyperparameters shared with DQN are kept untouched. The two
additional hyperparameters (rolling step frequency and target update frequency) were set to follow our
intuition on their impact on the performance. As a reminder, the rolling step frequency is comparable
to the target update frequency in DQN. To further ensure that our code is trustworthy, Figure 13 in
the appendix shows that DQN achieves similar training performances than iDQN with K = 1 and
the rolling step frequency is set to be equal to the target update frequency of DQN. Since iDQN
allows more gradient steps per iteration, we set this hyperparameter to be 25% lower than the target
update frequency in DQN (6000 compared to 8000). It is important to note that decreasing the target
parameters update results in a more stable training but also a higher delay with the online networks
which can harm the overall performance. We set it to 30, allowing 200 target updates per rolling
step. We choose K = 5. This choice is further discussed in Section 5.1. To make the experiments
run faster, we designed the Q-functions to share the convolutional layers. Additionally, we consider
the first layers of the neural network useful for extracting a feature representation of the state space.
This is why this choice can potentially be beneficial to our algorithm. Further details about the
hyperparameters can be found in Table 1 of the appendix.

Performance metric. As recommended by Agarwal et al. (2021), we choose the interquartile
mean (IQM) of the human normalized score to report the results of our experiments with shaded
regions showing pointwise 95% percentile stratified bootstrap confidence intervals. IQM is a trade-off
between the mean and the median where the tail of the score distribution is removed on both sides to
consider only 50% of the runs. 5 seeds are used for each game.

Main result. iDQN greatly outperforms DQN (Adam) on the aggregation metric, proposed in
Agarwal et al. (2021). Figure 6a shows the IQM human normalized score over 54 Atari games
according to the number of frames sampled during the training. In the last millions of frames, iDQN
reaches a higher IQM human normalized score than DQN (Adam). We do not consider other variants
of DQN to be relevant baselines to compare with. The ideas used in Rainbow, Implicit Quantile
Networks (IQN Dabney et al. (2018a)) or Munchausen DQN (Vieillard et al., 2020) can be included
in iDQN algorithm to build an even more powerful agent. We further discuss it in Section 5.1. To
visualize the distribution of final scores, we plot the performance profile in Figure 6b. It shows the

4The loss in iDQN is additive and includes the DQN loss. Thus, both Q̄1 are located at the same position.

7

iDQN K=5 DQN (Nature) DQN (Adam) C51 REM

0 50 100 150 200
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

(a) Training performance.

0 2 4 6 8
Human Normalized Score ()

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

(b) Performance profile.

Figure 6: iDQN outperforms DQN (Nature), DQN (Adam), and C51. DQN (Nature) uses the
RMSProp optimizer (Tieleman et al., 2012) while DQN (Adam) uses Adam (Kingma & Ba, 2015).

iDQN K=5 DQN (Nature) DQN (Adam) C51 REM

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e BankHeist

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

2.5
Enduro

0 50 100 150 200
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

ChopperCommand

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5
Frostbite

0 50 100 150 200
Number of Frames (in millions)

1.0

0.5

0.0

Skiing

Figure 7: 5 Atari games where different behaviors can be observed.

fraction of runs with a higher final score than a certain threshold given by the X axis. In some ranges
of human normalized score, iDQN statistically dominates DQN. For example, there are more games
in which iDQN achieves 2 times a human performance (τ = 2) than DQN. iDQN performs similarly
to REM on this aggregated metric. Interestingly, those two algorithms show different behaviors on
individual games, as shown in Figure 17 of the appendix, where we present the training performance
on all the games. This highlights the relevance of iDQN performing on par with the SOTA for DQN
variants with several Q-functions while relying on an orthogonal idea. In Figure 7, we selected 5
games where different behaviors can be observed. On some games like BankHeist and Enduro, iDQN
overtakes all its baselines. In ChopperCommand, DQN (Adam) and REM fail at outperforming DQN
(Nature), while iDQN is comparable with C51 (Bellemare et al., 2017) in performance. This shows
that efficiently learning the Bellman iterations plays an important role in some environments. In
Frostbite, REM is more efficient than DQN (Adam). iDQN outperforms both algorithms in this game,
being the only one achieving superhuman performances. Finally, in Skiing, REM and C51 failed to
be better than a random agent, while iDQN sticks to the performance of DQN (Adam). We believe
this behavior comes from the fact that iDQN is close to DQN in principle, which minimizes the risk
of failing when DQN succeeds.

