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ABSTRACT

Anomaly detection in time series is essential for applications from industrial mon-
itoring to financial risk management. Recent methods — including forecasting
error models, representation learning, augmentation, and weak-label learning —
have achieved strong results for specific anomaly types such as sudden point or
gradual collective anomalies. While many prior works report window-level met-
rics that may mask errors, several recent methods evaluate at the point level as
well. Our goal is to use a stricter point-wise protocol to make masking effects ex-
plicit. We introduce FOLD (Point-wise Anomaly Detection via fold-bifurcation),
a framework that reframes detection as tracking a system’s proximity to a criti-
cal transition. FOLD extracts stress signals from a forecasting model and inte-
grates them with a fold-bifurcation inspired ODE to produce the risk state, flag-
ging anomalies once it crosses a threshold calibrated on normal data. This requires
no anomaly labels and no additional detector training, enabling a parameter-free
and efficient detection process. By modeling anomalies as stress accumulation
toward a tipping point, FOLD naturally aligns with point-wise detection, provid-
ing a unifying and interpretable perspective that complements type-specific meth-
ods. Experiments on 40 benchmarks against 34 state-of-the-art baselines show
that FOLD achieves competitive or superior performance, with particular strength

under strict point-wise evaluation.

1 INTRODUCTION

Anomaly detection is a fundamental problem
with broad impact in domains such as indus-
trial diagnostics, predictive maintenance, and
risk management, where the ability to foresee
failures is critical for enabling proactive inter-
vention (Chevtchenko et al.l 2023} |Rodriguez
et al.,[2023).

Recent methods are largely dominated by two
paradigms (Paparrizos et al.,|2025): prediction-
based approaches, which monitor forecasting
or reconstruction errors (Tuli et al., [2022; [Xu
et al., 2021) and distance-based approaches,
which rely on representation learning and em-
bedding similarity (Wang et al., 2025} Deng
& Hooi, 2021). However, these paradigms
share a common limitation, they primaily cap-
ture sudden stress, i.e., sharp deviations at
individual timesteps. Prediction-based meth-
ods detect instantaneous error spikes, while
distance-based models flag sudden embedding
shifts. Even when extended over longer hori-
zons, they remain sensitive to momentary fluc-
tuations rather than modeling how stresses ac-
cumulate over time. This limitation is often
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Figure 1: Contrasting conventional prediction-
based anomaly detection with our proposed
FOLD. While prediction-based models capture
only instantaneous error spikes (sudden stress),
FOLD extracts sensitivity—uncertainty stress sig-
nals and integrates them via fold-bifurcation dy-
namics, modeling how stress accumulates into
state transitions. This enables accurate and inter-
pretable point-wise anomaly detection.
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masked by window-level evaluation, where detections are counted correct if they fall anywhere
within an anomaly window. Under stricter point-wise anomaly detection, which demands precise
localization at every timestep, performance degrades substantially (Wang et al., |2024; |Paparrizos
et al) [2025; Wang et al.l 2025)), highlighting the importance of point-wise evaluation as a more
faithful and challenging criterion for real-world anomaly detection. Many real-world failures can
arise from the accumulation of stress that drives a system toward a critical transition. Importantly,
our formulation captures both gradual build-up and short, abrupt spikes within the same dynamical
framework. We draw inspiration from fold-bifurcation dynamics, a classical theory in dynamical
systems that explains how gradual external pressure can drive a system toward an abrupt transition
from normal to failed states. In its canonical form, fold-bifurcation assumes a fixed control param-
eter r, which represents external pressure, and studies how stable and unstable equilibria appear or
disappear as r changes. Put simply, the system remains stable until the equilibria collide and vanish,
at which point a sudden collapse occurs.

Adapting this principle, we reinterpret the control parameter as a time-varying stress signal S(t)
extracted from a forecasting model. By integrating these stress signals with a fold-bifurcation-
inspired ODE, we calculate the risk state z(¢), which captures how small stresses compound into a
tipping point, i.e., a critical threshold beyond which the system abruptly shifts from normal to failed
behavior. An anomaly is flagged when z(t) crosses a threshold calibrated solely on normal data.

Building on this perspective, we propose FOLD (Fold-bifurcation based Anomaly Detection), a
framework that reframes detection as modeling stress accumulation, unifying the detection of both
sudden deviations and gradual drifts. A distinguishing feature of FOLD is that it can be instantiated
directly from an already trained forecasting model without any additional detector training.

‘We highlight the following contributions of this work:

1. To our knowledge, we introduce FOLD the first anomaly detection framework that lever-
ages fold-bifurcation inspired dynamics for point-wise anomaly detection, requiring no
anomaly labels and no additional detector training.

2. We provide a principled formulation of anomaly detection as stress-signal driven modeling,
where stress signals are integrated through a fold-bifurcation ODE to capture how gradual
pressures can accumulate and trigger sudden tipping-point transitions.

3. We conduct extensive experiments on 40 benchmarks against 34 state-of-the-art baselines,
demonstrating that FOLD achieves superior performance in both threshold-dependent
(e.g., Point-wise F1) and threshold-independent (e.g., VUS-PR) metrics. This validates
the robustness and practical value of our framework under strict point-wise evaluation pro-
tocols.

2 RELATED WORK

2.1 TIME-SERIES ANOMALY DETECTION

Recent advances in time-series anomaly detection can be broadly categorized into two dominant
paradigms (Paparrizos et al.| [2025): prediction-based methods, which monitor forecasting or recon-
struction errors (Tuli et al.} 2022; Su et al., [2019} |[Zhang et al.,|2019), and distance-based methods,
which rely on representation learning and embedding similarity (Xu et al., 2021} [Deng & Hooi,
20215 [Wang et al., 2025). While effective under conventional benchmarks, both paradigms share a
key limitation: they primarily capture sudden stress, i.e., sharp deviations at individual timesteps.
Prediction-based approaches flag error spikes, while distance-based methods detect sudden shifts in
representation space. Even when extended to longer horizons, they remain sensitive to momentary
fluctuations rather than modeling how stresses accumulate over time.

This limitation is often masked by window-level evaluation, where a detection is considered correct
if it falls anywhere within an anomaly window. However, under the stricter point-wise anomaly
detection setting, which requires precise localization at each timestep, these methods degrade sig-
nificantly (Wang et al.||2025;2024)). This explains why many prior approaches report strong results
on window-level metrics but fail to generalize under point-wise evaluation (Paparrizos et al., [2025)).
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Beyond deep neural methods, classical approaches such as Isolation Forest (Liu et al.,|2008) and one-
class SVMs (Scholkopf et al.,2001) remain widely used in practice, while dynamical change-point
detection methods emphasize early-warning indicators in noisy systems. Early-warning studies have
also drawn on bifurcation theory, for example by fitting autoregressive models to estimate Jacobian
eigenvalues and track critical slowing down in multivariate settings (Williamson & Lenton, [2015).
These approaches highlight complementary perspectives, but they are not directly optimized for
strict point-wise anomaly detection in complex multivariate data.

Building on these perspectives, FOLD leverages forecasting-derived sensitivity and uncertainty sig-
nals as a time-varying stress input to a fold-bifurcation ODE, enabling point-wise anomaly detection
through risk-state thresholding. This avoids training an additional detector and instead operates di-
rectly on top of a pre-trained forecaster.

2.2 UNCERTAINTY ESTIMATION IN NEURAL TIME-SERIES MODELS

Quantifying predictive uncertainty has become increasingly important in time-series modeling, es-
pecially for safety-critical domains where abnormal behavior must be distinguished from normal
variability. Practical approaches include Monte Carlo Dropout (Gal & Ghahramanil, |2016)), which
can be interpreted as a Bayesian approximation, and deep ensembles (Lakshminarayanan et al.,
2017), which provide scalable estimates of both epistemic and aleatoric uncertainty. These methods
not only improve the reliability of point forecasts but also create signals that can be exploited for
detecting abnormal or unstable regimes.

Uncertainty has since been directly leveraged in anomaly detection. (Li et al., 2018) used generative
models to capture predictive variance in multivariate time series, while (Wiessner et al., [2024) pro-
posed explicit uncertainty-aware detectors, highlighting that high variance is often associated with
abnormal or unstable regimes. Beyond machine learning, evidence from complex systems further
supports this connection: (Scheffer et al.| [2009) showed that variance systematically increases as a
system approaches a critical transition, suggesting that rising uncertainty itself can be interpreted as
a form of accumulated stress.

In FOLD, we adopt this perspective and treat predictive uncertainty itself as a stress indicator, com-
bining it with sensitivity signals, extending prior variance-based approaches into a unified stress
formulation that anticipates anomalies.

2.3  BIFURCATION THEORY AND DYNAMICAL SYSTEMS PERSPECTIVE

Bifurcation theory studies how systems can remain stable under gradual change until a critical point
(or tipping point) is reached, after which they suddenly shift to a qualitatively different state. A
simple example is the fold-bifurcation, where the system has two equilibria (one stable, one unsta-
ble) that move closer together as external pressure increases. At a critical threshold, these equilibria
collide and vanish, causing the system to abruptly lose stability. Mathematically, this behavior is
captured by the canonical equation:

) =r —z(t)?, (1)

where z(¢) is the system state and r is a control parameter. Such tipping phenomena have been
widely studied in domains such as ecology and climate science (Scheffer, 2009;|Lenton et al.,[2008]).
To capture resilience in real systems, this canonical form is often extended with a decay term z(¢):

dz(t)
dt

() — (b). @

While other bifurcation types (e.g., Hopf or pitchfork) describe oscillatory or symmetry-breaking
transitions, the fold-bifurcation is particularly suited for anomaly detection because it directly cap-
tures the gradual erosion of stability followed by an abrupt collapse. Related early-warning studies
have exploited this property by fitting autoregressive models and tracking eigenvalue changes to
detect critical slowing down in noisy multivariate systems (Williamson & Lenton, |2015).
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Figure 2: Overall architecture of FOLD.

Building on this adapted form, we reinterpret r as a parameterized time-varying stress signal S(t)
and obtain our fold-bifurcation inspired dynamics:

z
) _ as(r) — palt)? — () ®
where «, 3, are fixed coefficients. This formulation preserves the key intuition — stress gradu-
ally accumulates, resilience erodes, and a sudden transition occurs — while adapting it for anomaly
detection. Unlike early-warning approaches that monitor eigenvalue trends, FOLD instantiates a
fold-inspired dynamical mechanism driven by forecasting-derived stress signals to localize anoma-
lies at the point level.

