
Under review as submission to TMLR

Pushing the Limits of Gradient Descent for Efficient Learning
on Large Images

Anonymous authors
Paper under double-blind review

Abstract

Traditional deep learning models are trained and tested on relatively low resolution images
(< 300 px), and cannot be directly operated on large-scale images due to compute and
memory constraints. We propose Patch Gradient Descent (PatchGD), an effective learning
strategy that allows to train the existing CNN and transformer architectures on large-scale
images in an end-to-end manner. PatchGD is based on the hypothesis that instead of
performing gradient-based updates on an entire image at once, it should be possible to
achieve a good solution by performing model updates on only small parts of the image at
a time, ensuring that the majority of it is covered over the course of iterations. PatchGD
thus extensively enjoys better memory and compute efficiency when training models on
large scale images. PatchGD is thoroughly evaluated on PANDA, UltraMNIST, TCGA and
ImageNet datasets with ResNet50, MobileNetV2, ConvNeXtV2 and DeiT models under
different memory constraints. Our evaluation clearly shows that PatchGD is much more
stable and efficient than the standard gradient-descent method in handling large images, and
especially when the compute memory is limited.

1 Introduction

In the field of computer vision, deep learning models have emerged as the fundamental framework for advanced
feature extraction, significantly outperforming traditional algorithms. For a comprehensive overview of the
evolution of the associated models and their applications across a wide range of scientific domains, we refer
to the reviews presented in Khan et al. (2020); Li et al. (2021a); Alzubaidi et al. (2021); Khan et al. (2022);
Shamshad et al. (2022).

With the recent technological developments, very large images are obtained from domains like microscopy
(Khater et al., 2020; Schermelleh et al., 2019), medical imaging (Aggarwal et al., 2021), and earth sciences
(Huang et al., 2018; Amani et al., 2020), and the challenge of using CNNs and transformers on big data to
analyze such images is immense. For example, images obtained from high-content nanoscopy 1 can be as
large as 6000× 6000 or even more (Villegas-Hernández et al., 2022), with the smallest scale of features being
only a few pixels in size. Clearly, processing these large images with such fine details prohibits the use of any
image downsampling algorithm and using existing models on such high dimension images is computationally
infeasible.

Most prevailing CNN and transformer models are trained on datasets such as ImageNet, which mainly
comprise of low-resolution (< 500 pixels) images. Most research efforts have focused on achieving state-of-
the-art performance on these datasets. However, applying these models to high-resolution images results in a
quadratic increase in activation size, requiring significantly more training compute and memory. Moreover,
limited GPU memory makes it impractical to process such large images with such models.

This paper introduces a novel training framework for deep learning models aimed at handling very large
images. The definition of “large images” depends on the available computational memory for training. For
instance, training a ResNet50 model with 10, 000× 10, 000 size images would be challenging with a 48 GB

1refer Figure 3 in supplementary material

1



Under review as submission to TMLR

Figure 1: Example nanoscopy image (left) of a mouse
kidney cryo-section approximately 1/12th of the area
of a single field-of-view of the microscope, chosen
to illustrate the level of details at different scales.
The bottom right images show that the smallest
features in the image of relevance can be as small as
a few pixels (here 5-8 pixels for the holes)(Villegas-
Hernández et al., 2022).

0 20 40 60 80 100

0.2

0.4

0.6

Epochs

A
cc

ur
ac

y
(in

fr
ac

tio
n)

Gradient descent (16 GB)
PatchGD (16 GB)

Gradient descent (4 GB)
PatchGD (4 GB)

Figure 2: Performance comparison of standard CNN
and PatchGD (ours) for the task of classification of Ul-
traMNIST digits of size 512×512 pixels using ResNet50
model. Two different computational memory budgets
of 16 GB and 4GB are used, and it is demonstrated
that PatchGD is relatively stable for the chosen image
size, even for very low memory compute.

GPU memory, but training the same model with 512 × 512 size images would be feasible with 12 GB GPU
memory. However, when limited to a 4 GB GPU memory, even 512 × 512 size images may be considered too
large.

Figure 2 illustrates the above issue on the task of classification of the UltraMNIST digits (Gupta et al.,
2022) into one of the 10 predefined classes labeled from 0-9. More details on the UltraMNIST dataset
and classification problem are provided in the supplementary material. The semantic relationship between
different parts of the images and the large variation in spatial feature size makes this problem difficult for
traditional models, particularly when dealing with large image sizes or low processing memory. In this study,
we focus on images of size 512 × 512 pixels and examine the problem under two computational memory
budgets: GPU memory limits of 4 GB and 16 GB.

For the base model, we use ResNet50 (He et al., 2016) and employ the standard training approach. We
refer to it as Gradient descent (GD). Note that the term GD is used here as a generic notation to refer to
the class of gradient-based optimizers popularly used in deep learning (such as SGD, SGD with momentum
(Bengio et al., 2013) and Adam (Kingma and Ba, 2014), among others), and it is not necessarily restricted to
stochastic gradient descent method. For the results demonstrated in Figure 2, we used the Adam optimizer.
We also present results using the proposed training method, called Patch Gradient Descent (PatchGD), which
is a scalable training approach for building neural networks with large images, low memory compute, or both.

PatchGD’s effectiveness is demonstrated in Figure 2, where it outperforms GD in both 16 GB and 4 GB
memory limits. The performance difference is 4% at 16 GB but significantly increases to 13% at 4 GB,
simulating real-world challenges with large images. Training a ResNet50 model with 512× 512 images using
only 4 GB memory leads to inferior performance, as shown in Figure 2. However, PatchGD is stable even
at this low memory regime, and this can be attributed to its design which makes it invariant to image size
to a large extent. We explain the method in more detail later and present experimental results on various
image sizes, highlighting PatchGD’s ability to adapt existing CNN models for large images with limited GPU
memory.

Contributions.

2



Under review as submission to TMLR

• We present Patch Gradient Descent (PatchGD), a novel strategy to train neural networks on very
large images in an end-to-end manner. PatchGD is an adaptation of the conventional feedforward-
backpropagation optimization.

• Due to its inherent ability to work with small fractions of a given image, PatchGD is scalable on
small GPUs, where training the original full-scale images is not possible.

• PatchGD reinvents the existing training pipeline for CNNs and transformer architectures to large
images in a very simplified manner and this makes it compatible with any existing CNN architecture
or any conventional gradient-based optimization method used in deep learning. Moreover, its simple
design allows it to benefit from the pre-training of the standard CNNs on low-resolution data.

2 Related Work

This paper seeks to enhance the ability of existing deep learning models to handle large images. Previous
research in this direction is scarce, with most studies focusing on histopathological datasets, which are a
popular source of large images. Many of these studies rely on pixel-level segmentation masks, which are not
always available. For instance, Iizuka et al. (2020); Liu et al. (2017) use patchwise segmentation masks to
perform patch-level classification on whole slide images, and then apply an RNN to obtain the final image
label. Meanwhile, Braatz et al. (2022) uses goblet cell segmentation masks for patch-level feature extraction.
However, these approaches require labeled segmentation data, are computationally expensive, have limited
feature learning, and are more susceptible to error propagation.

Another set of methods focus on building a compressed latent representation of the large input images
using existing pre-trained models or unsupervised learning approaches. For example, Brancati et al. (2021)
uses a model pre-trained on Imagenet to construct a latent block, which is further passed to an attention
head to do the final classification. Other similar variants include using a U-net autoencoder to build the
latent features (Lai et al., 2022), using encoding strategies involving reconstruction error minimization and
contrastive learning (Tellez et al., 2018) and getting stronger latent representations through multi-task
learning Tellez et al. (2020). A critical limitation of this class of methods is that the encoding network created
from unsupervised learning is not always a strong representative of the target task.

There exist several methods that use pre-trained models derived from other tasks as feature extractors and
the output is then fed to a classifier. Example methods include using Cancer-Texture Network (CAT-Net)
and Google Brain (GB) models as feature extractors (Kosaraju et al., 2022), or additionally using similar
datasets for fine-tuning (Brancati et al., 2021). Although these methods gain an advantage from transfer
learning, such two-stage decoupled pipelines propagate errors through under-represented features, and the
performance of the model on the target task is hampered. In this paper, we propose a single-step approach
that can be trained end-to-end on the target task.

