
Do Transformers Parse while Predicting the Masked
Word?

Haoyu Zhao∗†, Abhishek Panigrahi∗†, Rong Ge‡, Sanjeev Arora†

Abstract

Pre-trained language models have been shown to encode linguistic structures like parse trees in
their embeddings while being trained unsupervised. Some doubts have been raised whether the
models are doing parsing or only some computation weakly correlated with it. Concretely: (a)
Is it possible to explicitly describe transformers with realistic embedding dimensions, number
of heads, etc. that are capable of doing parsing —or even approximate parsing? (b) Why do
pre-trained models capture parsing structure? This paper takes a step toward answering these
questions in the context of generative modeling with PCFGs. We show that masked language
models like BERT or RoBERTa of moderate sizes can approximate the Inside-Outside algorithm
for the English PCFG [29]. We also show that the Inside-Outside algorithm is optimal for masked
language modeling loss on the PCFG-generated data. We conduct probing experiments on
models pre-trained on PCFG-generated data to show that this not only allows recovery of approx-
imate parse tree, but also recovers marginal span probabilities computed by the Inside-Outside
algorithm, which suggests an implicit bias of masked language modeling towards this algorithm.

1 Introduction

One of the surprising discoveries about transformer-based language models like BERT [14] and
RoBERTa [26] is that contextual word embeddings encode information about parsing, which can
be extracted using a simple “linear probing” to yield approximately correct dependency parse trees
for the text [19, 28]. Subsequently, [41, 45, 3] employed linear probing also to recover information
about constituency parse trees. Transformers’ parsing ability signifies the model’s understanding
of the language structure, moving beyond mere memorization. This proficiency can serve as a
predictor for the model’s performance across various downstream tasks. In fact, [46, 4] have shown
that incorporating (the awareness of) syntax in large language models enhances the final performance
on various downstream tasks. Furthermore, understanding the model’s parsing ability can contribute
to the ongoing exploration of the “mechanistic interpretability” for reverse engineering the inner
workings of pre-trained large language models [16, 34, 33].

The current paper focuses on the ability of BERT-style transformers to do constituency parsing, specif-
ically for PCFGs. Prior studies [8, 37] established that transformers are Turing complete, suggesting
their potential for parsing. But do they actually parse while trying to do masked-word prediction?
One reason to be cautiously skeptical is that naive translation of constituency parsing algorithms into
a transformer results in transformers with number of heads that scales with the size of the grammar,
whereas BERT-like models have around a dozen heads. This leads to the following question.

(Qs 1): Are BERT-like models capable of parsing with realistic number of heads?

This is not an idle question as [30] suggested that linear probing relies on semantic cues for parsing:
if there is a distribution shift between the pre-train and test data, the parse performance suffers a

∗Equal contribution.
†Department of Computer Science, Princeton University, Princeton, NJ; Email:

{haoyu,ap34,arora}@cs.princeton.edu.
‡Department of Computer Science, Duke University, Durham, NC; Email: rongge@cs.duke.edu.

Workshop on Distribution Shifts, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).



large gap. They created syntactically correct but semantically meaningless sentences and found a
significant drop in parsing performance compared to previous studies.

(Qs 2): Do BERT-like models trained for masked language modeling (MLM) encode syntax, and
if so, how and why?

1.1 This paper

Theoretical construction: To address Qs 1, we construct a transformer that executes the Inside-
outside algorithm for PCFG (Appendix D.1). However, a naive construction can blow up the
necessary size of the constructed model. In turn, we compress the size of our construction to execute
an approximate version of the Inside-Outside algorithm (Appendix D.3). We show that a transformer
with 2L layers, 15 attention heads, and 1000 embedding dimensions can achieve > 70% F1 score for
constituency parsing on PTB dataset [29] where L is the length of the sentence. The average length
of sentences in PTB dataset is 25. To the best of our knowledge, no study has studied the ability of
moderate transformers that discard information to do more efficient approximate parsing. Due to
page limitation, we have deferred it to the appendix.

Empirical study: Although realistic models can capture a fair amount of parsing information, it is
unclear whether they need to do so for masked language modeling (MLM). After all, Maudslay and
Cotterell [30] suggested that linear probing picks up on semantic information that happens to correlate
with parse trees. To further explore this, we trained BERT models on synthetic text generated from a
PCFG tailored to English text, separating syntax from semantics in a more rigorous manner than [30].
Our contributions are then two-fold.

1. In D.2, we show that Inside-Outside algorithm will minimize MLM loss with the synthetic text.
2. We conduct probing experiments on the pre-trained models to show the existence of syntactic

information inside the models, and empirically verify its connection with Inside-Outside algorithm.

Specifically, simple probing methods recover reasonable parse tree structure (Section 2.1), and
more interestingly, the simple probing procedure has small performance gaps on different test data,
including the PCFG-generated data and the natural language (PTB dataset), suggesting the robustness
of probing procedure under distribution shift. Additionally, probes of contextualized embeddings
reveal correlations with the information computed by the Inside-Outside algorithm (Section 2.2).
This suggests transformers implicitly engage in a form of approximate parsing, in particular a process
related to the Inside-Outside algorithm, to achieve low MLM loss.

2 Probing Masked Language Models for Parsing Information

Pre-training on PCFG We pre-train multiple RoBERTa models on synthetic datasets derived from
a PCFG trained on English language [11]. We denote the models with AiLj, where i and j indicate
the number of attention heads and layers, respectively. Additional pre-training details are available
in Appendix C.1. Table 3 shows the perplexity for various models. We find that except for models
with too few layers (A12L1) and too few attention heads (A3L12), other models have nearly the
same perplexity. Further increasing depth and number of heads does not appear to improve the result.

2.1 Probing for constituency parse trees

We probe the pre-trained language models and show that these models indeed capture the “syntactic
information”, in particular, the structure of the constituency parse trees.

Experiment setup Similar to [41, 3], we predict the relative depth of the common ancestors between
different token pairs to construct the constituency tree. Given a sentence w1w2 . . . wL with parse tree
T , we denote depth(i, i+ 1) the depth of the least common ancestor of wi, wi+1 in the parse tree T ,
we want to find a probe f (ℓ) to predict the relative depth tar(i) = depth(i, i + 1) − depth(i − 1, i)
for position i. In [41], the probe f (ℓ) is linear, and the input to the probe f (ℓ) at position i is the
concatenation of the embeddings at position i and the BOS (or EOS) token. Besides the linear f (ℓ),
we also experiment with probe where f (ℓ) is a 2-layer neural network with 16 hidden neurons. We

2



Table 1: Parsing results for different models under different settings using Linear and 2-layer neural
net probes, when compared to Inside-Outside algorithm (IO). We report the best F1 score achieved
using any of the layer’s embeddings. Scores within 1% of the max (except IO) in each row are
highlighted. Models except A12L1 and A3L12 give decent parsing F1 scores, and models with more
layers or heads tend to get better F1 scores in general.

IO A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

L
in

ea
r

PCFG
Sent. F1 81.61 71.34 63.16 69.96 71.23 64.71 70.76

Corpus F1 71.65 63.01 54.24 61.54 62.57 55.36 62.56

PTB
Sent. F1 78.77 69.31 62.99 68.22 68.13 61.56 68.79

Corpus F1 75.90 65.01 59.96 65.21 65.01 58.31 65.97

OOD Sent. F1 81.61 64.26 57.96 63.22 63.89 58.00 63.88
Corpus F1 71.65 60.98 54.29 59.79 60.58 54.39 60.62

2-
la

ye
rN

N PCFG
Sent. F1 81.61 73.71 64.80 72.62 73.60 62.55 73.27

Corpus F1 71.65 66.18 57.16 65.36 66.01 53.36 65.92

PTB
Sent. F1 78.77 71.32 64.89 70.15 70.33 63.23 70.59

Corpus F1 75.90 68.07 62.09 67.25 67.31 60.59 67.93

OOD Sent. F1 81.61 66.99 59.89 66.21 66.56 57.60 67.18
Corpus F1 71.65 63.89 56.74 63.30 63.81 54.60 64.54

Table 2: Probing for the “normalized” marginal probabilities of spans at different lengths on different
models. We report the Pearson correlation between the predicted probabilities and the span marginal
probabilities computed by the Inside-Outside algorithm on PTB datasets, for both the linear and the
2-linear net probes (separated by /). The high correlation indicates that MLM pre-trained models
approximately encode marginal span probabilities of the Inside-Outside algorithm during pre-training.

Span
Length A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

ℓ = 2 .88 / .93 .83 / .88 .88 / .91 .88 / .92 .86 / .88 .87 / .92
ℓ = 3 .79 / .90 .74 / .84 .80 / .88 .79 / .89 .77 / .84 .79 / .89
ℓ = 4 .69 / .86 .65 / .77 .69 / .82 .69 / .84 .66 / .78 .69 / .85
ℓ = 5 .62 / .79 .57 / .70 .62 / .77 .61 / .81 .58 / .69 .62 / .79
ℓ = 10 .51 / .77 .48 / .68 .51 / .75 .51 / .78 .51 / .61 .51 / .73

consider three settings: train and test the probe on synthetic PCFG data (PCFG); train and test on PTB
dataset (PTB); and train on the synthetic PCFG data while test on PTB (out of distribution, OOD).
The OOD setting serves as a baseline for a syntactic probe on PTB since semantic relations do not
appear in the pre-trained model or the probe.

Experiment results Table 2 shows that except for A12L1 and A3L12, the linear and neural net
probes give atleast 70% sentence F1 on both PCFG and PTB settings. As for the OOD setting, the
performances achieved by the best layer drop by about 5% compared with PCFG and PTB. In this
setting, there is no semantic information even in the probe itself and thus gives a baseline for the
probes on PTB dataset that only uses syntactic information. As a comparison, the naive baseline,
Right-branching (RB), reaches < 40% for both sentence and corpus F1 score [24] on PTB dataset,
and if we use layer 0’s embeddings to probe, the sentence F1 is < 41% in all settings for all models.
Our positive results on syntactic parsing support the claim that pre-training language models using
MLM loss can indeed capture the structural information of the underlying constituency parse tree.

2.2 Probing for the marginal probabilities

Section 2.1 verifies that language models can capture structure information of the parse trees, but that
doesn’t imply if the model executes the Inside-Outside algorithm.In this subsection, we test if we can
use model representations to predict marginal probabilities computed in the Inside-Outside algorithm.

Experiment setup We train a probe to predict the normalized marginal probabilities for spans with
a specific length. Fix the span length ℓ, for each sentence w1w2 . . . wL, denote e1, e2, . . . , eL the
embeddings from the last layer of the pre-trained language model. We want to find a probe f (ℓ) such

3



2 3 4 5 10
Length of span to probe

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

Comparison Between Different Probes

Layer 0, Linear
Layer 0, NN
Layer 12, Linear
Layer 12, NN

(a) Compare linear/2-layer NN probes under PTB
setting. We observe: (a) 2-layer NN probe has
better performance, and (b) the probes give better
performance on 12th-layer embeddings.

2 3 4 5 10
Length of span to probe

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
rre

la
tio

n

Comparison Between Different Settings

PCFG
PTB
OOD

(b) Performance of neural net probe on the 12-th layer embed-
dings under different settings. The closer correlation perfor-
mance of the probe across settings (including OOD) indicates
true marginal probabilities captured by the trained probe.

Figure 1: Comparison between different probes for marginal probabilities on A12L12. The y-axis
denotes correlation between predictions and targets, and x-axis denotes probes for different lengths.

that for each span [i, i+ ℓ− 1] with length ℓ, the probe f (ℓ)([ei; ei+ℓ−1]) predicts the normalized
marginal probability (see Appendix B.2) of span [i, i+ ℓ− 1] under the PCFG model . The input to
the probe f (ℓ) is the concatenation of ei and ei+ℓ−1. To test the sensitivity of our probe, we also take
the embeddings from the 0-th layer as input to the probe f (ℓ).

We give two options for the probe f (ℓ): (1) linear, and (2) a 2-layer neural network with 16 hidden
neurons, since the relation between the embeddings and the target may not be a simple linear function.
Similar to the Section 2.1, we also consider three settings: PCFG, PTB, and OOD.

Experiment results Figure 1a reports the correlation between the span marginal probabilities and
the predictions of the 4 different probes for A12L12 model. For both linear and 2-layer neural net
probes, changing the input from layer 0 to layer 12 drastically increases the predicted correlation,
which again suggests that the uncontextualized embeddings don’t contain enough information about
the marginal probabilities. Besides, the neural net can predict better on layer 12 embeddings, but
performs nearly the same on layer 0, suggesting that the neural network is a better probe in this setting.

Figure 1b compares the probing results under three different settings. Surprisingly, we find that the
probe can achieve high correlation with the real marginal probabilities under all settings. Furthermore,
we observe that there is almost no drop in performance when changing the test dataset from PCFG to
PTB (PCFG setting and OOD setting). This result implies that the probe, along with the embeddings,
indeed contains the syntactic information computed by the Inside-Outside algorithm and is not
overfitting to the training dataset.

Table 2 shows the probing results on different pre-trained models. The results show that the neural
network probe is highly correlated with the target for most pre-trained models, except for A12L1
and A3L12 models. Surprisingly, even for length 10 spans, the neural network probe still achieves an
F1 score of up to 78% for the best model. The high correlation suggests that the pre-trained models
contain certain syntactic information computed by the Inside-Outside algorithm. Overall, the results
indicate that MLM training may incentivize the model to approximate the Inside-Outside algorithm,
validating our constructions in Appendix D.

3 Conclusion

In this work, we show that BERT-like models with moderate size have the capacity to parse decently
well. We probe BERT-like models pre-trained (with MLM loss) on the synthetic text generated
using PCFGs to verify that these models capture syntactic information. Furthermore, we show that
the models contain the marginal span probabilities computed by the Inside-Outside algorithm, thus
connecting MLM and parsing. These findings validate that transformers learn language structure
during pre-training, which may explain their robust performance on various downstream tasks. We
hope our findings may yield new insights into large language models and MLM.

4



References
[1] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier

probes, 2017. URL https://openreview.net/forum?id=ryF7rTqgl.

[2] Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length general-
ization in large language models. arXiv preprint arXiv:2207.04901, 2022.

[3] David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency
structure in neural language models. arXiv preprint arXiv:2204.06201, 2022.

[4] Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang, Jing Bai, Jing Yu, and Yunhai Tong.
Syntax-bert: Improving pre-trained transformers with syntax trees. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pages 3011–3020, 2021.

[5] James K Baker. Trainable grammars for speech recognition. The Journal of the Acoustical
Society of America, 65(S1):S132–S132, 1979.

[6] Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What do
neural machine translation models learn about morphology? arXiv preprint arXiv:1704.03471,
2017.

[7] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of trans-
formers to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

[8] Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of trans-
formers and its implications in sequence modeling. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages 455–475, 2020.

[9] Boli Chen, Yao Fu, Guangwei Xu, Pengjun Xie, Chuanqi Tan, Mosha Chen, and Liping Jing.
Probing bert in hyperbolic spaces. In International Conference on Learning Representations,
2021.