3 PROPOSED METHOD

3.1 OVERALL WORKFLOW
The workflow of FOLD consists of the following three main steps (cf. Figure[2):

1. A forecasting model fy is first trained on normal sequences using mean squared error
(MSE) loss. After training, fy is frozen to serve as a fixed backbone (pink box).

2. For a test sequence, patches are masked and fed into the frozen fy with MC dropout. Sensi-
tivity and uncertainty are combined to form a time-varying stress signal S(t) (yellow box).

3. The stress signal S(t) is injected into a fold-bifurcation inspired ODE to evolve the risk
trajectory z(t). Anomalies are flagged once z(t) leaves its stable basin (gray box).

3.2 FORECASTING MODEL AND STRESS SIGNAL SCORING

Let X = [x1,...,21] € RE*4 be an input time window of length L with d features. We begin with
a forecasting model fy : RFX4 — RH*4 trained solely on normal data using mean squared error
(MSE) loss. The model is implemented with dropout layers so that it can later provide Monte Carlo
(MC) estimates of predictive uncertainty. After training, fy is frozen for all subsequent steps.

Perturbed prediction f/\i. The input sequence X = [z1,...,2y] is divided into N patches
{P,}}_,. For each patch P;, we mask out (i.e., replace with a mask token or zero) the corresponding

segment and feed the modified sequence X\ p, into the frozen forecasting model fj, Y\z = fo(X\p,)
(cf. Figure2).

Sensitivity term. To measure how much the forecast depends on a given patch, we compute a
distance between the baseline prediction Y = f(X) and the perturbed prediction }A’\Z—: D(}A/\Z-, Y),
where D(-,-) is a distance metric (e.g., MSE, MAE, and cosine similarity). The rationale is to
capture how strongly each local patch influences future predictions — patches whose removal causes
large deviations in Y are assigned higher sensitivity. We provide an ablation in Appendix E] to
show the effect of different distance metrics.
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Uncertainty term. To caputre how unstable the model becomes under local perturbations, we
estimate predictive variance via Monte Carlo dropout. For each input, we run 7T, stochastic for-
ward passes: |Var(}>\i) —Var(Y) |. The variance difference measures the additional epistemic and
aleatoric uncertainity introduced when the patch is masked. The use of MC dropout is motivated

by Bayesian approximations in neural networks (Lakshminarayanan et al., 2017), as discussed in
Section 2.2

Stress Signal. Combining the two components yields the patch-level stress score:

€ =20- D(Y/\i, Y) +A- |Var(f/\i) - Var(f/) . € e REXD 4

sensitivity term uncertainty term

where J, A > 0 control the relative importance of sensitivity and uncertainty. Ablation studies in
Section [5]confirm that both terms are complementary: omitting either degrades performance.

Sequence-level stress signal. Finally, we aggregate patch-level scores into a time-varying signal
aligned with the original input:

S(t):i Z €, St eRY t=1,...,L, 6)
7ol

where Z(t) is the set of patches covering index ¢. This produce a stress signal S € RE*? with the
same temporal and feature dimensions as the input sequence, serving as the data-driven analogue of
external pressure in the fold-bifurcation dynamics.

3.3 FOLD-BIFURCATION INSPIRED ODE MODELING

Real-world systems often exhibit tipping-point behavior: they appear stable while absorbing small
stresses, but once a critical threshold is crossed, they abruptly transition to a failed state. This
phenomenon is mathematically captured by fold-bifurcation, where the canonical equation

dz(t

—jl(t ) =r —z(t)? (6)
shows how gradual changes in a control parameter r can eliminate equilibria and precipitate sudden
collapse. Among canonical bifurcations, we adopt the fold (saddle-node) because our targets are
abrupt losses of stability under monotone external pressure rather than oscillatory onsets (Hopf) or
symmetry breaking (pitchfork). The fold directly captures equilibrium annihilation under gradually
increasing pressure, which matches point-wise anomaly onset in practice.

FOLD builds directly on this intuition. Consistent with the stress-centric view in Section we
reinterpret the fixed parameter r as the time-varying stress signal S(¢) derived from the forecasting
model. Conceptually, just as increasing r leads to a collapse in the canonical form, a rising stress
signal S(t) acts as a dynamic external force that drives the system state toward instability. This
yields our fold-bifurcation inspired dynamics of the risk state z(t) € R%:

dz(t) 2

BT aS(t) — Bz(t)” — va(t), (N
where the dynamics are computed feature-wise over d dimensions, resulting in a full trajectory
z € RY%4 across the window. To obtain a unified anomaly indicator for detection, we aggregate
these feature-wise trajectories into a system-level risk score z,,s € RE.

Interpretation of coefficients. 1In this Eq. [7} S(¢) replaces the constant control parameter r and
acts as a data-driven analogue of external pressure, injected feature-wise from the forecasting model.
The coefficient o > 0 scales stress injection, v > 0 provides resilience by pulling the system
back toward stability when stress subsides, and S > 0 induces nonlinear escalation, where accu-
mulated risk amplifies disproportionately near a tipping point. Together, these terms instantiate a
fold-bifurcation inspired mechanism of stress accumulation leading to critical transitions.
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Numerical solution. Since Eq. [7| has no closed-form solution, we compute z(¢) using standard
adaptive ODE solvers (e.g., Runge—Kutta). These solvers provide stable integration under time-
varying stress signals, ensuring that anomaly detection reflects the dynamics of the model rather
than artifacts of discretization.

Free anomaly detection. The coefficients («, 3, ) act as fixed hyperparameters, selected based
on data statistics rather than learned from anomaly labels. Anomalies are flagged once z(t) exits
its stable basin under the influence of S(¢). This realizes the principle of parameter-free detection:
given a forecasting model, anomalies are identified directly through principled dynamical modeling
without any detector-specific optimization. Furthermore, when integrated with pre-trained founda-
tion models (e.g., Chronos) as demonstrated in our experiments, this framework extends to a fully
training-free (zero-shot) anomaly detection pipeline, eliminating the need for backbone training as
well.

3.4 ANOMALY CRITERION

To derive a stability boundary, we simulate Eq.[7]on normal training data. Because the forecasting
model fp involves stochasticity (e.g., dropout), we generate multiple risk trajectories zt) (or zy(t)
for multivariate settings) by varying the random seed. For each normal risk states z(¢), we then
record its maximum value, yielding

Mirain = {HI?,X Z(t) | X e Dgg{:lnal ) ®

Following the fold-bifurcation intuition, an anomaly should only be declared once the risk state
exceeds the typical maxima observed in normal regimes. To capture this, we define the threshold as
a high quantile of the normal maxima with a small multiplicative margin:

Ziw = (1 + p) - Quantile, (Mirin), p = 0.95-0.99, p = 0.05. 9)

The quantile term ensures robustness against rare fluctuations, while the margin p reflects the bi-
furcation principle that the system must not merely touch but clearly surpass the stability boundary
before being considered anomalous. Conceptually, we interpret this calibrated threshold Z;,, as the
empirical boundary of the stable basin. Therefore, the event z(t) > Z;,,(0r 2y (t) > Zyp, for mul-
tivariate settings) serves as the operational criterion for determining that the system has overcome
its resilience and crossed the tipping point.

Point-wise decision rule. For a test sequence X with trajectory z,,,(¢), we then produce a point-
wise anomaly mask:

§(t) = W{zgys(t) > Zue}, t=1,...,L. (10)

All metrics (precision, recall, and F1) are computed at the timestep level. This rule provides a statis-
tically grounded and label-free boundary for point-wise anomaly detection, as illustrated in Figure[3]
To further assess robustness of the calibrated threshold Zy,,, we conduct an ablation study under &-
contamination, with results reported in Section [5|and Appendix [E-4] (Note: While this threshold
enables binary decisions, we primarily evaluate performance using the threshold-independent VUS-
PR metric in Section ] to demonstrate the model’s intrinsic robustness.)

4 EXPERIMENTS

We conduct a comprehensive evaluation on the TSB-AD benchmark (Liu & Paparrizos| 2024),
a widely recognized leaderboard comprising 40 curated datasets (1,070 time series in total). To
ensure a rigorous and unbiased assessment, we adopt VUS-PR (Volume Under the Surface of
Precision-Recall curve) (Paparrizos et al.| [2022)) as our primary evaluation metric. Unlike stan-
dard F1-scores, VUS-PR is threshold-independent, effectively eliminating potential biases arising
from specific threshold selections. For completeness, we also provide threshold-dependent results
(e.g., Point-wise F1). This stricter protocol replaces window-level scoring common in prior work.
See Appendix [B]for dataset, hyperparameter, and evaluation details.
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Table 1: VUS-PR score (Higher is better) averaged over all time series for each dataset for