Several studies have aimed to identify appropriate patches from large images and utilize them efficiently for
image classification. Naik et al. (2020) suggests constructing a latent space using randomly selected tiles, but
this approach fails to maintain semantic coherence across tiles and overlooks features spread across multiple
tiles. Campanella et al. (2019) considers this as a multi-instance learning approach, assigning labels to top-K
probability patches for classification. Pinckaers et al. (2022); Huang et al. (2022) propose patch-based training
but employ streaming convolution networks. Sharma et al. (2021) clusters similar patches and performs
cluster-aware sampling for whole-slide image (WSI) and patch classification. Cordonnier et al. (2021) uses
a patch scoring mechanism and patch aggregator network for final prediction but involves downsampling
for patch scoring, potentially leading to the loss of patch-specific features crucial for WSI. Papadopoulos
et al. (2021) progressively increases resolution and localizes regions of interest, disregarding the rest similar
to performing hard adaptive attention. DiPalma et al. (2021) trains a high-resolution teacher model and
applies knowledge distillation to a lower-resolution version of the same model. Katharopoulos and Fleuret
(2019) performs attention sampling on downsampled images and derives an unbiased estimator for gradient
updates. However, their attention method involves downsampling, potentially losing vital information. It is
important to note that these methods, utilizing patch selection and knowledge distillation, are independent
of our work and can be combined with it. However, such integration is beyond the scope of this paper.

3



Under review as submission to TMLR

With the recent popularity of Transformer-based methods, Chen et al. (2022) proposed a self-supervised
learning objective for pre-training large-scale vision transformers at varying scales. Their method involves a
vision transformer that leverages the natural hierarchical structure inherent in WSI. However, their method
requires a massive pre-training stage which is not always feasible. Also, their method is specific to WSI
rather than more general image classification and involves training multiple large-scale transformers. Our
method, on the other hand, targets more general image classification tasks and does not involve large-scale
pre-training, rather it directly works over any existing CNN model.

To overcome the memory challenges in model training, systems-level methodologies have been explored. Jain
et al. (2020); Kirisame et al. (2020) propose approaches like tensor re-materialization to expand available
memory, which can be used for both baselines and our PatchGD method, making them complementary.
This work primarily focuses on efficiently training large-scale images on low-compute GPUs. Gholami et al.
(2018); Dryden et al. (2019); Oyama et al. (2020) address the image size issue by scaling deep learning models
across multiple GPUs. There exist other model parallelism methods that can help to handle larger models
or activations (Rajbhandari et al., 2020; Shoeybi et al., 2019). These approaches distribute a model across
multiple GPUs, effectively managing memory issues by leveraging the collective memory capacity. However,
PatchGD is designed to help models operate under low memory settings and it helps to push the limits of
each single GPU beyond its conventional capacity. Thus, PatchGD and model parallelism are orthogonal
techniques that can be combined to further enhance the performance, allowing for the distribution of large
models across multiple GPUs while maximizing the utilization of each GPU’s capacity through PatchGD.

There exist two approaches in the current literature that help to train a larger model on a low memory GPU,
namely activation checkpointing (Chen et al., 2016) and activation offloading (Rhu et al., 2016; Cui et al.,
2016). Checkpointing saves only the necessary activations during forward propagation and recomputes the
remaining from the saved ones as needed during backpropagation. Offloading shifts part of the activations to
CPU when the GPU memory starts to approach its full capacity and retrieves them when needed. While
both these approaches have been effective, these lead to significant increase of latency in the learning process.
More importantly, the gain in batch size during training is significantly lower when compared to PatchGD.
We shed light on both these aspects through numerical experiments later in this paper.

3 Approach

3.1 General description

Patch Gradient Descent (PatchGD) is a novel approach for training deep learning models (CNNs and
transformers) with high-resolution images. It’s a modification of the standard feedforward-backpropagation
method. PatchGD is built on the hypothesis that, instead of applying gradient-based updates to the entire
image simultaneously, similar results can be achieved by updating the model in small image segments, while
ensuring the full image coverage over multiple iterations. Even if only a portion of the image is used in each
iteration for gradient updates, the model is still trainable end-to-end with PatchGD.

Figure 3 presents the schematic representation of the PatchGD pipeline. The central idea behind PatchGD
is to construct the Z block, which is a deep latent representation of the entire input image. Although only
a subset of the input is used to perform model updates, Z captures information about the entire image by
combining information from different parts of the image acquired from the previous update steps. Figure 3a
illustrates the use of the Z block, which is an encoding of an input image X using a model parameterized
by weights θ1. The input image is divided into m × n number of patches, and each patch is processed
independently using θ1. The size of Z is always enforced to be m× n× s, such that each patch in the input
space corresponds to the respective 1× 1× s segment in the Z block.

The filling of Z is carried out in multiple steps, with each step involving the sampling of k patches and their
positions from X and feeding them to the model as a batch for processing. The output from the model along
with the corresponding positions are then used to fill the respective parts of Z. After sampling all m× n
patches of X, the completely filled Z is obtained. PatchGD utilizes this concept of Z-filling during both
training and inference stages.

4



Under review as submission to TMLR

Initialize  as empty

Patching

 
 
 

 

Sample  patches 
and position vectors  

 

  

Update  with  
position vector 

Repeat untill  is filled

-filled

1
1

(a) Pipeline for the filling of Z block, also referred as Z-filling.

Patching

 
 
 

 

Sample  patches 
and position vectors  

 

  

Update filled  
 with  

position vector 

 filling
module using 

filled 

1
1

Backpropogation

filled 
Model Update

Model Inference

(b) Model update and model inference.

Figure 3: Schematic representations of the pipelines demonstrating working of different components of the
PatchGD process.

5



Under review as submission to TMLR

To create an end-to-end model, we incorporate a small subnetwork that consists of convolutional/self-attention
and fully-connected layers. This subnetwork processes the information contained in Z and converts it into a
c-dimensional classification probabilities. It is worth noting that the computational cost of adding this small
subnetwork is minimal. The Figure 3b illustrates the pipelines for both model training and inference stages.
During training, the model components θ1 and θ2 are updated. At every model update step, only a fraction
of the patches are updated in Z while the rest is retained from the previous state of the model. Subsequently,
we use the partially updated Z to calculate the loss function value and update the model parameters using
backpropagation.

Why does PatchGD work? PatchGD operates on the principle that patches remain independent until
the Z block, with no interactions required prior to this stage. Unlike conventional methods, information
exchange at patch boundaries is deferred. Nevertheless, the negligible loss incurred as a result of this delayed
interaction is minimal in comparison to the patch size. This effect diminishes further when applied to large
images and correspondingly large patches.

3.2 Mathematical formulation

In this section, we present a detailed mathematical formulation of the proposed PatchGD approach. For
simplicity, we describe it in the context of image classification.

Let fθ : RM×N×C → Rc denote a model parameterized by θ that takes an input image X of spatial size
M ×N and C channels and computes the probability of it to belong to each of the c pre-defined classes. To
train this model, the following optimization problem is solved.

min
θ
L(f(θ; X), y), (1)

where X, y ∈ D represents the data samples used, and L(·) represents the loss function. Conventionally,
this problem is solved using mini-batch gradient descent method where at every step, the model weights are
updated using the average of gradients computed over a batch of samples, denoted here as S. Based on this,
the model update at the ithstep is

θ(i) = θ(i−1) − α

B

∑
X∈S

dL(X)

dθ(i−1) (2)

where α and B denote the learning rate and the size of the batch used, respectively. As can be seen in Eq. 2,
if the size of image samples s ∈ S is very large, it will lead to large memory requirements for the respective
activations, and under limited compute availability, only small values of B, and sometimes not even a single
sample, fit into the GPU memory. This should clearly demonstrate the limitation of the gradient descent
method when handling large images. This issue is alleviated by our PatchGD approach.