5.1 Ablation Studies

We perform several ablation studies to showcase the different behaviors of iDQN. We first investigate
the importance of the number of Bellman iterations K taken into account in the loss. As shown in
Figure 8 for the games Asteroids and Asterix, increasing K to 10 iterations could be beneficial. In
Qbert, the gain seems not certain. We believe further tuning of hyperparameters should bring iDQN
with K = 10 to yield better performances than iDQN with K = 5. We insist that no hyperparameter
tuning has been performed to generate this plot. In order to have the same number of gradient steps
per Bellman iteration for K = 5 and K = 10, we simply halved the rolling step frequency for
K = 10, bringing it to 3000 since we doubled K. Interestingly, the performance never drops in the 3

8

iDQN K=5 iDQN K=10 DQN (Adam)

0 50 100 150 200
Number of Frames (in millions)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Asteroids

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

2.5

Asterix

0 50 100 150 200
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

Qbert

Figure 8: Ablation study on the number of Bellman iterations K taken into account in the loss.

iDQN uniform sampling iDQN first online Q sampling iDQN last online Q sampling

0 50 100 150 200
Number of Frames (in millions)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Asteroids

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

2.5

Asterix

0 50 100 150 200
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

Qbert

Figure 9: Ablation study on the way actions are sampled to interact with the environment. Actions
can be sampled from an online Q-function taken at random (in blue), from the first online Q-function
(in green), or from the last Q-function (in pink).

considered games. Therefore, we recommend increasing K as much as the computational resources
allow it.

In Section 4, we mentioned several sampling strategies. Figure 9 illustrates the different possibilities
mentioned earlier: sampling from a uniform online Q-function, sampling from the first online Q-
function like DQN does, or sampling from the last online Q-function, it is supposed to be the closest
to the optimal Q-function. No significant difference exists except for the game Asteroids, where
sampling from a uniform online Q-function seems to yield better performance throughout the training.
We believe that the increase in performance comes from the fact that the online Q-functions generate
a wider variety of samples compared to only sampling from the first or last online Q-function. We
recommend sampling actions from an online Q-function chosen at random.

iDQN heavily relies on the fact that the learned Q functions are located at different areas in the space
of Q-functions. We computed the standard deviation of the output of the learned Q-functions during
the training in Figure 16 of the appendix to verify this assumption. The figure shows that the standard
deviation among the Q-function is indeed greater than zero across the 3 studied games. Furthermore,
the standard deviation decreases during training, suggesting they become increasingly closer. This
matches the intuition that at the end of the training, the iteration of the Q-functions should point at
directions that cannot be followed by the Q-functions, hence being close to each other by being stuck
on the boundary of the space of representable Q-functions.

6 Discussion

In Figure 10, we compare iDQN with other powerful baselines to show the gap between those
baselines and our approach, which does not use the benefit of a prioritized replay buffer and a n-step
return. The curves for other algorithms shown in Figure 10 depict the publicly available metrics for
those algorithms5. The training performance of IQN and Munchausen DQN without the n-step return
would be interesting to analyze, but our limited resources do not allow us to run those baselines.

5Different metrics are often used for different algorithms, making the comparison not straightforward.