univariate anomaly detection.The best VUS-PR are shown in bold , and the second-best in italic .
Implementation details about FOLD(Chronos) are in Appendix
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FOLD (DLinear) | 042 057 095 063 059 005 022 070 056 092 094 018 029 082 084 031 058 099 100 079 032 065 085| 3.86
FOLD (Chronos) 040 0.5 (097 06/ 08/ 014 031 064 062 094 097 014 027 084 087 037 (069 100 100 084 038 058 083 | 295
TSPulse (FT) 040 054 087 042 052 001 022 066 051 058 006 0.08 007 074 080 056 0.10 098 100 068 028 043 0.83 8.65
TSPulse (ZS) 035 055 083 042 041 000 010 064 050 058 006 007 006 071 078 036 0.10 098 100 068 018 042 083 | 1130
Sub-PCA 026 042 093 023 056 001 036 051 044 091 091 008 003 052 045 052 039 084 093 054 012 009 014 | 1339
KShapeAD 025 004 033 009 (083 002 (069 055 037 024 033 019 089 058 013 082 043 075 091 075 038 010 055 1369
POLY 023 051 074 031 051 001 034 054 048 061 0.10 009 0.04 064 0.61 044 0.10 082 092 057 0.13 041 025 13.60
Series2Graph 021 019 060 022 079 000 061 025 044 067 011 007 015 055 046 055 022 079 091 073 025 027 028 | 1426
MOMENT (FT) 038 051 083 038 045 000 013 053 039 073 007 007 004 063 075 023 008 081 094 058 008 050 025| 1469
MOMENT (25) 030 052 081 037 044 000 014 053 039 073 007 008 004 062 074 027 007 081 094 058 007 049 023 | 1491
KMeansAD 023 004 041 006 049 001 027 048 033 020 030 039 0.87 063 0.18 044 0.10 076 092 0.65 038 0.10 0.56 | 16.00
USAD 040 012 089 013 055 000 018 027 028 073 067 006 003 027 066 043 037 075 093 052 008 004 010 | 18.65
Sub-KNN 020 004 047 010 058 024 036 033 029 023 030 021 087 051 014 056 010 075 092 065 037 010 031 | 1582
MatrixProfile 036 004 056 010 058 (029 039 048 032 013 025 015 072 047 013 036 011 072 092 076 034 002 043 | 1608
SAND 0.27 004 025 006 079 001 0.67 030 038 032 0.8 016 075 056 0.11 072 021 074 091 070 034 0.08 041 16.60
CNN 032 040 061 026 042 001 015 033 019 073 040 008 006 034 055 021 068 092 1000 054 005 024 053 | 1386
LSTMAD 033 013 073 020 036 003 012 032 018 073 058 007 006 026 049 013 067 085 100 047 002 013 045 | 1647
SR 028 020 073 024 029 001 007 022 020 050 033 010 007 029 036 008 035 100 100 064 007 022 06l | 1617
TimesFM 025 036 053 020 027 000 006 032 018 035 005 008 005 030 040 006 022 099 099 075 007 021 081 | 1921
TForest 008 036 067 028 034 000 010 020 022 059 043 008 036 025 034 009 050 099 099 052 002 0.14 044 | 1721
OmniAnomaly 002 016 083 020 032 000 010 025 019 085 060 007 006 015 036 009 044 082 098 044 003 014 019 | 1986
Lag-Llama 021 039 053 022 029 000 008 031 0.8 038 005 008 007 028 036 008 000 097 099 061 002 022 068 | 2021
Chronos 010 031 045 018 026 000 006 018 018 034 006 008 006 019 032 006 0.4 099 1000 070 007 018 080 | 2108
TimesNet 010 039 053 022 029 000 008 031 020 037 005 008 005 038 054 009 011 079 091 059 002 027 029 | 2100
AutoEncoder 018 009 036 025 069 001 007 027 032 051 012 009 041 049 014 032 038 072 093 065 009 014 029 | 1752
TranAD 008 013 072 018 031 000 009 018 018 072 058 007 005 013 016 000 046 079 094 045 002 011 0282217
FITS 017 043 055 017 034 000 009 036 024 049 007 007 005 042 054 010 010 076 091 058 002 014 018 | 2120
Sub-LOF 031 004 025 011 034 044 026 035 032 025 012 014 022 040 004 018 011 076 092 053 029 003 027 | 19386
OFA 016 036 055 020 030 000 007 029 021 037 005 008 006 033 045 007 011 076 091 054 002 016 024|225
Sub-MCD 037 004 023 013 024 001 011 016 019 011 032 030 012 030 008 007 009 075 090 064 026 015 028 | 2308
Sub-HBOS 004 005 045 005 069 000 017 025 030 023 008 012 088 055 010 024 012 070 093 064 0.14 001 006 | 2191
Sub-OCSVM 026 006 029 007 033 001 014 028 026 026 011 016 006 051 008 020 009 073 092 065 018 003 023 | 2200
Sub-IForest 005 007 049 004 066 000 024 036 030 022 007 012 079 047 009 027 0.3 069 090 066 010 001 006 | 2204
Donut 008 006 045 0.0 031 000 010 020 018 047 018 009 014 031 029 008 047 078 091 048 001 006 012 | 2391
LOF 006 0.3 020 012 026 000 006 015 017 038 014 009 011 015 013 005 012 075 091 049 002 009 037 | 2604
AnomalyTransformer  0.05 007 013 006 027 000 009 014 014 023 007 009 009 009 018 007 010 075 090 046 001 002 007 | 2926

Table 2: VUS-PR score (Higher is better) averaged over all time series for each dataset for
multivariate anomaly detection.
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FOLD (ours) 023 019 039 093 008 007 038 037 009 050 082 019 045 046 039 050 097 | 311
TSPulse (FT) 007 000 035 091 018 001 002 057 014 021 007 0.4 032 036 047 0.4 093 | 988
TSPulse (ZS) 005 000 035 089 017 001 001 036 007 020 007 0.4 030 035 038 0.13 093 | 1217
CNN 008 002 021 068 003 002 010 033 (014 035 016 022 019 035 019 041 [100| 7.52
OmniAnomaly 004 002 034 084 002 007 000 044 011 022 018 0.16 012 0.7 035 0.15 081 | 11.17
PCA 012 070 013 095 020 001 002 024 007 015 030 016 009 036 011 045 [100| 9.41
LSTMAD 004 002 031 082 002 006 004 030 009 022 017 024 0.16 033 015 016 0.99 | 9.41
USAD 004 002 034 084 002 006 000 041 012 023 018 019 011 016 032 015 081 | 11
AutoEncoder 006 003 013 091 005 005 001 021 004 022 014 028 013 030 006 058 100 | 10.17
KMeansAD 012 002 030 037 006 003 089 041 006 044 006 021 038 036 020 0.16 086 | 858
CBLOF 006 003 010 086 003 002 002 020 004 021 014 019 014 022 007 029 100 13.11
MCD 0.3 006 0.4 080 003 001 006 021 004 023 0.7 026 0.10 026 007 054 1.00 | 10.11
OCSVM 008 002 006 083 004 004 008 020 004 022 012 0.19 012 028 006 044 081 | 12.64
Donut 007 002 017 066 003 005 018 026 0.2 030 015 020 018 019 011 044 075 | 1023
RobustPCA 004 002 006 077 002 003 000 023 004 022 013 0.2 007 0.0 008 0.12 [100| 17.17
FITS 0.3 002 033 063 003 001 010 023 005 017 005 013 008 017 0.0 015 078 | 1541
OFA 0.3 002 031 058 004 001 022 029 006 014 005 017 008 017 012 012 0.78 | 14.52
EIF 006 002 015 041 004 002 006 0.19 004 018 010 0.8 013 032 007 032 089 | 14
COPOD 005 005 011 040 004 003 008 021 004 021 017 020 010 0.9 007 031 099 | 1252
TForest 005 003 013 035 004 005 008 021 004 021 018 0.19 009 026 007 039 093 | 53.52
HBOS 005 004 015 032 004 004 008 021 004 023 017 0.7 009 025 007 030 083 | 12.88
TimesNet 007 002 027 042 003 001 002 027 007 017 006 0.4 009 0.4 011 0.14 079 | 1588
KNN 007 002 025 033 011 001 004 0.19 004 018 006 0.2 012 030 006 O0.11 078 | 1682
TranAD 004 002 031 010 002 006 004 026 007 024 016 023 009 030 012 015 081 | 12,05
LOF 005 002 011 016 013 001 008 0.19 004 0.14 010 0.15 009 0.6 006 0.15 079 | 17.52
AnomalyTransformer  0.03 002 007 010 002 003 001 021 005 0.2 007 021 006 007 008 0.8 077 | 19
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Figure 3: Illustration of threshold calibration on three datasets. For each dataset, the top panel shows
the trajectories of risk states z,,(t) on normal training data, with the red dashed line indicating the
chosen high-percentile threshold Zy,,. The bottom panel shows the risk state trajectories on test data,
where anomalies are flagged once z, (t) exceeds this threshold.
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Figure 4: Visualization of anomaly detection results on 4 benchmark datasets. Additional visualiza-
tions are provided in Appendix [G|

4.1 EXPERIMENTAL RESULTS

We conducted a comprehensive evaluation on the full TSB-AD benchmark suite (40 datasets) using
the threshold-independent VUS-PR metric. Additional experimental results are provided in Ap-
pendix [C]

Univariate Performance and Foundation Model Synergy. FOLD achieves the best average rank
of 3.86 across 23 datasets, significantly outperforming the runner-up TSPulse (Avg Rank 8.65). This
validates our mechanism’s dual capability: high-magnitude stress S(t) instantly overcomes damping
~ to detect abrupt spikes (e.g., NAB), while the nonlinear term — 3z integrates gradual accumula-
tion (e.g., SMAP) to trigger tipping points. Furthermore, integrating FOLD with Chronos
[2024) in a zero-shot setting yields an even superior rank of 2.95. This demonstrates that our
framework acts as a universal detection mechanism, effectively transforming probabilistic outputs
— whether from lightweight backbones or foundation models — into a robust external force that
drives dynamical state transitions without additional detector training.

Multivariate Performance. In the multivariate track, FOLD maintains the top position with an
average rank of 3.11, surpassing deep learning baselines such as CNN (Avg Rank 7.52). While
deep learning methods often struggle with noise amplification in high-dimensional spaces, FOLD
leverages the forecasting backbone to encode inter-variable dependencies into the stress signal. By
aggregating these feature-wise risk dynamics into a system-level score, FOLD effectively filters
out isolated channel noise while amplifying synchronized stress events. This results in superior
scalability and stability on complex, highly correlated systems like SWaT and OPPORTUNITY,
where maintaining low false positives is crucial.

Overall Robustness. The analysis highlights a key distinction: while statistical baselines (e.g.,
Sub-PCA) rely on rigid linearity assumptions — performing well only on simple stationary datasets
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— FOLD’s dynamical formulation naturally adapts to nonlinear transitions across varying domains.
Furthermore, compared to foundation model-based methods like MOMENT or TSPulse, FOLD
achieves higher consistency without the computational burden of extensive pre-training or fine-
tuning. This suggests that a principled dynamical mechanism can be more effective and efficient
than purely data-driven scale in capturing fundamental anomaly characteristics.

True Anomal True Anomal

n) |

v y
Prdicted Anomaly (FOLD) . | Predicted Anomaly (FOLD)
(Mean) | Input Data (Mean)

00
‘Time Steps

(¢) UCR(FOLD)

B a0
Time Steps

(b) NAB(FOLD)

360 50
‘Time Steps.