6



Under review as submission to TMLR

Algorithm 1 Model Training for 1 iteration
1: Input: Batch of input images X ∈ RB×M×M×C , Pre-trained feature extractor fθ1 , Classifier head gθ2 ,

Patch size p, Inner iterations ζ, Patches per inner iteration k, Batch size B, Learning rate α, Grad. Acc.
steps ϵ // M ÷ p = ζ × k

2: Initialize: Z← 0B×m×m×c, U1 ← 0, U2 ← 0
3: Z← Z-filling(X, fθ1 , p) forall X ∈ X
4: requires_gradient(fθ1) = True
5: for j : 1 to ζ do
6: for X in X do
7: {PX,j , v} ← patch_sampler(X, k), // Sampling k patches from each image
8: PX,j ∈ Rp×p×C×k

9: z← fθ1(PX,j) // Extract embedding from each patch
10: Z[v]← z // Update the positional embeddings
11: ypred ← gθ2(Z) // Classifier prediction over updated Z
12: L ← calculate_loss(y, ypred)
13: U1 ← U1 + dL/dθ1, U2 ← U2 + dL/dθ2 // Accumulate gradients across batch of patches
14: end for
15: if j%ϵ = 0 then
16: U1 ← U1/ϵ, U2 ← U2/ϵ
17: θ1 ← θ1 − αU1 // Update weights every ϵ inner iterations
18: θ2 ← θ2 − αU2 // Update weights every ϵ inner iterations
19: U1 ← 0, U2 ← 0
20: end if
21: end for=0

Algorithm 2 Filling of the Z block (referred as Z-filling)
Input: Input image X ∈ RM×M×C , Pre-trained feature extractor fθ1 , Patch size p, m← (M/p)
Initialize: Z ∈ Rm×m×s, requires_gradient(fθ1) = False
repeat

xa,b ← patch_extractor(X, a, b) // Extract patch at location (a,b)
xa,b ∈ Rp×p×C

za,b ← fθ1(xa,b), zi ∈ R1×1×s // Extract embedding from each patch
Z[a, b]← za,b // Update the positional embedding

until all patches sampled
Return Z =0

PatchGD. As described in Section 3.1, PatchGD avoids model updates on an entire image sample in one go,
rather it computes gradients using only part of the image and updates the model parameters. In this regard,
the model update step of PatchGD can be stated as

θ(i,j) = θ(i,j−1) − α

k ·Bi

∑
X∈Si

∑
p∈PX,j

dL(X,p)

dθ(i,j−1) . (3)

Here, i refers to a mini-batch iteration within a certain epoch. Further, j denotes the inner iterations, where
at every inner iteration, k patches are sampled from the each input image X ∈ X (denoted as PX,j) and
the gradient-based updates are performed as stated in Eq. 3. Note that for any iteration i, multiple inner
iterations are run ensuring that the majority of samples from the full set of patches that are obtained from
the tiling of X are explored.

In Eq. 3, θ(i,0) denotes the initial model for the inner iterations on Si and is equal to θ(i−1,ζ), the final model
state after ζ inner iterations of patch-level updates using Si−1. For a more detailed understanding of the
model update process, please see Algorithm 1. As described earlier, PatchGD uses an additional sub-network

7



Under review as submission to TMLR

that looks at the full latent encoding Z for the input batch X. Thus, the parameter set θ is extended as
θ = [θ1, θ2]⊺, where the base CNN model and the additional sub-network are fθ1 and gθ2 , respectively.

Algorithm 1 describes model training over one batch of B images, denoted as X ∈ RB×M×N×C . As the first
step of the model training process, Z corresponding to X is initialized. The process of filling of Z is described
in Algorithm 2. For a patch indexed by position ν and denoted as xν , the respective Z[ν] is updated using
the output obtained from fθ1 . Note here that θ1 is loaded from the last state obtained during the model
update on the previous batch of images. During the filling of Z, no gradients are stored for backpropagation.

Next, the model update process is performed over a series of ζ inner-iterations, where at every step
j ∈ {1, 2, . . . , ζ}, k patches are sampled per image in X and the respective parts of Z are updated. Next,
the partly updated Z is processed with the additional sub-network θ2 to compute the class probabilities
and the corresponding loss value. Based on the computed loss, gradients are backpropagated to perform
updates of θ1 and θ2. Note that we control here the frequency of model updates in the inner iterations
through an additional term ϵ. Similar to how a batch size of 1 in mini-batch gradient descent introduces
noise and adversely affects the convergence process, we observed that gradient update per inner iteration
leads to sometimes poor convergence. Thus, we introduce gradient accumulation over ϵ inner steps and
update the model accordingly. Gradients are allowed to backpropagate only through those parts of Z that are
active at the jth inner-iteration. During inference phase, Z is filled using the optimized fθ∗

1
as described in

Algorithm 2, and then the filled version of Z is used to compute the class probabilities for input X using gθ∗
2
.

4 Experiments

We showcase the effectiveness of PatchGD on two benchmark datasets with large images and multiple scales,
and ablation studies on multiple models, datasets and use cases.

4.1 Experimental setup

Datasets. We perform thorough evaluation on two datasets, UltraMNIST (Gupta et al., 2022) and PANDA
(Bulten et al., 2022), and also conduct additional experiments using TCGA-NSCLC (Chen et al., 2022) and
ImageNet Deng et al. (2009) datasets. Details about the datasets are presented in the supplementary part of
the paper.

CNN models. We assess PatchGD on ResNet50 and MobileNetV2 architectures. ResNet50 serves as a
backbone for diverse computer vision tasks, while MobileNetV2 is a lightweight architecture for edge devices.
We also conduct experiments with ConvNextV2, a state-of-the-art vision model, as well as provide preliminary
results for generative modeling.

Implementation details. We employ consistent hyperparameters throughout our experiments and report
classification accuracy for UltraMNIST and ImageNet tasks and additionally Quadratic Weighted Kappa
(QWK)2 on the PANDA dataset. For TCGA-NSCLC, we comply with the previous baselines and report
mean and standard deviation of AUC across a 10-fold cross validation set. Both the baselines and PatchGD
are implemented using PyTorch. We consider GPU memory constraints of 4GB, 16GB, and 48GB to simulate
common limits and measure latency on a NVIDIA 40GB A100 GPU and a NVIDIA 24GB L4 GPU. Additional
details are described in the supplementary material.

4.2 Results

UltraMNIST classification. The performance of PatchGD for UltraMNIST has already been shown
in Figure 2. More detailed results are presented in Tables 1 and 2. For both the architectures, PatchGD
improves over the standard gradient descent method (abbreviated as GD) by large margins. Our approach
employs an additional sub-network gθ2 , and it can be argued that the gains reported in the paper are due to
it. For this purpose, we extend the base CNN architectures used in GD and report the respective performance
scores in Tables 1 and 2 as GD*. 3.

2QWK: metric on histopathological images and PANDA dataset.
3GD* refers to baseline being extended with the same sub-network gθ2 .

8



Under review as submission to TMLR

Table 1: Performance scores on the UltraMNIST
dataset with images of size 512 × 512 obtained us-
ing ResNet50 architecture. Patch size for PatchGD is
256.

Method Batch size Memory (GB) Acc. %

GD 27 16 65.2
GD*3 26 16 50.5
PatchGD 100 16 69.2
GD 2 4 53.6
GD*3 2 4 52.5
PatchGD 7 4 63.1

Table 2: Performance scores on the UltraMNIST
dataset with 512 × 512 images obtained using Mo-
bileNetV2 architecture. Patch size for PatchGD is
256.

Method Batch size Memory (GB) Acc. %

GD 30 16 67.3
GD*3 30 16 64.3
PatchGD 120 16 83.7
GD 3 4 67.7
GD* 3 3 4 60.0
PatchGD 10 4 74.8

Table 3: Performance scores obtained using Resnet50 on PANDA dataset for Gradient Descent (GD) and
Patch Gradient Descent (PatchGD).

Method Resolution Patch Size Batch Size Mem. (GB) Throughput (imgs/sec) Accuracy % QWK
Baseline 512 - 27 16 618.05 44.4 0.558
PatchGD 512 128 86 16 521.42 44.9 0.576
PatchGD 512 64 200 16 341.87 52.1 0.616
Baseline 2048 - 1 16 39.04 34.8 0.452
PatchGD 2048 128 14 16 32.52 53.9 0.627
Baseline 2048 - 6 48 39.04 49.4 0.625
PatchGD 2048 128 56 48 32.52 56.2 0.667
Baseline 4096 - 1 48 9.23 50.0 0.611
PatchGD 4096 256 26 48 9.62 59.7 0.730

For both architectures, PatchGD outperforms GD as well as GD* by large margins. For ResNet50, the
performance difference is even higher for a low memory constraint. At 4 GB, while GD seems unstable with
a performance dip of more than 11% compared to the 16 GB case, PatchGD is significantly more stable. For
MobileNetV2, the difference between PatchGD and GD is even higher at 16GB case, thereby clearly showing
that PatchGD blends well with even lightweight models such as MobileNetV2. For MobileNetV2, there is no
drop in model performance when going from 16 GB to 4 GB, which demonstrates that MobileNetV2 can work
well with GD even at low memory conditions. Nevertheless, PatchGD still performs significantly better. The
underlying reason for this gain can partly be attributed to the fact that since PatchGD facilitates operating
with partial images, the activations are small and more images per batch are permitted. We also observe that
the performance scores of GD* are inferior compared to even GD. ResNet50 and MobilenetV2 are optimized
architectures and we speculate that the addition of plain convolutional layers in the head of the network is
not suited due to which the overall performance is adversely affected.