9

iDQN K=5
REM

DQN (Nature)
Rainbow (C51 + 3-step return + PER)

QR-DQN + 3-step return
IQN + 3-step return

DQN (Adam)
Munchausen + IQN + 3-step return

C51

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

2.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

0 2 4 6 8
Human Normalized Score ()

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Figure 10: Training performance (left) and performance profile (right) of iDQN and other orthogonal
methods. QR-DQN (Dabney et al., 2018b) and DQN (Adam) have been removed from the perfor-
mance profile for clarity.

The major improvement of Rainbow over C51 is made by using a prioritized replay buffer and
adding a 3-step return, which gives hope for following works to study the potential strength of any
Rainbow-like iDQN approach. We provide some first encouraging results where we combine iDQN
with K = 3 and IQN in Figure 15. In the two considered Atari games, iIQN (i.e., iDQN + IQN)
outperforms iDQN and IQN, showing that not only is it technically feasible to combine those two
algorithms but that it can yield better performance. The training performances of iDQN on 54 Atari
games along with those more advanced methods, are available in Figure 18 of the appendix.

Our approach introduces two new hyperparameters, rolling step frequency and target parameters
update frequency that need to be tuned. However, we provide a thorough understanding of their
effects to mitigate this drawback. First, the rolling step frequency defines the speed at which we
learn the Bellman iterations. Problems in which the environment is highly stochastic will require
more gradient steps to learn a Bellman iteration hence the need to increase the rolling step frequency.
Conversely, problems with sparse rewards and long horizons will be faster to learn with a high rolling
step frequency because more Bellman iterations are needed to reach good performance. Second, the
target update frequency indicates the speed at which the target networks follow the online networks.
Once again, highly stochastic problems will benefit from having a small target update frequency
since the positions of the online networks are more likely to be noisy. Conversely, problems with
sparse rewards and long horizons can benefit from having the target networks closely follow online
networks. Regarding the resources needed to train an iDQN agent, more computations are required
to get the gradient of the loss compared to DQN. Thanks to the ability of JAX (Bradbury et al., 2018)
to parallelize the computation, iDQN with K = 5 only requires 1 to 2 times more time to run. With
the released code base, each run presented in this paper can be run under 3 days on an NVIDIA RTX
3090. A detailed analysis of spacial complexity is available in the appendix.

7 Conclusion

In this paper, we have presented a way to learn the Bellman iterations more efficiently than DQN.
The underlying idea of iDQN comes from an intuitive understanding of DQN’s behavior in the space
of Q-functions. It allows each Q estimate to be learned with more gradient steps without increasing
the overall number of gradient steps. iDQN outperforms its closest baseline, DQN, on the Atari 2600
benchmark. While we proposed an approach to Q-learning that focuses on the projection step of
the Bellman iterations, an interesting direction for future work would be to investigate which other
past improvements of DQN, in combination with iDQN, would lead to a new state-of-the-art for
value-based methods.

10

Acknowledgement

We acknowledge the grant “Einrichtung eines Labors des Deutschen Forschungszentrum für Kün-
stliche Intelligenz (DFKI) an der Technischen Universität Darmstadt” of the Hessisches Ministerium
für Wissenschaft und Kunst. This work was funded by the German Federal Ministry of Education
and Research (BMBF) (Project: 01IS22078). This work was also funded by Hessian.ai through the
Connectom Fund on Lifelong Explainable Robot Learning and the project ’The Third Wave of Artifi-
cial Intelligence – 3AI’ by the Ministry for Science and Arts of the state of Hessen. We thank Daniel
Palenicek and Tim Schneider for their support with the experiments on the IAS group’s computing
cluster at TU Darmstadt. The authors gratefully acknowledge the computing time provided to them on
the high-performance computer Lichtenberg at the NHR Centers NHR4CES at TU Darmstadt. This
is funded by the Federal Ministry of Education and Research, and the state governments participating
on the basis of the resolutions of the GWK for national high performance computing at universities.