[10] Shay B Cohen, Karl Stratos, Michael Collins, Dean Foster, and Lyle Ungar. Spectral learning
of latent-variable pcfgs. In Proceedings of the 50th annual meeting of the association for
computational linguistics (Volume 1: Long papers), pages 223–231, 2012.

[11] Shay B Cohen, Karl Stratos, Michael Collins, Dean P Foster, and Lyle Ungar. Spectral learning
of latent-variable pcfgs: Algorithms and sample complexity. The Journal of Machine Learning
Research, 15(1):2399–2449, 2014.

[12] Simone Conia and Roberto Navigli. Probing for predicate argument structures in pretrained
language models. In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 4622–4632, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.316. URL
https://aclanthology.org/2022.acl-long.316.

[13] Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni.
What you can cram into a single $&!#* vector: Probing sentence embeddings for linguistic
properties. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2126–2136, Melbourne, Australia, July 2018.
Association for Computational Linguistics. doi: 10.18653/v1/P18-1198. URL https://
aclanthology.org/P18-1198.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[15] Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and vari-
able creation in self-attention mechanisms. In International Conference on Machine Learning,
pages 5793–5831. PMLR, 2022.

5

https://openreview.net/forum?id=ryF7rTqgl
https://aclanthology.org/2022.acl-long.316
https://aclanthology.org/P18-1198
https://aclanthology.org/P18-1198


[16] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

[17] Joshua Goodman. Parsing algorithms and metrics. In 34th Annual Meeting of the Association
for Computational Linguistics, pages 177–183, 1996.

[18] John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2733–2743, 2019.

[19] John Hewitt and Christopher D Manning. A structural probe for finding syntax in word
representations. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4129–4138, 2019.

[20] Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and’diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure. Journal of
Artificial Intelligence Research, 61:907–926, 2018.

[21] Peter Izsak, Moshe Berchansky, and Omer Levy. How to train BERT with an academic
budget. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, November 2021. URL https://
aclanthology.org/2021.emnlp-main.831.

[22] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics,
2019.

[23] Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-goo Lee. Are pre-trained language
models aware of phrases? simple but strong baselines for grammar induction. In International
Conference on Learning Representations, 2020.

[24] Jun Li, Yifan Cao, Jiong Cai, Yong Jiang, and Kewei Tu. An empirical comparison of un-
supervised constituency parsing methods. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 3278–3283, 2020.

[25] Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

[26] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[28] Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emer-
gent linguistic structure in artificial neural networks trained by self-supervision. Proceedings of
the National Academy of Sciences, 117(48):30046–30054, 2020.

[29] Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

[30] Rowan Hall Maudslay and Ryan Cotterell. Do syntactic probes probe syntax? experiments with
jabberwocky probing. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 124–131,
2021.

6

https://aclanthology.org/2021.emnlp-main.831
https://aclanthology.org/2021.emnlp-main.831


[31] Rowan Hall Maudslay, Josef Valvoda, Tiago Pimentel, Adina Williams, and Ryan Cotterell. A
tale of a probe and a parser. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7389–7395, 2020.

[32] William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-
depth threshold circuits. Transactions of the Association for Computational Linguistics, 10:
843–856, 2022.

[33] Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

[34] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[36] Haoran Peng. Spectral learning of latent-variable pcfgs: High-performance implementation,
2021. URL https://github.com/GavinPHR/Spectral-Parser.

[37] Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. J. Mach.
Learn. Res., 22(75):1–35, 2021.

[38] Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam Pearce,
and Been Kim. Visualizing and measuring the geometry of bert. Advances in Neural Information
Processing Systems, 32, 2019.

[39] Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish Sabharwal. Probing natural language
inference models through semantic fragments. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8713–8721, 2020.

[40] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know
about how bert works. Transactions of the Association for Computational Linguistics, 8:
842–866, 2020.

[41] David Vilares, Michalina Strzyz, Anders Søgaard, and Carlos Gómez-Rodríguez. Parsing as
pretraining. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
9114–9121, 2020.

[42] Ivan Vulić, Edoardo Maria Ponti, Robert Litschko, Goran Glavaš, and Anna Korhonen. Probing
pretrained language models for lexical semantics. arXiv preprint arXiv:2010.05731, 2020.

[43] Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study
on approximating turing machines with transformers. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=VOyYhoN_yg.

[44] Alexander Wettig, Tianyu Gao, Zexuan Zhong, and Danqi Chen. Should you mask 15% in
masked language modeling? arXiv preprint arXiv:2202.08005, 2022.

[45] Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for
analyzing and interpreting bert. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4166–4176, 2020.

7

https://github.com/GavinPHR/Spectral-Parser
https://openreview.net/forum?id=VOyYhoN_yg


[46] Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun Shou, Ming Gong, Wanjun Zhong,
Xiaojun Quan, Daxin Jiang, and Nan Duan. Syntax-enhanced pre-trained model. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 5412–5422, 2021.

[47] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 3770–3785, 2021.

[48] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ByxRM0Ntvr.

[49] Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and
Sanjiv Kumar. O (n) connections are expressive enough: Universal approximability of sparse
transformers. Advances in Neural Information Processing Systems, 33:13783–13794, 2020.

8

https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr


Contents

1 Introduction 1

1.1 This paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Probing Masked Language Models for Parsing Information 2

2.1 Probing for constituency parse trees . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Probing for the marginal probabilities . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Conclusion 4

A Related Works 10

B Preliminaries 10

B.1 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

B.2 PCFG and parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B.3 Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C More Experiment Results 12

C.1 Details for pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C.2 More results on constituency parsing . . . . . . . . . . . . . . . . . . . . . . . . . 12

C.3 More results on probing marginal probabilities . . . . . . . . . . . . . . . . . . . . 15

C.4 Control tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.5 Analysis of attention patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Parsing using Transformers 19

D.1 Transformers can execute Inside-Outside algorithm . . . . . . . . . . . . . . . . . 19

D.2 Masked language modeling for PCFG . . . . . . . . . . . . . . . . . . . . . . . . 21

D.3 Towards realistic size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E Missing Proofs in Appendix D 22

E.1 Proof of Theorem D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

E.2 Proof of Theorem D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.3 Proof of Theorem D.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F Omitted Details in Appendix D.3 31

F.1 More discussions on computation with few non-terminals . . . . . . . . . . . . . . 31

F.2 More discussions on low-rank approximation . . . . . . . . . . . . . . . . . . . . 32

F.3 Proof for Theorem F.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

F.4 Proof for Theorem D.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F.5 Experiment details in Appendix D.3 . . . . . . . . . . . . . . . . . . . . . . . . . 36

9



Table 3: Perplexity of different models trained on synthetic PCFG data. AiLj refers to a model with
i attention heads and j layers. Except for models with few layers (A12L1) and few attention heads
(A3L12), trained models have nearly the same perplexity.

Model Training ppl. Validation ppl.
A12L12 106.16 106.68
A12L1 111.8 110.57
A12L3 108.09 105.79
A12L6 105.78 104.58
A3L12 120.52 117.39
A24L12 106.28 104.5

Appendix

A Related Works

(Structural) probing Several recent works on probing have aimed to study the encoded information
in BERT-like models [40]. Hewitt and Manning [19], Reif et al. [38], Manning et al. [28], Vilares
et al. [41], Maudslay et al. [31], Maudslay and Cotterell [30], Chen et al. [9], Arps et al. [3], Jawahar
et al. [22] have demonstrated that it is possible to predict various syntactic information present in
the input sequence, including parse trees or POS tags, from internal states of BERT. In contrast to
existing approaches that commonly employ a model pre-trained on natural language, we pre-train our
model under PCFG-generated data to investigate the interplay between the data, the MLM objective,
and the architecture’s capacity for parsing. Besides syntax, probing has also been used to test other
linguistic structures like semantics, sentiment, etc. [6, 38, 23, 39, 42, 12].

Expressive power of transformers Yun et al. [48, 49] show that transformers are universal
sequence-to-sequence function approximators. Later, Pérez et al. [37], Bhattamishra et al. [8] show
that attention models can simulate Turing machines, with Wei et al. [43] proposing statistically
meaningful approximations of Turing machines. To understand the behavior of moderate-size
transformer architectures, many works have investigated specific classes of languages, e.g.
bounded-depth Dyck languages [47], modular prefix sums [2], adders [33], regular languages [7],
and sparse logical predicates [15]. Merrill et al. [32] relate saturated transformers with constant depth
threshold circuits, and Liu et al. [25] provide a unified theory on understanding automata within
transformers. These works study expressive power under a class of synthetic language. Compared
to the prior works, our results are more related to the natural language, as we consider not only a
class of synthetic language (PCFG), but also a specific PCFG tailored to the natural language.

B Preliminaries

B.1 Attention

We’ll focus on encoder-only transformers like BERT and RoBERTa [14, 26], which stack identical
layers with an attention module followed by a feed-forward module. Each attention module has
multiple heads, represented by three matrices Qh,Kh,Vh ∈ Rd×d. For an input sequence of
length L, we use E(ℓ) ∈ RL×d to denote contextual embeddings after layer ℓ’s computations,
where e

(ℓ)
i is the embedding of the ith token. The output of the attention head h at layer ℓ is

v
(ℓ)
i,h =

∑
j∈[L] a

h
i,jVhe

(ℓ), where ahi,j is the attention score between ei and ej for head h:

ah
i,j = fattn(E

(ℓ)K⊤
h ,Qhe

(ℓ)
i )j . (1)

fattn is a non-linear function and is generally used as softmax on E(ℓ)K⊤
h Qhe

(ℓ)
i . Finally, the output

of the attention module is given by
∑

h v
(ℓ)
i,h. This is a general definition of the attention module

and captures the split and merge of the embeddings across the attention heads used in practice.

10



B.2 PCFG and parsing

PCFG model A probabilistic context-free grammar (PCFG) is a language generative model. It is
defined as a 5-tuple G = (N , I,P, n, p), where

• N is the set of non-terminal. I,P ⊂ N are sets of in-terminals and pre-terminals respectively.
N = I ∪ P , and I ∩ P = ϕ.

• [n] is the set of all possible words.
• ∀A ∈ I, B,C ∈ N , there is a rule A → BC.
• For rule A → BC where A ∈ I, B,C ∈ N , there is a probability Pr[A → BC] satisfying for all
A,

∑
B,C Pr[A → BC] = 1.

• For all A ∈ P, w ∈ [n], a rule A → w.
• For each rule A → w where A ∈ P, w ∈ [n], a probability Pr[A → w], which satisfies for all A,∑

w Pr[A → w] = 1.
• A non-terminal Root ∈ I.

Data generation from PCFG Strings are generated from the PCFG G = (N , I,P, n, p) as follows:
we maintain a string st ∈ ([n]∪N )∗ at step t with s1 = ROOT. At step t, if all characters in st belong
to [n], the generation process ends, and st is the resulting string. Otherwise, we pick a character
A ∈ st such that A ∈ N . If A ∈ P , we replace the character A to w with probability Pr[A → w]. If
A ∈ I, we replace the character A to two characters B,C with probability Pr[A → BC].

Parse trees and parsing For a sentence s = w1 . . . wL with length L, a labeled parse tree represents
the likely derivations of a sentence under PCFG G. It is defined as a list of spans with non-terminals
{(A, i, j)} that forms a tree. An unlabelled parse tree is a list of spans that forms a tree.

To find the unlabelled parse tree for a sentence s under the PCFG model, the Labelled-Recall
algorithm [17] is commonly used. This algorithm searches for the tree T = {(i, j)} that maximizes∑

(i,j)∈T score(i, j), where score(i, j) = maxA∈N Pr[A ⇒ wiwi+1 · · ·wj ,Root ⇒ s|G] :=

maxA∈N µ(A, i, j) is the marginal probability of span wiwi+1 · · ·wj under non-terminal A.

Marginal probabilities are computed by Inside-Outside algorithm [5], with the inside probabilities
α(A, i, j) and the outside probabilities β(A, i, j) computed by the following recursion

α(A, i, j)

=
∑
B,C

j−1∑
k=i

Pr[A → BC]α(B, i, k)α(C, k + 1, j), (2)

β(A, i, j)

=
∑
B,C

i−1∑
k=1

Pr[B → CA]α(C, k, i− 1)β(B, k, j) (3)

+
∑
B,C

L∑
k=j+1

Pr[B → AC]α(C, j + 1, k)β(B, i, k)

with the base cases α(A, i, i) = Pr[A → wi] for all A, i and β(Root, 1, L) = 1 for all A. The
marginal probabilities are then computed as

µ(A, i, j) = α(A, i, j)× β(A, i, j). (4)

Parsing performance is evaluated by two types of unlabelled F1 scores, which depend on the average
method: Sentence F1 (average of F1 scores for each sentence) and Corpus F1 (considers total true
positives, false positives, and false negatives).

Normalized Span probabilities Given an input w1, · · · , wL, we define the normalized probabilites
of a span of length ℓ starting at a certain index i as tar(i, i+ ℓ− 1) = s(i, i+ ℓ− 1)/maxj,j′ s(j, j

′),
where s(i, j) = maxA µ(A, i, j) is the marginal probability of span [i, j] and µ(A, i, j) is given by
eq. 4.

11



B.3 Probing

A probe f(·) is a supervised model that predicts a target tar(x) for a given input x [1, 20, 13]. As an
example, Hewitt and Manning [19] used a probe f(·) to predict the tree distance tar(i, j) = dT (i, j)
between words in a dependency parse tree T . Although mathematically equivalent, probes and
supervised models have different goals. The latter aims for high prediction scores, while the former
seeks to identify certain intrinsic information in embeddings [31, 9]. Probes should be limited to
only detect the desired information, with low performance on uncontextualized embeddings and
high performance on contextualized ones.

C More Experiment Results

In this section, we provide more experiment results for RoBERTa pre-trained on PCFG-generated data.
In Appendix C.2, we show more structural probing results related to the experiments in Section 2.1.
In Appendix C.5, we do some simple analysis on the attention patterns for RoBERTa pre-trained on
PCFG-generated data, trying to gain more understanding of the mechanism beneath large language
models.

C.1 Details for pre-training

Experiment setup We generate 107 sentences for the training set from the PCFG, with an average
length of 25 words. The training set is roughly 10% in size compared to the training set of the original
RoBERTa which was trained on a combination of Wikipedia (2500M words) plus BookCorpus (800M
words). We also keep a small validation set of 5×104 sentences generated from the PCFG to track the
MLM loss. We follow [21, 44] to pre-train all our models within a single day on a cluster of 8 RTX
2080 GPUs. Specifically, we train our models with AdamW [27] optimization, using 4096 sequences
in a batch and hyperparameters (β1, β2, ϵ) = (0.9, 0.98, 10−6). We follow a linear warmup schedule
for 1380 training steps with the peak learning rate of 2× 10−3, after which the learning rate drops
linearly to 0 (with the max-possible training step being 2.3× 104). We report the performance of all
our models at step 5× 103 where the loss seems to converge for all the models.

Architecture To understand the impact of different components in the encoder model, we pre-train
different models by varying the number of attention heads and layers in the model. To understand
the role of the number of layers in the model, we start from the RoBERTa-base architecture, which
has 12 layers and 12 attention heads, and vary the number of layers to 1,3,6 to obtain 3 different
architectures. Similarily, to understand the role of the number of attention heads in the model, we
start from the RoBERTa-base architecture and vary the number of attention heads to 3 and 24 to
obtain 2 different architectures.

