
Hier-SLAM++: Neuro-Symbolic Semantic SLAM with a Hierarchically
Categorical Gaussian Splatting

Boying Li1∗, Vuong Chi Hao2, Peter J. Stuckey1, Ian Reid2, and Hamid Rezatofighi1

Abstract— We propose Hier-SLAM++, a comprehensive
Neuro-Symbolic semantic 3D Gaussian Splatting SLAM method
with both RGB-D and monocular input featuring an advanced
hierarchical categorical representation, which enables accurate
pose estimation as well as global 3D semantic mapping. The
parameter usage in semantic SLAM systems increases signifi-
cantly with the growing complexity of the environment, mak-
ing scene understanding particularly challenging and costly.
To address this problem, we introduce a novel and general
hierarchical representation that encodes both semantic and
geometric information in a compact form into 3D Gaussian
Splatting, leveraging the capabilities of large language models
(LLMs) as well as the 3D generative model. By utilizing the
proposed hierarchical tree structure, semantic information is
symbolically represented and learned in an end-to-end manner.
We further introduce a novel semantic loss designed to optimize
hierarchical semantic information through both inter-level and
cross-level optimization. Additionally, we propose an improved
SLAM system to support both RGB-D and monocular inputs
using a feed-forward model. To the best of our knowledge,
this is the first semantic monocular Gaussian Splatting SLAM
system, significantly reducing sensor requirements for 3D
semantic understanding and broadening the applicability of
semantic Gaussian SLAM system. We conduct experiments on
both synthetic and real-world datasets, demonstrating superior
or on-par performance with state-of-the-art NeRF-based and
Gaussian-based SLAM systems, while significantly reducing
storage and training time requirements.

I. INTRODUCTION

Visual Simultaneous Localization and Mapping (SLAM)
is a fundamental technology for ego-motion estimation and
scene perception. Semantic information, which provides
high-level environmental knowledge, is essential for compre-
hensive scene understanding and enabling robots to perform
complex tasks. Advancements in image segmentation and en-
hanced map representations have driven significant progress
in semantic visual SLAM [1], [2], [3], [4], [5].

Recently, 3D Gaussian Splatting has gained attention as a
leading 3D world representation thanks to its fast rendering
and optimization efficiency. It models the continuous distri-
butions of geometric parameters through Gaussian distribu-
tions, supporting efficient optimization, making it particu-
larly well-suited for SLAM tasks. While promising, current
3D Gaussian Splatting SLAM systems [6], [7] primarily

1 Faculty of Information Technology, Monash University, Australia.2
VinUniversity, Vietnam. 3 Mohamed bin Zayed University of Artificial
Intelligence, United Arab Emirates. ∗ Corresponding author: Boying Li
(boying.li@monash.edu). This work is supported by the DARPA
Assured Neuro Symbolic Learning and Reasoning (ANSR) program un-
der award number FA8750-23-2-1016. The work has received partial
funding from The Australian Research Council Discovery Project ARC
DP2020102427.

door

surfaces

… …

Hierarchical symbolic representation:

Large

Medium

Structure

Furniture

Storage

Coarse-to-fine understanding

Vertical Surface

Box

Soft

(b)

Wall

Cabinet

FloorSofa

Stool

Door
(c)

window

floor

rug

table

stool

sofa

cabinet

wall

surfaces

rectangular

rectangular

rectangular

flat

flat

soft

box

structure

accessibility

furniture

home accessory

furniture

storage

large

medium

small

Scene

…

Flat

…

3D Generative model

Shape

Embedding

Size

LLMs

Semantics
…

Hierarchical tree

generation

(a)

Fig. 1. (a). The hierarchical tree is generated by integrating geometric infor-
mation and semantic messages, utilizing 3D generative models and Large
Language Models (LLMs). (b). The global 3D Gaussian map generated
by Hier-SLAM++ with learned semantic labels is shown on the left. The
established hierarchical tree of the semantic information is organized on the
right. Based on the established tree, the hierarchical symbolic representation
for semantic information is shown at the bottom of the block, which
compresses semantic data, reducing both memory usage and training time
of the semantic SLAM. (c). The rendered semantic map at different levels
shows a coarse-to-fine understanding, beneficial for real-world scenarios
with shifting perspectives from distant to close.

focus on geometric reconstruction. However, the lack of
semantic integration limits its potential for complex tasks.