Carbon Impact

As recommended by Lannelongue & Inouye (2023), we used GreenAlgorithms (Lannelongue et al.,
2021) and ML CO2 Impact (Lacoste et al., 2019) to compute the carbon emission related to the
production of the electricity used for the computations of our experiments. We only consider the
energy used to generate the figures presented in this work and ignore the energy used for preliminary
studies. The estimations vary between 1.80 and 2.04 tonnes of CO2 equivalent. As a reminder,
the Intergovernmental Panel on Climate Change advocates a carbon budget of 2 tonnes of CO2

equivalent per year per person.

References
Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforcement

learning. In International Conference on Machine Learning, pp. 104–114. PMLR, 2020.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. Deep reinforcement
learning at the edge of the statistical precipice. Advances in Neural Information Processing Systems,
34, 2021.

An, G., Moon, S., Kim, J.-H., and Song, H. O. Uncertainty-based offline reinforcement learning with
diversified q-ensemble. Advances in neural information processing systems, 34:7436–7447, 2021.

Anschel, O., Baram, N., and Shimkin, N. Averaged-dqn: Variance reduction and stabilization for deep
reinforcement learning. In International conference on machine learning, pp. 176–185. PMLR,
2017.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Bellemare, M. G., Dabney, W., and Munos, R. A distributional perspective on reinforcement learning.
In International conference on machine learning, pp. 449–458. PMLR, 2017.

Bertsekas, D. Reinforcement learning and optimal control. Athena Scientific, 2019.

Bertsekas, D. P. Dynamic Programming and Optimal Control 4 th Edition , Volume II. Athena
Scientific, 2015.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Bradtke, S. Reinforcement learning applied to linear quadratic regulation. Advances in neural
information processing systems, 5, 1992.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
Openai gym, 2016.

11

http://github.com/google/jax

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Bellemare, M. G. Dopamine: A research
framework for deep reinforcement learning. arXiv preprint arXiv:1812.06110, 2018.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. Implicit quantile networks for distributional
reinforcement learning. In International conference on machine learning, pp. 1096–1105. PMLR,
2018a.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R. Distributional reinforcement learning with
quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018b.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R.,
Abdolmaleki, A., de Las Casas, D., et al. Magnetic control of tokamak plasmas through deep
reinforcement learning. Nature, 602(7897):414–419, 2022.

D’Eramo, C., Tateo, D., Bonarini, A., Restelli, M., and Peters, J. Mushroomrl: Simplifying
reinforcement learning research. Journal of Machine Learning Research, 22(131):1–5, 2021.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch mode reinforcement learning. Journal of
Machine Learning Research, 6, 2005.

Farahmand, A.-m. Regularization in reinforcement learning. 2011.

Fatemi, M. and Tavakoli, A. Orchestrated value mapping for reinforcement learning. arXiv preprint
arXiv:2203.07171, 2022.

Fellows, M., Hartikainen, K., and Whiteson, S. Bayesian bellman operators. Advances in Neural
Information Processing Systems, 34:13641–13656, 2021.

Funk, N., Chalvatzaki, G., Belousov, B., and Peters, J. Learn2assemble with structured representations
and search for robotic architectural construction. In Conference on Robot Learning, pp. 1401–1411.
PMLR, 2022.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M., and Silver, D. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., and Araújo, J. G. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal
of Machine Learning Research, 23(274):1–18, 2022. URL http://jmlr.org/papers/v23/
21-1342.html.

Huber, P. J. Robust estimation of a location parameter. Breakthroughs in statistics: Methodology and
distribution, pp. 492–518, 1992.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. Quantifying the carbon emissions of machine
learning. arXiv preprint arXiv:1910.09700, 2019.

Lan, Q., Pan, Y., Fyshe, A., and White, M. Maxmin q-learning: Controlling the estimation bias of
q-learning. arXiv preprint arXiv:2002.06487, 2020.

Lannelongue, L. and Inouye, M. Carbon footprint estimation for computational research. Nature
Reviews Methods Primers, 3(1):9, 2023.