Prostate Cancer Classification (PANDA). Table 3 presents the results obtained on PANDA dataset for
three different image resolutions. For all experiments, we maximize the number of images used per batch
while also ensuring that the memory constraint is not violated. For images of 512× 512, we see that PatchGD,
with patches of size 128× 128, delivers approximately the same performance as GD (for both accuracy as
well as Quadratic Weighted Kappa (QWK) metric at 16 GB memory limit. However reducing the patch

Table 4: Comparison of PatchGD (ResNet50 architecture) with existing methods at 4096 image size and
48GB memory constraint.

Method Accuracy % QWK
HIPT Chen et al. (2022) 34.8 0.388
HIPT-L 49.3 0.531
ABNN Brancati et al. (2021) 48.2 0.593
C2C Sharma et al. (2021) 50.9 0.668
PatchGD 59.7 0.730

9



Under review as submission to TMLR

size and thus increasing the batch size leads to a very sharp gain in the scores of PatchGD. For a similar
memory constraint, when images of size 2048× 2048 pixels are used, GD scores approximately 10% lower
while PatchGD shows a boost of 9% in accuracy.

Two factors contribute to the performance gap between GD and PatchGD. Firstly, GD faces a bottleneck
with batch size due to increased activation size in higher-resolution images, allowing only 1 image per batch.
Gradient accumulation and hierarchical training were explored but did not improve performance significantly.
Increasing the memory limit helped mitigate the issue of using only 1 image per batch. Secondly, the
optimized receptive field of ResNet50 is not well-suited for higher-resolution images, resulting in suboptimal
performance. PatchGD demonstrates superior accuracy and QWK compared to GD on the PANDA dataset
when handling large images end-to-end. In terms of inference latency, PatchGD performs comparably to GD.
The smaller activations in PatchGD offset the slowness caused by patchwise image processing. PatchGD
shows potential for real-time inference in applications requiring large image handling.

We further present a comparison of PatchGD with the existing methods designed for handling large images,
and the results are presented in Table 4. We used Resnet50 at 4096 image resolution and a 48GB GPU
memory constraint for training. Note that almost all works that exist on handling large images are not
designed to work with memory constraints, and if put in such applications, these lead to unstable performance
scores. For example, although the vision transformer backbones of HIPT are pretrained on large medical
datasets, the performance of the model in the memory-constrained setting is lowest among the 4 methods
presented in the table. For HIPT, all the layers of the vision transformer backbones are trainable and a
batch size of only 5 fits in the memory. This is the primary reason for the significant drop in the performance
of the method. The original HIPT model is trained with large batch sizes over a set of GPUs, however, in
our memory-constrained set up, it is not possible. The performance of ABNN and C2C is relatively better,
however, they are still significantly lower than the PatchGD training of a simple architecture. C2C employs
attention modules in the head of the network, and we believe with such additions, the performance of PatchGD
could be boosted even further. Nevertheless, we see from the presented results that for memory-constrained
settings, PatchGD performs significantly better than any other existing method when it comes to handling
large images.

Since HIPT uses transformer model, one possible way to enhance its performance under low memory setting is
to use layer normalization and implementing gradient accumulation over a series of iterations. We conducted
an experiment with gradient accumulation over 12 steps, referred as HIPT-L in Table 4. This led to an
equivalent batch size of 60. Although the convergence was slow, the performance of the model boosted from
34.8 to 49.3. This clearly demonstrates that transformers with gradient accumulation could work well even at
low batch sizes. Nevertheless, we still see a significant performance gap of more than 10% between HIPT and
our approach. Moreover, transformers are known to be data hungry and one important thing to note here is
that the pretrained HIPT model we are using in this paper is already heavily trained on a very large medical
dataset comprising training images from a variety of medical datasets. On the contrary, our model is only
pre-trained on standard ImageNet and no additional pre-training is done. This clearly makes our approach
stand out when compared to HIPT in the sense that it is applicable for low memory as well as relatively low
training data regimes as well.

TCGA-NSCLC classification with no pre-training. To further demonstrate the efficacy of PatchGD on
established large image benchmarks, we study the task of TCGA-NSCLC dataset classification and compare
our solution with popular approaches such as HIPT (Chen et al., 2022) and CLAM-SB Lu et al. (2021), among
others. Related results are presented in Table 5. Note here that the HIPT model uses a 3-stage Transformer
model with a ViT backbone which is pre-trained on an external large-scale histopathological dataset first and
then fine-tuned on TCGA-NSCLC data. Further, it uses the images at gigapixel scale. Further, CLAM-SB
uses a multistage processing approach where a segmentation map is first obtained, followed by creating
embedding of small patches. An attention pooling is then used to assign weight to each patch which together
are then served to a classifcation model. The other baselines listed in Table 5 similarly also use multistage
processing with additional pretraining done on external dataset for boosted discriminative power.

For our study on PatchGD, we employed a lightweight ConvNeXt-Tiny model without any pretraining on
external histopathological datasets. Initially, we established two baselines (Baseline-1 and Baseline-2) by

10



Under review as submission to TMLR

Table 5: Performance comparison of PatchGD with HIPT and other baseline models for the task of TCGA-
NSCLC subtyping dataset.

Method Model Image Size AUC Standard Deviation
Baseline-1 ConvNeXt-V2 Tiny 224 78.0 3.7
GCN-MIL (Zhao et al., 2020) VAE-GAN + Graph CNN 83.1 3.4
MIL (Lu et al., 2021) 89.2 4.2
Baseline-2 ConvNeXt-V2 Tiny 4096 90.4 4.3
DS-MIL (Li et al., 2021b) Patching + Resnet18 + Aggregation 92.0 2.4
CLAM-SB (Lu et al., 2021) Patching + Resnet50 + Attention Clustering 92.8 2.1
HIPT (Chen et al., 2022) Patching + 3 × Transformer - 95.2 2.1
PatchGD ConvNeXt-V2 Tiny 4096 97.0 1.7

Table 6: Accuracy Comparison for ImageNet on Deit-Tiny architecture with Gradient Descent and PatchGD.

# Classes # Samples / Class Baseline Accuracy (%) PatchGD
Accuracy (%)

224 384 512 512

25 100 85.76 88.68 88.72 90.74
25 200 88.41 90.32 90.16 92.12
25 500 90.08 92.00 92.18 93.14
25 1000 91.28 93.12 93.20 95.44

10 100 - 85.40 - 88.40
25 100 - 88.68 - 90.74
100 100 - 76.90 - 78.20
500 100 - 73.65 - 70.82

training the model using standard backpropagation techniques. We then applied the PatchGD methods
for training. Despite using only 4K images, no external pretraining, and a simple tiny backbone, PatchGD
outperformed HIPT and other methods designed for handling large images, demonstrating its superiority.
Notably, Baseline-2 also outperformed GCN-MIL and MIL, highlighting the effectiveness of the ConvNeXt
architecture and the simplicity of the training process. We believe that incorporating pre-training on external
data, as done in HIPT, could further enhance the performance of the PatchGD solution.

Table 7: Performance scores obtained using DeiT-Small on PANDA dataset for Gradient Descent (GD) and
Patch Gradient Descent (PatchGD).

Method Resolution Patch Size Batch Size Head Mem. (GB) Accuracy % QWK
Baseline 512 - 22 - 16 48.4 0.596
PatchGD 512 128 136 CNN 16 44.9 0.576
PatchGD 512 128 136 Transformer 16 48.7 0.599
Baseline 2048 - 4 - 48 48.6 0.612
PatchGD 2048 128 32 CNN 48 48.9 0.589
PatchGD 2048 128 32 Transformer 48 57.4 0.702

PatchGD with transformer architecture. The simplicity of our PatchGD approach allows its easy
integration with transformer architecture as well. We demonstrate its compatibility with transformer
architectures through experiments on ImageNet dataset using DeiT-Tiny architecture. Results related to
these are presented in Table 6. We observe that PatchGD couples well with the chosen model and leads to
improved performance over the respective baselines obtained using the conventional training. Note that the
baseline is optimized using the high-performing training procedure described in Touvron et al. (2021) and the
performance is further optimized across 3 dfferent image-resolutions.