(a) SMAP(FOLD)

Figure 5: Visualization of uncertainty assessments to demonstrate reliability and confidence. The
blue line represents the input data, and the shaded region indicates the uncertainty band (derived
from MC dropout). Note that the uncertainty band remains narrow during normal states (indicating
high confidence) but significantly widens at the onset of anomalies, triggering the risk accumula-
tion mechanism. This visually confirms that FOLD’s detections are driven by model-intrinsic risk
assessment rather than random fluctuations.

Visualizations and Uncertainty. Figure [] demonstrates FOLD’s detection performance across
diverse failure modes. The model accurately tracks gradual stress accumulation (e.g., SMAP) as well
as abrupt spikes (e.g., NAB, UCR), effectively triggering alerts when the risk state z(t) (or zsy; (%)
for multivariate setting) crosses the threshold. To further validate reliability, Figure [5] explicitly
visualizes the predictive uncertainty bands (shaded regions derived from MC dropout). As shown,
these bands remain narrow during normal states (indicating high confidence) but significantly widen
at the onset of anomalies. This visual evidence confirms that FOLD’s detections are driven by a
model-intrinsic increase in risk and uncertainty, rather than random fluctuations, ensuring robust
decision-making.

5 ABLATION AND SENSITIVITY STUDIES

Impact of stress signal components. As motivated in Section [3.2] we design the stress signal
by combining two terms: sensitivity, which reflects how fragile forecasts are to local perturbations,
and uncertainty, which captures how unstable the model becomes under such perturbations. Both
have been independently validated in prior work as meaningful indicators of anomalous behavior.
Table [d presents an ablation study confirming their complementary roles. Removing the uncertainty
term leads to excessive false positives, as the model reacts strongly to transient fluctuations. Con-
versely, removing the sensitivity term causes under-detection, since uncertainty alone cannot capture
sharp deviations. Only when combined do the two signals yield a balanced and robust quantifica-
tion of stress, enabling the full FOLD model to achieve the highest F1-scores across benchmarks.
This result substantiates our formulation: anomalies are best captured when both local fragility and
systemic instability are jointly considered as drivers of stress accumulation.

Calibration robustness. Since our anomaly criterion
in Section 3.4 relies on a calibrated threshold Zy,, de-
rived from normal data, it is important to verify that
the method remains stable when calibration data are
partially contaminated. We probe the stability of the

Table 3: Effect of calibration contamina-
tion on threshold stability and detection
performance on SMAP (S-1).

N T YA FI AFI (pp)
calibrated threshold Zy,, against e-contamination,where 0 03982 — 0.8095 —
an ¢ fraction of normal calibration windows are re- 3 06105  +2.05  0.7918 2.19
placed by anomalous ones. For each ¢ € {0,3,5,10} 5 07075 +183 05366  -33.7

10 07204 4204 03832 52,6

we recompute Z; . and report the relative shift AZ =
(Z5,. — Zr)/ Zune and the resulting point-wise F1 on the
test set (no re-tuning of p, p).
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Figure 6: Sensitivity of FOLD to ODE parameters «, /3, y. (left) F1-scores across benchmarks for
two representative settings. (right) Example risk trajectories under different 3 values, showing that
B = 1.0 yields more informative dynamics.

Table 4: Ablation study on stress signal components.

Method NAB UCR SMAP

P R Fl1 P R Fl1 P R Fl1
NRdetector 0.0502  0.0581 0.1032 0.6361 0.0542  0.0908 0.6372  0.1608  0.2367
FOLD (w/o Uncertainty) 0.2083  0.0781 0.1136 0.3417 04116  0.1761 0.1879  0.0942  0.0655
FOLD (w/o Sensitivity) 0.1939  0.5937  0.2187 0.0394  0.3502  0.0599 0.3491 0.3532  0.2959
FOLD (Full Model) 03519  0.6875  0.4245 0.4267  0.4058  0.2542 0.6820  0.7059  0.6013

Even at £ = 10%, FOLD retains an F1 of 0.3832 on SMAP (S-1), which,despite the drop from clean
calibration, remains substantially higher than strong baselines on the same machine (e.g., NRDetec-
tor 0.2032, TranAD 0.0080).Small contaminations (¢ < 3%) shift Zy,, by only a few percent and
lead to modest F1 changes, consistent with the high-quantile stability we exploit.

Sensitivity to ODE parameters. We further analyze the role of the coefficients «, 3, 7y in the fold-
bifurcation inspired ODE (Eq. . Figure @ compares two representative settings: (o = 1.0,8 =
1.0, = 0.001) versus (« = 1.0,5 = 0.0, = 0.001). The results highlight the importance of
the nonlinear escalation term —f3z(t)?: when 3 = 0, the risk state z(t) grows monotonically with
accumulated stress, essentially acting as a simple integrator; in contrast, 5 = 1.0 introduces nonlin-
ear suppression that yields a more structured and interpretable trajectory, allowing z(t) (or Zgy4(t)
for multivariate settings) to capture meaningful rises and falls around anomalous intervals. Across
benchmarks (left), 3 = 1.0 consistently leads to higher F1-scores, and the temporal plots (right)
confirm that the dynamics with 8 = 1.0 produce more discriminative risk states. This demonstrates
that FOLD’s performance does not hinge on delicate parameter tuning, but that incorporating non-
linear escalation (5 = 1.0) is key to realizing the full benefit of fold-bifurcation dynamics. (In
Appendix we report various sensitivity studies on «, /3, .)

6 CONCLUSION

We presented FOLD, a fold-bifurcation—inspired framework for point-wise anomaly detection.
Instead of relying on reconstruction or prediction errors, FOLD models how sensitivity- and
uncertainty-based stress signals accumulate through a simple ODE to trigger a tipping-point tran-
sition. Once a forecasting model is trained on normal data, no anomaly labels or additional detec-
tor training are required, enabling fully label-free detection. This design provides interpretability
grounded in dynamical-systems theory, minimal computational overhead, and consistently strong
results under strict point-wise evaluation across 40 benchmarks against 34 state-of-the-art baselines.
Beyond accuracy, FOLD yields a transparent continuous risk trajectory via the risk state z(t), unify-
ing both sudden spikes and gradual drifts within a single mechanism. In future work, we will explore
data-adaptive parameterization of the ODE using only normal data and extend FOLD to streaming
scenarios with drift-aware calibration.

10
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Ethics statement. This work adheres to the ICLR Code of Ethics. Our study uses only publicly
available, non-personal time-series benchmarks (e.g., SMAP, MSL, SWaT, WADI, SMD, NAB,
UCR) under their respective licenses; no human subjects, personally identifiable information, or
protected attributes are involved, and no re-identification is attempted. Data are used solely for
research and are processed in accordance with the datasets’ terms of use. Because anomaly detection
can have dual-use risks (e.g., surveillance or misuse in operational settings), we limit our release to
research artifacts (code, configs, and scripts) and provide guidance to avoid deployment on sensitive
data without appropriate consent, legal basis, and security review. We disclose no conflicts of interest
or external sponsorship that could unduly influence the results.

Reproducibility Statement. To ensure the reproducibility and completeness of this paper,
we make our code available at https://drive.google.com/drive/folders/13_
XJvvw9dedtNLp8FihV3TgBefIxGwxh?usp=sharing. We give details on our experimen-
tal protocol in the Appendix [B]

The Use of Large Language Models (LLMs). We used ChatGPT as a writing assistant for pol-
ishing language and checking notation. No research ideas or content generation were conducted by
LLMs.

REFERENCES

Tao dataset. https://www.pmel.noaa.gov/.

Ahmed Abdulaal, Zhuang Liu, and Tomer Lancewicki. Practical approach to asynchronous multi-
variate time series anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 2485-2494, 2021.

Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly
detection for streaming data. Neurocomputing, 262:134-147, 2017.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Marc Bachlin, Meir Plotnik, Daniel Roggen, Inbal Maidan, Jeffrey M Hausdorff, Nir Giladi, and
Gerhard Troster. Wearable assistant for parkinson’s disease patients with the freezing of gait
symptom. /EEE Transactions on Information Technology in Biomedicine, 14(2):436-446, 2009.

Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. Sand: streaming subse-
quence anomaly detection. Proceedings of the VLDB Endowment, 14(10):1717-1729, 2021.

Sérgio F Chevtchenko, Elisson Da Silva Rocha, Monalisa Cristina Moura Dos Santos, Ricardo Lins
Mota, Diego Moura Vieira, Ermeson Carneiro De Andrade, and Danilo Ricardo Barbosa
De Aratjo. Anomaly detection in industrial machinery using iot devices and machine learning: a
systematic mapping. [EEE Access, 11:128288-128305, 2023.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293—-1305, 2019.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027—
4035, 2021.

Pavel Filonov, Andrey Lavrentyev, and Artem Vorontsov. Multivariate industrial time series with
cyber-attack simulation: Fault detection using an Istm-based predictive data model. arXiv preprint
arXiv:1612.06676, 2016.

P Fleith. Controlled anomalies time series (cats) dataset, September 2023. Accessed: 2023-09-01.

11


https://drive.google.com/drive/folders/13_XJvvw9dedtNLp8FihV3TgBefIxGwxh?usp=sharing
https://drive.google.com/drive/folders/13_XJvvw9dedtNLp8FihV3TgBefIxGwxh?usp=sharing
https://www.pmel.noaa.gov/

Under review as a conference paper at ICLR 2026

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050-1059.
PMLR, 2016.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. Circulation, 101(23):e215-e220, 2000.

Scott David Greenwald. Improved detection and classification of arrhythmias in noise-corrupted
electrocardiograms using contextual information. PhD thesis, Massachusetts Institute of Tech-
nology, 1990.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom.
Detecting spacecraft anomalies using Istms and nonparametric dynamic thresholding. In Pro-
ceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 387-395, 2018.

IOPS.ai. Iops dataset. http://iops.ai/dataset_detail/?id=10.

Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime Tatbul. Exathlon:
A benchmark for explainable anomaly detection over time series. Proceedings of the VLDB
Endowment, 14(11):2613-2626, 2021.

Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle. Finding the most unusual time
series subsequence: algorithms and applications. Knowledge and Information Systems, 11(1):
1-27, 2007.