Lannelongue, L., Grealey, J., and Inouye, M. Green algorithms: quantifying the carbon footprint of
computation. Advanced science, 8(12):2100707, 2021.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M.
Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

12

http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep exploration via bootstrapped dqn.
Advances in neural information processing systems, 29, 2016.

Puterman, M. L. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Sutton, R. S. Learning to predict by the methods of temporal differences. Machine Learning, 3(1):
9–44, August 1988. URL http://www.cs.ualberta.ca/~sutton/papers/sutton-88.pdf.

Tieleman, T., Hinton, G., et al. Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforcement learning with double q-learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Vieillard, N., Pietquin, O., and Geist, M. Munchausen reinforcement learning. Advances in Neural
Information Processing Systems, 33:4235–4246, 2020.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. Dueling network
architectures for deep reinforcement learning. In International conference on machine learning,
pp. 1995–2003. PMLR, 2016.

13

http://jmlr.org/papers/v22/20-1364.html
http://www.cs.ualberta.ca/~sutton/papers/sutton-88.pdf

Spatial complexity comparison between DQN and iDQN

Suppose we note C, the memory necessary to store the parameters for the convolutional layers, and
F , the memory used for the parameters of the fully connected layers. DQN needs 2(C + F); the
2 comes from the fact that there is a target and an online network. For iDQN, the memory used is
2(2C + (K + 1)F). There is a target and an online network as well. This is why there is a 2 on the
left. Then, as shown in Figure 12, 2 sets of convolutional parameters are stored along with K + 1
heads. More precisely, the classical architecture used in Atari games requires 16 MB of memory
while iDQN with K = 5 requires 92 MB and 168 MB for K = 10. It is worth noticing that those
quantities are negligible compared to the space the replay buffer needs. It can reach several GBs even
with some memory optimization tricks.

Table of figures

• In Figure 11, a graphical representation of DQN and iDQN in the space of Q-function is
shown. This representation has been obtained from a real experiment.

• Figure 12 provides more insights into the neural network’s architecture of iDQN. It also
illustrates how the rolling step is performed.

• Table 1 gathers all the hyperparameters of iDQN.
• Algorithm 1 shows the pseudo-code of iDQN.
• Figure 13 certifies that our implementation of DQN is comparable to that of DQN in

Dopamine. It also shows that iDQN with K = 1 performs similarly to DQN.
• Figure 14 certifies that our implementation of IQN is comparable to that of IQN in Dopamine.

It also shows that iIQN with K = 1 performs similarly to IQN.
• Figure 15 exhibits the training performance of iIQN along with some relevant baselines.
• Figure 16 shows the standard deviation of the considered Q-function during the training.
• In Figure 17, the individual scores of iDQN on the 54 Atari games are presented along with

the baselines’ scores.
• In Figure 18, the individual scores of iDQN on the 54 Atari games are presented along with

the scores of more advanced methods.

14

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3
M

1.0

0.8

0.6

0.4

0.2

0.0

G

Q *

Q0

* Q0

Q1

lo
ss

(a) Behavior of DQN.

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3
M

1.0

0.8

0.6

0.4

0.2

0.0

G

Q *

Q0

* Q0

Q1

lo
ss

* Q1

Q2

lo
ss

(b) Behavior of iDQN.