A straightforward approach to integrating semantic pa-
rameters is to model their distribution using a categorical
(Softmax-based) representation for each 3D primitive. How-
ever, this significantly increases parameter usage in semantic
SLAM systems, making it impractical for scene understand-
ing. To address this, we observe that semantic information
naturally forms a hierarchical structure, as shown in Fig. 1.
Attributes and properties of semantic classes are extracted
as symbolic nodes to construct a hierarchical tree, where
each semantic class is represented as a root-to-leaf path.
This hierarchical organization enables efficient encoding of
extensive information using a compact set of symbolic nodes,
resulting in a more memory-efficient representation. Building
on this concept, Hier-SLAM [8] was first introduced as an
RGB-D Gaussian Splatting SLAM system that utilizes a
hierarchical tree to represent semantic information, achieving
strong performance with improved storage efficiency and
operational speed.

In this work, we propose Hier-SLAM++, a neuro-symbolic
semantic Gaussian Splatting SLAM framework with a hier-
archical representation for semantic information. We inte-
grate geometric and semantic information into a hierarchical

Mapping

Tracking

3D Semantic Gaussian Splatting map

Losses

RenderInput

…

…

…

LLM

Validator

l = 0

l = 1

l = 2

l = 3

top-to-bottom generation

Hierarchical symbolic

representation:

𝑳𝐈𝐧𝐭𝐞𝐫
𝟎

𝑳𝐈𝐧𝐭𝐞𝐫
𝟏

𝑳𝐈𝐧𝐭𝐞𝐫
𝟐

𝑳𝐈𝐧𝐭𝐞𝐫
𝟑

𝑳𝐂𝐫𝐨𝐬𝐬

𝑳𝐈𝐧𝐭𝐞𝐫

l = 0 l = 1 l = 2 l = 3

…

Hierarchical symbolic representation

3D Generative model

…

Loop-based critic operation

Monocular setting

DUSt3R

DUSt3R

Image

Depth

Fig. 2. Left: Overview of the Hier-SLAM++ pipeline. The global 3D Gaussian map is initialized using the first frame of the video stream input. The
system then alternates between the Tracking and Mapping steps as new frames are processed (see Section III-D). In the RGB-D setting, depth is directly
obtained from sensor input, whereas in the monocular setting the 3D feed-forward method (DUSt3R) is used to generate a geometric prior for depth
estimation (see Section III-C). Top Right: Hierarchical representation of semantic information. The Tree Generation process leverages the capabilities
of both LLMs and 3D Generative Models in a top-to-bottom manner. This hierarchical tree is used to establish a symbolic coding for each Gaussian
primitive (see Section III-A). Additionally, we introduce a novel loss function that combines Inter-level Loss LInter and Cross-level Loss LCross to optimize
the hierarchical semantic representation (see Section III-B). Bottom Right: An example of hierarchical semantic rendering.

symbolic tree using Large Language Models (LLMs) and
3D generative models, where semantic nodes along root-to-
leaf paths are learned end-to-end during SLAM. To improve
semantic understanding, we introduce a hierarchical loss that
optimizes inter-level and cross-level relationships, enabling
a coarse-to-fine approach beneficial for real-world applica-
tions, especially in distant-to-near observations. Our system
supports both RGB-D and monocular inputs, leveraging
the 3D feed-forward model [9] as a geometric prior to
eliminate depth dependency. This allows semantic SLAM
without dedicated depth sensors, expanding its applicability.
Additionally, we enhance 3D Gaussian Splatting SLAM
for improved performance and efficiency. Experiments on
synthetic and real-world datasets show that Hier-SLAM++
outperforms or matches state-of-the-art NeRF-based and
Gaussian-based SLAM methods, while significantly reducing
storage and training time.