11



Under review as submission to TMLR

For transformer backbones, we have observed that the performance of the model is better when the head is
also a transformer rather than a CNN model. Table 7 presents a comparison of CNN and transformer heads
for the classification task on the PANDA dataset. For the transformer head, we use a single multi-headed
self-attention layer with with 2 heads each of 192 channels followed by a linear layer. The CNN head uses 3
conv-relu-bn blocks with a kernel size of 3× 3 and 256 channels followed by a linear layer. We consistently
see that the transformer head works better.

Handling natural images (ImageNet). To understand how PatchGD works with natural images, we
study its performance on ImageNet dataset for different choices of number of classes as well as number of
samples per class. This follows the results discussed in the earlier section. We conduct these experiments
using DeiT-Tiny transformer architecture and the results are reported in Table 6. To study the effect of the
number of samples, we fix classes to 25. Interestingly, we observe that PatchGD outperforms the standard
training approach by around 2% accuracy, a significant improvement in the context of ImageNet training.

We further examined the performance of PatchGD across different numbers of classes, keeping the number
of samples per class fixed at 100 (Table 6). Interestingly, PatchGD outperformed the baseline approach
when dealing with fewer classes. However, when the number of classes increased to 500, the baseline method
performed better. This discrepancy arises because, for low-resolution images such as those in the ImageNet
dataset, the small information loss at the edges of the patches becomes significant when there are many classes
and limited samples per class. Our initial findings suggest that this issue can be mitigated to some extent by
using overlapping patches, although this increases computational demands. Nonetheless, our observations
indicate that PatchGD is the preferred choice for natural images in low-data regimes.

PatchGD vs. Activation Checkpointing vs. Activation Offloading.As has been described throughout
this paper, PatchGD aims at better utilization of GPUs, through facilitating to train deep learning models
with larger images (leading to larger model activations) on smaller GPUs. Two other popular approaches
aiming at fitting a larger model on smaller GPUs are activation checkpointing (Chen et al., 2016) and
activation offloading (Rhu et al., 2016). Table 6 presents a comparison of PatchGD with these methods. We
present the comparison for a ResNet50 architecture on PANDA dataset at two different image resolutions on
a NVIDIA 16 GB L4 graphics card. For gradient checkpointing we employ chunk sizes of 4 and 6.

PatchGD outperforms checkpointing and offloading approaches, particularly with 2K resolution images, where
the margin of superiority is significantly larger. Under the selected memory constraint at this resolution,
both baseline methods can only handle a maximum batch size of 4 per iteration, with activation offloading
managing only 2. In contrast, PatchGD can handle batch sizes of 14. For smaller images, all methods
can increase the batch size, but PatchGD still delivers the best performance. This clearly demonstrates
that PatchGD is more effective in utilizing GPU resources. Additionally, it is worth noting that PatchGD,
checkpointing, and offloading are orthogonal methods and can be combined to fit even larger models on
smaller GPU resources.

Table 8: Performance comparison of PatchGD against Activation Offloading (Rhu et al., 2016) and Activation
Checkpointing (Chen et al., 2016) on PANDA dataset using ResNet50 model and a NVIDIA L4 16 GB GPU.

Method Image Size Batch Size Peak Memory (GB) Training time / image / iteration(ms) Accuracy
Baseline 2048 1 8.6 716 34.8
Activation Off-loading 2048 2 14.6 2603 42.1
Gradient Checkpointing, chunks=4 2048 3 14.1 1007 46.0
Gradient Checkpointing, chunks=6 2048 4 13.1 998 48.0
PatchGD 2048 14 15.1 930 56.2
Baseline 512 27 14.6 42 44.4
Activation Off-loading 512 32 14.9 161 46.8
Gradient Checkpointing, chunks=4 512 52 14.8 59 46.2
Gradient Checkpointing, chunks=6 512 72 14.6 59 44.7
PatchGD 512 200 14.7 79 52.1

Additional study. In this section, we show some additional experiments to further prove the advantages of
PatchGD. Training recipes and hyperparameters are provided in the supplementary material.

12



Under review as submission to TMLR

Table 9: Performance scores on PANDA dataset
(2048 × 2048) at 24 GB memory budget for different
choices of the feature extractor: pretrained and frozen
on ImageNet, trained on PANDA using GD and frozen,
and fully trainable.

Feature extractor Batch Size QWK Accuracy%
ImageNet (frozen) 50 0.538 44.6
PANDA (frozen) 50 0.642 50.0
Fully-Trainable 40 0.662 56.0

Table 10: Performance scores for ConvNextV2 on
PANDA dataset.

Method Image Size Batch Size Mem. (GB) Acc.%
PatchGD 2048 40 24 49.3
Baseline 2048 4 24 45.1
PatchGD 512 128 16 44.0
Baseline 512 50 16 43.9

Role of end-to-end training. Table 9 shows that
freezing the backbone leads to reduced performance,
highlighting the key role of end-to-end training in
PatchGD. Other existing methods can fine-tune the
network end-to-end, but only on low-resolution im-
ages, whereas PatchGD enjoys fully-trainable end-
to-end training even at higher resolutions.

Additional architectures. Beyond the experiment on
TCGA-NSCLC task, we also conducted additional
experiment with ConvNext-V2, a state-of-the-art
image classification model, on PANDA dataset and
the results are presented in Table 10). PatchGD
outperforms the baseline at higher resolution (2048)
while performing competitively at a relatively low
resolution too (512). This shows that PatchGD can
take advantage of higher representation power of
newer CNN architectures.

On attention-based head module for CNNs. We have
shown in the paper the working of CNN backbone
with a CNN head as well as a Transformer backbone
with a Transformer head. Here, we study whether using a head with attention module could be beneficial
for the learning of CNNs. For this purpose, we conducted an experiment with ResNet50 backbone and
PatchGD and we replaced the CNN head with a attention-based MLP to see the effect. For the attention
head, we employed a single-layer multi-head attention module with 64 heads and for each pixel of the latent
corresponding to a token, we concatenated a trainable CLS token for final classification. Additional details
are presented in the supplementary material. Compared to the base performance accuracy of 52.1% with a
CNN head, the accuracy of the model with attention head improved to 53.6%. This clearly shows that using
attention module can help to enhance the performance of PatchGD results. Further, we anticipate that for
larger images, where the spatial size of the L1-block is larger, this improvement will be even more.

Table 11: Sampling ablation on PANDA
dataset. Memory limit is 16 GB, Image size
and patch size are 2048 and 128 respectively.
Sampling Max Sampled Accuracy % QWK

50 100 42.3 0.538
30 100 49.9 0.613
10 100 53.9 0.627
10 70 53.1 0.624
10 50 53.9 0.622
10 30 51.1 0.610

Hyperparameter study. Table 11 shows the impact of patch sam-
pling on PatchGD’s performance. We find that using smaller
sampling fractions per inner iteration leads to improved accu-
racy, which is counter-intuitive since smaller fractions provide
less image context. This behavior may be attributed to regular-
ization noise induced by smaller patch batch sizes, benefiting
the convergence process. However, further research is needed
for a comprehensive understanding. Additionally, the fraction
of the image seen in one pass does not significantly affect per-
formance except when it is low, as insufficient context impedes
convergence.

We also explore the influence of the gradient accumulation length parameter on PatchGD, and the results
are available in the supplementary material. We observe that performing gradient-based updates per inner
iteration yields superior performance in our experiment. However, the choice of ϵ depends on the number
of inner steps ζ. For large ζ values, values greater than 1 are preferred. For instance, for processing 2K
resolution images with a patch size of 128× 128, ϵ = ζ proves effective. Establishing an empirical relation
between ζ and ϵ is a subject for future research. We have also observed that using the models trained with
GD as the initial models in PatchGD can improve overall performance. However, there are instances where
model training on GD is not possible. In such scenarios, one could use low-resolution models trained on
GD or even conventional pre-trained models. Nevertheless, the effect of each of these choices needs to be
thoroughly studied.

13



Under review as submission to TMLR

On other tasks. PatchGD can also be adapted for other tasks such as segmentation and generative modeling,
among others. Our early results related to generative modeling look promising and pave way for future
research. More details are presented in the supplementary material.

5 Conclusions

In this paper, we introduced Patch Gradient Descent (PatchGD), a novel training strategy for CNNs and
Transformers that effectively handles large images even with limited GPU memory. PatchGD updates the
model using partial image fractions, ensuring comprehensive context coverage over multiple steps. Through
various experiments, we demonstrated the superior performance of PatchGD compared to standard gradient
descent, both in handling large images and operating under low memory conditions. The presented method
and experimental evidence highlight the significance of PatchGD in enabling existing deep learning models to
effectively process large images without compute memory limitations.