Figure 11: Graphical representation of DQN and iDQN in the space of Q-functions Q. This
representation is computed from an experiment on a toy offline problem: Linear Quadratic Regulator
(Bradtke, 1992). In this problem, the state and action spaces are continuous and one-dimensional.
The dynamics are linear: for a state s and an action a, the next state is given by s′ = 0.8s − 0.9a,
and the reward is quadratic r(s, a) = 0.5s2 + 0.4sa− 0.5a2. We choose to parametrize the space of
Q-function with 2 parameters (M,G) such that, for a state s and an action a, Q(s, a) = Ma2 +Gs2.
To avoid having a too big space of representable Q-functions, we constrain the parameter M to
be negative and parameter G to be between −0.4 and 0.4. Starting from some initial parameters,
we perform 30 gradient steps with a learning rate of 0.05 using the loss of DQN and iDQN. Both
figures show the space of representable Q-function QΘ in green, the optimal Q-function Q∗, the
initial Q-function Q0 and its optimal Bellman iteration Γ∗Q0. The projection of the optimal Bellman
iteration is also shown with a dotted line. As we claim in the main paper, iDQN manages to find a
Q-function Q2 closer to the optimal Q-function Q∗ than Q1 found by DQN. The figure on the left
closely resembles Figure 1a, likewise, the figure on the right looks like Figure 4a, showing that the
high-level ideas presented in the paper are actually happening in practice.

Figure 12: Illustration of the rolling step. The first head of the neural network’s architecture is not
trained. Therefore, the convolutional layers for the first head are computed separately to ensure their
outputs are still the ones the first head has been trained on.

15

Table 1: Summary of all hyperparameters. Convd
a,bC is a 2D convolutional layer with C filters of

size a× b and of stride d, and FCE is a fully connected layer with E neurons.
Environment

γ 0.99
H 27000

full action space No
reward clipping clip(−1, 1)

DQN
number of epochs N 200

number of training steps per epochs n 250000
type of the replay buffer D FIFO

initial number of samples in D 20000
maximum number of samples in D 1000000

gradient step frequency G 4
target update frequency T 8000

starting ϵ 1
ending ϵ 0.01

ϵ linear decay duration 250000
batch size 32

learning rate 6.25× 10−5

Adam ϵ 1.5× 10−4

torso architecture Conv4
8,832− Conv24,464− Conv1

3,364−
head architecture −FC512− FCnA

activations ReLU
initializer Xavier uniform

iDQN
rolling step frequency R 6000

target update frequency T 30
sampling policy µ uniform

16

Algorithm 1 iDQN. The modifications added to DQN are marked in green.

1: Inputs: number of epochs N , number of training steps per epoch n, sampling head policy µ,
online and target parameters θ = θ̄, replay buffer D, gradient step frequency G, rolling step
frequency R, target update frequency T .

2:
3: i← 0 ▷ number of overall training steps
4: performance← empty list
5: for N epochs do
6: j ← 0 ▷ number of training steps within an epoch
7: s← env.init()
8: absorbing← false; sum_reward← 0; n_episodes← 0
9: while j < n and absorbing = false do

10: sample k ∼ µ ▷ sample a neural network head
11: sample a ∼ ϵ-greedy Qk(s, ·|θ)
12: (s′, r, absorbing)← env.step(a)
13: D ← D ∪ {(s, a, r, s′)}
14: s← s′; sum_reward += r
15: if absorbing = true then
16: s← env.init()
17: n_episodes += 1
18: end if
19:
20: if i = 0[G] then
21: d ∼ U(D)
22: θ ← Adam_update(L, d, θ, θ̄) ▷ L is defined in (2)
23: end if
24: if i = 0[R] then
25: (θ, θ̄)← rolling_step(θ, θ̄) ▷ explained in Section 4
26: end if
27: if i = 0[T] then
28: θ̄ ← θ
29: end if
30: i += 1; j += 1
31: end while
32: performance.append

(
sum_reward
n_episodes

)
33: end for
34: return θ

17

iDQN K=1 DQN (our implementation) DQN (Adam)

0 50 100 150 200
Number of Frames (in millions)

0

2

4

6

8

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Breakout

Figure 13: Our implementation of DQN yields similar performance as the implementation of
Dopamine (DQN (Adam)). This certifies that we can compare the results released in Dopamine
with our method. Both DQN implementations and iDQN with K = 1 have a similar behavior. This
certifies the trustworthiness of our code base.

iIQN K=1 IQN (our implementation) IQN

0 50 100 150 200
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

KungFuMaster

Figure 14: Our implementation of IQN yields similar performance as the implementation of Dopamine
(IQN). This certifies that we can compare the results released in Dopamine with our method. Both
IQN implementations and iIQN with K = 1 have a similar behavior. This certifies the trustworthiness
of our code base.