II. METHOD

The entire pipeline of our method is illustrated in Fig.
2. We model semantic space as a hierarchical tree, where
semantic information is structured from root-to-leaf. To
construct the tree, we integrate semantic and geometric
information using LLMs and 3D Generative Models. Each
3D Gaussian primitive is then augmented with a hierarchical
semantic embedding, learned end-to-end via inter-level and
cross-level semantic losses. Additionally, our method sup-
ports monocular input by leveraging geometric priors from
a feed-forward model, removing the need for depth sensors.
The following sections detail each component.

A. Hierarchical representation

Tree Parametrization. The hierarchical tree GGG is repre-
sented as the set of vertices and edges, GGG = (VVV ,EEE). The
vertices set VVV = ∪L

l=0 {vvvl} comes from the classes from all
tree levels, where {vvvl} represents the set of nodes at the l-th
level of the tree, and we use L to represent depth of the whole
tree. The edge set EEE = ∪L−1

m=0 {eeem} captures the subordinate
relationships, reflecting semantic attribution, size message,

and geometric knowledge. For the i-th semantic class gi,
which is treated as a single leaf node in the tree view, its
hierarchical expression is:

gi = {vi
l ,e

i
m | l = 0,1, ...,L; m = 0,1, ...,L−1}, (1)

which corresponds to the root-to-leaf path: gi = vi
0

e0−→ vi
1

e1−→
·· · eL−2−−→ vi

L−1
eL−1−−→ vi

L, as illustrated in Fig. 3. The hierarchi-
cal attributes and properties of class gi are represented by
the symbolic node information vi

l , while its relationships are
represented by the edge information ei

m :→. In this way, every
semantic class can be coded in a progressive, symbolic hier-
archical manner, incorporating both semantic and geometric
perspectives. Moreover, the standard flat representation can
be seen as a single-level tree coding from the tree viewpoint.

Tree Generation with LLMs and 3D Generative Model.
As shown in Fig. 3, we construct the hierarchical tree using
LLMs and 3D generative models. For semantic attributes,
we use GPT-4 Turbo [10] to extract functional relationships
and descriptive labels, leveraging its strong commonsense
reasoning and language capabilities. For geometric infor-
mation, we employ text-to-3D generative models, which
generate generalized 3D objects with accurate shapes from
text prompts. Specifically, we adopt MeshGPT [11], which
learns 3D symbolic embeddings based on local mesh ge-
ometry and topology, making it well-suited for our purpose.
However, text-to-3D methods generate objects in a unified
coordinate system, lacking size information. To compensate,
we derive size attributes from LLMs, ensuring a compre-
hensive geometric representation for each semantic class.
Additionally, we employ a loop-based critic operation using
LLMs, where one LLM performs clustering and another
acts as a validator. By integrating LLMs and 3D generative
models, we construct a well-structured hierarchical tree,
where each level encodes distinct class attributes, enhancing
global 3D understanding.
B. Hierarchical optimization

Based on the generated hierarchical tree structure, the
semantic information is represented as compact hierarchical

Level-0

…… …

…

Hierarchical Tree Representation and generation:

𝒗𝟎

𝒗𝟏

𝒗𝟐

𝒗𝟑

Level-1

Level-2

Level-3

Size

grouping

Function

grouping

Shape

grouping

𝑵𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝑵

𝐠 Level-4

Leaf level

Hierarchical semantic embedding:

One-hot representation:

Binary representation:

Root-to-leaf path

𝑲

𝑶(𝒍𝒐𝒈𝑵)