6 Limitations

While our numerical experiments have showcased the effectiveness of PatchGD, there are still limitations in
terms of comprehensively understanding its generalization and stability. Additionally, our method’s relative
slowness compared to standard gradient descent is a minor drawback, particularly when real-time training is
crucial. However, this limitation does not affect the inference speed, making it a bottleneck only in specific
scenarios prioritizing real-time training.

Gradient bias in PatchGD. PatchGD introduces gradient bias in both the forward and backward passes,
unlike methods such as activation checkpointing and activation offloading. During the forward pass, the
bias arises because the classifier operates on stale z-vectors, which are derived from previous iterations.
This results in suboptimal feature representations since the z-vectors do not accurately reflect the latest
model updates. Unlike activation checkpointing or offloading, which recompute or store exact intermediate
activations, PatchGD’s dependence on these delayed z-vectors can lead to discrepancies between the computed
and true activations.

In the backward pass, gradient bias occurs because some z-vectors do not propagate gradients. This incomplete
gradient flow results from PatchGD’s strategy of updating only a subset of z-vectors during each iteration.
Additionally, due to overlapping receptive fields, neighboring patches can influence these z-vectors, leading to
an uneven gradient propagation and an approximation that deviates from the true gradient.

To mitigate these biases, several strategies can be employed. Using smaller patch sizes reduces the forward
pass bias by ensuring that z-vectors are updated more frequently, thereby decreasing the staleness effect.
Introducing overlapping patches helps in capturing more accurate gradients by minimizing boundary effects
and ensuring more uniform gradient propagation. Incorporating momentum in stochastic gradient descent
(SGD) can help average out the bias over multiple iterations by leveraging historical gradient information to
smooth out the noise introduced by the gradient bias.

Empirical evaluations show that while PatchGD offers significant memory savings, the introduced gradient
bias results in noisier gradient updates. However, this bias does not significantly impact overall training
performance and convergence. The benefits of reduced memory usage and the ability to train larger models
with PatchGD outweigh the impact of gradient bias. We acknowledge the presence of this bias and recommend
further studies to quantify and refine these strategies, enhancing the effectiveness of PatchGD in training
large-scale models efficiently.

7 Future work

This paper has established the foundational concept of patch gradient descent to enable training CNNs using
very large images and even when only limited GPU memory is available for training. The results as well
as insights presented in the paper open doors to several novel secondary research directions that could be

14



Under review as submission to TMLR

interesting in terms of improving the efficacy as well as the acceptance of the presented method in a broader
scientific community. We list some such directions here.

• Scaling to gigapixel images at small compute memory. An ambitious but very interesting application
of PatchGD would be to be able to process gigapixel images with small GPU memory. We can clearly
envision this with PatchGD but with additional work. One important development needed is to
extend the PatchGD learning concept to multiple hierarchical Z blocks, thereby sampling patches
from the outer block to iteratively fill the information in the immediate inner Z block and so on.

• Enhanced receptive field. So far, PatchGD has been looked at only in the context of being able to
handle very large images. However, a different side of its use is that with almost the same architecture,
it builds a smaller receptive build, thereby zooming in better. We speculate that in this context,
PatchGD could also help in building better discriminative models with lighter CNN architectures.
Clearly, this would be of interest to the deep learning community and needs to be explored.

Broader Impact

The broader impact of this work lies particularly in its potential to extend the capability of deep learning
models. By addressing the challenge of training models on large-scale images with limited computational
resources, our approach opens up opportunities for researchers and practitioners with constrained hardware
setups to tackle complex problems in healthcare, agriculture, and environmental monitoring, where high-
resolution images play a crucial role in decision-making processes. Moreover, our approach can contribute to
reducing the environmental footprint of deep learning by enabling efficient training on low-power devices, thus
promoting sustainability in the development and deployment of deep learning models. In summary, our work
has the potential to empower diverse communities, drive sustainable development, and accelerate scientific
progress. It is essential to approach these advancements with a conscientious mindset, taking into account
the broader societal impact and proactively working towards an inclusive and responsible deployment of deep
learning technologies. With our work, it is also important to address the potential risks and challenges. Issues
related to data privacy, bias, and fairness should be carefully addressed to prevent any unintended negative
consequences. Additionally, the potential for misuse or malicious applications of deep learning models should
be acknowledged and proactively addressed through robust security measures and ethical guidelines.

References
A. Khan, A. Sohai, U. Zahoora, and A. S. Qureshi. A survey of the recent architectures of deep convolutional

neural networks. Artificial Intelligence Review, 53:5455–5516, 2020.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural networks:
Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, pages
1–21, 2021a.

L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, ). Al-Shamma, J. Santamaría, M. A. Fadhel,
M. Al-Amidie, and L. Farhan. Review of deep learning: concepts, cnn architectures, challenges, applications,
future directions. Journal of Big Data, 8, 2021.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM Computing Surveys, 54(10):200, 2022. doi: 10.1145/3505244.

Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz
Khan, and Huazhu Fu. Transformers in medical imaging: A survey. arXiv preprint arXiv:2201.09873, 2022.
URL https://arxiv.org/abs/2201.09873.

Ismail M Khater, Ivan Robert Nabi, and Ghassan Hamarneh. A review of super-resolution single-molecule
localization microscopy cluster analysis and quantification methods. Patterns, 1(3):100038, 2020.

Lothar Schermelleh, Alexia Ferrand, Thomas Huser, Christian Eggeling, Markus Sauer, Oliver Biehlmaier,
and Gregor PC Drummen. Super-resolution microscopy demystified. Nature cell biology, 21(1):72–84, 2019.

15

https://arxiv.org/abs/2201.09873


Under review as submission to TMLR

Ravi Aggarwal, Viknesh Sounderajah, Guy Martin, Daniel SW Ting, Alan Karthikesalingam, Dominic King,
Hutan Ashrafian, and Ara Darzi. Diagnostic accuracy of deep learning in medical imaging: a systematic
review and meta-analysis. NPJ digital medicine, 4(1):65, 2021.

Yanbo Huang, Zhong-xin Chen, YU Tao, Xiang-zhi Huang, and Xing-fa Gu. Agricultural remote sensing big
data: Management and applications. Journal of Integrative Agriculture, 17(9):1915–1931, 2018.

Meisam Amani, Arsalan Ghorbanian, Seyed Ali Ahmadi, Mohammad Kakooei, Armin Moghimi, S Mohammad
Mirmazloumi, Sayyed Hamed Alizadeh Moghaddam, Sahel Mahdavi, Masoud Ghahremanloo, Saeid
Parsian, et al. Google earth engine cloud computing platform for remote sensing big data applications:
A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 13:5326–5350, 2020.

Luis E Villegas-Hernández, Vishesh Dubey, Mona Nystad, Jean-Claude Tinguely, David A Coucheron,
Firehun T Dullo, Anish Priyadarshi, Sebastian Acuña, Azeem Ahmad, José M Mateos, et al. Chip-based
multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections.
Light: Science & Applications, 11(1):1–17, 2022.

Deepak K. Gupta, Udbhav Bamba, Abhishek Thakur, Akash Gupta, Suraj Sharan, Ertugrul Demir, and
Dilip K. Prasad. Ultramnist classification: A benchmark to train cnns for very large images. arXiv, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimizing recurrent
networks. In 2013 IEEE international conference on acoustics, speech and signal processing, pages 8624–8628.
IEEE, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Osamu Iizuka, Fahdi Kanavati, Kei Kato, Michael Rambeau, Koji Arihiro, and Masayuki Tsuneki. Deep
learning models for histopathological classification of gastric and colonic epithelial tumours. Scientific
Reports, 10(1):1504, Jan 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-58467-9. URL https://doi.
org/10.1038/s41598-020-58467-9.

Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo Kohlberger, Aleksey Boyko,
Subhashini Venugopalan, Aleksei Timofeev, Philip Q Nelson, Greg S Corrado, et al. Detecting cancer
metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442, 2017.

Jon Braatz, Pranav Rajpurkar, Stephanie Zhang, Andrew Y Ng, and Jeanne Shen. Deep learning-based sparse
whole-slide image analysis for the diagnosis of gastric intestinal metaplasia. arXiv preprint arXiv:2201.01449,
2022.

Nadia Brancati, Giuseppe De Pietro, Daniele Riccio, and Maria Frucci. Gigapixel histopathological image
analysis using attention-based neural networks. IEEE Access, 9:87552–87562, 2021.

