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Abstract

We introduce MedDelinea , a novel medical image segmentation architecture that leverages a
controllable module, drawing inspiration from ControlNet, within the Diffusion Transformers (DiT)
framework. By doing so, we effectively address three key challenges inherent to segmentation
tasks: (1) limited availability of labeled data, (2) variability in image modalities, and (3) the need
for precise boundary delineation. MedDelinea is pre-trained on a large-scale medical dataset,
thereby mitigating overfitting risks and enabling efficient transfer across diverse imaging scenarios
with minimal fine-tuning requirements. The modular design of MedDelinea facilitates scalable
and efficient computation, while maintaining high-quality segmentation performance in both su-
pervised and zero-shot settings. Through extensive empirical evaluations on multiple datasets,
we demonstrate that MedDelinea outperforms existing state-of-the-art segmentation approaches,
showcasing its potential for robust and accurate medical image analysis. The code is publicly
available at: https://github.com/Onkarsus13/MedDelinea.

1. Introduction

Generalization is an unsolved problem in medical image segmentation, and various pre-training
strategies have been explored to this challenge. Self-pretraining (Tang et al., 2022), where a model
is pre-trained on the same dataset used for downstream tasks, helps the model adapt to the spe-
cific characteristics of medical images but risks overfitting, limiting generalization to new data. In
contrast, pre-training on large, diverse datasets with transformer-based or CNN models improves
generalization but requires extensive fine-tuning for specific medical tasks, reducing efficiency. This
trade-off between generalization and efficiency hinders the practical use of these models. To address
these limitations, we design a model with four key attributes: Transferability, Efficiency, Modu-
larity, and Scalability. A transferable model requires minimal fine-tuning across related tasks. As
shown in Fig. 1, MedDelinea demonstrates gradual loss reduction with fewer iterations compared
to others. Efficiency focuses on high accuracy with minimal annotation. Modularity enables reuse
across tasks without major modifications, while Scalability ensures performance remains stable as
data size or complexity grows.
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Figure 1: Learning curve of different mod-
els across iterations. MedDelinea consis-
tently demonstrates the lowest loss through
the training process.

In this study, we introduce MedDelinea , a Large-
Scale Supervised Pre-training model with Diffusion
Transformer, aimed at achieving our primary goals in ab-
dominal segmentation. MedDelinea features two key
innovations: 1) Novel Architecture Design: Departing
from the traditional UNet backbone, it incorporates ele-
ments from ControlNet, Latent Diffusion Models (LDMs),
and Vision Transformers. This replaces UNet-style diffu-
sion models with transformers and leverages pre-trained
blocks from ControlNet to balance domain-agnostic and
domain-specific learning, resulting in a modular, scalable,
and efficient architecture. 2) Pretraining Strategy: By
using a ControlNet-based framework and performing su-
pervised pretraining on a large-scale dataset, MedDe-
linea enhances transferability and generalization, pro-
viding precise control over segmentation outputs to meet the demands of complex anatomical
structures. Summary of our contributions are as follows:

• Innovative Model Architecture: We propose a novel architecture, MedDelinea , which
integrates controllable neural networks inspired by ControlNet with Diffusion Transformers
(DiT). This hybrid model is specifically designed to address challenges in medical image
segmentation such as generalization to other datasets and minimal fine-tuning requirements.

• High Segmentation Accuracy with Zero-Shot and Few-Shot Learning: MedDe-
linea leverages a large-scale dataset (ATLAS-8k) for pretraining, enabling enhanced trans-
ferability and zero-shot and few-shot segmentation capabilities. This approach allows the
model to perform effectively on new datasets without additional fine-tuning. Extensive eval-
uations demonstrate that MedDelinea achieves state-of-the-art performance in segmenting
complex anatomical structures with high precision, contributing to improved diagnostics and
treatment planning in medical imaging.

• Robustness, Modularity, and Scalability: The architecture of MedDelinea is both
modular and scalable, making it adaptable to diverse medical imaging tasks without signifi-
cant computational overhead or architectural modifications. MedDelinea shows consistent
and robust performance across various imaging modalities, including CT and MRI, and effec-
tively handles multiple object segmentation within these modalities, highlighting its versatility
and efficiency.