Shape grouping

Query

MeshGPT

Shape

quantized embeddings

Fig. 3. Visualization of the hierarchical tree and semantic embedding. For
tree representation, each semantic class is expressed hierarchically as g =
{vl ,em}, where edges are depicted as lines connecting tree nodes. The nodes
within the same level are illustrated via the same color. For tree generation,
we utilize both LLMs and 3D Generative Models to extract and group
messages. For hierarchical semantic embedding, we represent semantic
information using a root-to-leaf symbolic path. We propose two types of
representations: the one-hot representation and the binary representation,
which can reduce the original dimensionality by up to O(logN).

symbolic nodes, and further integrated into the 3D Gaussians,
learned in an end-to-end manner with the input stream.

Tree Encoding. We propose two types of hierarchical
semantic embeddings, both of which compact the original
semantic information. 1) One-hot representation: the hier-
archical semantic embedding hhh is composed of the one-hot
embeddings across all levels:

hhh = C (hhhl) ∈ BN , hhhl ∈ Bn (2)

where l represents the l-th level, and C denotes the concate-
nation operation. For each level’s representation hhhl , we use
n-dimensional one-hot codes (in colored boxes) to encode
the symbolic nodes (in colored circles), as shown in Fig.
3. The dimension n corresponds to the maximum number
of nodes at each level. And the overall dimension of the
semantic embedding is the sum of the dimensions across all
levels, given by N = ∑n. This allows a maximum reduction
of up to O(logN) compared to the original flat dimension.
2) Binary representation: a further compact version, the
binary representation of the hierarchical semantic embedding
bbb consists of the binary embeddings bbbl across all tree levels:

bbb = C (bbbl) ∈ BK , bbbl ∈ Bk (3)

where bbbl is the binary representation converted from hhhl of
each level: hhhl → bbbl , as depicted in the last row in Fig. 3.
By leveraging binary representation, the hierarchical coding
dimension at each level is reduced to k = logn, compared to
the one-hot encoding with dimension n. Consequently, the
total semantic encoding dimension across all levels is given
by K = ∑k, resulting in a more compact representation.

Loss Calculation. To fully optimize the hierarchical se-
mantic coding effectively, we propose the hierarchical loss
as follows:

LSemantic = ω1LInter +ω2LCross (4)

where LInter and LCross stands for the Inter-level loss and
Cross-level loss respectively. We use ω1 and ω2 to balance
the weights between each loss. The Inter-level loss LInter is
employed within each level:

LInter =
L

∑
l=0

Lce(S (hhhl),P l) (5)

where Lce indicates the cross-entropy semantic loss, and P l

denotes the semantic ground truth at level l. S stands for the
Softmax operation, converting embeddings into probabilities.
For our proposed compact version with binary representation
bbbl , we replace the original cross-entropy loss with binary
cross-entropy loss Lbce for the binary Inter-level loss calcu-
lation:

Lbin
Inter =

L

∑
l=0

Lbce(S (bbbl),P l) (6)

In contrast, the Cross-level loss is computed based on the
entire hierarchical coding. Specifically, we first perform
a 2D convolution operation on the semantic embedding,
following an activation layer (i.e., ReLU). Then, a second 2D
convolution layer is applied to map the hidden embedding
into the flat coding, followed by a softmax operation to
convert the embeddings into probabilities. The overall Cross-
level loss LCross is defined as:

LCross = Lce
(

S (decoder(hhh)),P
)
, (7)

where P represents the semantic ground truth, and the
definition of decoder(hhh) is:

decoder(hhh) = Conv
(
ReLU(Conv(hhh))

)
(8)

C. Monocular setting with geometric priority
Accurate depth information is crucial for global map

reconstruction and pose estimation in SLAM. In RGB-D
settings, depth is directly obtained from sensors, whereas
monocular SLAM [12], [13], [14], [15] relies on triangu-
lation, often leading to lower accuracy due to the coupling
of pose estimation and mapping. In Hier-SLAM++, we in-
corporate a feed-forward geometric prior using DUSt3R [9],
which generates 3D point maps and pose estimations from
sparse-view images, enhancing monocular SLAM accuracy.
D. Semantic Gaussian Splatting SLAM