Data generation from PCFG Strings are generated from the PCFG G = (N , I,P, n, p) as follows:
We always maintain a string st ∈ ([n] ∪N )∗ at step t. The initial string s1 = ROOT. At step t, if all
characters in st belong to [n], the generation process ends, and st is the resulting string. Otherwise,
we pick a character A ∈ st such that A ∈ N . If A ∈ P , we replace the character A to w with
probability Pr[A → w]. If A ∈ I , we replace the character A to two characters BC with probability
Pr[A → BC].

C.2 More results on constituency parsing

More details on probing experiments In Section 2.1, we mention that there are three settings:
PCFG, PTB, and OOD. We generate two synthetic PCFG datasets according to the PCFG generation
process: the first contains 10,000 sentences, which serves as the training set for probes, and the
second contains 2,000 sentences, which serves as the test set for probes. As for the PTB, the training
set for the probes consists of the first 10,000 sentences from sections 02-21, and we use PTB section
22 as the test set for the probes. In the PCFG setting, we train on the PCFG training set we generated,
and test on the PCFG test set. In the PTB setting, we train on the PTB training set (10,000 sentences
in sections 02-21) and test on the PTB test set (section 22). In the OOD setting, we train on the PCFG
training set, while test on the PTB test set (section 22).

12



For the linear probe, we directly use Scikit-learn [35]. For the 2-layer NN probe, we train the neural
net with Adam optimizer with learning rate 1e − 3. We optimize for 800 epochs, and we apply a
multi-step learning rate schedule with milestones 200, 400, 600 and decreasing factor 0.1. The batch
size for Adam is chosen to be 4096.

Probing on embeddings from different layers In Section 2.1, we show the probing results on the
embeddings either from 0-th layer or from the best layer (the layer that achieves the highest F1 score)
of different pre-trained models. In this section, we show how the F1 score changes with different
layers.

Figure 2 shows sentence F1 scores for linear probes f(·) trained on different layers’ embeddings for
different pre-trained models. We show the results under the PCFG and PTB settings. From Figure 2,
we observe that using the embeddings from the 0-th layer can only get sentence F1 scores close to
(or even worse than) the naive Right-branching baseline for all the pre-trained models. However,
except for model A3L12, the linear probe can get at least 60% sentence F1 using the embeddings
from layer 1. Then, the sentence F1 score increases as the layer increases, and gets nearly saturated
at layer 3 or 4. The F1 score for the latter layers may be better than the F1 score at layer 3 or 4, but
the improvement is not significant. The observations still hold if we change the linear probe to a
neural network, consider the OOD setting instead of PCFG and PTB, or change the measurement
from sentence F1 to corpus F1.

Our observations suggest that most of the constituency parse tree information can be encoded in the
lower layers, and a lot of the parse tree information can be captured even in the first layer. Although
our constructions (Theorems D.1 and D.2) and approximations (Theorems D.4 and F.2) try to reduce
the number of attention heads and the number of embedding dimensions close to the real language
models, we don’t know how to reduce the number of layers close to BERT or RoBERTa (although
our number is acceptable since GPT-3 has 96 layers). More understanding of how language models
can process such information in such a small number of layers is needed.

Comparison with probes using other input structures In Section 2.1, we train a probe f(·) to
predict the relative depth tar(i) = depth(i, i+1)− depth(i− 1, i), and the input to the probe f is the
concatenation of the embedding e

(ℓ)
i at position i and the embedding e

(ℓ)
EOS for the EOS token at some

layer ℓ. Besides taking the concatenation [e
(ℓ)
i ; e

(ℓ)
EOS] as the input structure of the probe, it is also

natural to use the concatenation [e
(ℓ)
i−1; e

(ℓ)
i ; e

(ℓ)
i+1] to predict the relative depth tar(i). In this part, we

compare the performances of probes with different input structures. We use EOS to denote the probe
that takes [e(ℓ)i ; e

(ℓ)
EOS] as the input and predicts the relative depth, while ADJ (Adjacent embeddings)

to denote the probe the takes [e(ℓ)i−1; e
(ℓ)
i ; e

(ℓ)
i+1] as input.

Figure 3 shows the probing results on A12L12, the model with 12 attention heads and 12 layers. We
compare the probes with different inputs structure (EOS or ADJ), and the input embeddings come
from different layers (the 0-th layer or the layer that achieves the best F1 score). We observe that:
(1) the probes using ADJ input structure have better parsing scores than the probes using EOS input
structure, and (2) the sentence F1 for the probes using the ADJ input structure is high even if the
input comes from layer 0 of the model (> 55% for linear f(·) and > 60% for neural network f(·)).
Although the probe using ADJ has better parsing scores than the probe using EOS, it is harder to
test whether it is a good probe, since the concatenation of adjacent embeddings [e(0)i−1; e

(0)
i ; e

(0)
i+1]

from layer 0 is already contextualized, and it is hard to find a good baseline to show that the probe is
sensitive to the information we want to test. Thus, we choose to follow Vilares et al. [41], Arps et al.
[3] and use the probe with input structure [e

(ℓ)
i ; e

(ℓ)
EOS] in Section 2.1.

Nonetheless, the experiment results for probes taking [e
(0)
i−1; e

(0)
i ; e

(0)
i+1] as input are already surprising:

by knowing three adjacent word identities and their position (the token embedding e
(0)
i contains

both the word embedding and the positional embedding) and train a 2-layer neural network on
top of that, we can get 62.67%, 63.91%, 57.02% sentence F1 scores under PCFG, PTB, and OOD
settings respectively. As a comparison, the probe taking [e

(ℓ)
i ; e

(ℓ)
EOS] as input [41, 3] only get

39.06%, 39.31%, 33.33% sentence F1 under PCFG, PTB, and OOD settings respectively. It shows
that lots of syntactic information (useful for parsing) can be captured by just using adjacent words
without more context.

13



0 2 4 6 8 10 12
layers (0 denote the embedding layer)

30
35
40
45
50
55
60
65
70

Se
nt

en
ce

 F
1

Sentence F1 under PCFG settting

A12L12
A12L6
A12L3
A12L1

(a) Comparison under PCFG setting. We compare the
models with different number of layers.

0 2 4 6 8 10 12
layers (0 denote the embedding layer)

30
35
40
45
50
55
60
65
70

Se
nt

en
ce

 F
1

Sentence F1 under PCFG settting

A3L12
A12L12
A24L12

(b) Comparison under PCFG setting. We compare the
models with different number of attention heads.

0 2 4 6 8 10 12
layers (0 denote the embedding layer)

30
35
40
45
50
55
60
65
70

Se
nt

en
ce

 F
1

Sentence F1 under PTB settting

A12L12
A12L6
A12L3
A12L1

(c) Comparison under PTB setting. We compare the
models with different number of layers.

0 2 4 6 8 10 12
layers (0 denote the embedding layer)

30
35
40
45
50
55
60
65
70

Se
nt

en
ce

 F
1

Sentence F1 under PTB settting

A3L12
A12L12
A24L12

(d) Comparison under PTB setting. We compare the
models with different number of attention heads.

Figure 2: Sentence F1 for linear probes f(·) trained on different layers’ embeddings for different
pre-trained models. We show the results under PCFG and PTB settings. AiLj denotes the pre-trained
model with i attention heads and j layers.

More discussion on probing measurement (Unlabelled) F1 score is the default performance
measurement in the constituency parsing and syntactic probing literature. However, we would like to
point out that only focusing on the F1 score may cause some bias. Because all the spans have equal
weight when computing the F1 score, and most of the spans in a tree have a short length (if the parse
tree is perfectly balanced, then length 2 spans consist of half of the spans in the parse tree), one can
get a decently well F1 score by only getting correct on short spans. Besides, we also show that by
taking the inputs [e(0)i−1; e

(0)
i ; e

(0)
i+1] from layer 0 of the model (12 attention heads and 12 layers), we

can already capture a lot of the syntactic information useful to recover the constituency parse tree
(get a decently well F1 score). Thus, the F1 score for the whole parse tree may cause people to focus
less on the long-range dependencies or long-range structures, and focus more on the short-range
dependencies or structures.

To mitigate this problem, Vilares et al. [41] computed the F1 score not only for the whole parse tree,
but also for each length of spans. Vilares et al. [41] showed that BERT trained on natural language
can get a very good F1 score when the spans are short (for length 2 spans, the probing F1 is over
80%), but when the span becomes longer, the F1 score quickly drops. Even for spans with length
5, the F1 score is less than 70%, and for spans with length 10, the F1 score is less than 60%. Our
experiments that probe the marginal probabilities for different lengths of spans (Section 2.2) can also
be viewed as an approach to mitigate the problem.

14



PCFG PTB OOD
Different settings

0

10

20

30

40

50

60

70

Se
nt

en
ce

 F
1

Comparison Between Different Probes

EOS, Layer 0
ADJ, Layer 0
EOS, Best Layer
ADJ, Best Layer

(a) Comparison of different inputs under different set-
tings when the probe f(·) is linear.

PCFG PTB OOD
Different settings

0

10

20

30

40

50

60

70

Se
nt

en
ce

 F
1

Comparison Between Different Probes

EOS, Layer 0
ADJ, Layer 0
EOS, Best Layer
ADJ, Best Layer

(b) Comparison of different inputs under different set-
tings when the probe f(·) is a 2-layer neural network.

Figure 3: Comparison of the probes with different inputs under different settings. We probe the
model with 12 attention heads and 12 layers, and report the scores with f(·) taking embeddings from
layer 0 or the embeddings from the best layer. EOS denotes the probe that takes [e(ℓ)i ; e

(ℓ)
EOS] as input

and predicts the relative depth tar(i), and ADJ (Adjacent embeddings) denotes the probe that takes
[e

(ℓ)
i−1; e

(ℓ)
i ; e

(ℓ)
i+1] as input.

Span
Length A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

ℓ = 2 .71 / .93 .69 / .88 .75 / .93 .71 / .93 .76 / .86 .75 / .92
ℓ = 5 .59 / .82 .54 / .64 .47 / .79 .49 / .79 .54 / .71 .48 / .79
ℓ = 10 .43 / .78 .48 / .68 .59 / .73 .45 / .75 .33 / .62 .39 / .72

Table 4: Probing for the “normalized” marginal probabilities of spans at different lengths on different
pre-trained models. We report the Spearman and Pearson correlations (separated by /) between the
predicted probabilities and the span marginal probabilities computed by the Inside-Outside algorithm
on PTB datasets for the 2-linear net probe.

C.3 More results on probing marginal probabilities

In Section 2.2, we conduct probing experiments to demonstrate the predictability of the "normalized
marginal probabilities" computed by the Inside-Outside algorithm using transformer representations.
Our objective is to establish a strong correlation, measured through the Pearson correlation coeffi-
cient. However, we have not provided a comprehensive explanation for our preference for Pearson
correlation over alternative metrics such as Spearman correlation. In the following section, we show
the experiment results measured by the Spearman correlation, and give an explanation of why we
prefer the Pearson correlation over the Spearman correlation.

Measure with Spearman correlation Table 4 summarizes the correlations between the predicted
probabilities and the span marginal probabilities computed by the Inside-Outside algorithm on PTB
datasets for the 2-linear net probes. It is evident that the Spearman correlation is significantly lower
than the Pearson correlation, indicating that the probe primarily captures "linear" correlations rather
than rank-based relationships.

In order to investigate the underlying cause of this phenomenon, we plot the predicted probabilities
against the true normalized marginal probabilities, as shown in Figure 4. Numerous points have
extremely small normalized marginal probabilities, particularly when the probe length ℓ is large (e.g.,
ℓ = 5, 10). This observation aligns with the intuition that the probability of a randomly selected span
existing in the constituency parse tree is low.

However, accurately predicting the exact rank for the points clustered near the origin proves to be
extremely challenging, leading to a relatively low Spearman correlation. In contrast, when considering
the Pearson correlation, the noise associated with predicting spans having low normalized marginal
probabilities is relatively small compared to the overall "variance" of the data points. Furthermore, it

15



(a) Span length to probe: ℓ = 2. (b) Span length to probe: ℓ = 5. (c) Span length to probe: ℓ = 10.

Figure 4: The predicted probability versus true normalized marginal probability plot for different
span lengths ℓ using 2-layer NN probe with the 12-th layer’s representations from A12L12 model.
In each figure, we sample 200 points (each point corresponds to a span) to plot from the test set.
The y-axis denotes the predicted probabilities and the x-axis denotes the true normalized marginal
probabilities. The line shows the best linear fit for all the spans in the test set. We can observe that
there are lots of points that have very small normalized marginal probabilities, and it is very hard to
predict their rank correctly, thus resulting in a low Spearman correlation.

is evident that the probe exhibits greater efficacy in capturing the "influential spans" characterized by
large normalized marginal probabilities. Achieving relatively accurate predictions for these influential
spans accounts for a significant portion of the observed variation, leading to a relatively high Pearson
correlation.

C.4 Control tasks

In probing experiments, it is crucial to ensure that the probing performance accurately reflects
the presence of the specific information we intend to test. Consequently, it is undesirable for the
probe to possess excessive power and be capable of learning all aspects (see Appendix B for further
discussions). Chen et al. [9] utilize the concept of “sensitivity” to assess the extent to which the probe
captures the targeted information. The “sensitivity” of a probe is defined as the difference in probing
performance between the layer of interest and the 0-th layer (see Section 2.1 and Section 2.2 for
further details). Intuitively, a large gap indicates that the probe fails to perform adequately using
representations from the 0-th layer but achieves better performance when utilizing representations
from a later layer, thus confirming the presence of the targeted information. In situations where there
are two probe choices (e.g., a linear classifier or a 2-layer neural network), the option exhibiting
greater “sensitivity” should be selected as it captures a relatively higher amount of the targeted
information.

Hewitt and Liang [18] introduced another metric, known as “selectivity”, to assess the degree to
which the probe captures the targeted information. Broadly speaking, Hewitt and Liang [18] devised
a specific task referred to as the “control task” to evaluate the probe’s capability to align with specific
types of random labels. Subsequently, “selectivity” is defined as the difference in performance
between the probe for the original task, utilizing the layer of interest, and the probe for the control
task, also utilizing the layer of interest. Intuitively, a large gap suggests that the probe lacks sufficient
expressive power, resulting in the performance boost originating from the representations of the layer
being probed, thus confirming the presence of specific information. Similarly, in scenarios involving
two probe choices (e.g., a linear classifier or a 2-layer neural network), the option exhibiting greater
“selectivity” should be preferred as it captures a relatively higher amount of the targeted information.

It is important to note that a probe with higher “sensitivity” does not necessarily imply larger
“selectivity”. Nevertheless, as demonstrated in the subsequent parts, the metrics of “sensitivity” and
“selectivity” align for both the constituency parsing probes (Section 2.1) and the marginal probability
probes (Section 2.2).

Control task Hewitt and Liang [18] considered control task for sequence labeling problems: Given
a sentence x1:T , the goal is to label each word y1:T . For example, the Part-of-speech tagging problem
and the dependency parsing all belong to the sequence labeling category, since for Part-of-speech
tagging, yi is the POS tag of xi, and for dependency parsing, yi is the parent of xi in the parse tree.