1.1. Related Work

Emergence of Diffusion Models in Medical Image Segmentation: Recently, diffusion mod-
els have emerged as a promising approach in medical image segmentation by framing the task as
a generative modeling problem. Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al.,
2020) have been adapted for segmentation, where they treat it as conditional image generation.
PD-DDPM (Guo et al., 2023) improves efficiency by leveraging pre-segmentation results, while
BerDiff (Chen et al., 2023) uses a Conditional Bernoulli Diffusion Model for binary segmentation
tasks. MedSegDiff (Wu et al., 2024) utilizes diffusion processes to handle uncertain cases, such as
tumor boundaries. However, many of these models still rely on UNet backbones, limiting their
ability to capture global features. MedSegDiff-V2 (Wu et al., 2024) overcomes this by integrating
transformers with diffusion models, enhancing global feature capture and improving segmentation
quality.
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Pre-Training in Medical Imaging: Pre-training methods have become increasingly impor-
tant in medical image segmentation, especially due to the scarcity of large annotated datasets.
These approaches improve model performance by learning meaningful representations from large,
unlabeled datasets. Self-supervised learning (SSL) is a prominent pre-training strategy that helps
models learn from unlabeled data through proxy tasks. SimCLR (Ali et al., 2021), for exam-
ple, applies contrastive learning to discover underlying data structures, while Swin-UNETR (Tang
et al., 2022) uses proxy tasks like masked volume inpainting and rotation prediction to capture
anatomical patterns in large CT datasets. Another model, UNetFormer (Hatamizadeh et al.,
2022), reconstructs masked tokens to learn from visible input regions. These methods offer sig-
nificant improvements in performance when labeled data is scarce. Task-specific self-pre-training
has also gained attention. Zhou et al. (Zhou et al., 2023) utilize a Masked Autoencoder (MAE) for
Vision Transformers (ViT), pre-training models by reconstructing masked images, enabling them
to learn rich representations without extensive labeled datasets. This addresses a key challenge in
medical imaging, where annotated data is often limited.

Existing Gaps and Research Motivation: Despite advances in transformer-based diffusion
models like MedSegDiff-V2, challenges persist. Traditional reliance on UNet backbones limits these
models in capturing global anatomical structures. SSL and self-pre-training methods show promise
but overfitting to proxy tasks is a common problem, limiting generalization power of the networks,
and making them less adaptable across tasks.

To address these gaps, we propose a novel hybrid architecture combining Diffusion Transformers
(DiT) (Peebles and Xie, 2023) with ControlNet (Zhang et al., 2023). This approach integrates
the generative strengths of diffusion models with transformers’ ability to capture global features.
Pre-training on large datasets followed by fine-tuning for specific segmentation tasks optimizes
accuracy, complexity, and adaptability, offering a more scalable and efficient solution for medical
image segmentation across diverse clinical applications.

2. Method

An overview of our proposed Controllable Diffusion Transformers (DiT) architecture for medi-
cal image segmentation is presented in Fig. 2. By leveraging the robust representations learned
by pre-trained models on large-scale datasets, our approach enables efficient adaptation to the
segmentation task with minimal fine-tuning or even zero-shot learning. The DiT framework is
particularly well-suited for modeling complex data distributions inherent to medical images, while
the integration of a control mechanism via ControlNet allows for seamless incorporation of external
conditioning data to inform the segmentation process