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
time series outlier detection: Definitions and benchmarks. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Nikolay Laptev, Saeed Amizadeh, and Yavin Billawala. S5-a labeled anomaly detection dataset,
version 1.0 (16m), 2015. Accessed: Mar. 2015.

Timothy M Lenton, Hermann Held, Elmar Kriegler, Jim W Hall, Wolfgang Lucht, Stefan Rahmstorf,
and Hans Joachim Schellnhuber. Tipping elements in the earth’s climate system. Proceedings of
the national Academy of Sciences, 105(6):1786—-1793, 2008.

Dan Li, Dacheng Chen, Jonathan Goh, and See-kiong Ng. Anomaly detection with generative
adversarial networks for multivariate time series. arXiv preprint arXiv:1809.04758, 2018.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pp. 413-422. IEEE, 2008.

Qinghua Liu and John Paparrizos. The elephant in the room: Towards a reliable time-series anomaly
detection benchmark. Advances in Neural Information Processing Systems, 37:108231-108261,
2024.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and
training on ics security. In 2016 international workshop on cyber-physical systems for smart
water networks (CySWater), pp. 31-36. IEEE, 2016.

S Moritz, F Rehbach, S Chandrasekaran, M Rebolledo, and T Bartz-Beielstein. Gecco industrial
challenge 2018 dataset: A water quality dataset for the ’internet of things: Online anomaly de-
tection for drinking water quality competition, 2018. Genetic and Evolutionary Computation
Conference 2018.

12


http://iops.ai/dataset_detail/?id=10

Under review as a conference paper at ICLR 2026

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and Michael J
Franklin. Volume under the surface: a new accuracy evaluation measure for time-series anomaly
detection. Proceedings of the VLDB Endowment, 15(11):2774-2787, 2022.

John Paparrizos, Paul Boniol, Qinghua Liu, and Themis Palpanas. Advances in time-series anomaly
detection: Algorithms, benchmarks, and evaluation measures. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp. 6151-6161, 2025.

Martha Rodriguez, Diana P Tob6n, and Danny Miinera. Anomaly classification in industrial internet
of things: a review. Intelligent Systems with Applications, 18:200232, 2023.

Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Forster, Gerhard Troster,
Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, et al. Collecting complex activity
datasets in highly rich networked sensor environments. In 20710 Seventh International Conference
on Networked Sensing Systems (INSS), pp. 233-240. IEEE, 2010.

Marten Scheffer. Critical transitions in nature and society. Princeton University Press, 2009.

Marten Scheffer, Jordi Bascompte, William A Brock, Victor Brovkin, Stephen R Carpenter, Vasilis
Dakos, Hermann Held, Egbert H Van Nes, Max Rietkerk, and George Sugihara. Early-warning
signals for critical transitions. Nature, 461(7260):53-59, 2009.

Bernhard Scholkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson.
Estimating the support of a high-dimensional distribution. Neural computation, 13(7):1443-1471,
2001.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSP, 1:108-116, 2018.

Haotian Si, Changhua Pei, Hao Cui, Jing Yang, Yongqian Sun, Shenglin Zhang, Jingmin Li, Haim-
ing Zhang, Jianhui Han, Dan Pei, et al. Timeseriesbench: An industrial-grade benchmark for time
series anomaly detection models. arXiv preprint arXiv:2402.10802, 2024.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828-2837,
2019.

Markus Thill, Wolfgang Konen, and Thomas Bick. Markus thill/mgab: The mackey-glass anomaly
benchmark. https://doi.org/10.5281/zenodo.3762385, 2020.

Luan Tran, Liyue Fan, and Cyrus Shahabi. Distance-based outlier detection in data streams. Pro-
ceedings of the VLDB Endowment, 9(12):1089-1100, 2016.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for
anomaly detection in multivariate time series data. Proceedings of the VLDB Endowment, 15(6):
1201-1214, 2022.

Alexander von Birgelen and Oliver Niggemann. Anomaly detection and localization for cyber-
physical production systems with self-organizing maps. In IMPROVE-Innovative Modelling Ap-
proaches for Production Systems to Raise Validatable Efficiency: Intelligent Methods for the
Factory of the Future, pp. 55-71. Springer, 2018.

Rui Wang, Xudong Mou, Renyu Yang, Kai Gao, Pin Liu, Chongwei Liu, Tianyu Wo, and Xudong
Liu. Cutaddpaste: Time series anomaly detection by exploiting abnormal knowledge. In Pro-
ceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
3176-3187, 2024.

Yaxuan Wang, Hao Cheng, Jing Xiong, Qingsong Wen, Han Jia, Ruixuan Song, Liyuan Zhang,
Zhaowei Zhu, and Yang Liu. Noise-resilient point-wise anomaly detection in time series using
weak segment labels. arXiv preprint arXiv:2501.11959, 2025.

Paul Wiessner, Grigor Bezirganyan, Sana Sellami, Richard Chbeir, and Hans-Joachim Bungartz.
Uncertainty-aware time series anomaly detection. Future internet, 16(11):403, 2024.

13


https://doi.org/10.5281/zenodo.3762385

Under review as a conference paper at ICLR 2026

Mark S Williamson and Timothy M Lenton. Detection of bifurcations in noisy coupled systems from
multiple time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(3), 2015.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng,
Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network for un-
supervised anomaly detection and diagnosis in multivariate time series data. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 1409-1416, 2019.

Shenglin Zhang, Zhenyu Zhong, Dongwen Li, Qibo Fan, Yongqgian Sun, Minghua Zhu, Ying Zhang,
Dan Pei, Jieming Sun, Yan Liu, et al. Efficient kpi anomaly detection through transfer learning for
large-scale web services. IEEE Journal on Selected Areas in Communications, 40(8):2440-2455,
2022.

14



Under review as a conference paper at ICLR 2026

Table 5: Notations used in FOLD.

Symbol Description Symbol Description
X e RExd Input sequence H Forecast horizon
fo Forecasting model Y = f4(X) Baseline prediction
P, i-th patch X\ P Input with P; masked
ff\i Perturbed prediction D(-,") Distance function
6, A Stress weights Tyvc MC dropout passes
€ Stress score for P; Z(t) Patches covering ¢
S(t) Stress signal at ¢ z(t) Risk trajectory
a, B, ODE coefficients Miain Maxima set from normal
K Calibration windows p Quantile level
p Margin for threshold Zihr Risk threshold
9(t) Point-wise decision Zsys (1) System-level risk score

A  ALGORITHMS

Algorithm 1: FOLD Calibration (normal-only)
IDPUt: 'DHO!”mal7 f9) {R}7 5a )‘7 (CY, Ba ’Y)) h7 Lap

train

Output: Zy,

1 Miain < 9
// Step 1l: Train forecasting model on normal data
2 train fy on D[‘}‘;{I'fal;
// Step 2: Iterate through each normal training sequence
3ibrXf€’Dﬁ$Tld0
4 ? — f@(X);
// Obtain baseline prediction
// Step 3: Compute patch-wise perturbations and stress
signals
5 for P, in X do
6 Vi < fo(X\ P);
7 € — 6D(§A’\i, V) + A ‘Var(f/\i) — Var(Y)[;

// Step 4: Aggregate patch scores into stress signal
8 S(t) + ﬁ Yiezq €ifort =1..L;
// Step 5: Simulate fold-bifurcation ODE
9 simulate Eq. (fold-ode) with input S(¢) to get z(t);
// Step 6: Record maximum risk of this sequence
10 Mtrain — Mtrain U {maxt Z(t)};
// Step 7: Define anomaly threshold from high-percentile of
normal maxima
1 Ly Quantilep(Mmin);

B EXPERIMENTAL ENVIRONMENTS

B.1 DATASETS
We evaluate FOLD on 40 widely used public benchmarks. Table [6] summarizes their key statis-

tics; the value in parentheses denotes the number of sequences provided by each repository, and all
reported scores are averaged over sequences within a dataset.
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Algorithm 2: Point-wise Anomaly Detection(FOLD)

Imput: X, fo,{P;},0, A\, («

for each patch P; in X do
Wi« fé)({(\if)i) ;
€; < 5D(Y\Z', Y)

BaPY)ah,La Zt
Output: z( ), 4(t) = 1[ (t ) > Zi
Y « fo(X): // Forecast H-step outputs from the input sequence X

+ A |Var(Yq,)

// Perturbed prediction by masking P;

— Var(Y)

sensitivity and uncertainty

S(t) « ﬁ Yiez €ifort =1..L;

a time-varying signal

5

// Stress signal combining

// Aggregate patch-level stress into

simulate Eq. mwnh input S(¢) to obtain z(¢) ;
; // Risk trajectory evolves under fold-bifurcation dynamics

return z(¢) and §(t) =

1[z(t) > Zind;

; // Anomalies are flagged once z(t) leaves the stable basin Zin.,
realizingFOLD anomaly detection without labels

Table 6: Overview of dataset characteristics for the 40 benchmarks in TSB-AD. The symbol ’

-’ in the

second column indicates that the dataset is transformed from a multivariate source. The *Category’
column specifies whether the dataset features point anomalies (P) or sequence anomalies (Seq).