16



For a sequence labeling problem, the control task for this sequence labeling problem consists of two
key components:

1. Structure: the output ŷi of a word xi is a deterministic function of xi, i.e., ŷi = ϕ(xi).
2. Randomness: The output ŷi for each word xi is sampled independently at random.

Then, the goal of the control task is to fit the labels ŷ1:T using the probe with the input h1:T where
h1:T denote the hidden representations of the specific layer of the transformer. Please refer to Section
2 of Hewitt and Liang [18] for more details and examples on control task.

Control task for constituency parsing probe For the constituency parsing probe in Section 2.1,
it is easy to design a control task since in Section 2.1 we reduce the constituency parsing problem
to a sequence labeling problem that predicts the relative depth of the common ancestors between
words. Specifically, we have yi = tar(i) = depth(i, i + 1) − depth(i − 1, i) for position i. Then
for the control task, for each word w, we uniformly sample ϕ(w) ∈ {−1, 0, 1}, and then define the
labels for the control task as ŷ1:T = [ϕ(x1), ϕ(x2), . . . , ϕ(xT )].

Control task for marginal probability probe For the marginal probability probe in Section 2.2,
we need to generalize the original control task from sequence labeling problem to span labeling
problem. Given a span xi:j , the original goal is to predict the normalized marginal probability
yi,j = tar(i, j) = s(i, j)/maxj1,j2 s(j1, j2) where s(i, j) is the marginal probability for span i : j
computed by the Inside-Outside algorithm. Now for each pair of words w1, w2, we uniformly
sample ϕ(w1, w2) ∈ [0, 1]. Then for the sequence x1:T , we have the label for the control task
ŷi,j = ϕ(xi, xj).

Selectivity is aligned with Sensitivity Table 5 and Table 6 provide a summary of the performance of
the constituency parsing probe and the marginal probability probes, employing different architectures
(linear classifier and a 2-layer neural network with 16 hidden neurons), on the original task, control
task, as well as the selectivity.

Based on the results presented in Table 5, it is observed that the probe with a 2-layer neural network
achieves slightly higher accuracy in predicting the relative depth of common ancestors, leading to
a higher F1 score in constituency parsing. However, its performance on the control task surpasses
that of the probe with a linear classifier by a significant margin. This suggests that when using the
“selectivity” metric, the linear probe outperforms the 2-layer neural network probe in recovering the
constituency parse tree, aligning with the conclusions drawn using the “sensitivity metric” (see Figure
??, where the sensitivity of the linear probe is greater than that of the 2-layer neural network probe).

Based on the information presented in Table 6, it is evident that the probe utilizing a 2-layer neural
network demonstrates superior performance in predicting span probabilities for the control task.
Nonetheless, compared to the linear probe, the 2-layer neural network probe achieves significantly
better results on the original task, resulting in a larger “selectivity”. Analyzing Figure 1a, we observe
that the 2-layer NN probe exhibits significantly stronger predictive correlation than the linear probe at
the 12-th layer of A12L12, while displaying similar performance at the 0-th layer, which contributes
to a higher “sensitivity”. Consequently, the “selectivity” metric aligns with the “sensitivity” metric
for marginal probability probes, indicating that 2-layer NN probes capture a relatively greater amount
of syntactic information.

C.5 Analysis of attention patterns

In Section 2.1, we probe the embeddings of the models pre-trained on synthetic data generated from
PCFG and show that model training on MLM indeed captures syntactic information that can recover
the constituency parse tree. Theorem D.3 builds the connection between MLM and the Inside-Outside
algorithm, and the connection is also verified in Section 2.2, which shows that the embeddings also
contain the marginal probability information computed by the Inside-Outside algorithm. However,
we only build up the correlation between the Inside-Outside algorithm and the attention models, and
we still don’t know the mechanism inside the language models: the model may be executing the
Inside-Outside algorithm (or some approximations of the Inside-Outside algorithm), but it may also
use some mechanism far from the Inside-Outside algorithm but happens to contain the marginal
probability information. We leave for future work the design of experiments to interpret the content

17



L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

L
in

ea
r pred. rel. depth .606 .760 .789 .796 .800 .803 .803 .803 .802 .801 .800 .800 .799

control task .758 .677 .645 .626 .620 .610 .608 .617 .599 .595 .612 .606 .608
selectivity -.152 .083 .144 .170 .180 .193 .195 .186 .203 .206 .188 .194 .191

N
N

pred. rel. depth .616 .771 .804 .810 .814 .807 .815 .802 .795 .810 .806 .803 .776
control task .861 .793 .758 .667 .728 .653 .653 .668 .678 .693 .680 .697 .687
selectivity -.245 -.022 .046 .143 .086 .154 .162 .134 .117 .117 .126 .106 .089

Table 5: Computing the selectivity of constituency parsing probes with linear and 2-layer NN
architectures (see Section 2.1 and Appendix C.4). The “pred. rel. depth” rows denote the probing
results for the relative depth of common ancestors in the constituency parse tree using different layers’
representations of A12L12. We report the predicting accuracy under the PTB setting where the probe
is trained and tested on PTB dataset. The “control task” rows denote the predicting accuracy for the
control task on PTB dataset using different layers’ representations of A12L12. The selectivity is the
difference between the original task performance and the control task performance. We can observe
that for all layers representations, the probe with a linear classifier has a larger selectivity.

Probe span length 2 3 4 5 10

L
in

ea
r pred. marginal prob. .88 .79 .69 .62 .51

control task .62 .55 .53 .60 .58
selectivity .26 .24 .16 .02 -.07

N
N

pred. marginal prob. .93 .90 .86 .79 .77
control task .66 .66 .69 .66 .68
selectivity .27 .24 .17 .13 .09

Table 6: Computing the selectivity of marginal probability probes with linear and 2-layer NN
architectures (see Section 2.2 and Appendix C.4). The “pred. marginal prob.” rows denote the
probing results for the “normalized” marginal probabilities of spans at different lengths using the
12-th layer of A12L12. We report the Pearson correlation between the predicted probabilities and the
span marginal probabilities computed by the Inside-Outside algorithm on PTB dataset. The “control
task” rows denote the Pearson correlation between the predicted probabilities and the probabilities
generated from the control task on PTB dataset using the 12-th layer of A12L12. The selectivity is the
difference between the original task performance and the control task performance. We can observe
that for spans with all lengths tested, the probe with 2-layer NN has a larger selectivity, especially
when the probe length is large.

of the contextualized embeddings and thus “reverse-engineer” the learned model. In this section, we
take a small step to understand more about the mechanism of language models: we need to open up
the black box and go further than probing, and this section serves as one step to do so.

General idea The key ingredient that distinguishes current large language models and the fully-
connected neural networks is the self-attention module. Thus besides probing for certain information,
we can also look at the attention score matrix and discover some patterns. In particular, we are
interested in how far an attention head looks at, which we called the "averaged attended distance".

Averaged attended distance For a model and a particular attention head, given a sentence s with
length Ls, the head will generate an Ls×Ls matrix A containing the pair-wise attention score, where
each row of A sums to 1. Then we compute the following quantity “Averaged attended distance”

ADs =
1

Ls

∑
1≤i,j≤Ls

|i− j| ·Ai,j ,

which can be intuitively interpreted as “the average distance this attention head is looking at”. We
then take the average of the quantity for all sentences. We compute “Averaged attended distance” for
three models on the synthetic PCFG dataset and PTB dataset. The models all have 12 attention heads
in each layer but have 12, 6, 3 layers respectively.

Experiment results Figure 5 shows the results of the “Averaged attented distance” for each attention
head in different models. Figures 5a, 5c and 5e show the results on the synthetic PCFG dataset, and
Figures 5b, 5d and 5f show the results on the PTB dataset. We sort the attention heads in each layer
according to the “Averaged attended distance”.

18



From Figures 5a, 5c and 5e, we can find that for all models, there are several attention heads in the
first layer that look at very close tokens (“Averaged attended distance” less than 3). Then as the
layer increases, the “Averaged attended distance” also increases in general, meaning that the attention
heads are looking at further tokens. Then at some layer, there are some attention heads looking at very
far tokens (“Averaged attended distance” larger than 12).4 This finding also gives some implication
that the model is doing something that correlates with our construction: it looks longer spans as the
layer increases. However, different from our construction that the attention head only looks at a fixed
length span, models trained using MLM look at different lengths of spans at each layer, which cannot
be explained by our current construction, and suggests a further understanding of the mechanism of
large language models.

Besides, we can find that the patterns are nearly the same for the synthetic PCFG dataset and PTB
dataset, and thus the previous finding can also be transferred to the PTB dataset.

D Parsing using Transformers

We design transformers with moderate layers and heads for parsing and masked language modeling.
In Appendix D.1, we prove that transformers can execute the Inside-Outside algorithm for
bounded-length sentences with any PCFG. In Appendix D.2, we connect our construction with
masked language modeling and demonstrate the optimality of the Inside-Outside algorithm for MLM
on PCFG-generated data. Finally, in Appendix D.3, we demonstrate the ability to reduce the size
of these constructions while retaining their parsing performance.

D.1 Transformers can execute Inside-Outside algorithm

We first give a construction (Theorem D.1) that relies on hard attention, where only one of the at-
tended positions will have positive attention score. For this construction, we define fattn : RL×d ×Rd

such that the attention scores in eq. 1 are given by

ah
i,j = ReLU((Khe

(ℓ)
j )⊤Qhe

(ℓ)
i ). (5)

This is similar to softmax attention used in practice, with softmax replaced by ReLU activation.

Theorem D.1 (Hard attention). There exists a model with hard attention modules (5), (4|N |+ 1)L
embeddings, 2L− 1 layers, and 4|N | attention heads in each layer that simulates the Inside-Outside
algorithm on all sentences with length at most L generated by PCFG G = (N , I,P, n, p) and embed
all inside and outside probabilities.

Proof sketch. We give the proof sketch and defer details to Appendix E.1. The core idea is to use
the first L layers to compute the inside probabilities with the recursive eq. 2. Each layer ℓ ≤ L
computes α(A, i, j) for all position pairs (i, j) with j − i = ℓ and all non-terminals A. The next L
layers compute the outside probabilities with the recursive eq. 3. Each layer L+ ℓ > L computes
β(A, i, j) for all position pairs (i, j) with j − i = L− ℓ and all non-terminals A.

At any position i in a layer ℓ ≤ L, the input token embeds inside probabilities of all spans with a
maximum length of ℓ, starting and ending at i: α(A, i, j) and α(A, k, i) for all non-terminals A and
position tuples (i, j, k) where j−i < ℓ, i−k < ℓ. To compute α(A, i, i+ℓ) at each position i for each
non-terminal A, we use an attention head that calculates an inner product between the embeddings at
positions i and i+ ℓ, weighted by the matrix containing Pr[A → BC]B,C∈N . The token at position i
attends only to the token at i+ℓ thanks to the position embeddings and hard attention. We use another
attention head to compute α(A, i− ℓ, i), and store the new inside probability terms along with the
previous ones in the embeddings. We use a similar technique to compute the outside probabilities in
the next L layers. In layer L+ ℓ, we use two attention heads to compute β(A, i, i+ L− ℓ) for each
non-terminal A and position i, as there are two terms to compute in 3. We use two additional attention
heads to compute β(A, i− L+ ℓ, i), resulting in four attention heads for each non-terminal.

4Note that the average length of the sentences in the synthetic PCFG dataset is around 24, if the attention
head gives 0.5 attention score to the first and the last token for every token, the “Averaged attended distance”
will be 12.

19



1 2 3 4 5 6 7 8 9 10 11 12
Attention head

1
2

3
4

5
6

7
8

9
10

11
12

La
ye

r

1.7 1.8 1.9 2.2 2.4 2.6 2.7 8 8.1 8.2 8.4 8.5

1.9 2.7 2.8 4.2 5.1 5.5 7.1 7.1 7.4 8.4 8.9 9.3

4.1 4.5 4.8 6 6.8 6.9 7.7 7.8 7.8 7.8 8.4 10

5.5 6.3 6.8 7 7.5 7.8 7.9 8 8.2 8.2 8.3 9.2

5.9 6.1 6.6 6.7 7 7.1 7.1 7.2 7.2 7.3 7.9 8.1

7.5 7.6 7.6 7.7 7.7 7.8 8 8.2 8.9 11 11 12

7.1 7.2 7.3 7.7 7.9 7.9 8.1 8.3 8.4 8.6 9.1 12

6.3 7.2 7.4 7.4 7.5 7.9 7.9 8 8 8.1 8.2 8.5

7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.2

8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.4

8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2

8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3

Average attended distance

2

4

6

8

10

(a) 12 attention heads and 12 layers, PCFG dataset.

1 2 3 4 5 6 7 8 9 10 11 12
Attention head

1
2

3
4

5
6

7
8

9
10

11
12

La
ye

r

1.7 1.8 1.9 2.2 2.4 2.6 2.9 8.2 8.3 8.4 8.5 8.7

2 2.8 2.9 4.4 5.3 5.6 7.4 7.7 8.1 8.6 9.1 9.7

4.2 4.8 5.1 6 7.2 7.5 7.9 7.9 8.1 8.3 9.3 11

5.8 6.6 7.2 7.4 7.8 7.9 8.2 8.3 8.3 8.4 8.6 9.7

6.2 6.2 7.1 7.2 7.4 7.5 7.5 7.5 7.6 7.7 7.9 8.3

7.6 7.7 7.7 7.8 7.9 8 8.1 8.8 9.3 11 11 12

7.5 7.8 7.8 7.9 8.1 8.1 8.3 8.6 8.8 9.3 9.3 12

6.9 7.7 7.8 8 8.1 8.1 8.1 8.2 8.2 8.3 8.3 8.8

8.1 8.2 8.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.4 8.5

8.3 8.3 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.5

8.3 8.3 8.3 8.3 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4

8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.5

Average attended distance

2

4

6

8

10

12

(b) 12 attention heads and 12 layers, PTB dataset.

1 2 3 4 5 6 7 8 9 10 11 12
Attention head

1
2

3
4

5
6

La
ye

r

1.7 1.7 1.8 2 2.6 2.9 3.5 3.7 8.3 8.3 8.4 8.5

1.7 3 3.7 4.3 6.5 6.9 8.1 8.3 8.3 8.4 8.5 8.8

4.7 5 5.3 5.7 6 6.2 6.5 6.9 7.2 7.2 7.8 8.7

5.4 6 6.3 6.4 6.4 6.7 6.8 7 7.3 7.5 8.2 8.7

6 6.5 7.3 7.6 7.6 7.7 7.8 7.9 8 8.1 8.1 10

7.8 7.9 8 8 8 8.1 8.1 8.1 8.2 8.2 8.4 9

Average attended distance

2

3

4

5

6

7

8

9

10

(c) 12 attention heads and 6 layers, PCFG dataset.