18

iIQN K=3 iDQN K=5 IQN IQN + 3-step return

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Frostbite

0 50 100 150 200
Number of Frames (in millions)

0

2

4

6

8

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

StarGunner

Figure 15: iIQN with K = 3 outperforms iDQN with K = 5 and IQN, showing that not only is
it technically feasible to combine those two algorithms, but that it can yield better performance.
Interestingly, iIQN even outperforms IQN + 3-step return on StarGunner.

0 50 100 150 200
Number of Frames (in millions)

0.02

0.04

0.06

0.08

IQ
M

 in
te

r-h
ea

d
st

an
da

rd
 d

ev
ia

tio
n

Asteroids

0 50 100 150 200
Number of Frames (in millions)

0.04

0.06

0.08

0.10

0.12

Asterix

0 50 100 150 200
Number of Frames (in millions)

0.01

0.02

0.03

0.04

0.05

0.06
BankHeist

Figure 16: Standard deviation of the online networks’ output averaged over 3200 samples at each
iteration.

19

iDQN K=5 DQN (Nature) DQN (Adam) C51 REM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Alien

0.0

0.2

0.4

0.6

0.8

1.0

Amidar

0

1

2

3

4 Assault

0.0

0.5

1.0

1.5

2.0

2.5
Asterix

0.005

0.000

0.005

0.010

Asteroids

0

10

20

30

40

50

60
Atlantis

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

BankHeist

0.0

0.2

0.4

0.6

0.8
BattleZone

0.0

0.1

0.2

0.3

0.4

BeamRider

0.00

0.05

0.10

0.15

0.20

0.25

Berzerk

0.05

0.00

0.05

0.10

0.15

0.20

Bowling

2

0

2

4

6

8
Boxing

0

2

4

6

8

10

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Breakout

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Centipede

0.0

0.2

0.4

0.6

0.8

ChopperCommand

0

1

2

3

4

5

CrazyClimber

0

2

4

6

8
DemonAttack

0

5

10

15

DoubleDunk

0.0

0.5

1.0

1.5

2.0

2.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Enduro

0.0

0.5

1.0

1.5

2.0

2.5
FishingDerby

0.0

0.2

0.4

0.6

0.8

1.0

Freeway

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Frostbite

0

2

4

6

8
Gopher

0.05

0.00

0.05

0.10

0.15

0.20

0.25
Gravitar

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Hero

0.50

0.25

0.00

0.25

0.50

0.75

1.00

IceHockey

0

1

2

3

4

5

6

Jamesbond

0

1

2

3

4

Kangaroo

0

1

2

3

4

5

6

Krull

0.0

0.2

0.4

0.6

0.8

1.0

1.2

KungFuMaster

0.0

0.1

0.2

0.3

0.4

0.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

MontezumaRevenge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

MsPacman

0.0

0.5

1.0

1.5

2.0
NameThisGame

0.0

0.5

1.0

1.5

2.0

2.5

Phoenix

0.04

0.02

0.00

0.02

Pitfall

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pong

0.0

0.1

0.2

0.3

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

PrivateEye

0.0

0.2

0.4

0.6

0.8

1.0

Qbert

0.0

0.2

0.4

0.6

0.8

1.0
Riverraid

0

1

2

3

4

5

6

7
RoadRunner

0

1

2

3

4

5

6

7
Robotank

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Seaquest

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Skiing

0.05

0.00

0.05

0.10

0.15
Solaris

0

2

4

6

8
SpaceInvaders

0

1

2

3

4

5

6

7
StarGunner

2

1

0

1

2

3

4
TimePilot

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Tutankham

0 50 100 150 200
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

UpNDown

Number of Frames (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Venture

Number of Frames (in millions)
0

5

10

15

20

25

30

35
VideoPinball

Number of Frames (in millions)

0.0

0.5

1.0

1.5

WizardOfWor

Number of Frames (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

YarsRevenge

Number of Frames (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Zaxxon

Figure 17: Performances of iDQN (K = 5) on the 54 Atari games along with the considered
baselines.