Zhi-Fei Lai, Gang Zhang, Xiao-Bo Zhang, and Hong-Tao Liu. High-resolution histopathological image
classification model based on fused heterogeneous networks with self-supervised feature representation.
BioMed Research International, 2022:8007713, Aug 2022. ISSN 2314-6133. doi: 10.1155/2022/8007713.
URL https://doi.org/10.1155/2022/8007713.

David Tellez, Geert J. S. Litjens, Jeroen A. van der Laak, and Francesco Ciompi. Neural image compression for
gigapixel histopathology image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43:567–578, 2018.

David Tellez, Diederik Höppener, Cornelis Verhoef, Dirk Grünhagen, Pieter Nierop, Michal Drozdzal, Jeroen
Laak, and Francesco Ciompi. Extending unsupervised neural image compression with supervised multitask
learning. In Medical Imaging with Deep Learning, pages 770–783. PMLR, 2020.

16

https://doi.org/10.1038/s41598-020-58467-9
https://doi.org/10.1038/s41598-020-58467-9
https://doi.org/10.1155/2022/8007713


Under review as submission to TMLR

Sai Chandra Kosaraju, Jeongyeon Park, Hyun Lee, Jung Yang, and Mingon Kang. Deep learning-based
framework for slide-based histopathological image analysis. Scientific Reports, 12, Nov 2022. doi: 10.1038/
s41598-022-23166-0. URL https://doi.org/10.1038/s41598-022-23166-0.

Nikhil Naik, Ali Madani, Andre Esteva, Nitish Shirish Keskar, Michael F. Press, Daniel Ruderman, David B.
Agus, and Richard Socher. Deep learning-enabled breast cancer hormonal receptor status determination
from base-level h&e stains. Nature Communications, 11(1):5727, Nov 2020. ISSN 2041-1723. doi:
10.1038/s41467-020-19334-3. URL https://doi.org/10.1038/s41467-020-19334-3.

Gabriele Campanella, Matthew G Hanna, Luke Geneslaw, Allen Miraflor, Vitor Werneck Krauss Silva, Klaus J
Busam, Edi Brogi, Victor E Reuter, David S Klimstra, and Thomas J Fuchs. Clinical-grade computational
pathology using weakly supervised deep learning on whole slide images. Nature medicine, 25(8):1301–1309,
2019.

H. Pinckaers, B. van Ginneken, and G. Litjens. Streaming convolutional neural networks for end-to-end
learning with multi-megapixel images. IEEE Transactions on Pattern Analysis &; Machine Intelligence, 44
(03):1581–1590, mar 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2020.3019563.

Shih-Chiang Huang, Chi-Chung Chen, Jui Lan, Tsan-Yu Hsieh, Huei-Chieh Chuang, Meng-Yao Chien,
Tao-Sheng Ou, Kuang-Hua Chen, Ren-Chin Wu, Yu-Jen Liu, Chi-Tung Cheng, Yu-Jen Huang, Liang-
Wei Tao, An-Fong Hwu, I-Chieh Lin, Shih-Hao Hung, Chao-Yuan Yeh, and Tse-Ching Chen. Deep
neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings.
Nature Communications, 13(1):3347, Jun 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-30746-1. URL
https://doi.org/10.1038/s41467-022-30746-1.

Yash Sharma, Aman Shrivastava, Lubaina Ehsan, Christopher A. Moskaluk, Sana Syed, and Donald E.
Brown. Cluster-to-conquer: A framework for end-to-end multi-instance learning for whole slide image
classification. In International Conference on Medical Imaging with Deep Learning, 2021.

Jean-Baptiste Cordonnier, Aravindh Mahendran, Alexey Dosovitskiy, Dirk Weissenborn, Jakob Uszkoreit, and
Thomas Unterthiner. Differentiable patch selection for image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2351–2360, 2021.

Athanasios Papadopoulos, Pawel Korus, and Nasir Memon. Hard-attention for scalable image classification.
Advances in Neural Information Processing Systems, 34:14694–14707, 2021.

Joseph DiPalma, Arief A. Suriawinata, Laura J. Tafe, Lorenzo Torresani, and Saeed Hassanpour. Resolution-
based distillation for efficient histology image classification. Artificial Intelligence in Medicine, 119:
102136, 2021. ISSN 0933-3657. doi: https://doi.org/10.1016/j.artmed.2021.102136. URL https://www.
sciencedirect.com/science/article/pii/S0933365721001299.

Angelos Katharopoulos and François Fleuret. Processing megapixel images with deep attention-sampling
models. In International Conference on Machine Learning, pages 3282–3291. PMLR, 2019.

Richard J. Chen, Chengkuan Chen, Yicong Li, Tiffany Y. Chen, Andrew D. Trister, Rahul G. Krishnan, and
Faisal Mahmood. Scaling vision transformers to gigapixel images via hierarchical self-supervised learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 16144–16155,
June 2022.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer,
and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor rematerialization. Proceedings
of Machine Learning and Systems, 2:497–511, 2020.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch, Tianqi Chen,
and Zachary Tatlock. Dynamic tensor rematerialization. arXiv preprint arXiv:2006.09616, 2020.

Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Integrated model, batch, and
domain parallelism in training neural networks. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, pages 77–86, 2018.

17

https://doi.org/10.1038/s41598-022-23166-0
https://doi.org/10.1038/s41467-020-19334-3
https://doi.org/10.1038/s41467-022-30746-1
https://www.sciencedirect.com/science/article/pii/S0933365721001299
https://www.sciencedirect.com/science/article/pii/S0933365721001299


Under review as submission to TMLR

Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc Snir, and Brian Van Essen. Improving
strong-scaling of cnn training by exploiting finer-grained parallelism. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 210–220. IEEE, 2019.

Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin McCarthy, Peter Harrington, Jan Balewski, Satoshi
Matsuoka, Peter Nugent, and Brian Van Essen. The case for strong scaling in deep learning: Training large
3d cnns with hybrid parallelism. IEEE Transactions on Parallel and Distributed Systems, 32(7):1641–1652,
2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174, 2016.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W Keckler. vdnn: Virtualized
deep neural networks for scalable, memory-efficient neural network design. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, and Eric P. Xing. Geeps: scalable
deep learning on distributed gpus with a gpu-specialized parameter server. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342407. doi: 10.1145/2901318.2901323. URL https://doi.org/10.
1145/2901318.2901323.

Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, Peter Ström, Hans Pinckaers, Kunal Nagpal,
Yuannan Cai, David F Steiner, Hester van Boven, Robert Vink, et al. Artificial intelligence for diagnosis
and gleason grading of prostate cancer: the panda challenge. Nature medicine, 28(1):154–163, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255. Ieee, 2009.

Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri, and Faisal Mahmood.
Data-efficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical
Engineering, 5(6):555–570, 2021.

Yu Zhao, Fan Yang, Yuqi Fang, Hailing Liu, Niyun Zhou, Jun Zhang, Jiarui Sun, Sen Yang, Bjoern Menze,
Xinjuan Fan, and Jianhua Yao. Predicting lymph node metastasis using histopathological images based on
multiple instance learning with deep graph convolution. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4837–4846, June 2020.

Bin Li, Yin Li, and Kevin W. Eliceiri. Dual-stream multiple instance learning network for whole slide image
classification with self-supervised contrastive learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 14318–14328, June 2021b.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference on
machine learning, pages 10347–10357. PMLR, 2021.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge,
and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):
665–673, 2020.

18

https://doi.org/10.1145/2901318.2901323
https://doi.org/10.1145/2901318.2901323


Under review as submission to TMLR

Supplementary Material

A Datasets

A.1 PANDA

The Prostate cANcer graDe Assessment Challenge Bulten et al. (2022) consists of one of the largest publically
available datasets for Histopathological images which scale to a very high resolution. It is important to
mention that we do not make use of any masks as in other aforementioned approaches. Therefore, the
complete task boils down to taking an input high-resolution image and then classifying them into 6 categories
based on the International Society of Urological Pathology (ISUP) grade groups. There are a total of 10.6K
images which are split into train and test sets in the ratio 80:20.

A.2 UltraMNIST

This is a synthetic dataset generated by making use of the MNIST digits. For constructing an image, 3-5
digits are sampled such that the total sum of digits is less than 10. Thus an image can be assigned a label
corresponding to the sum of the digits contained in the image. Each of the 10 classes from 0-9 has 1000
samples making the dataset sufficiently large. Note that the variation used in this dataset is an adapted
version of the original data presented in Gupta et al. (2022), with background noise removed so that any
shortcut learning is avoided Geirhos et al. (2020). Since the digits vary significantly in size and are placed
far from each other, this dataset fits well in terms of learning semantic coherence in a image. Moreover, it
poses the challenge that downscaling the images leads to a significant loss of information. While even higher
resolution could be chosen, we later demonstrate that the chosen image size is sufficient to demonstrate the
superiority of PatchGD over the conventional gradient descent method.