Name #TS #TS Avg  Avg TS Avg # Avg Anomaly  Anomaly Categor
Collected Curated Dim Len Anomaly Len Ratio gory
UCR 250 228 1 67818.7 1 198.9 0.6% P&Seq
NAB 58 28 1 5099.7 1.6 370.1 10.6% Seq
YAHO 367 259 1 1560.2 5.5 2.5 0.6% P&Seq
58 17 1 727923 25.6 48.7 1.3% Seq
MGA 10 9 1 971777.8 9.7 20.0 0.2% Seq
210 111 1 17444.5 5.1 254 0.6% Seq
SED ( 6 3 1 233323 14.7 64.0 4.1% Seq
TOD! 15 15 1 5000.0 97.3 18.7 6.3% P&Seq
48 9 1 1073.0 2.9 51.1 8.0% P&Seq
Stock Imﬂ! 90 20 1 15000.0 1246.9 1.1 9.4% P&Seq
Z Power \ 1 1 1 35040.0 4 750 8.5% Seq
< Daphnet 'L‘W 2009} (U) - 1 1 38774.0 6 384.3 5.9% Seq
B CATSv2 ‘Liﬁl!.i! 2023 (U - 1 1 300000.0 19.0 778.9 4.9% Seq
= SWaT 2016} (U) - 1 1 4199190  27.0 1876.0 12.1% Seq
LTDB (G M l - 9 1 99700.0 127.5 144.5 18.6% Seq
- 3 1 10000.0 838.7 1.1 9.4% P&Seq
- 32 1 44075.8 3.1 1571.3 11.0% Seq
- 8 1 631250.0 68.7 451.9 4.2% Seq
- 9 1 3492.0 1.3 130.0 5.8% Seq
- 19 1 7700.2 1.2 210.1 2.8% Seq
- 38 1 24207.7 2.4 173.7 2.0% Seq
- 20 1 171380.0 36.4 292.5 3.6% Seq
- 29 1 16544.8 1.4 653.4 6.4% Seq
48 25 19 199001.0 22 1035.2 1.1% Seq
17 1 9 38774.0 6.0 384.3 5.9% Seq
72 27 21 60878.4 43 1373.3 9.8% Seq
201 1 1 18 16220.0 3.0 16.7 0.3% Seq
OPP | 24 8 248  17426.75 1.4 394.3 4.1% Seq
SMD lml 28 22 38 25466.4 8.9 112.8 3.8% Seq
= SWaT (M 4 2 59  207457.5 16.5 1093.6 12.7% Seq
a 1 1 25 217624.0 72.0 338.6 11.2% P&Seq
< 54 27 25 7855.9 1.3 196.3 2.9% Seq
a 27 16 55 31194 1.3 111.7 5.1% Seq
&= CreditCard 8 1 1 29  284807.0 465.0 1.1 0.2% P&Seq
GECCO (Moritz et al., 1 1 9 138521.0 51.0 33.8 1.2% Seq
MITDB (Goldberge 48 13 2 336153.8 15.2 1846.8 2.7% Seq
SVDB (Greenwald] 78 31 2 207122.6 68.3 268.2 4.8% Seq
LTDB ( 7 5 2 100000.0 105.0 134.4 15.5% Seq
CATSv2 (Fleith] 10 6 17 240000.0 115 811.6 3.7% Seq
TAO l 45 13 3 10000.0 788.2 1.1 8.7% P&Seq

B.1.1 BENCHMARK PrRoOTOCOL: TSB-AD

We adhere to the standard evaluation protocol of the TSB-AD benchmark (Liu & Paparrizos|[2024),
which features a comprehensive collection of 1,070 high-quality time series curated from 40 diverse
datasets. The benchmark is structured into two primary tracks: Univariate (TSB-AD-U) and Mul-

tivariate (TSB-AD-M).
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Consistent with the official leaderboard guidelines, the data is partitioned into three distinct subsets
to ensure rigorous and fair evaluation:

B.2

e Evaluation Data: This set comprises 350 univariate and 180 multivariate time series re-

served strictly for testing. The average anomaly ratios are 4.5% and 5.0%, respectively. We
report the final performance metrics (VUS-PR, F1) on this split.

Training Data: A short, anomaly-free historical segment is provided for each evaluation
series. In our framework, we utilize this segment to train the forecasting backbone (fy) and
to calibrate the threshold Z;,,. using the distribution of normal risk scores.

Tuning Data: A separate set of time series (48 for univariate, 20 for multivariate), distinct
from the evaluation set, is provided for hyperparameter optimization (HPO). We utilize
this split to select optimal hyperparameters (e.g., patch size P, margin p) without leaking
information from the test set.

SETTINGS

1. GPU: NVIDIA A6000

2. OS: Ubuntu 20.04

3. Framework: PyTorch 2.1.1+cul21

4. CUDA: nvce V12.1.66 (build cuda_12.1.r12.1/compiler.32415258_0)

B.3 HYPERPARAMETERS

Hyperparameter search ranges. We conducted a grid search over the following ranges:

* Forecasting models:

- Sequence length € {96, 48},
— Output length € {12,24},
— Learning rate € {0.001, 0.005, 0.0001}

* Stress signal calculation:

- D(-,-) € {cosine similarity, MSE, MAE},
§ € {0.5,1.0,1.5, 2.0},

A€ {0.5,1.0,1.5,2.0}

Thre € {30,50}

¢ Fold-bifurcation ODE:

- 0 €{05,1.0,1.5,2.0,2.5},
- 8 €{0.1,0.3,0.5,0.7,0.9},
— ~ € {0.001,0.01,0.05,0.1,0.15, 0.2},
— Number of patches € {6, 8}

Best hyperparameters. The same best configuration was applied consistently across all datasets:

* Forecasting models:

— Sequence length = 48,
— Output length = 12,
— Learning rate = 0.005

* Stress signal calculation:

- D(-,-) = cosine similarity,
- 0 =1.0,
-A=1.0
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- Tye € {50}
 Fold-bifurcation ODE:

- a=1.0,

- 8=0.5,

- v =0.001,

— Number of patches = 6

B.4 POINT-WISE EVALUATION

We reuse TranAD (Tuli et al.l [2022) splits/preprocessing and re-score all methods under a unified
point-wise protocol. Labels are per timestep; decisions are (t) = W¥{score(t) > threshold}, and
Precision/Recall/F1 are computed over timesteps (no anomaly-range dilation, no delay tolerance, no
smoothing).

Baselines. For each baseline, we follow the thresholding strategy originally used in the respective
paper (e.g., reconstruction- or prediction-error based detectors use their default criteria). We did not
re-tune thresholds, ensuring that FOLD is compared against baselines under their standard settings.

FOLD. score(t) = z(t); the threshold Zy, is calibrated from normal training windows as in
Sec.[3.4} prediction is §(t) = ¥{z(t) > Zu:}.

Point-wise micro F1 score. We evaluate at the timestep level with no temporal tolerance (k=0).
For each time ¢, let ys(t) € {0,1} be the ground-truth label and g(t) € {0,1} be the binarized
prediction (obtained by thresholding the anomaly score).

Dataset-level counts are aggregated over all s, ¢:

TP = Zué =1 Ay(t)=1], (11
FP = Zué =1 Ay(t)=0], (12)
FN = Zué =0 A y(t)=1]. (13)
Micro-precision and recall are P = TP +FP and R = TP +FN , and the point-wise micro F1 is
2PR
Fl=—5 R (14)

No dilation/collar or range merging is applied; a prediction is counted as correct only when it
matches the exact timestep (§(¢)=y(t)=1). Unless noted otherwise, all F1 scores reported in this
paper use this definition.

Multivariate setting and interactions. Let X € RY*P denote a window of D variables. The
forecaster fy is multivariate (PatchTST, TimeMixer with cross-feature mixing), hence its prediction

Y = fo(X) € RF*D already encodes cross-variable dependencies. We compute patch scores {;}
by locally masking X with patch m; and measuring the change of a joint multivariate loss, e.g.,

ei = ||V — fo(X @ my)||1, tmextea + - (Var[ ] — Var[fo(X ©m;)]),

sensitivity uncertainty

where the loss aggregates over all D features. Because fp is multivariate, masking feature j at time
t can change predictions of many other features, and this cross-effect is reflected in ;. Patch scores
are aligned to time and feature axes to form feature-wise stresses S (¢) and their aggregation S(t):

D
= > e[t k) €span(my)],  S(t) = Y wpSk(t) (wk >0, Y wy=1).
A k=1 k
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We then evolve feature-wise risk dynamics
2 (t) = o, Sk(t) — B,2k(t)* — vz (t),

yielding z(t) = (21(t),...,zp(t)) € RP. For readability, figures report a system-level risk obtained
by summation, e.g. zey(t) = >, zx(t). Anomalies can be declared either when zy(t) crosses a
calibrated threshold.

B.5 IMPLEMENTATION DETAILS ABOUT FOLD(CHRONOS)

To demonstrate the model-agnostic nature of FOLD, we replaced the trainable forecasting backbone
(fo) with Chronos (Ansari et al.,[2024]), a pre-trained probabilistic time-series foundation model, in a
zero-shot setting. Specifically, we utilized the amazon/chronos—-t5-small variant (approx.
46M parameters) to evaluate the framework’s capability even with a lightweight foundation
model. Since Chronos natively outputs a predictive distribution rather than a point estimate, we
adapt the stress signal calculation (Eq.[) as follows:

Uncertainty Term. Unlike standard deep learning models that require MC Dropout for uncer-
tainty estimation, Chronos provides a distribution of sample trajectories. We directly utilize the
variance of these generated samples as the uncertainty measure:

Uncertainty = |Va'r(f’\i) — Var(Y)| (15)
where Var(-) denotes the variance across the sampled forecasts from Chronos.

This adaptation allows FOLD to leverage the superior zero-shot generalization of foundation mod-
els without any additional training or architectural modifications. The quantitative results of this
integration are presented in Table[T}

C ADDITIONAL EXPERIMENTAL RESULTS

We follow TranAD (Tuli et al.,[2022) for splits and preprocessing (native dimensionality: NAB/UCR
univariate; others multivariate) and re-evaluate all methods under a unified point-wise protocol: for
each timestep ¢, §(¢t) = W{z(t) > Zu} and Precision/Recall/F1 are computed over timesteps (no
dilation, no delay tolerance, no smoothing). This stricter protocol replaces window-level scoring
common in prior work. See Appendix [B]for dataset, hyperparameter, and evaluation details.

C.1 EXPERIMENTAL RESULTS

Table [7] reports the performance of FOLD compared with 10 state-of-the-art baselines across 9
benchmarks. Under the point-wise anomaly detection setting, which demands anomalies to be iden-
tified at the exact timestep, many prior methods show degraded performance, suggesting that earlier
window-based results may have overstated fine-grained accuracy.

Despite this stricter setting, FOLD achieves consistently strong Fl-scores across domains. On
datasets dominated by sudden deviations (e.g., NAB, UCR), FOLD matches or surpasses prediction-
based approaches. On benchmarks characterized by gradual stress accumulation (e.g., SMAP, MSL),
FOLD further outperforms prediction- and distance-based methods. Notably, on NAB and SMAP,
FOLD improves over the strongest baselines by 216.4% and 170.1%, respectively, highlighting its
robustness across both low-resource and high-performing settings.