Pre-training: Our pre-training strategy for MedDelinea involves leveraging the diverse
anatomical coverage of the ATLAS-8k dataset (Qu et al., 2024) to learn robust features for medical
image segmentation. We initialize the Control DiT Module and Pre-trained DiT Module weights
from a pre-trained model, as described in (Peebles and Xie, 2023). During pre-training, we adopt
a selective training approach, where only the Control DiT Module and the final layer of the VAE
Decoder are updated, while the remaining model weights are frozen to preserve their generalization
capabilities. This strategy is also employed during fine-tuning on other medical datasets, with
the key distinction being that the Control DiT Module and Decoder weights are initialized from
the pre-trained MedDelinea model, rather than directly from (Peebles and Xie, 2023). By doing
so, we facilitate efficient transfer learning while maintaining the model’s ability to generalize. A
detailed description of each module is provided in the subsequent sections. Additionally, further
pre-training details are included in the supplementary section.
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Figure 2: Architecture Diagram of MedDelinea . α1, α2, γ1, γ2, β1 and β2 represents scale and shift
parameters.

Input Processing and Latent Space Transformation: Our model processes two input
streams: a segmentation mask (IM ) and an organ image (IO). These inputs are encoded into
their respective latent representations, Zm and Zo, using a pre-trained Variational Autoencoder
(VAE) (Kingma, 2013) with frozen weights. By fixing the VAE’s parameters, thanks to its ability
to learn compact and informative latent representations, during this encoding step, we ensure that
the resulting latent representations remain consistent and invariant, which in turn reduces the risk
of overfitting and promotes stable performance across diverse input data.

The latent vector Zo corresponding to the CT/MRI image is further processed through a zero
convolution layer, where the weights and biases are initialized to zero. This operation ensures that
the initial influence of Zo on the subsequent diffusion process is neutral, allowing the model to
adaptively learn the most relevant features from the condition image as the training progresses.
On the other hand, Zm undergoes a forward diffusion process, resulting in a noisy latent vector
Zmt. P (Zmt|Zm0) =

√
ᾱtZm0 +

√
1− ᾱtϵt, where ϵt ∼ N (0, 1). This noisy representation Zmt is

then concatenated with Zo, producing a conditional latent vector Zct. This combination allows the
model to embed the condition-specific information into the diffusion process, effectively guiding the
generation of segmentation masks.

Control DiT Module (Pϕ): Durining fine-tuining, the weights are initialized from the Control
DiT Module pre-trained on ATLAS-8k dataset. The Control DiT Module is designed to manipulate
the diffusion process by injecting conditional information derived from Zct. This module first
converts Zct into a sequence of tokens using a patchification process, where the input is divided
into patches, each linearly embedded into a token of dimension d. This transformation allows the
model to process the spatial information within the input in a manner compatible with transformer
architectures.

As illustrated in Fig. 2, the tokens are then processed through a sequence of K transformer
blocks. Each block incorporates a timestep embedding te, which serves as a conditioning signal
for the scale and shift module within the block. This enables the model to adapt its operations
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Table 1: Mean segmentation metrics for the ATLAS-8k dataset.

Methods mDSC (↑) mHD95 (↓) mASSD (↓)
UNet (Ronneberger et al., 2015) 75.32 33.42 14.32
TransUnet (Chen et al., 2021) 78.92 31.78 12.11
SynergyNet (Gorade et al., 2024) 80.32 30.28 10.43
ControlNet (Zhang et al., 2023) 83.77 28.73 10.01
MedSegDiff (Wu et al., 2024) 85.07 27.99 9.27
VQDiffusion (Gu et al., 2022) 84.92 28.01 9.33
DiT (Peebles and Xie, 2023) 85.48 28.24 9.01
MedDelinea 87.98 25.92 7.98

dynamically according to the diffusion stage, thereby maintaining coherence in the generated images
throughout the diffusion process. Furthermore, the Control DiT Module interacts with the Pre-
trained DiT Module by injecting feature vectors at each residual connection point of the DiT
transformer blocks. These feature vectors act as external guides, providing conditional information
that informs the denoising operations within the pre-trained DiT transformer blocks. Notably, the
parameters of the Control DiT Module remain trainable, allowing the model to learn task-specific
adaptations and refine its performance on the target segmentation task.

Pre-trained DiT Module (ϵθ): The Pre-trained DiT Module plays a critical role in refining
the noisy latent representation Zmt. This module, which consists of N DiT transformer blocks, is
entirely frozen during training. By freezing these blocks, the architecture preserves the pre-learned
knowledge from the extensive training on large datasets (Peebles and Xie, 2023), ensuring that the
model retains its ability to generalize while focusing on the new dataset.