20

iDQN K=5
Rainbow (C51 + 3-step return + PER)

QR-DQN + 3-step return
IQN + 3-step return

DQN (Adam)
Munchausen + IQN + 3-step return

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Alien

0 50 100 150 200
0.0

0.5

1.0

1.5

Amidar

0 50 100 150 200
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Assault

0 50 100 150 200
0

2

4

6

8

Asterix

0 50 100 150 200
0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025
Asteroids

0 50 100 150 200
0

10

20

30

40

50

60
Atlantis

0 50 100 150 200
0.0

0.5

1.0

1.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

BankHeist

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

1.50

BattleZone

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2
BeamRider

0 50 100 150 200

0.05

0.10

0.15

0.20

0.25

0.30

Berzerk

0 50 100 150 200
0.1

0.0

0.1

0.2

0.3

Bowling

0 50 100 150 200

2

0

2

4

6

8
Boxing

0 50 100 150 200
0

2

4

6

8

10

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Breakout

0 50 100 150 200
0.1

0.0

0.1

0.2

0.3

0.4

0.5
Centipede

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0
ChopperCommand

0 50 100 150 200
0

1

2

3

4

5

6
CrazyClimber

0 50 100 150 200
0

10

20

30

40

50

DemonAttack

0 50 100 150 200

0

5

10

15

DoubleDunk

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Enduro

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

3.0
FishingDerby

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2 Freeway

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

Frostbite

0 50 100 150 200
0

2

4

6

8

10

12

14
Gopher

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4

Gravitar

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Hero

0 50 100 150 200
0.5

0.0

0.5

1.0

1.5

2.0

2.5

IceHockey

0 50 100 150 200
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Jamesbond

0 50 100 150 200
0

1

2

3

4

5
Kangaroo

0 50 100 150 200
0

2

4

6

8

Krull

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

1.50

KungFuMaster

0 50 100 150 200
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

MontezumaRevenge

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
MsPacman

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0
NameThisGame

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

Phoenix

0 50 100 150 200
0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04
Pitfall

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pong

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

PrivateEye

0 50 100 150 200
0

1

2

3

Qbert

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Riverraid

0 50 100 150 200
0

2

4

6

8

RoadRunner

0 50 100 150 200
0

2

4

6

8
Robotank

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

Seaquest

0 50 100 150 200

1.00

0.75

0.50

0.25

0.00

0.25

0.50

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Skiing

0 50 100 150 200

0.0

0.2

0.4

0.6

Solaris

0 50 100 150 200
0

2

4

6

8

10

12

SpaceInvaders

0 50 100 150 200
0

2

4

6

8

StarGunner

0 50 100 150 200
2

0

2

4

6

8
TimePilot

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Tutankham

Number of Frames (in millions)
0

5

10

15

20

25

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

UpNDown

Number of Frames (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Venture

Number of Frames (in millions)
0

10

20

30

40
VideoPinball

Number of Frames (in millions)

0

1

2

3

WizardOfWor

Number of Frames (in millions)
0.0

0.5

1.0

1.5

2.0

YarsRevenge

Number of Frames (in millions)
0.0

0.5

1.0

1.5

2.0

2.5
Zaxxon

Figure 18: Performances of iDQN (K = 5) on the 54 Atari games along with other improvements
over DQN.

21

	Introduction
	Preliminaries
	Related Work
	DQN Variants
	Random Ensemble Mixture

	Iterated Deep Q-Networks
	Understanding the Loss of iDQN

	Experiments
	Ablation Studies

	Discussion
	Conclusion