1 2 3 4 5 6 7 8 9 10 11 12
Attention head

1
2

3
4

5
6

La
ye

r

1.7 1.8 1.9 2 2.6 2.7 3.6 3.8 8.6 8.6 8.6 8.8

1.7 3.1 3.7 4.5 7.1 7.3 8.3 8.4 8.6 8.7 8.7 9

5.1 5.2 5.6 6.1 6.4 6.6 6.7 7.2 7.8 8 8 9.3

5.7 6.2 6.5 6.6 6.7 6.9 7.2 7.5 7.7 8 8.4 9.3

6.2 7 7.5 7.9 8 8 8.1 8.2 8.5 8.5 8.5 11

8 8.1 8.1 8.2 8.2 8.3 8.3 8.3 8.4 8.4 8.8 9.1

Average attended distance

2

3

4

5

6

7

8

9

10

(d) 12 attention heads and 6 layers, PTB dataset.

1 2 3 4 5 6 7 8 9 10 11 12
Attention head

1
2

3
La

ye
r 1.4 1.7 1.7 1.7 2.4 2.9 3.5 6.4 8 8.2 8.5 8.5

3 3.9 5.4 6 7 8.1 8.4 8.5 8.5 9 11 12

5.8 6 11 12 12 12 12 12 12 12 12 12

Average attended distance

2

4

6

8

10

(e) 12 attention heads and 3 layers, PCFG dataset.

1 2 3 4 5 6 7 8 9 10 11 12
Attention head

1
2

3
La

ye
r 1.5 1.7 1.7 1.7 2.5 3 3.6 7.2 8.3 8.5 8.6 8.7

3.2 4.3 5.6 6.5 7.3 8.6 8.7 9 9.2 9.7 12 13

6.2 6.4 11 12 12 12 12 12 12 12 12 12

Average attended distance

2

4

6

8

10

12

(f) 12 attention heads and 3 layers, PTB dataset.

Figure 5: “Averaged attented distance” of each attention heads for different models on PCFG and
PTB datasets. Figures 5a, 5c and 5e show the results on the synthetic PCFG dataset, and Figures 5b,
5d and 5f show the results on the PTB dataset.

To further reduce embedding size and attention heads, we introduce relative positions and use soft
attention. We introduce 2L + 1 relative position vectors {pt ∈ Rd}−L≤t≤L, and relative position
biases {bt,ℓ ∈ R}−L≤t≤L,1≤ℓ≤2L−1 that modify the key vectors depending on the relative position
of the query and key tokens. For an attention head h in layer ℓ, the attention score ahi,j is given by

ah
i,j = ReLU(Khe

(ℓ)
j + pj−i − bj−i,ℓ)

⊤Qhe
(ℓ)
i . (6)

Theorem D.2 (Relative positional embeddings). There exists a model with attention module (6),
2|N |L+1 embeddings, 2L−1 layers, and |N | attention heads in each layer that simulate the Inside-

20



Approximation Corpus F1 Sent F1 ppl.
No approx. 75.90 78.77 50.80

|Ĩ| = 10, |P̃| = 45 57.14 60.32 59.57
|Ĩ| = 20, |P̃| = 45 68.41 71.91 55.16
|Ĩ| = 40, |P̃| = 45 72.45 75.43 54.09

Table 7: Restricting computations of the Inside-Outside algorithm to the most frequent in(pre)-
terminal subsets Ĩ (P̃) in the PTB sections 02-21. We report the unlabelled F1 scores on PTB section
22 and the 1-masking perplexity on 200 sentences generated from the PCFG. |Ĩ| = 20, |P̃| = 45
resulted in a 8.58% increase in perplexity and 8.71% decrease in parsing F1 scores.

Outside algorithm on all sentences with length at most L generated by PCFG G = (N , I,P, n, p)
and embed all inside and outside probabilities.

The proof is deferred to Appendix E.2. Theorem D.2 uses one attention head to compute layer-wise
inside/outside probabilities per non-terminal, and only requires |N | heads in each layer. Once we
have the inside and outside probabilities for spans, we can directly build the parse tree using the
Labelled-Recall algorithm, which acts as a “probe” on the contextual representations of the model.

D.2 Masked language modeling for PCFG

The Inside-Outside algorithm not only can parse but also has a connection to masked language mod-
eling (MLM), the pre-training loss used by BERT. The following theorem shows that, if the language
is generated from a PCFG, then the Inside-Outside algorithm achieves the optimal MLM loss.
Theorem D.3. Assuming language is generated from a PCFG, the Inside-Outside algorithm reaches
the optimal MLM loss.

The Inside-Outside algorithm optimizes MLM loss on PCFG data, suggesting that pre-training
on such data enables implicit learning of the algorithm or its computed quantities. Consequently,
intermediate layers can capture syntactic information for parsing, potentially explaining the presence
of structural information in language models [19, 41, 3]. We validate this conjecture in Section 2.2.

D.3 Towards realistic size

For PCFG learned on the PTB training set (PTB sections 02-21) with an average sentence length
of 25 [36], Appendix D.1 requires 1600 attention heads, 3200L embedding dimensions, and 2L
layers to simulate the Inside-Outside algorithm for sentences of length L, which is much larger than
BERT. However, by utilizing the inherent sparsity in the English PCFG, we can reduce the number
of attention heads and the width of the embeddings while maintaining decent parsing performance.
The details are deferred to Appendix F.

First ingredient: finding important non-terminals In the constructions of Theorems D.1 and D.2,
the number of attention heads and embedding dimensions depend on the number of non-terminals of
the PCFG. Thus if we can find a smaller PCFG, we can make the model much smaller. Specifically,
if we only compute the probabilities of a specific set of in-terminals Ĩ and pre-terminals P̃ in eq. 2
and 3, we can reduce the number of attention heads from |N | to max{|Ĩ|, |P̃|}.5

We sort the non-terminals in terms of their frequency of occurrence in the PTB training set and show
that restricting the Inside-Outside computation to a few frequent non-terminals has a negligible drop
in performance (Table 7). The parsing score is still highly non-trivial, since the naive baseline, Right
Branching (RB), can only get < 40% sentence and corpus F1 scores on PTB dataset.

Second ingredient: utilizing structures across non-terminals We still use one attention head
to represent the computation for a specific non-terminal, which does not utilize possible underlying
correlations between different non-terminals. Specifically, for Theorem D.2, we use one attention

5When |P̃| < c|Ĩ|, we can simulate the computations in the final layer using c layers with |Ĩ| heads instead
of |P̃| heads. Additionally, we can decrease the embedding size by only storing probabilities for relevant
non-terminals.

21



Approximation Corpus F1 Sent F1 ppl.
|Ĩ| = 10, |P̃| = 45 57.14 60.32 59.57
|Ĩ| = 20, |P̃| = 45 68.41 71.91 55.16

k(ℓ) = 10, |Ĩ| = 20, |P̃| = 45 61.72 65.31 57.05
k(ℓ) = 15, |Ĩ| = 20, |P̃| = 45 68.20 71.33 55.52

Table 8: Approximate Inside-Outside algorithm using linear transformations {W (ℓ) ∈ Rk(ℓ)×|Ĩ|}
on the inside/outside probabilities of the selected subset Ĩ. We report the F1 scores on PTB section
22 and the 1-masking perplexity on 200 sentences generated from the PCFG. Applying linear
transformations can further reduce the number of attention heads in the constructed model to 15
starting from 20 frequent non-terminals subset Ĩ, while only changing the performance by at most
1%.

head at layer ℓ < L to compute the inside probabilities α(A, i, j) with j − i = ℓ. If α(A, i, j) for
different non-terminals A ∈ Ĩ lie in a k(ℓ)-dimensional subspace with k(ℓ) < |Ĩ|, we can compute
all of the inside probabilities using only k(ℓ) attention heads by computing the vector W (ℓ)α(i, j),
where W (ℓ) ∈ Rk(ℓ)×|Ĩ| is the transformation matrix and α(i, j) ∈ R|Ĩ| is the concatenation of
all inside probabilties α(A, i, j)A∈Ĩ . The same procedure can also be applied to the computation
of outside probabilities. 6 Although the probabilities should not lie in a low dimensional subspace
in reality, we can still try to learn a transformation matrix W (ℓ) ∈ Rk(ℓ)×|Ĩ| and approximately
compute the inside probabilities by α(i, j) = (W (ℓ))†W (ℓ)α∗(i, j) for j − i = ℓ, where α∗(i, j)

denotes the Inside probabilities for non-terminals in Ĩ. Please refer to Appendix F.4 for more details.

Learning the transformations For sentence s and a span with length ℓ + 1, we compute the
marginal probabilities of this span µi,j

s ∈ R|Ĩ|, that contains µ(A, i, j) for each non-terminal
A ∈ Ĩ. We then compute the normalized correlation matrix X(ℓ) =

∑
s X

(ℓ)
s /∥X(ℓ)

s ∥F, where
X

(ℓ)
s =

∑
i,j:j−i=ℓ µ

i,j
s (µi,j

s )⊤, which captures the correlation of Ĩ for spans with length ℓ+1 in the
entire corpus. We apply the Eigen-decomposition on Xℓ and set W (ℓ) as the top k(ℓ) Eigen-vectors.

The parsing results and 1-masking perplexity using {W (ℓ)}ℓ≤L with different k(ℓ) are shown in
Table 8. Utilizing the linear transformations, we obtain 71.33% and 65.31% sentence F1 on PTB
with only 15 and 10 attention heads respectively, whereas only computing probabilities for top-10
in-terminals gives 60.32% sentence F1 on PTB. The following theorem summarizes the results.

Theorem D.4 (Informal). There exists a model with attention module (6), 275 + 40L embeddings,
2L+ 1 layers, and 15 attention heads in each layer that can approximately execute Inside-Outside
algorithm on all sentences with length at most L generated by English PCFG, introducing 8.6%
increase in average 1-mask perplexity and resulting in at most 9.45% drop in the parsing performance
of Labeled-Recall algorithm.

E Missing Proofs in Appendix D

In this section, we show the detailed proof for Theorem D.1, Theorem D.2, and Theorem D.3.

E.1 Proof of Theorem D.1

Proof. The first L − 1 layers simulate the recursive formulation of the Inside probabilities from
eq. 2, and the last L− 1 layers simulate the recursive formulation of the outside probabilities from
eq. 3. The model uses embeddings of size 4|N |L+ L, where the last L coordinates serve as one-hot
positional embeddings and are kept unchanged throughout the model.

Notations: For typographical simplicity, we will divide our embeddings into 5 sub-parts. We will
use the first 2|N |L coordinates to store the inside probabilities, the second 2|N |L coordinates to
store the outside probabilities, and the final L coordinates to store the one-hot positional encodings.

6The computation for A ∈ P̃ needs |P̃| heads in the last layer and can be simulated by several layers with
fewer heads.

22



For every position i and span length ℓ + 1, we store the inside probabilities {α(A, i, i + ℓ)}A∈N
after computation in its embedding at coordinates [|N |ℓ, |N |(ℓ+ 1)). Similarly we store {α(A, i−
ℓ, i)}A∈N at [|N |(L+ℓ), |N |(L+ℓ+1)), {β(A, i, i+ℓ)}A∈N at [|N |(2L+ℓ), |N |(2L+ℓ+1)), and
{β(A, i− ℓ, i)}A∈N at [|N |(3L+ ℓ), |N |(3L+ ℓ+ 1)) respectively. For simplicity of presentation,
we won’t handle cases where i+ ℓ or i− ℓ is outside the range of 1 to L - those coordinates will be
fixed to 0.

Token Embeddings: The initial embeddings for each token w will contain Pr[A → w] for all
A ∈ P . This is to initiate the inside probabilities of all spans of length 1. Furthermore, the tokens
will have a one-hot encoding of their positions in the input in the last L coordinates.

Inside probabilities: The contextual embeddings at position i after the computations of any layer
ℓ < L contains the inside probabilities of all spans of length at most ℓ + 1 starting and ending at
position i, i.e. α(A, i, i+ k) and α(A, i− k, i) for all A ∈ N and k ≤ ℓ. The rest of the coordinates,
except the position coordinates, contain 0.

Layer 1 ≤ ℓ < L: At each position i, this layer computes the inside probabilities of spans of
length ℓ+ 1 starting and ending at i, using the recursive formulation from eq. 2.

For every non-terminal A ∈ N , we will use a unique attention head to compute α(A, i, i + ℓ) at
each token i. Specifically, the attention head representing non-terminal A ∈ N will represent the
following operation at each position i:

α(A, i, j)

=
∑

B,C∈N

j−1∑
k=i

Pr[A → BC] · α(B, i, k) · α(C, k + 1, j)

=
∑

B,C∈N

∑
ℓ1,ℓ2≥0

ℓ1+ℓ2=ℓ−1

Pr[A → BC]

· α(B, i, i+ ℓ1) · α(C, j − ℓ2, j), (7)

where j = i+ ℓ. In the final step, we modified the formulation to represent the interaction of spans
of different lengths starting at i and ending at j. We represent this computation as the attention score
ai,j using a key matrix K

(ℓ)
A and query matrix Q

(ℓ)
A .

Computing Eq. 7 We set the Key matrix K
(ℓ)
A as I . The Query matrix Q

(ℓ)
A is set such that if

we define PA ∈ R|N |×|N| that contains {Pr[A → BC]}B,C∈N , PA appears at positions (|N |(L+

ℓ2), |N |ℓ1) for all ℓ1, ℓ2 ≥ 0 with ℓ1 + ℓ2 = ℓ− 1. Finally, Q(ℓ)
A contains Qp ∈ RL×L at position

(4|N |L, 4|N |L), such that Qp[i, i + ℓ] = 0 for 0 ≤ i < L, with the rest set to −ζ for some large
constant ζ. The rest of the blocks are set as 0. We give an intuition behind the structure of Q(ℓ)

A
below.

Intuition behind Q
(ℓ)
A : For any position i and range ℓ1 ≤ ℓ, e(ℓ−1)

i contains the inside probabilities
{α(C, i− ℓ1, i)}C∈N in the coordinates [|N |(L+ ℓ1), |N |(L+ ℓ1 +1)), while it contains the inside
probabilities {α(B, i, i + ℓ1)}B∈N in the coordinates [|N |ℓ1, |N |(ℓ1 + 1)). Hence, if we set the
block at position (|N |(L+ ℓ2), |N |ℓ1) in Q

(ℓ)
A to PA for some 0 ≤ ℓ1, ℓ2 ≤ ℓ, with the rest set to 0,

we can get for any two positions i, j,

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i

=
∑

B,C∈N

Pr[A → BC] · α(B, i, i+ ℓ1) · α(C, j − ℓ2, j).

Because we want to involve the sum over all ℓ1, ℓ2 pairs with ℓ1 + ℓ2 = ℓ− 1, we will set blocks at
positions {(|N |(L+ ℓ2), |N |ℓ1)}ℓ1,ℓ2:ℓ1+ℓ2=ℓ−1 to PA, while setting the rest to 0. This gives us

23



(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i

=
∑

B,C∈N

∑
ℓ1,ℓ2≥0

ℓ1+ℓ2=ℓ−1

Pr[A → BC] · α(B, i, i+ ℓ1)

· α(C, j − ℓ2, j).