The global semantic 3D Gaussian Splatting SLAM sys-
tem is illustrated in the left part of Fig. 2. Based on the
established semantic 3D Gaussian representation, global 3D
reconstruction (Mapping) and pose estimation (Tracking) are
alternately performed with the video stream input. For the
RGB-D setting, depth information for each image frame is
obtained directly from depth sensors. For the monocular
setting, we employ a feed-forward method to obtain the
geometric prior. Following [8], every semantic 3D Gaussian
primitive within the current global map is projected to
the 2D image space using the tile-based differentiable α-
compositing rendering. The semantic map H is rendered as
follows:

H =
n

∑
i=1

hhhiαi(XXX)Ti with Ti =
i−1

∏
j=1

(1−α j(XXX)) (9)

Ours

GT

C
o
a
rs

e-
to

-f
in

e

Fig. 4. Visualization of our semantic rendering performance on the Replica [16] dataset. The first four rows demonstrate rendered semantic segmentation
in a coarse-to-fine manner. The fifth row exhibits the finest semantic rendering, equivalent to the flat representation with 102 original semantic classes
from the Replica dataset. The last row visualizes the semantic ground truth for comparison.

where XXX stands for the 3D point. Different from previous
work [6], which uses separate forward and backward Gaus-
sian modules for different parameters, our Hier-SLAM++
adopt a unified forward and backward modules that processes
all parameters, including semantics, color, depth, and silhou-
ette images, significantly improving overall efficiency.

III. EXPERIMENTS

The experiments are conducted on both synthetic and real-
world datasets, including 6 scenes from ScanNet [17] and
8 scenes from Replica [16]. We evaluate SLAM tracking,
mapping, and rendering performance, along with runtime and
2D semantic rendering accuracy, to provide a comprehensive
assessment of our proposed Hier-SLAM++.

SLAM Performance: For the tracking performance
evaluated on Replica dataset, our proposed method sur-
passes all current approaches, as shown in Tab. A.1. For
ScanNet [17] dataset, our method (Avg. ↓: 11.72) performs
comparably to state-of-the-art methods [6], [18], including
SplaTAM (Avg. ↓: 11.88) and NICE-SLAM (Avg. ↓: 10.70)
, with differences primarily attributed to the limited qual-
ity of sensor inputs from the dataset. We also evaluate
mapping performance using the L1 depth loss on the
Replica [16]. The results show that our method (Avg.↓:
0.48) performs comparably to state-of-the-art methods. For
rendering quality, our method (PSNR ↑: 35.61, SSIM ↑:
0.980, LPIPS ↓: 0.067) demonstrates improved performance
compared to all existing methods, including the non-semantic
SLAM approaches.

Running time: As shown in Tab. A.2, our method
achieves up to 2.4× faster tracking and 2.2× faster mapping
than the SOTA method, SplaTAM [6]. When incorporating
semantic information, our method remains efficient, lever-
aging hierarchical semantic coding to achieve nearly 3×

faster tracking compared with the semantic SLAM with flat
semantic coding. Notably, our Hier-SLAM++ achieves a
rendering speed of 2000 FPS. For Hier-SLAM++ without
semantic information, the rendering speed increases to
3000 FPS.

Semantic understanding: We evaluate semantic render-
ing segmentation on the Replica [16]. From Tab. A.3, the
results show that our method is on par with state-of-the-
art methods while achieving better storage efficiency than
the flat version. From visualization in Fig. 4, we observe
that our method achieves precise semantic rendering at each
level, providing a comprehensive coarse-to-fine semantic
understanding for overall scenes. We further conduct ex-
periments on the real-world ScanNet dataset [17], which
includes up to 550 unique semantic classes. As shown in
Fig. A.1, our estimated 3D global semantic map at different
levels demonstrates coarse-to-fine semantic understanding,
highlighting our scaling-up capability in complex scenes.