Similar to the Control DiT Module, the Pre-trained DiT Module begins by patchifying the
input Zmt into a sequence of tokens. These tokens are then processed by the frozen transformer
blocks. The scaling and shifting within these blocks are guided by the feature vectors passed
from the Control DiT Module. This design allows the model to fine-tune the diffusion process
based on the condition-specific information, ensuring that the denoising operation aligns with the
desired segmentation outcome. After processing through the transformer blocks, the latent vector
is approximated to its initial state Zm0 using Tweedie’s formula (Efron, 2011), which is a well-
established method in denoising processes for estimating the clean latent from noisy distribution.
The resultant vector is then passed to the VAE Decoder.

ˆZm0(Zmt) =
Zmt −

√
1− ᾱt · ϵθ(Zmt, t, Pϕ(Zmt, Zi, t))√

ᾱt
, (1)

where, ϵθ refers to the Pre-trained DiT module and Pϕ refers to the Control DiT module.
Image Reconstruction and Loss Functions: The VAE Decoder, which remains trainable,

reconstructs the final image from the refined latent space. The trainability of the VAE Decoder is
crucial as it allows the model to adapt to the specific characteristics of the dataset, ensuring that
the segmentation masks generated are both accurate and relevant to the dataset.

Two primary loss functions are employed to guide the training process:
a) Diffusion Loss (Ldiff): This loss function is applied at the end of the Pre-trained DiT

Module. It is designed to predict the noise present in the latent noisy vector Zmt. The diffusion
loss is typically defined as the mean squared error (MSE) between the predicted and actual noise,
encouraging the model to accurately denoise the latent representation at each timestep: Ldiff =
|ϵt − ϵθ(Zmt, t, Pϕ(Zmt, Zi, t))|2.

b) Segmentation Loss (Lseg): This loss function is applied to the final output image to
ensure that the generated segmentation masks not only look visually plausible but also precisely
delineate the anatomical structures of interest. This is particularly critical in medical imaging,
where segmentation accuracy is paramount for diagnostic and treatment planning purposes: Lseg =

LBCE

(
D(Ẑm0), Im

)
+ LDice

(
D(Ẑm0), Im

)
, where, D is the VAE Decoder.
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Table 2: Quantitative results on BTCV, AMOS, Cirr600+, and PanSegData datasets.

BTCV AMOS Cirr600+ PanSegData
Methods

mDSC (↑) mHD95 (↓) mDSC (↑) mHD95 (↓) Dice (↑) HD95 (↓) Dice (↑) HD95 (↓)
Models fine-tuned after ATLAS-8k pre-training

UNet 70.88 30.98 69.01 33.21 56.78 39.77 54.18 31.45
TransUnet 73.47 28.77 71.65 31.72 60.11 36.83 61.92 33.93
SynergyNet 79.65 23.29 77.67 31.28 64.76 33.47 67.32 31.77
ControlNet 82.96 21.15 78.19 30.76 66.84 31.55 69.92 29.98
MedSegDiff 83.55 20.19 80.77 28.75 78.92 29.57 70.56 29.12
VQDiffusion 82.71 24.11 80.13 28.82 77.88 31.07 70.12 29.91

DiT 83.41 23.21 81.45 27.17 78.18 30.07 70.13 29.91
MedDelinea 87.01 19.00 82.19 26.56 87.63 26.95 72.03 28.01

Zero-shot learning: Direct inference on test sets after ATLAS-8k pre-training
UNet 59.76 36.67 54.57 39.21 47.82 38.72 49.12 33.47

TransUnet 61.19 34.22 60.01 36.54 48.77 37.14 52.77 32.88
SynergyNet 63.44 32.18 63.47 35.52 61.21 35.19 58.16 31.09
ControlNet 67.52 30.88 67.29 34.78 62.32 34.28 66.92 30.22
MedSegDiff 73.27 28.92 70.64 33.01 64.12 33.01 68.77 29.88
VQDiffusion 77.54 29.01 69.64 33.42 63.92 33.34 68.17 29.92