Another key finding is that FOLD maintains competitive performance regardless of the forecast-
ing backbone. Substituting PatchTST with simpler models such as DLinear or TimeMixer yields
comparable results, indicating that FOLD does not hinge on forecaster sophistication. Instead, the
strength of FOLD lies in transforming sensitivity and uncertainty signals into a dynamical stress
process via fold-bifurcation modeling. This demonstrates that it is not merely the presence of error
signals but their principled accumulation and state-transition modeling that drive accurate anomaly
detection.
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Table 7: Performance comparison of FOLD with baseline methods across all datasets. P: Precision,

R: Recall, F1: F1-score. The best F1-scores are shown in beld , and the second-best in italic . All
results are averaged over 3 independent runs standard deviations are reported in Appendix

Method NAB UCR MBA

P R Fl1 P R F1 P R Fl1
LSTM-AD 0.0501 0.2917 0.0855 0.2083 0.0113 0.0214 0.5822 0.2234  0.3229
OmniAnomaly 0.0757 0.3073 0.1215 0.0161 0.3125 0.0306 0.5045 0.1712  0.2556
MSCRED 0.0616 0.2187 0.0961 0.0053 0.0045 0.0049 0.7414 0.2261 0.3465
MAD-GAN 0.0807 0.3958 0.1341 0.1609 0.1863 0.1727 0.7018 0.2299 0.3463
USAD 0.0843 0.6719 0.1498 0.0412 0.0824 0.0549 0.6565 0.2234 0.3333
MTAD-GAT 0.0571 0.1875 0.0875 0.0625 0.0039 0.0073 0.6313 0.1876  0.2892
GDN 0.0617 0.2188 0.0963 0.1250  0.1250  0.1250 0.4607 0.1577 0.2349
Anomaly Transformer 0.0591  0.5000 0.1057 0.0303 0.1666 0.0513 0.2487 0.0285 0.0511
TranAD 0.0746  0.3437 0.1226 0.1333  0.0180 0.0317 0.7478 0.1334 0.2264
NRdetector 0.0502 0.0581 0.0539 0.6361 0.0542  0.0999 0.5000 0.3920 0.4394
FOLD(DLinear) 0.3519 0.6875 0.4655 0.4267 0.4058 = 0.4160 0.7664 0.3807 = 0.5087
FOLD(PatchTST) 0.3147  0.9600 = 0.4740 0.1361  1.0000 0.2396 0.5981 0.3218 0.4184
FOLD(TimeMixer) 0.2993  0.9607 0.4564 0.2725 0.6726 0.3879 0.4578 0.3139 0.3724
Method SMAP MSL SWaT

P R Fl1 P R F1 P R F1
LSTM-AD 0.1197 0.2969 0.1706 0.0392  0.3351 0.0702 0.7778 0.0108 0.0213
OmniAnomaly 0.0580 0.1762 0.0873 0.0424 0.3189 0.0748 09742 0.6475 0.7779
MSCRED 0.0928 0.0085 0.0156 0.0538 0.2665 0.0895 1.0000 0.3897 0.5608
MAD-GAN 0.0682 0.1910 0.1005 0.0217 0.0197  0.0207 0.9243  0.3602 0.5183
USAD 0.0743  0.2831 0.1177 0.0393  0.3209 0.0700 0.9870 0.4721 0.6387
MTAD-GAT 0.0170 0.7429 0.0332 0.1453  0.3556 0.2063 09731 0.6195 0.7570
GDN 0.4056 0.0495 0.0882 0.0602 0.3298 0.1018 0.9673 0.6428 0.7723
Anomaly Transformer 0.3195 0.0255 0.0472 0.1557 0.0159 0.0289 0.4663 0.1514 0.2285
TranAD 0.1185 0.2197 0.1540 0.2326  0.0323  0.0567 0.9964 0.4363 0.6068
NRdetector 0.6372  0.1608 0.2568 0.4884 0.1511 0.2308 0.7336  0.5772  0.6460
FOLD(DLinear) 0.6820  0.7059 = 0.6937 0.3514 0.5821 0.4382 0.6824  1.0000 = 0.8112
FOLD(PatchTST) 0.7238  0.5214 0.6062 0.5429 0.6727 = 0.6009 0.8212 0.7882 0.8043
FOLD(TimeMixer) 0.5103  0.6928 0.5877 0.5956 0.5117  0.5505 0.7804 0.8046 0.7923
Method WADI SMD MSDS

P R Fl1 P R F1 P R Fl1
LSTM-AD 0.0472  0.0012  0.0023 0.0389  0.0031  0.0057 0.0075 0.2692 0.0145
OmniAnomaly 0.1249  0.0275 0.0451 0.4779 0.0543  0.0975 0.8414 0.7997 0.8200
MSCRED 0.0519 0.2069 0.0830 0.9783 0.0921 0.1684 0.4324 0.0075 0.0147
MAD-GAN 0.0069 0.0852 0.0128 0.9999 0.0064 0.0127 1.0000 0.1542 0.2672
USAD 0.0969 0.3584 0.1526 0.6320 0.1064 0.1821 0.7263  0.9999 0.8414
MTAD-GAT 0.0846 0.2894 0.1309 0.4803 0.0879 0.1486 0.0282 0.5962 0.0538
GDN 0.0820 0.2256 0.1203 0.4658 0.1277 0.2004 0.0004  0.9999 0.0008
Anomaly Transformer 0.1428 0.6571 0.2346 0.1698 0.0362 0.0597 0.0374 0.5103  0.0696
TranAD 0.2157 0.3433  0.2649 0.6536  0.0660 0.1199 0.7264 0.9999 0.8414
NRdetector 0.4849 0.2712 0.3479 0.2232 0.0722  0.1091 0.4943 1.0000 0.6615
FOLD(DLinear) 0.5299 0.7037 = 0.6046 0.3095 0.4258 = 0.3585 0.8531 0.8822 0.8674
FOLD(PatchTST) 0.4144 0.6731 0.5130 0.4151 0.3023  0.3498 0.8812 0.8781 = 0.8796
FOLD(TimeMixer) 0.4065 0.6900 0.5116 0.4224 0.3095 0.3572 0.8023 0.8692 0.8344

We also compare with NRDetector (Wang et al., 2025)), a recent method explicitly designed for
point-wise anomaly detection. While NRDetector narrows the evaluation gap by aligning its design
with stricter metrics, FOLD consistently outperforms it across multiple benchmarks. This advantage
arises from our dynamical-systems formulation, which unifies sudden and gradual stresses under a
single framework. Thus, FOLD not only competes strongly with state-of-the-art baselines but also
advances point-wise anomaly detection beyond current specialized methods.

D EXPERIMENTS RESULTS WITH STANDARD DEVIATION

The reported mean and standard deviation are computed by repeating the forecasting model training
three times with different random seeds. Since the anomaly detection pipeline builds on the trained
forecaster, the reported deviations reflect both variability in the forecasting stage and its propagation
into stress-signal based detection.
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Table 8: FOLD anomaly detection results with mean and standard deviation over three independent
runs of the forecasting model.

Method NAB UCR MBA

F1 F1 F1
FOLD(DLinear) 0.4655 £ 0.000  0.4160 £ 0.008  0.5087 &£ 0.001
FOLD(PatchTST) 0.4740 £ 0.003  0.2396 £ 0.007  0.3018 £ 0.007
FOLD(TimeMixer) 0.4564 £0.001  0.3879 £ 0.001  0.2072 £ 0.005
Method SMAP MSL SWaT

F1 F1 F1
FOLD(DLinear) 0.6937 £ 0.002  0.4382 £ 0.001 0.8112 £ 0.005
FOLD(PatchTST) 0.6062 £ 0.010  0.6009 £ 0.000  0.8043 £ 0.002
FOLD(TimeMixer) 0.5877 £0.012  0.5505 £ 0.002  0.7923 £ 0.005
Method WADI SMD MSDS

F1 F1 F1
FOLD(DLinear) 0.6046 + 0.001 0.3585 £ 0.004  0.8674 £ 0.001
FOLD(PatchTST) 0.5130 £ 0.001  0.3498 £ 0.005  0.8796 £ 0.010
FOLD(TimeMixer) 0.5116 £0.002  0.3572 £0.002  0.8344 £+ 0.012

E ADDITIONAL ABLATION

E.1 CHOICE OF DISTANCE METRIC FOR SENSITIVITY TERM

To evaluate the impact of different distance metrics in the sensitivity term, we conducted an ablation
study comparing MSE, MAE and cosine similarity as the function D(-, -). All other components of
FOLD (DLinear) were kept fixed. As shown in Table[9] cosine similarity consistently improvements.
These results confirm that FOLD is robust to the choice of distance metric, with cosine similarity
selected as the default due to its stable performance across benchmarks.

Table 9: Ablation study on distance metric for sensitivity term.

Method NAB MSL SMD

P R Fl1 P R Fl1 P R Fl1
FOLD (MSE) 0.2984  0.9351 0.4524 0.3409  0.5901 0.4322 02942 0.3087  0.3013
FOLD (MAE) 02812  0.8426  0.4216 03381  0.5206  0.4099 03112 0.2724  0.2905
FOLD (Cosine similarity) 02993  0.9607  0.4564 0.3514  0.5821 0.4382 0.3095  0.4258  0.3585

E.2 SENSITIVITY TO ODE PARAMETERS

We analyze the sensitivity of FOLD to the coefficients «, 3, 7y in the fold-bifurcation inspired ODE
(Eq. [7). Each parameter is varied individually while the others are fixed, and the resulting F1-
scores are reported across representative benchmarks. As shown in Figure[7, FOLD maintains stable
performance over a wide range of values, indicating robustness to hyperparameter choices. Only
extreme values lead to noticeable degradation, underscoring the importance of avoiding pathological
settings rather than requiring precise tuning.