IV. CONCLUSIONS AND FUTURE WORK

We introduced Hier-SLAM++, a neuro-symbolic seman-
tic 3D Gaussian Splatting SLAM system that supports
both RGB-D and monocular inputs, incorporating a novel
hierarchical categorical representation. Experiments show
that Hier-SLAM++ achieves superior or on-par performance
with state-of-the-art NeRF-based and Gaussian-based SLAM
methods in terms of tracking, mapping, and semantic un-
derstanding accuracy, while significantly reducing storage
requirements and runtime. These advancements establish
Hier-SLAM++ as a robust solution for semantic 3D under-
standing across diverse environments. Looking ahead, we
aim to further enhance semantic understanding by leveraging
foundation models.

REFERENCES

[1] Yun Chang, Yulun Tian, Jonathan P How, and Luca Carlone. Kimera-
multi: a system for distributed multi-robot metric-semantic simul-
taneous localization and mapping. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 11210–
11218. IEEE, 2021.

[2] Kunyi Li, Michael Niemeyer, Nassir Navab, and Federico Tombari.
Dns slam: Dense neural semantic-informed slam. arXiv preprint
arXiv:2312.00204, 2023.

[3] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone.
Kimera: an open-source library for real-time metric-semantic local-
ization and mapping. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1689–1696. IEEE,
2020.

[4] Boying Li, Danping Zou, Yuan Huang, Xinghan Niu, Ling Pei, and
Wenxian Yu. Textslam: Visual slam with semantic planar text features.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

[5] Boying Li, Danping Zou, Daniele Sartori, Ling Pei, and Wenxian
Yu. Textslam: Visual slam with planar text features. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages
2102–2108. IEEE, 2020.

[6] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Geng-
shan Yang, Sebastian Scherer, Deva Ramanan, and Jonathon Luiten.
Splatam: Splat, track & map 3d gaussians for dense rgb-d slam. In
Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition, 2023.

[7] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison.
Gaussian splatting slam. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition, pages
18039–18048, 2024.

[8] Boying Li, Zhixi Cai, Yuan-Fang Li, Ian Reid, and Hamid Rezatofighi.
Hier-slam: Scaling-up semantics in slam with a hierarchically cate-
gorical gaussian splatting. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2025.

[9] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii,
and Jerome Revaud. Dust3r: Geometric 3d vision made easy. In
Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition, pages 20697–20709, 2024.

[10] Gpt-4o-turbo, 2024. https://platform.openai.com/docs/
models#gpt-4-turbo-and-gpt-4.

[11] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi,
Daniele Sirigatti, Vladislav Rosov, Angela Dai, and Matthias Nießner.
Meshgpt: Generating triangle meshes with decoder-only transformers.
In Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition, pages 19615–19625, 2024.

[12] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tar-
dos. Orb-slam: a versatile and accurate monocular slam system.
31(5):1147–1163, 2015.

[13] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. 33(5):1255–1262,
2017.

[14] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez, José MM
Montiel, and Juan D Tardós. Orb-slam3: An accurate open-source
library for visual, visual–inertial, and multimap slam. 37(6):1874–
1890, 2021.

[15] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse
odometry. 40(3):611–625, 2017.

[16] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wij-
mans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl Ren, Shobhit
Verma, et al. The replica dataset: A digital replica of indoor spaces.
arXiv preprint arXiv:1906.05797, 2019.

[17] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Niessner. Scannet: Richly-annotated 3d
reconstructions of indoor scenes. In Proceedings of the IEEE In-
ternational Conference on Computer Vision and Pattern Recognition,
July 2017.