However, we want (K(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i to compute α(A, i, j) iff j = i + ℓ and 0 otherwise,

so we will use the final block in Q
(ℓ)
A that focuses on the one-hot position encodings of i and j to

differentiate the different location pairs. Specifically, the final block Qp will return 0 if j = i+ ℓ,
while it returns −ζ for some large constant ζ if j ̸= i+ ℓ. This gives us

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i

=ζ(I[j − i = ℓ]− 1) +
∑

B,C∈N

∑
ℓ1,ℓ2≥0

ℓ1+ℓ2=ℓ−1

Pr[A → BC]

· α(B, i, i+ ℓ1) · α(C, j − ℓ2, j). (8)

With the inclusion of the term ζ(I[j − i = ℓ]− 1), we make (K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i positive if

j− i = ℓ, and negative if j− i ̸= ℓ. Applying a ReLU activation on top will zero out the unnecessary
terms, leaving us with α(A, i, i+ ℓ) at each location i.

Similarly, we use another |N | attention heads to compute α(A, i−ℓ, i). In the end, we use the residual
connections to copy the previously computed inside probabilities α(A, i− ℓ′, i) and α(A, i, i+ ℓ′)
for ℓ′ < ℓ.

Outside probabilities: In addition to all the inside probabilities, the contextual embeddings at
position i after the computations of any layer (2L− 1)− ℓ (≥ L) contain the outside probabilities of
all spans of length at least ℓ+1 starting and ending at position i, i.e. β(A, i, i+ k) and β(A, i− k, i)
for all A ∈ N and k ≥ ℓ. The rest of the coordinates, except the position coordinates, contain 0.

Layer L In this layer, we initialize the outside probabilities β(ROOT, 1, L) = 1 and β(A, 1, L) = 0
for A ̸= ROOT. Furthermore, we move the inside probabilities α(A, i+1, i+ k) from position i+1
to position i, and α(A, i− k, i− 1) from position i− 1 to position i using 2 attention heads.

Layer L+ 1 ≤ ℓ̃ := (2L− 1)− ℓ ≤ 2L− 1: At each position i, this layer computes the outside
probabilities of spans of length ℓ+ 1 starting and ending at i, using the recursive formulation from
eq. 3. The recursive formulation for β(A, i, i+ ℓ) for a non-terminal A ∈ N has two terms, given by

β(A, i, j) =β1(A, i, j) + β2(A, i, j), with

β1(A, i, j) =
∑

C,B∈N

i−1∑
k=1

Pr[B → CA]

· α(C, k, i− 1)β(B, k, j), and (9)

β2(A, i, j) =
∑

B,C∈N

L∑
k=j+1

Pr[B → AC]

· α(C, j + 1, k)β(B, i, k), (10)

where j = i+ℓ. For each non-terminal A ∈ N , we will use two unique heads to compute β(A, i, i+ℓ)
, each representing one of the two terms in the above formulation. We outline the construction for β1;
the construction for β2 follows similarly.

Computing Eq. 9 We build the attention head in the same way we built the attention head to
represent the inside probabilities in eq. 8. Similar to 8, we modify the formulation of β1 to highlight
the interaction of spans of different lengths.

24



β1(A, i, j) =
∑

B,C∈N

∑
ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]

· α(C, i− ℓ1, i− 1)β(B, j − ℓ2, j), (11)

where j = i+ ℓ. We represent this computation as the attention score ai,i+ℓ using a key matrix K
(ℓ̃)
A,1

and query matrix Q
(ℓ̃)
A,1. First, we set the Key matrix K

(ℓ̃)
A,1 as I . If we define PA,r ∈ R|N |×|N|

as a matrix that contains {Pr[B → CA]}B,C∈N , which is the set of all rules where A appears

as the right child, Q(ℓ̃)
A,1 is set such that PA,r appears at positions [|N |(3L + ℓ2), |N |(L + ℓ1))

for all 0 ≤ ℓ1, ℓ2 ≤ L that satisfy ℓ2 − ℓ1 = ℓ. Finally, Q(ℓ̃)
A,1 contains Qp ∈ RL×L at position

(4|N |L, 4|N |L), such that Qp[i, i + ℓ] = 0 for 0 ≤ i < L, with the rest set to −ζ for some large

constant ζ. The rest of the blocks are set as 0. We give an intuition behind the structure of Q(ℓ̃)
A,1

below.

Intuition for Q(ℓ̃)
A,1: For position i and any ranges 1 ≤ ℓ1 < L, ℓ+1 ≤ ℓ2 ≤ L, e(ℓ̃−1)

i contains the
inside probabilities {α(C, i−ℓ1, i−1)}C∈N in the coordinates [|N |(L+ℓ1), |N |(L+ℓ1+1)), while
it contains the outside probabilities {β(B, i−ℓ2, i)}B∈N in the coordinates [|N |(3L+ℓ2), |N |(3L+
ℓ2 + 1)). Hence, if we set the block at position (|N |(3L + ℓ2), |N |(L + ℓ1)) to PA for some
0 ≤ ℓ1 ≤ L, ℓ+ 1 ≤ ℓ2 ≤ L, with the rest set to 0, we can get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i

=
∑

B,C∈N

Pr[B → CA] · α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j).

Because we want to include the sum over ℓ1, ℓ2 pairs with ℓ2 − ℓ1 = ℓ, we will only set blocks at
positions [|N |(3L+ ℓ2), |N |(L+ ℓ1)) for all 0 ≤ ℓ1, ℓ2 ≤ L that satisfy ℓ2 − ℓ1 = ℓ to PA,r, while
setting the rest to 0. This gives us

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i

=
∑

B,C∈N

∑
ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]

· α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j).

Because we want (K(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i to compute β1(A, i, j) with j = i+ ℓ and 0 otherwise,

we will use the final block in Q
(ℓ)
A that focuses on the one-hot position encodings of i and j to

differentiate the different location pairs. Specifically, the final block Qp will return 0 if j = i+ ℓ,
while it returns −ζ for some large constant ζ, if j ̸= i+ ℓ. This gives us

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i

=ζ(I[j − i = ℓ]− 1) +
∑

B,C∈N

∑
ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]

· α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j)

With the inclusion of the term ζ(I[j − i = ℓ] − 1), we make (K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i positive if

j− i = ℓ, and negative if j− i ̸= ℓ. Applying a ReLU activation on top will zero out the unnecessary
terms, leaving us with β1(A, i, i+ ℓ) at each location i.

Besides, we also need 2|N | additional heads for the outside probabilities β(A, i− ℓ, i). In the end,
we use the residual connections to copy the previously computed inside probabilities β(A, i− ℓ′, i)
and α(A, i, i+ ℓ′) for ℓ′ > ℓ.

25



E.2 Proof of Theorem D.2

Similar to the proof of Theorem D.1, the first L− 1 layers simulate the recursive formulation of the
Inside probabilities from eq. 2, and the last L− 1 layers simulate the recursive formulation of the
outside probabilities from eq. 3. The model uses embeddings of size 2|N |L and uses 4L+ 2 relative
position embeddings.

Notations: For typographical simplicity, we will divide our embeddings into 2 sub-parts. We will
use the first |N |L coordinates to store the inside probabilities, and the second |N |L coordinates
to store the outside probabilities. For every position i and span length ℓ + 1, we store the inside
probabilities {α(A, i−ℓ, i)}A∈N after computation in its embedding at coordinates [|N |ℓ, |N |(ℓ+1)),
where the coordinates for embeddings start from 0. Similarly we store {β(A, i, i + ℓ)}A∈N at
[|N |(L+ ℓ), |N |(L+ ℓ+ 1)). For simplicity of presentation, we won’t handle cases where i+ ℓ or
i− ℓ is outside the range of 1 to L - those coordinates will be fixed to 0.

Token Embeddings: The initial embeddings for each token w will contain Pr[A → w] for all
A ∈ P . This is to initiate the inside probabilities of all spans of length 1.

Relative position embeddings: We introduce 2L + 1 relative position vectors {pt ∈
R2|N |L}−L≤t≤L, that modify the key vectors depending on the relative position of the query
and key tokens. Furthermore, we introduce (2L − 1)L relative position-dependent biases {bt,ℓ ∈
R}−L≤t≤L,1≤ℓ≤2L−1. We introduce the structures of the biases in the contexts of their intended uses.

Structure of {pt}−L≤t≤L: For t < 0, we define pt such that all coordinates in [|N |(−t −
1), |N |(−t)) are set to 1, with the rest set to 0. For t > 0, we define pt such that all coordinates in
[|N |(L+ t− 1), |N |(L+ t)) are set to 1, with the rest set to 0. p0 is set as all 0s.

Attention formulation: At any layer 1 ≤ ℓ ≤ 2L− 1 except L, we define the attention score ahi,j

between e
(ℓ−1)
i and e

(ℓ−1)
j for any head h with Key and Query matrices K(ℓ)

h and Q
(ℓ)
h as

ah
i,j = ReLU(K

(ℓ)
h e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
h e

(ℓ−1)
i . (12)

For layer L, we do not use the relative position embeddings, i.e. we define the attention score ahi,j

between e
(L−1)
i and e

(L−1)
j for any head h with Key and Query matrices K(L)

h and Q
(L)
h as

ah
i,j = ReLU(K

(L−1)
h e

(L−1)
j − bj−i,L)

⊤Q
(ℓ)
h e

(L−1)
i . (13)

Inside probabilities: The contextual embeddings at position i after the computations of any layer
ℓ < L contains the inside probabilities of all spans of length at most ℓ+ 1 ending at position i, i.e.
α(A, i− k, i) for all A ∈ N and k ≤ ℓ. The rest of the coordinates contain 0.

Structure of {bt,ℓ}−L≤t≤L,1≤ℓ≤L−1: For any 1 ≤ ℓ ≤ L − 1, for all t ≥ 0 and t < −ℓ, we set
bt,ℓ as ζ for some large constant ζ. All other biases are set as 1.

Layer 1 ≤ ℓ < L: At each position i, this layer computes the inside probabilities of spans of
length ℓ+ 1 ending at i, using the recursive formulation from eq. 2.

For every non-terminal A ∈ N , we will use a unique attention head to compute α(A, i − ℓ, i) at
each token i. Specifically, the attention head representing non-terminal A ∈ N will represent the
following operation at each position i:

α(A, i− ℓ, i)

=
∑

B,C∈N

i−1∑
j=i−ℓ

Pr[A → BC]α(B, i− ℓ, j)α(C, j + 1, i)

26



=

i−1∑
j=i−ℓ

∑
B,C∈N

Pr[A → BC]α(B, i− ℓ, j)α(C, j + 1, i). (14)

In the final step, we swapped the order of the summations to observe that the desired computation
can be represented as a sum over individual computations at locations j < i. That is, we represent∑

B,C∈N Pr[A → BC] ·α(B, i− ℓ, j) ·α(C, j+1, i) as the attention score ai,j for all i− ℓ ≤ j ≤ i,
while α(A, i− ℓ, i) will be represented as

∑
i−ℓ≤j<i−1 ai,j .

Structure of Q(ℓ)
A and K

(ℓ)
A to compute Eq. 14:

1. K
(ℓ)
A is a rotation matrix such that in K

(ℓ)
A e

(ℓ)
i , for all ℓ1 ≤ ℓ, the inside probabilities

{α(B, i− ℓ1, i)}B∈N appears in the coordinates [|N |(ℓ− ℓ1), |N |(ℓ− ℓ1 + 1)). Note that
K

(ℓ)
A are the same for different A, and only depend on ℓ.

2. The Query matrix Q
(ℓ)
A is a block diagonal matrix, such that if we define PA ∈ R|N |×|N|

that contains {Pr[A → BC]}B,C∈N , PA appears in the first ℓ blocks along the diagonal,
i.e. it occurs at all positions starting at (|N |ℓ1, |N |ℓ1) for all ℓ1 < ℓ. The rest of the blocks
are set as 0s.

Intuition behind Q
(ℓ)
A , K(ℓ)

A , the relative position embeddings and the biases: For any position
i and range ℓ1 < ℓ, e(ℓ−1)

i contains the inside probabilities {α(C, i− ℓ1, i)}C∈N in the coordinates
[|N |ℓ1, |N |(ℓ1 + 1)). With the application of K(ℓ)

A , K(ℓ)
A e

(ℓ−1)
i contains the inside probabilities

{α(C, i− ℓ1, i)}C∈N in the coordinates [|N |(ℓ− 1− ℓ1), |N |(ℓ− ℓ1)). Hence, if we set the block
at position (|N |ℓ1, |N |ℓ1) in Q

(ℓ)
A to PA for some 0 ≤ ℓ1 < ℓ, with the rest set to 0, we can get for

any two positions i, j,

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i

=
∑

B,C∈N

Pr[A → BC] · α(B, i− ℓ1, i)

· α(C, j − (ℓ− 1− ℓ1), j).

Setting the first ℓ diagonal blocks in Q
(ℓ)
A to PA can get for any two positions i, j,

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i

=
∑

ℓ1≤ℓ−1

∑
B,C∈N

Pr[A → BC] · α(B, i− ℓ1, i)

· α(C, j − (ℓ− ℓ1 − 1), j).

However, for α(A, i − ℓ, i), the attention score above should only contribute with ℓ1 = i − j − 1.
Moreover, we also want the above sum to be 0 if j ≥ i or j ≤ i − ℓ − 1. Hence, we will use the
relative position vector pj−i, bias bj−i,ℓ and the ReLU activation to satisfy the following conditions:

1. i− ℓ ≤ j ≤ i− 1.

2. The portion containing {α(C, j − (ℓ− ℓ1 − 1), j)}C∈N in K
(ℓ)
A e

(ℓ−1)
j is activated only if

ℓ1 = i− j − 1.

For any positions i, j and ℓ1 < ℓ, K(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ will contain {α(C, j − (ℓ − ℓ1 −

1), j)+ I[ℓ1 = i− j− 1]− 1− ζI[j < i− ℓ or j > i− 1]}C∈N in coordinates [|N |ℓ1, |N |(ℓ1 +1)),
which will give us

ReLU(K
(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i

=
∑

B,C∈N

Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j),

if i− ℓ ≤ j ≤ i− 1 and 0 otherwise. Summing over all locations j gives us α(A, i− ℓ, i).

27



Outside probabilities: In addition to all the inside probabilities, the contextual embeddings at
position i after the computations of any layer (2L− 1)− ℓ (≥ L) contain the outside probabilities of
all spans of length at least ℓ + 1 starting at position i, i.e. β(A, i, i + k) for all A ∈ N and k ≥ ℓ.
The rest of the coordinates contain 0.

Layer L In this layer, we initialize the outside probabilities β(ROOT, 1, L) = 1 and β(A, 1, L) = 0
for A ̸= ROOT. Furthermore, we move the inside probabilities α(A, i− k, i− 1) from position i− 1
to position i using 1 attention head. For the attention head, b−1,L is set as 0, while the rest are set as
ζ for some large constant ζ so that the attention heads only attend to position i− 1 at any position i.

Layer L+ 1 ≤ ℓ̃ := (2L− 1)− ℓ ≤ 2L− 1: At each position i, this layer computes the outside
probabilities of spans of length ℓ+ 1 starting at i, using the recursive formulation from eq. 3. The
recursive formulation for β(A, i, i+ ℓ) for a non-terminal A ∈ N has two terms, given by

β(A, i, i+ ℓ) =β1(A, i, i+ ℓ) + β2(A, i, i+ ℓ), with (15)

β1(A, i, i+ ℓ) =

i−1∑
j=1

∑
C,B∈N

Pr[B → CA]

· α(C, j, i− 1)β(B, j, i+ ℓ), and (16)

β2(A, i, i+ ℓ) =

L∑
j=i+ℓ+1

∑
B,C∈N

Pr[B → AC]

· α(C, i+ ℓ+ 1, j)β(B, i, j). (17)

For each non-terminal A ∈ N , we will use a single unique head to compute β(A, i, i+ ℓ) with query

matrix Q
(ℓ̃)
A and key matrix K

(ℓ̃)
A . Combining the operations of both β1 and β2 in a single attention

head is the main reason behind the decrease in the number of necessary attention heads, compared to
Theorem D.1.