Figure 4: Sample PANDA and UltraMNIST dataset images used for training PatchGD.

A.3 TCGA

The TCGA-NSCLC dataset, known as The Cancer Genome Atlas-Non-Small Cell Lung Cancer, encompasses
two distinct types of lung cancer: Lung Adenocarcinoma (LUAD), with 522 cases, and Lung Squamous Cell
Carcinoma (LUSC), with 504 cases, with a total number of image files 3220. The data was split in a stratified
manner using the patient cases, into train and test set in the ratio 80:20, making sure there is no data leakage
from train to test. The whole slide images are used to evaluate the performance of baseline and PatchGD in
classifying the lung cancer subtypes.

B Training Methodology and Hyperparameters

For Tables 1,2,3,5,7,8,9,10,11 presented in the main paper, all models are trained for 100 epochs with Adam
optimizer and a peak learning rate of 1e-3. A learning rate warm-up for 2 epochs starting from 0 and linear
decay for 98 epochs till half the peak learning rate was employed. The latent classification head consists of
4 convolutional layers with 256 channels in each. We perform gradient accumulation over inner iterations
for better convergence, in the case of PANDA. To verify if results are better, not because of an increase in
parameters (coming from the classification head), baselines are also extended with a similar head. GD*, for
MobileNetV2 on UltraMNIST, refers to the baseline extended with this head.

19



Under review as submission to TMLR

Figure 5: Sample PANDA images along with their latent space Z. It can be seen that the latent space clearly
acts as a rich feature extractor.

In the case of low memory, as demonstrated in the UltraMNIST experiments, the original backbone architecture
is trained separately for 100 epochs. This provides a better initialization for the backbone and is further used
in PatchGD as mentioned in Tables 1 and 2.

For baseline in PANDA at 2048 resolution, another study involved gradient accumulation over images, which
was done for the same number of images that can be fed when the percent sampling is 10% i.e. 14 times since
a 2048x2048 image with a patch size of 128 and percentage sampling of 10 percent can have a maximum
batch size of 14 under 16GB memory constraint. That is to say, the baseline can virtually process a batch of
14 images. This, however, was not optimal and the peak accuracy reported was in the initial epochs due
to the loading of the pre-trained model on the lower resolution after which the metrics remained stagnant
(accuracy: 32.11%, QWK:0.357).

For Table 4 presented in the main paper, we use the training strategies as mentioned in the respective works.
The training strategy on TCGA is similar to what is employed on the PANDA dataset in Table 5.

20



Under review as submission to TMLR

Table 12: Comparison with normalization techniques at 2048 image size and 48GB memory constraint with
Resnet50 backbone.

Method Batch Size Setting Accuracy %
BatchNorm 6 - 49.4
GroupNorm 6 Groups = 32 50.3
Grad. Acc. 5 Steps = 11 44.1
PatchGD 56 56.2

For the ImageNet experiments in Table 6, we follow the exact training recipe as given in Touvron et al.
(2021). This includes a 300 epoch training regime with cosine decay and a combination of multiple image
augmentations4.

Convergence of baseline models. For all the baseline experiments reported in the paper, we have also
investigated extended training of the baseline to match the training time of the corresponding PatchGD
experiments. However, it has been consistently observed that the configurations reported in the paper are
the most optimal and the baseline converged within the initial 100 epochs for all the configurations. This
clearly confirms that the gain reported by PatchGD is not due to the additional training time associated
with this method.

C On other tasks

Generative modeling. PatchGD can be used for generating large-scale images with a broad semantic context,
which can be beneficial for data augmentation in fields such as deep learning for medical imaging. Early
results using StyleGAN-2 on the CIFAR-10 dataset showed that our method generated patches of 16× 16
which were stitched together and analyzed by the discriminator, leading to a comparable FID score of 6.3
to the standard GD’s FID score of 6.1. We believe this small performance gap can be eliminated with
hyperparameter optimization. We consider that the potential of PatchGD in generative modeling can be
maximized by generating large images with various semantic contexts, although this needs to be explored
further.

PatchGD for segmentation. We discuss here how PatchGD can be used for tasks such as segmentation or
any other encoder-decoder tasks We have discussed generative modeling already, and since the setup would
be something similar, we present here an understanding of how the PatchGD formulation would unfold for
tasks such as segmentation. For the task of segmentation as well, we have two sets of weights θ1 and θ2 that
constitute the encoder and the decoder, respectively. Here, the encoder generates a Z-block and the decoder
is used to generate the segmentation map from the Z-block. Similar to the classification problem, PatchGD
operates on each image over a course of multiple inner iterations. At each inner iteration, patches are sampled
from image x and accordingly passed through and the output is then used to update the respective parts of
Z. Further, k c-dimensional vectors are sampled from Z and passed through the decoder to generate mask
patches that are used to update parts of the segmentation map y, and the process is repeated. Note that
similar to Z–filling, this process also requires y-filling before the model updates of the encoder and decoder
are performed over patches. For this purpose, we can first train a segmentation model on lower-resolution
images of the chosen task and then use its encoder and decoder, and starting models for the PatchGD learning
process.

D Comparison with normalization techniques

Batch normalization methods also influence the covergence of deep learning models at low batch sizes.
However, PatchGD outperforms these techniques as well and we present a comparison is presented in Table
12.

4See Table 9. of Touvron et al. (2021)

21



Under review as submission to TMLR

Table 13: Influence of different number of gradient accumulation steps ϵ on the performance of PatchGD.

Model Dataset Memory Image size Patch size ϵ Accuracy
MobileNetv2 UltraMNIST 16 GB 512 256 1 83.7
MobileNetv2 UltraMNIST 16 GB 512 256 2 81.5
MobileNetv2 UltraMNIST 16 GB 512 256 4 81.1
Resnet50 PANDA 4GB 512 64 1 41.9
Resnet50 PANDA 4GB 512 64 8 50.5
Resnet50 PANDA 4GB 512 64 32 45.0
Resnet50 PANDA 48GB 4096 256 8 56.9
Resnet50 PANDA 48GB 4096 256 32 59.7

E Gradient Accumulation Study

We also highlight an ablation study on the effect of changing the gradient accumulation steps ϵ as presented
in Table 13. The gradients are accumulated and weights are updated only after ϵ steps. The ablations were
conducted for different epsilon settings, image and patch sizes, and memory constraints. We found that
for smaller patch sizes, employing gradient accumulation steps greater than 1 is essential, with significant
gains observed as the patch size to image size ratio decreases. Despite this promising trend,ϵ remains a
hyperparameter requiring further tuning. Moreover, exploring the nuanced relationship between accuracy and
steps is an essential aspect for future investigation in optimizing PatchGD. In case of UltraMNIST dataset at
512 image size, best performance is observed at ϵ = 1 for a patch size of 256. For PANDA two variations
were tried for image size 512 and image size 4096 with best results obtained at 8 and 32 respectively.

F Applications in Time Series Classification

Extending the concept of PatchGD to the 1-dimensional case, we find the application in time series classification.
For this task, we take the example of UCI Human Activity Recognition Dataset. A set of 9 inertial signals
at 128 unique time stamps are used to predict the action being executed (sitting, walking, etc.). For the
baseline model, we use a basic 1-d Convolutional Network with 64 kernels each of size 3 and a linear layer
at the end which achieves an accuracy of 88.9%. The model is trained using Adam as an optimizer with a
constant learning rate of 1e-3 for 30 epochs with 32 batch size. The counterpart PatchGD-inspired approach
involved the same 1-d convolutional network as the encoder with an intermediate latent vector, with other
common hyperparameters being kept the same. The time series is broken into chunks temporally, each chunk
being of length 16. Each inner iteration consists of sampling 25% of the total chunks with gradient updates
enabled. The model is updated at the final iteration. Impressively, the approach achieves similar accuracy
of 88.5%. The results are promising and yet again demonstrate the wide application to other tasks where
PatchGD can be applied. Although this needs to be investigated further.

22


	Introduction
	Related Work
	Approach
	General description
	Mathematical formulation

	Experiments
	Experimental setup
	Results

	Conclusions
	Limitations
	Future work
	Datasets
	PANDA
	UltraMNIST
	TCGA

	Training Methodology and Hyperparameters
	On other tasks
	Comparison with normalization techniques
	Gradient Accumulation Study
	Applications in Time Series Classification