[18] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao,
Zhaopeng Cui, Martin R Oswald, and Marc Pollefeys. Nice-slam:
Neural implicit scalable encoding for slam. In Proceedings of
the IEEE International Conference on Computer Vision and Pattern
Recognition, pages 12786–12796, 2022.

[19] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. imap:
Implicit mapping and positioning in real-time. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 6229–
6238, 2021.

[20] Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian Liu, and
Guofeng Zhang. Vox-fusion: Dense tracking and mapping with voxel-
based neural implicit representation. In Proceedings of the IEEE/ACM
International Symposium on Mixed and Augmented Reality, pages
499–507. IEEE, 2022.

[21] Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Co-slam: Joint
coordinate and sparse parametric encodings for neural real-time slam.
In Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition, pages 13293–13302, 2023.

[22] Mohammad Mahdi Johari, Camilla Carta, and François Fleuret. Eslam:
Efficient dense slam system based on hybrid representation of signed
distance fields. In Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, pages 17408–17419,
2023.

[23] Erik Sandström, Yue Li, Luc Van Gool, and Martin R Oswald.
Point-slam: Dense neural point cloud-based slam. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages
18433–18444, 2023.

[24] Siting Zhu, Guangming Wang, Hermann Blum, Jiuming Liu, Liang
Song, Marc Pollefeys, and Hesheng Wang. Sni-slam: Semantic neural
implicit slam. In Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, 2024.

[25] Siting Zhu, Renjie Qin, Guangming Wang, Jiuming Liu, and Hesheng
Wang. Semgauss-slam: Dense semantic gaussian splatting slam. arXiv
preprint arXiv:2403.07494, 2024.

[26] Mingrui Li, Shuhong Liu, and Heng Zhou. Sgs-slam: Semantic gaus-
sian splatting for neural dense slam. arXiv preprint arXiv:2402.03246,
2024.

[27] Yasaman Haghighi, Suryansh Kumar, Jean-Philippe Thiran, and Luc
Van Gool. Neural implicit dense semantic slam. arXiv preprint
arXiv:2304.14560, 2023.

https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4

APPENDIX
The detailed results for tracking performance, runtime, and

semantic performance are presented in Tab. A.1, Tab. A.2,
and Tab. A.3, showing that our method achieves superior or
on-par performance compared to state-of-the-art approaches.
Additionally, the visualization of the global coarse-to-fine
semantic mapping is shown in Fig. A.1, demonstrating the
scaling-up capability of our method.

TABLE A.1
RGB-D TRACKING PERFORMANCE ATE RMSE (CM) ON THE REPLICA.

BEST RESULTS ARE HIGHLIGHTED AS FIRST , SECOND .

Methods Avg. R0 R1 R2 Of0 Of1 Of2 Of3 Of4
iMap [19] 4.15 6.33 3.46 2.65 3.31 1.42 7.17 6.32 2.55
NICE-SLAM [18] 1.07 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13
Vox-Fusion [20] 3.09 1.37 4.70 1.47 8.48 2.04 2.58 1.11 2.94
co-SLAM [21] 1.06 0.72 0.85 1.02 0.69 0.56 2.12 1.62 0.87
ESLAM [22] 0.63 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63
Point-SLAM [23] 0.52 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72
MonoGS-RGBD [7] 0.79 0.47 0.43 0.31 0.70 0.57 0.31 0.31 3.2
SplaTAM [6] 0.36 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55
SNI-SLAM [24] 0.46 0.50 0.55 0.45 0.35 0.41 0.33 0.62 0.50
DNS SLAM [2] 0.45 0.49 0.46 0.38 0.34 0.35 0.39 0.62 0.60
SemGauss-SLAM [25] 0.33 0.26 0.42 0.27 0.34 0.17 0.32 0.36 0.49
SGS-SLAM [26] 0.41 0.46 0.45 0.29 0.46 0.23 0.45 0.42 0.55
Hier-SLAM [8] 0.33 0.21 0.49 0.24 0.29 0.16 0.31 0.37 0.53
Hier-SLAM++ (one-hot) 0.31 0.24 0.36 0.23 0.30 0.15 0.28 0.39 0.51
Hier-SLAM++ (binary) 0.31 0.23 0.46 0.23 0.29 0.15 0.27 0.34 0.54

TABLE A.2
RUNTIME ON REPLICA/R0. BEST RESULTS ARE HIGHLIGHTED AS FIRST.