Structure of {bt,ℓ}−L≤t≤L,L+1≤ℓ≤2L−1: For any L+ 1 ≤ ℓ ≤ 2L− 1, for 0 ≤ t ≤ ℓ+ 1, bt,ℓ is
set as ζ for some large constant ζ. All other biases are set as 1.

Structure of Query and key matrices:

1. K
(ℓ̃)
A is a rotation matrix such that in K

(ℓ̃)
A e

(ℓ)
i , for all L > ℓ1 > ℓ, the outside probabilities

{β(B, i, i+ℓ1)}B∈N appears in the coordinates [|N |(ℓ1−ℓ−1), |N |(ℓ1−ℓ)). Furthermore,
for all 0 ≤ ℓ1 ≤ L− ℓ− 2, the inside probabilities {α(C, i− 1− ℓ1, i− 1)}C∈N appears

in the coordinates [|N |(L+ ℓ+ ℓ1 + 1), |N |(L+ ℓ+ ℓ1 + 2)). Note that K(ℓ̃)
A is same for

all A, and only depends on ℓ.

2. The Query matrix Q
(ℓ̃)
A is a block diagonal matrix. If we define PA,r ∈ R|N |×|N| as a

matrix that contains {Pr[B → CA]}B,C∈N , which is the set of all rules where A appears
as the right child, PA,r appears at positions (|N |ℓ1, |N |ℓ1) for all ℓ1 < L, which is the set
of the first L blocks along the diagonal. Furthermore, if we define PA,l ∈ R|N |×|N| as a
matrix that contains {Pr[B → AC]}B,C∈N , which is the set of all rules where A appears
as the left child, P⊤

A,l appears at positions (|N |ℓ1, |N |ℓ1) for all ℓ1 ≥ L+ ℓ+ 1, which is a
set of L− ℓ− 2 blocks along the diagonal located towards the end.

Intuition behind Q
(ℓ̃)
A , K(ℓ̃)

A , the relative position embeddings and the biases: Considering any
location i, we split the computation of β(A, i, i + ℓ) with the attention head into the computation
of β1 (eq. 16) and β2 (eq. 17). For β1, we express each term

∑
C,B∈N Pr[B → CA]α(C, j, i −

1)β(B, j, i+ ℓ) as the attention score ai,j and then express β1 as
∑

j≤i−1 ai,j . Similarly, for β2, we
express each term

∑
B,C∈N Pr[B → AC]α(C, i+ ℓ+ 1, j)β(B, i, j) as the attention score ai,j and

then express β1 as
∑

j≥i+ℓ+1 ai,j . The relative position vectors and biases help to differentiate the
operations on the left and right-hand sides of i, as we showcase below.

28



Computing β1 (eq. 16): For any position i and ℓ1 ≥ 0, e(ℓ̃−1)
i contains the inside probabilities

{α(C, i− 1− ℓ1, i− 1)}C∈N in the coordinates [|N |ℓ1, |N |(ℓ1 +1)). With the application of K(ℓ̃)
A ,

for ℓ1 > ℓ, K(ℓ̃)
A e

(ℓ̃−1)
i contains the outside probabilities {β(B, i, i + ℓ1)}B∈N in the coordinates

[|N |(ℓ1 − ℓ− 1), |N |(ℓ1 − ℓ)). Hence, if we set the block at position (|N |ℓ1, |N |ℓ1) in Q
(ℓ)
A to PA,r

for some L > ℓ1 ≥ 0, with the rest set to 0, we can get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i

=
∑

B,C∈N

Pr[B → CA] · α(C, i− 1− ℓ1, i− 1)

· β(B, j, j + ℓ+ ℓ1 + 1).

Setting the first L diagonal blocks in Q
(ℓ̃)
A to PA,r can get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i

=
∑
ℓ1≥0

∑
B,C∈N

Pr[B → CA] · α(C, i− 1− ℓ1, i− 1)

· β(B, j, j + ℓ+ ℓ1 + 1).

However, for β1(A, i, i+ ℓ), the attention score above should only contribute with ℓ1 = i− j − 1.
Moreover, we also want the above sum to be 0 if j ≥ i. Hence, we will use the relative position
vector pj−i, bias bj−i,ℓ̃ and the ReLU activation to satisfy the following conditions:

1. j < i.

2. The portion containing {β(B, j, j + ℓ + ℓ1 + 1)}C∈N in K
(ℓ̃)
A e

(ℓ̃−1)
j is activated only if

ℓ1 = i− j − 1.

For any positions i, j and 0 ≤ ℓ1 ≤ L, K(ℓ̃)
A e

(ℓ̃−1)
j + pj−i− bj−i,ℓ̃ will contain {β(B, j, j+ ℓ+ ℓ1+

1)+ I[ℓ1 = i− j − 1]− 1− ζI[i ≤ j ≤ i+ ℓ]}B∈N in coordinates [|N |ℓ1, |N |(ℓ1 +1)), which will
give us

ReLU(K
(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃)

⊤Q
(ℓ̃)
A e

(ℓ̃−1)
i

=
∑

C,B∈N

Pr[B → CA]α(C, j, i− 1)β(B, j, i+ ℓ),

iff j < i and 0 otherwise. Summing over all locations gives us β1(A, i, i+ ℓ).

Computing β2 (eq. 17): For any position i and L > ℓ1 > ℓ, e(ℓ̃−1)
i contains the outside probabilities

{β(B, i, i + ℓ1)}B∈N in the coordinates [|N |(L+ ℓ1), |N |(L+ ℓ1 + 1)). With the application of

K
(ℓ̃)
A , for L > ℓ1 > ℓ, K(ℓ̃)

A e
(ℓ̃−1)
i contains the inside probabilities {α(C, i− 1− ℓ1, i− 1)}C∈N in

the coordinates [|N |(L+ ℓ+ ℓ1 + 1), |N |(L+ ℓ+ ℓ1 + 2)). Hence, if we set the block at position

(|N |ℓ1, |N |ℓ1) in Q
(ℓ̃)
A to P⊤

A,l for some ℓ1 ≥ L + ℓ + 1, with the rest set to 0, we can get for any
two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i

=
∑

B,C∈N

Pr[B → AC] · α(C, j − ℓ1 + ℓ+ L, j − 1)

· β(B, i, i+ ℓ1 − L).

Setting diagonal blocks at positions {(|N |ℓ1, |N |ℓ1)}ℓ1≥L+ℓ+1 in Q
(ℓ̃)
A to P⊤

A,l can get for any two
positions i, j,

29



(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i

=
∑

ℓ1≥ℓ+1

∑
B,C∈N

Pr[B → AC] · α(C, j − ℓ1 + ℓ, j − 1)

· β(B, i, i+ ℓ1).

However, for β1(A, i, i+ ℓ), the attention score above should only contribute with ℓ1 = j − i− 1.
Moreover, we also want the above sum to be 0 if j ≤ i+ ℓ. We will use the relative position vector
pj−i, bias bj−i,ℓ̃ and the ReLU activation to satisfy the following conditions:

1. j > i+ ℓ.

2. The portion containing {α(C, j − ℓ1 + ℓ, j − 1)}C∈N in K
(ℓ̃)
A e

(ℓ̃−1)
j is activated only if

ℓ1 = j − i− 1.

Thus, for any positions i, j and 0 ≤ ℓ1 ≤ L, K(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃ will contain {α(C, j − ℓ1 +

ℓ, j − 1) + I[ℓ1 = i − j − 1] − 1 − ζI[i ≤ j ≤ i + ℓ]}C∈N in coordinates [|N |ℓ1, |N |(ℓ1 + 1)),
which will give us

ReLU(K
(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃)

⊤Q
(ℓ̃)
A e

(ℓ̃−1)
i

=

L∑
j=i+ℓ+1

∑
B,C∈N

Pr[B → AC]α(C, i+ ℓ+ 1, j)β(B, i, j),

iff j > i+ ℓ+ 1 and 0 otherwise. Summing over all locations gives us β2(A, i, i+ ℓ).

Computing β1 + β2 (eq. 15): From our construction, β1 requires the dot product of the inside
probabilities stored at the query vector and the outside probabilities stored at the key vector. However,
β2 requires the dot product of the outside probabilities stored at the query vector and the inside
probabilities stored at the key vector. Since β1 and β2 are computed on the left and the right-hand
side of the query respectively, we use the relative position embeddings to separate the two operations.
The vector pj−i activates only the outside probabilities in the key vector when j > i and activates
only the inside probabilities in the key vector when j < i. Thus, we can compute β1 + β2 as the sum
of the attention scores of a single head, where the computation of β1 and β2 have been restricted to
the left and the right-hand side of the query respectively.

E.3 Proof of Theorem D.3

Proof of Theorem D.3. We first focus on 1-mask predictions, where given an input of tokens
w1, w2, · · · , wL, and a randomly selected index i, we need to predict the token at position i given the
rest of the tokens, i.e. Pr{w|w−i}. Under the generative rules of the PCFG model, we have

Pr[w|w−i]

=
∑
A

Pr[A → w] · Pr[A generates word at pos i|w−i]

=
∑
A

Pr[A → w] · β(A, i, i)∑
B β(B, i, i)

. (18)

Note that Pr[A → w] can be extracted from the PCFG and {β(B, i, i)}B∈N can be computed by
the Inside-outside algorithm. Thus, Inside-outside can solve the 1-masking problem optimally.

Now we consider the case where we randomly mask m% (e.g., 15%) of the tokens and predict
these tokens given the rest. In this setting, if the original sentence is generated from PCFG G =
(N , I,P, n, p), one can modify the PCFG to get G′ = (N , I,P, n + 1, p′) with n + 1 denote
the mask token text[MASK] and for each preterminal A ∈ P , p′(A → [MASK]) = m% and
p′(A → w) = (1−m%)p(A → w), for all w ̸= [MASK]. Then, the distribution of the randomly

30



masked sentences follows the distribution of sentences generated from the modified PCFG G′. Similar
to the 1-masking setting, we can use the Inside-outside algorithm to compute the optimal token
distribution at a masked position.

F Omitted Details in Appendix D.3

In Appendix D.3, we claim that it is possible to approximately execute the Inside-Outside algorithm
for PCFG learned on PTB dataset, and can drastically reduce the size of our constructed model with
minimal impact on the 1-masking predictions and parsing performance (Theorem D.4) by applying
two ingredients: restricting the computations to few non-terminals and utilizing the underlying
low-rank structure between the non-terminals. This section is organized as follows: In Appendix F.1,
we show more intuition and experiment results on why we can restrict the computation of the inside-
outside algorithm to a small subset of non-terminals. In Appendix F.2, we add more discussions on
the second ingredient (utilizing the low-rank structure). Then in Appendix F.3, we show the details
why restricting the computations of few non-terminals can reduce the size of the attention model. In
Appendix F.4, we show the detailed proof of Theorem D.4. Finally in Appendix F.5, we show the
experiment details in Appendix D.3.

F.1 More discussions on computation with few non-terminals

We hypothesize that we can focus only on a few non-terminals while retaining most of the perfor-
mance.

Hypothesis F.1. For the PCFG G = (N , I,P, n, p) learned on the English corpus, there exists
Ĩ ⊂ I, P̃ ⊂ P with |Ĩ| ≪ |I|, |P̃| ≪ |P|, such that simulating Inside-Outside algorithm with Ĩ ∪ P̃
non-terminals introduces small error in the 1-mask perplexity and has minimal impact on the parsing
performance of the Labeled-Recall algorithm.

To find candidate sets Ĩ, P̃ for our hypothesis, we check the frequency of different non-terminals
appearing at the head of spans in the parse trees of the PTB [29] training set. We consider the
Chomsky-transformed (binarized) parse trees for sentences in the PTB training set, and collect the
labeled spans {(A, i, j)} from the parse trees of all sentences. For all non-terminals A, we compute
freq(A), which denotes the number of times non-terminal A appears at the head of a span. Figure 6
shows the plot of freq(A) for in-terminals and pre-terminals, with the order of the non-terminals
sorted by the magnitude of freq(·). We observe that an extremely small subset of non-terminals have
high frequency, which allows us to restrict our computation for the inside and outside probabilities to
the few top non-terminals sorted by their freq scores. We select the top frequent non-terminals as
possible candidates for forming the set Ñ .

We verify the effect of restricting our computation to the frequent non-terminals on the 1-mask
perplexity and the unlabeled F1 score of the approximate Inside-Outside algorithm in Table 7. Recall
from Theorem D.3, the 1-mask probability distribution for a given sentence w1, · · · , wL at any index
i is given by Equation (18), and thus we can use Equation (18) to compute the 1-mask perplexity on
the corpus. To measure the impact on 1-mask language modeling, we report the perplexity of the
original and the approximate Inside-Outside algorithm on 200 sentences generated from PCFG.

We observe that restricting the computation to the top-40 and 45 frequent in-terminals and pre-
terminals leads to < 6.5% increase in average 1-mask perplexity. Furthermore, the Labeled-Recall
algorithm observes at most 4.24% drop from the F1 performance of the original PCFG. If we further
restrict the computation to the top-20 and 45 in-terminals and pre-terminals, we can still get 71.91%
sentence F1 score, and the increase in average 1-mask perplexity is less than 8.6%. However,
restricting the computation to 10 in-terminals leads to at least 15% drop in parsing performance.

Thus combining Theorem D.2 and Table 7, we have the following informal theorem.

Theorem F.2 (Informal). Given the PCFG G = (N , I,P, n, p) learned on the English corpus, there
exist subsets Ĩ ⊂ I, P̃ ⊂ P with |Ĩ| = 20, |P̃| = 45, and an attention model with soft relative
attention modules (6) with embeddings of size 275 + 40L, 2L + 1 layers, and 20 attention heads
in each layer, that can simulate the Inside-Outside algorithm restricted to Ĩ, P̃ on all sentences of

31



Figure 6: Plot for the frequency distribution of in-terminals (I) and pre-terminals (P). We compute
the number of times a specific non-terminal appears in a span of a parse tree in the PTB training set.
We then sort the non-terminals according to their normalized frequency and then show the frequency
vs. index plot.

length at most L generated from G. The restriction introduces a 9.29% increase in average 1-mask
perplexity and 8.71% drop in the parsing performance of the Labeled-Recall algorithm.

If we plug in the average length L ≈ 25 for sentences in PTB, we can get a model with 20 attention
heads, 1275 hidden dimension, and 51 layers. Compared with the construction in Theorem D.2, the
size of the model is much closer to reality. The proof of Theorem F.2 is shown in Appendix F.3.