E.3 SENSITIVITY TO THE NUMBER OF PATCHES

We further analyze the effect of the patch number N, which controls the temporal granularity of
stress signal estimation. As shown in Figure[§] FOLD maintains consistently superior performance
compared to baselines across a wide range of N. While moderate patch sizes (e.g., N = 6-10) yield
slightly better results, the overall performance does not degrade significantly even at extreme values.
This robustness indicates that FOLD does not rely on a finely tuned patch size: the forecasting
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Figure 7: Sensitivity of FOLD to ODE parameters «, 3,7. Performance is stable across broad
ranges.

backbone provides sufficiently stable sensitivity and uncertainty signals, and the fold-bifurcation
dynamics remain effective regardless of the precise partitioning. Therefore, FOLD’s advantage
stems from its principled stress accumulation modeling rather than from sensitive hyperparameter
choices.
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Figure 8: Sensitivity study on the number of patches N. We report Fl-scores of FOLD compared
with representative baselines on NAB, SMAP, and MSL. Across all datasets, FOLD consistently
outperforms the baselines, and its performance remains stable across a broad range of IV, demon-
strating robustness to patch partitioning choices.

E.4 THRESHOLD ROBUSTNESS ANALYSIS

To complement the theoretical discussion in Section[3.4] we empirically assess the robustness of the
threshold Zy,,.

Bootstrap confidence intervals. For each dataset, we resample the calibration set M, (B =
1000 replicates) and recompute Zy,, = Quantilep(Mtrain) with p = 0.99. Tablereports the mean
and 95% confidence interval, showing that the variation of Zy,, is below 5% across all datasets.

Table 10: Bootstrap confidence intervals of Zg, on selected datasets.

Dataset Zhe (mean) 95% CI
UCR 2.518 [2.502, 2.534]
SMAP 0.598 [0.590, 0.623]
SMD 0.713 [0.699, 0.731]
MSL 0.382 [0.369, 0.401]

Calibration robustness. We probe the stability of the calibrated threshold Z, against e-
contamination,where an ¢ fraction of normal calibration windows are replaced by anomalous ones.
For each ¢ € {0,3,5,10} we recompute Z§ and report the relative shift AZ = (Z5, — Zine)/Zine
and the resulting point-wise F1 on the test set (no re-tuning of p, p).
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Table 11: Effect of calibration contamination on threshold stability and detection performance on

SMAP (S-1).
€%  Zwm AZ®%)  Fl  AFl(pp)
0 0.5982 —_— 0.8095 —_
3 0.6105 +2.05 0.7918 -2.19
5 0.7075 +18.3 0.5366 -33.7
10 0.7204 +20.4 0.3832 -52.6

Even at ¢ = 10%, FOLD retains an F1 of 0.3832 on SMAP (S-1), which,despite the drop from clean
calibration, remains substantially higher than strong baselines on the same machine (e.g., NRDetec-
tor 0.1032, TranAD 0.0080).Small contaminations (¢ < 3%) shift Z,, by only a few percent and
lead to modest F1 changes, consistent with the high-quantile stability we exploit.
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Figure 9: Robustness of threshold on SMAP.

F EFFICIENCY AND COMPLEXITY ANALYSIS

6000 7000

We analyze the computational efficiency of FOLD from both theoretical complexity and empirical

resource usage perspectives.

Theoretical Complexity. Unlike many SOTA anomaly detectors built on Transformer backbones
with quadratic complexity O(L?) (where L is the sequence length), FOLD utilizes lightweight back-
bones (e.g., DLinear) with linear complexity O(L). During inference, FOLD computes the stress
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Table 12: Computational efficiency comparison on the MSL dataset.

Model GPU Memory  Additional Memory  System Memory

Usage (MB) at Inference (MB) Usage (MB)
LSTM-AD 26.73 8.180 1094.76
OmniAnomaly 19.73 1.320 1343.11
MSCRED 42.87 12.54 80409.57
MAD-GAN 29.87 1.300 1036.21
USAD 29.92 1.200 1409.09
MTAD-GAN 36.87 9.872 3024.28
GDN 38.41 10.18 4886.08
Anomaly Transformer 28.32 3514 3687.15
TranAD 40.42 1.240 1016.51
NRdetector 31.22 214.1 2965.31
FOLD (DLinear) 18.04 1.170 893.49

signal by evaluating P patches. Even with K MC dropout samples for uncertainty estimation, the
total scoring complexity is O(K - P-L). Since K and P are small constants independent of L, FOLD
maintains an asymptotic linear complexity O(L), offering a fundamental efficiency advantage over
O(L?) methods. Furthermore, the patch evaluations are independent and massively parallelizable,
allowing them to be processed in a single batch on GPUs.

Empirical Efficiency. Table[[2]compares peak GPU memory, additional memory at inference, and
overall system memory on the MSL dataset. FOLD achieves the lowest memory footprint across all
metrics. Specifically, it requires only 18.04 MB of GPU memory and minimal additional inference
memory (1.17 MB), significantly outperforming complex deep learning baselines like Anomaly
Transformer (28.32 MB / 351.4 MB) and MSCRED (42.87 MB). This confirms that FOLD’s linear
complexity translates directly to practical, real-time efficiency suitable for industrial deployment.

Practical Implications (Training-Free). Crucially, the anomaly detector in FOLD is a training-
free extension of the forecasting model. Unlike other methods that require training a separate
detector or fine-tuning on anomaly scores, FOLD is derived directly from the pre-trained forecaster
without additional parameter optimization. Combined with the massively parallelizable inference
computations (as discussed in Theoretical Complexity), this training-free nature minimizes deploy-
ment costs and makes FOLD highly amenable to real-time industrial applications.

G ADDITIONAL VISUALIZATION

H THEORETICAL ANALYSIS OF FOLD-BIFURCATION DYNAMICS
In this section, we provide a formal derivation demonstrating that the unified detection capability of

FOLD is not an ad-hoc design choice but an intrinsic mathematical property of the governing ODE.
We analyze the behavior of Eq. (7) under different time-scales of the input stress S(¢).

H.1 UNIFIED MECHANISM VIA TIME-SCALE SEPARATION

The system state z(¢) evolves according to the single governing equation:

% =aS(t) - (Bz* +2) (16)
T . ——

Forcing Restoring
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Figure 10: Qualitative comparison on three benchmark datasets representing distinct anomaly types:
Gradual (SMAP), Abrupt (NAB), and Periodic (UCR). We compare FOLD against state-of-the-
art point-wise (NRDetector) and window-based (TranAD) baselines. FOLD demonstrates robust
detection across diverse scenarios, accurately capturing gradual drifts in SMAP and abrupt spikes
in NAB, whereas baselines exhibit missed detections or false positives (e.g., NRDetector on NAB,
TranAD on SMAP).

We analyze the dominant terms in this equation based on the time-scale of the input stress relative
to the system’s intrinsic relaxation time.

Regime 1: Quasi-Static Limit (Gradual Accumulation). When the stress S(t) varies slowly
(ffi—f ~ (), the time derivative fl—j becomes negligible compared to the algebraic terms. In this regime,
the system operates on a slow manifold, tracking the instantaneous moving equilibrium where forces
balance:

aS(t) = Bz(t) + vz(t) (17)

Consequently, the risk state z(t) algebraically tracks the magnitude of S(¢). Anomaly detection is
triggered via a Saddle-Node Bifurcation when the stress exceeds the system’s capacity to maintain
this stable equilibrium. This mathematically explains the detection of gradual drifts (e.g., in SMAP).

Regime 2: Impulsive Limit (Abrupt Spike). When the stress S(t) acts as a large-magnitude
impulse over a short duration At (i.e., S(t) > 2% + 7z), the forcing term dominates the restoring
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Figure 11: Visualization of uncertainty assessments to demonstrate reliability and confidence. The
blue line represents the input data, and the shaded region indicates the uncertainty band (derived
from MC dropout). Note that the uncertainty band remains narrow during normal states (indicating
high confidence) but significantly widens at the onset of anomalies, triggering the risk accumula-
tion mechanism. This visually confirms that FOLD’s detections are driven by model-intrinsic risk
assessment rather than random fluctuations.
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Figure 12: Visualization of Risk state (z,,(¢)) on Multivariate Datasets. Although FOLD computes
risk feature-wise, the final decision is based on the aggregated system-level risk (blue line). This
plot demonstrates how the aggregated z,s(t) successfully captures anomalies in high-dimensional
datasets (OPPORTUNITY, SMAP, SMD) by integrating stress from multiple features.

dynamics. The ODE asymptotically simplifies to a pure integrator:
t+At
—raSlt) = Azx / aS(T)dr (18)
t

Here, z(t) undergoes an instantaneous state jump proportional to the total accumulated energy of the
spike. This explains why the model reacts immediately to abrupt anomalies (e.g., in NAB) without
delay.

H.2 THEORETICAL GUARANTEE OF ROBUSTNESS
The robustness of FOLD is guaranteed by the Linear Stability Analysis of the restoration term. In

the absence of strong forcing (i.e., S(t) — 0), the dynamics simplify to 42 = —(82% + ~z). Near
the stable equilibrium (z =~ 0), the linearized dynamics are governed by the eigenvalue A ~ —~.
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Figure 13: Visualization of anomaly detection results

Since v > 0, we have A\ < 0, which guarantees exponential decay of perturbations:
2(t) < et (19)

This proves that the system is mathematically guaranteed to return to the stable basin after a tran-
sient shock, ensuring that the model naturally heals itself and prevents false positives from error
propagation.

27



	Introduction
	Related Work
	Time-Series Anomaly Detection
	Uncertainty Estimation in Neural Time-Series Models
	Bifurcation Theory and Dynamical Systems Perspective

	Proposed Method
	Overall Workflow
	Forecasting Model and Stress Signal Scoring
	Fold-Bifurcation Inspired ODE Modeling
	Anomaly Criterion

	Experiments
	Experimental Results

	Ablation and Sensitivity Studies
	Conclusion
	Algorithms
	Experimental Environments
	Datasets
	Benchmark Protocol: TSB-AD

	Settings
	Hyperparameters
	Point-wise evaluation
	Implementation details about FOLD(Chronos)

	Additional Experimental Results
	Experimental Results

	Experiments Results with Standard Deviation
	Additional Ablation
	Choice of distance metric for sensitivity term
	Sensitivity to ODE parameters
	Sensitivity to the number of patches
	Threshold Robustness Analysis

	Efficiency and Complexity Analysis
	Additional Visualization
	Theoretical Analysis of Fold-Bifurcation Dynamics
	Unified Mechanism via Time-Scale Separation
	Theoretical Guarantee of Robustness