Methods Tracking Mapping Tracking Mapping
/Iteration /Iteration /Frame /Frame

RTX 4090

NICE-SLAM [18] 122.42 104.25 1.22 6.26
SplaTAM [6] 44.27 50.07 1.77 3.00
Hier-SLAM++ (w/o sem) 18.71 22.93 0.75 1.38
Hier-SLAM++ (one-hot) 37.63 194.78 1.50 11.69

L40S

Hier-SLAM [8] 61.23 170.30 2.45 10.22
Hier-SLAM++ (flat) 168.94 204.25 6.75 12.26
Hier-SLAM++ (one-hot) 62.21 212.62 2.49 12.76
Hier-SLAM++ (binary) 58.91 210.65 2.36 12.64

Hier-SLAM++ (w/o sem) represents our proposed system without
semantic information.
The units are as follows: Tracking/Iteration (ms), Mapping/Iteration
(ms), Tracking/Frame (s), and Mapping/Frame (s).

Coarse-to-fine

Localization-ATE-RMSE: 13.43 cm PSNR: 22.87 MS-SSIM: 0.78 LPIPS: 0.28 Depth-L1-error: 4.81 cm

Fig. A.1. Visualization of the established semantic 3D map across
multiple levels, illustrating a coarse-to-fine semantic understanding of the
complex scene. The bottom of the figure presents localization, rendering, and
depth performance, offering a comprehensive overview of Hier-SLAM++’s
effectiveness and demonstrating the scaling-up capability of our proposed
method.

TABLE A.3
SEMANTIC PERFORMANCE MIOU (%) AND PARAMETER USAGE (MB)

ON REPLICA. RESULTS ARE HIGHLIGHTED AS FIRST , SECOND .

Methods Avg. R0 R1 R2 Of0

mIoU (%)
total 102 classes

NIDS-SLAM [27] 82.37 82.45 84.08 76.99 85.94
DNS-SLAM [2] 84.77 88.32 84.90 81.20 84.66
Hier-SLAM [8] 76.44 76.62 78.31 80.39 70.43
Hier-SLAM++ (flat) 90.35 91.21 90.62 89.11 90.45
Hier-SLAM++ (one-hot) 89.41 86.38 89.26 91.55 90.46
Hier-SLAM++ (binary) 81.27 82.77 73.87 89.64 78.80

mIoU (%)
subset classes

SNI-SLAM [24] 87.41 88.42 87.43 86.16 87.63
SemGauss-SLAM [25] 96.34 96.30 95.82 96.51 96.72
SGS-SLAM [26] 92.72 92.95 92.91 92.10 92.90
Hier-SLAM++ (one-hot)† 96.79 96.93 96.78 96.92 96.53
Hier-SLAM++ (binary)† 95.26 96.21 92.62 96.34 95.85

Param (MB)

Hier-SLAM [8] 910.50 793 1126 843 880
Hier-SLAM++ (flat) 2662.25 2355 3072 2560 2662
Hier-SLAM++ (one-hot) 927.50 814 1126 867 903
Hier-SLAM++ (binary) 591.75 528 690 563 586

Ours† represents our method with a hierarchical representation,
evaluated on a subset of semantic classes, consistent with [26].

	INTRODUCTION
	METHOD
	Hierarchical representation
	Hierarchical optimization
	Monocular setting with geometric priority
	Semantic Gaussian Splatting SLAM

	Experiments
	CONCLUSIONS AND FUTURE WORK
	References