F.2 More discussions on low-rank approximation

We hypothesize that we can find linear transformation matrices {W (ℓ)}ℓ≤L that can reduce the
computations while retaining most of the performance, and our hypothesis is formalized as follow:
Hypothesis F.3. For the PCFG G = (N , I,P, n, p) learned on the English corpus, there exists
transformation matrices W (ℓ) ∈ Rk(ℓ)×|Ĩ| for every ℓ ≤ L, such that approximately simulating the
Inside-Outside algorithm with {W (ℓ)}ℓ≤L introduces small error in the 1-mask perplexity and has
minimal impact on the parsing performance of the Labeled-Recall algorithm.

Table 8 verifies our hypothesis, and lead to Theorem D.4. Compared with the parsing results from
Theorem F.2, the corpus and sentence F1 scores are nearly the same, and we further reduce the number
of attention heads in each layer from 20 to 15. If we only use 10 attention heads to approximately
execute the Inside-Outside algorithm, we can still get 61.72% corpus F1 and 65.31% sentence F1
on PTB dataset, which is still much better than the Right-branching baseline. Theorem D.4 shows
that attention models with a size much closer to the real models (like BERT or RoBERTa) still have
enough capacity to parse decently well (>70% sentence F1 on PTB).

It is also worth noting that approximately executing the Inside-Outside algorithm using the transfor-
mation matrices {W (ℓ)}ℓ≤L is very different from reducing the size of the PCFG grammar, since we
use different matrix W (ℓ) when computing the probabilities for spans with different length. If we
choose to learn the same transformation matrix W for all the layers ℓ, the performance drops.

32



More discussions on the transformation matrix W (ℓ) We can observe that by introducing the
transformation matrix W (ℓ) generalized the first ingredient that only computes a small set of in-
terminals Ĩ and pre-terminals P̃ , and in theory we can directly learn the transformation matrix
W (ℓ) from the original PCFG without reducing the size at first, i.e., W (ℓ) ∈ Rk(ℓ)×|I|. However
empirically, if we directly learn W (ℓ) from all the in-terminals I but not from the top-20 frequent
in-terminals Ĩ, the performance drops. Thus, we choose to learn the matrix W (ℓ) starting from the
most frequent in-terminals Ĩ . One possible explanation is that the learning procedure is also heuristic,
and certainly may not learn the best transformation matrix.

Besides, we use the same transformation matrix W (ℓ) when computing the inside and outside proba-
bilities, and it is also natural to use different transformation matrices when computing the inside and
outside probabilities. Recall that we learn the transformation W (ℓ) by the Eigenvalue decomposition
on matrix X(ℓ), where X(ℓ) =

∑
s X

(ℓ)
s /

∥∥∥X(ℓ)
s

∥∥∥
F

and X
(ℓ)
s =

∑
i,j:j−i=ℓ µ

i,j
s (µi,j

s )⊤. Then, we

can also learn two matrices W (ℓ)
inside and W

(ℓ)
outside through the Eigenvalue decomposition on matrices

X
(ℓ)
inside and X

(ℓ)
outside respectively, where

X
(ℓ)
inside =

∑
s

X
(ℓ)
s,inside/

∥∥∥X(ℓ)
s,inside

∥∥∥
F
,

X
(ℓ)
s,inside =

∑
i,j:j−i=ℓ

αi,j
s (αi,j

s )⊤,

X
(ℓ)
outside =

∑
s

X
(ℓ)
s,outside/

∥∥∥X(ℓ)
s,outside

∥∥∥
F
,

X
(ℓ)
s,outside =

∑
i,j:j−i=ℓ

βi,j
s (βi,j

s )⊤.

However empirically, we also find that the performance drops by using different transformation
matrices for inside and outside probabilities computation, which may also be attributed to the
non-optimality of our method to learn the transformation matrix.

F.3 Proof for Theorem F.2

Note that in both Theorem D.1 and Theorem D.2, in every layer 1 ≤ ℓ ≤ L− 1, we use one attention
head with parameters K(ℓ)

A ,Q
(ℓ)
A ,V

(ℓ)
A to compute all the inside probabilities α(A, i, j) for all spans

with length ℓ+1, i.e. j− i = ℓ. For layer L+1 ≤ ℓ ≤ 2L−1, the model constructed in Theorem D.1
uses two attention heads to compute the outside probabilities β(A, i, j) for a specific non-terminal A
for spans with length 2L− ℓ, and the model constructed in Theorem D.2 uses one attention heads to
compute the outside probabilities β(A, i, j) for a specific non-terminal A for spans with length 2L−ℓ.
Now to show how restricting the computations to certain non-terminals Ĩ ∪ P̃ can reduce the size
of the constructed models in Theorems D.1 and D.2 we classify the inside and outside probabilities
into four categories: (1) the inside probabilities for pre-terminals, α(A, i, i) for A ∈ P ; (2) the inside
probabilities for in-terminals, α(A, i, j) for A ∈ I; (3) the outside probabilities for in-terminals,
β(A, i, j) for A ∈ I; and (4) the outside probabilities for pre-terminals, β(A, i, i) for A ∈ P .

Category (1): the inside probabilities for pre-terminals Recall that in the constructed model
in Theorems D.1 and D.2, the inside probabilities for pre-terminals α(A, i, i) for A ∈ P is directly
initialized from the PCFG rules, and thus do not need attention heads to compute. Thus, we can just
use O(|P|) dimensions to store all the inside probabilities for pre-terminals α(A, i, i) for A ∈ P .
Although we can also only initialize the inside probabilities only for the pre-terminals P̃ , i.e. initialize
α(A, i, i) for A ∈ P̃ and use less embedding dimensions, empirically the performance will drop and
thus we initialize all the probabilities α(A, i, i) for A ∈ P . Although we should store the probabilities
for pre-terminals larger than the set P̃ , there is indeed another technique to reduce the embedding
dimensions. Note that since in the future computations, we only compute the probabilities for the
in-terminals Ĩ, and not every pre-terminal A ∈ P can be produced by in-terminals B ∈ Ĩ. Thus,
we only need to store the pre-terminals PĨ that can be produced from Ĩ. Empirically, for PCFG
learned on PTB dataset, |P| = 720, but if we choose |Ĩ| = 20, the number of pre-terminals that can

33



be produced from Ĩ drops to |PĨ | = 268 < 270. Specifically for the model in Theorem D.2, we need
|PĨ | coordinates at each position to store these inside probabilities.

Category (2): the inside probabilities for in-terminals The computation of the inside probabilities
for in-terminals, α(A, i, j) for A ∈ I happens from layer 1 to layer L− 1 in the constructed model
in Theorems D.1 and D.2. Note that from layer 1 to layer L − 1, the model only computes the
probabilities for the in-terminals, since a span with a length larger than 1 cannot be labeled by a
pre-terminal. Thus, if we only compute the inside probabilities for in-terminals |Ĩ|, we can reduce
the number of attention heads in layer 1 to layer L− 1 from O(|I|) to O(|Ĩ|) since in Theorems D.1
and D.2 we use a constant number of attention heads to compute the probabilities for a single
in-terminal. Specifically for the model in Theorem D.2, we only need |Ĩ| attention heads from layer
1 to layer L − 1; besides, we need (L − 1)|Ĩ| coordinates at each position to store these inside
probabilities.

Category (3): the outside probabilities for in-terminals The computation of the outside probabil-
ities for in-terminals, β(A, i, j) for A ∈ I happens from layer L to layer L− 2 in the constructed
model in Theorems D.1 and D.2. Note that in layer L, we only need to initialize the outside proba-
bilities β(A, 1, L) for A ∈ I, thus do not need attention heads for computation (however we need
attention heads to move the inside and outside probabilities in this layer, which cost 2 attention
heads). Then from layer L+ 1 to layer L− 2, the model computes the outside probabilities for the
in-terminals β(A, i, j) for A ∈ Ĩ. Thus if we only compute the outside probabilities for in-terminals
|Ĩ|, we can reduce the number of attention heads in layer 1 to layer L − 1 from O(|I|) to O(|Ĩ|).
Specifically for the model in Theorem D.2, we only need |Ĩ| attention heads from layer L to layer
L− 2; besides, we need (L− 1)|Ĩ| coordinates at each position to store these outside probabilities
for in-terminals Ĩ.

Category (4): the outside probabilities for pre-terminals The outside probabilities for pre-
terminals β(A, i, i) for A ∈ P is only computed in the final layer in Theorems D.1 and D.2. Thus
if we choose to compute the probabilities for only P̃ , we can reduce the number of attention heads
in layer 2L − 1 from O(|I|) to O(|Ĩ|). Specifically for the model in Theorem D.2, we only need
|P̃| attention heads in layer L− 1; besides, we need |P̃| coordinates at each position to store these
outside probabilities for in-terminals P̃ . Also as mentioned in Appendix D.3, if |P̃| < c|Ĩ| for some
constant c, we can also simulate the computations in the last layer with |P̃| heads by c layers with |Ĩ|
heads. In particular, if we choose |P̃| = 45, |Ĩ| = 20, we can use 3 layers with 20 attention heads in
each layer to simulate the last layer with 45 attention heads in the original construction.

Put everything together: proof of Theorem F.2 We choose |P̃| = 45, |Ĩ| = 20. We can use 20
attention heads in each layer, and we now count the number of layers and the embedding dimension
we need. The number of layers is easy to compute, since we just need to use 3 layers with 20 attention
heads to simulate the original 1 layer with 45 attention heads, thus the total number of layers is
2L− 1 + (3− 1) = 2L+ 1. As for the embedding dimension, we need

d =|PĨ |+ (L− 1)|Ĩ|+ (L− 1)|Ĩ|+ |P̃|
≤270 + (2L− 2)|Ĩ|+ |P̃|
=275 + 2L|Ĩ|
=275 + 40L.

F.4 Proof for Theorem D.4

In this section, we show the details of how to further reduce the number of attention heads using
structures across non-terminals, and add more discussion on how we learn the transformation matrices
{W (ℓ)}ℓ≤L

Reducing the number of attention heads We focus on reducing the number of attention heads
to compute the inside and outside probabilities for the in-terminals Ĩ, since the computation for the

34



outside probabilities for pre-terminals P̃ only happens in the final layer of the constructed model, and
thus can use multiple layers to compute as long as P̃ is not too large.

For simplicity, we only show the details of how to reduce the number of attention heads to compute
the inside probabilities for in-terminals Ĩ in Theorem D.2, and the technique can be easily applied
to the computation of outside probabilities for in-terminals Ĩ in Theorem D.2, and the inside and
outside probabilities for Ĩ in Theorem D.1.

Recall from the proof of Theorem D.2 that we at each layer ℓ, we use a single attention head
K

(ℓ)
A ,Q

(ℓ)
A to compute the inside probabilities α(A, i, j) for spans with length ℓ+ 1, i.e., j − i = ℓ.

Specifically, for the attention head K
(ℓ)
A ,Q

(ℓ)
A at layer ℓ, we want to compute and store the probability

α(A, i− ℓ, i) at position i. Thus we construct K(ℓ)
A ,Q

(ℓ)
A such that the attention score a

A,(ℓ)
i,j when

the position i attends to position j satisfies

a
A,(ℓ)
i,j

=ReLU(K
(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i

=
∑

B,C∈N

Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j),

if i − ℓ ≤ j ≤ i − 1 and 0 otherwise. Then, summing over all locations j gives us α(A, i − ℓ, i).
Also, a key property of K(ℓ)

A is that this key matrix does not depend on the non-terminal A, but
only depends on ℓ. Thus, if we have a set of coefficients {ω(ℓ)

A }A∈I , we can compute the linear
combination of the inside probability

∑
A∈Ĩ ω

(ℓ)
A α(A, i− ℓ, i) using one attention head, since if we

choose
Q(ℓ) =

∑
A∈Ĩ

ω
(ℓ)
A Q

(ℓ)
A , K(ℓ) = K

(ℓ)
A ,∀A ∈ Ĩ,

we have the attention score

a
(ℓ)
i,j

=ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)e
(ℓ−1)
i

=ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤

·

∑
A∈Ĩ

ω
(ℓ)
A Q

(ℓ)
A

 e
(ℓ−1)
i

=
∑
A∈Ĩ

ω
(ℓ)
A

· ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i

=
∑
A∈Ĩ

ω
(ℓ)
A

· ReLU(K
(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i

=
∑
A∈Ĩ

ω
(ℓ)
A

·

( ∑
B,C∈N

Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j)

)
,

if i−ℓ ≤ j ≤ i−1 and 0 otherwise. Then, summing over all locations j gives us
∑

A∈Ĩ ω
(ℓ)
A α(A, i−

ℓ, i). Then if we have a transformation matrix W (ℓ) ∈ Rk(ℓ)×|Ĩ|, we can use k(ℓ) attention heads
to compute W (ℓ)α(i− ℓ, i), where α(i− ℓ, i) ∈ R|Ĩ| is the vector that contains α(A, i− ℓ, i) for
all A ∈ Ĩ. Then after we use k(ℓ) attention heads to compute the probabilities W (ℓ)α(i− ℓ, i) and
stored them in position i’s embeddings, we can then use linear layer on position i to recover the

35



original probabilities by α̃(i− ℓ, i) = (W (ℓ))†W (ℓ)α(i− ℓ, i), and use α̃(A, i− ℓ, i) for A ∈ Ĩ for
the future computations.

Put everything together: proof of Theorem D.4 We choose k(ℓ) = 15, |P̃| = 45, |Ĩ| = 20. Note
that the embedding dimension doesn’t change if we apply the approximation technique, and only the
number of attention heads reduces from 20 to 15. Thus, the embedding dimension is still

d =|PĨ |+ (L− 1)|Ĩ|+ (L− 1)|Ĩ|+ |P̃|
≤270 + (2L− 2)|Ĩ|+ |P̃|
=275 + 2L|Ĩ|
=275 + 40L.

Also note that |P̃| = 45 = 3 × 15, and thus we can compute all the outside probabilities for
pre-terminals P̃ by 3 layers where each layer has 15 attention heads.

F.5 Experiment details in Appendix D.3

In this section, we provide the experiment details in Appendix D.3. We use and modify the code [36]
to learn the PCFG from the PTB dataset and conduct the experiments with approximated computations.
Peng [36] implements the spectral learning method to learn PCFG [10, 11] and is under MIT licence.
We follow all the default hyperparameters in Peng [36], and we also follow the split of PTB: using
PTB section 02-21 as the training set and PTB section 22 as the development set.

36


	Introduction
	This paper

	Probing Masked Language Models for Parsing Information
	Probing for constituency parse trees
	Probing for the marginal probabilities

	Conclusion
	Related Works
	Preliminaries
	Attention
	PCFG and parsing
	Probing

	More Experiment Results
	Details for pre-training
	More results on constituency parsing
	More results on probing marginal probabilities
	Control tasks
	Analysis of attention patterns

	Parsing using Transformers
	Transformers can execute Inside-Outside algorithm
	Masked language modeling for PCFG
	Towards realistic size

	Missing Proofs in sec:construction
	Proof of thm:hardattnt
	Proof of thm:softattnt
	Proof of thm:io-optimal-mlm

	Omitted Details in sec:approx-overview
	More discussions on computation with few non-terminals
	More discussions on low-rank approximation
	Proof for thm:approx-few-nt-informal
	Proof for thm:approx-low-rank-informal
	Experiment details in sec:approx-overview