DiT 77.79 26.81 76.47 31.42 64.01 33.19 68.17 28.52
MedDelinea 80.01 23.11 78.67 29.51 65.17 30.12 70.52 27.81

By combining these loss functions the total loss on which model trained on is: Lt = Ldiff+Lseg.
The model is trained to produce high-quality segmentation masks that meet both aesthetic and
clinical standards. The architecture’s design, which integrates pre-trained knowledge with adaptive
control mechanisms, ensures that the model is both robust and flexible, capable of performing
complex segmentation tasks with minimal additional training.

3. Experiments and Results

Details regarding implementation details (Section A), along with information about the dataset
and evaluation metrics (Section B), is provided in the Appendix.

Input Image GT VQ-Diffusion DiTSynergyNet MedSegDiff ControlNet MedDelinea

Fi
ne

 T
un

ed
Ze

ro
 s

ho
t RoI RoI RoI RoI RoI RoI RoI RoI

R
oI

Input Image GT SynergyNet MedSegDiff ControlNet VQ-Diffusion
VQ-Diffusion

Fi
ne

 T
un

ed
Ze

ro
 s

ho
t

DiT
VQ-Diffusion

MedDelinea

A
M

O
S

 D
at

as
et

B
TC

V
 D

at
as

et

RoI RoI RoI RoI RoI RoI RoI RoI

Figure 3: segmentation performance of various models on AMOS and BTCV datasets under fine-tuned and
zero-shot settings, highlighting the region of interest (RoI) for detailed anatomical segmentation analysis.
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Table 3: Few-shot learning results: Models fine-tuned on 1%, 10%, and 25% of training data after ATLAS-
8k pre-training, followed by inference on test sets.

BTCV AMOS
Methods

mDSC (↑) mHD95 (↓) mDSC (↑) mHD95 (↓)
Results on 1% of Training Data

ControlNet 72.12 27.52 69.03 34.02
DiT 74.22 25.11 76.67 32.18
MedDelinea 77.52 23.42 78.92 29.92

Results on 10% of Training Data
ControlNet 72.82 27.03 71.28 33.05
DiT 74.97 24.55 77.01 31.51
MedDelinea 78.59 22.78 79.23 28.79

Results on 25% of Training Data
ControlNet 74.02 26.38 73.34 31.27
DiT 75.11 24.01 79.34 29.16
MedDelinea 81.16 21.59 80.46 27.49

3.1. Quantitative Comparison

Fine-tuining and zero-shot learning Scenarios: Table 2 presents the quantitative analysis of
MedDelinea ’s performance in fine-tuning and zero-shot learning scenarios. After fine-tuning on
each dataset post ATLAS-8k pre-training, MedDelinea achieves the highest metrics, including an
mDSC of 87.01% on BTCV and 82.19% on AMOS. In zero-shot learning, MedDelinea demon-
strates robust generalization capabilities, leading with an mDSC of 80.01% on BTCV and 78.67%
on AMOS. This suggests that MedDelinea ’s architecture is adaptable and effective in transferring
learned features from pre-training to new datasets.

The combination of ControlNet and Diffusion Transformers in MedDelinea enables it to gen-
eralize complex features and excel in zero-shot learning. In contrast, other models like MedSegDiff
and VQDiffusion, while competitive in fine-tuning, struggle with boundary accuracy and surface
accuracy in zero-shot scenarios, as indicated by higher mHD95 and mASSD values on challenging
datasets.

Few-shot Comparison: Table 3 presents the few-shot learning performance of different mod-
els, including MedDelinea , fine-tuned on 1%, 10%, and 25% of the training data after ATLAS-8k
pre-training. MedDelinea consistently outperforms other models (ControlNet and DiT) across
varying amounts of training data, achieving the highest mDice scores and lowest mHD95 values
on both BTCV and AMOS datasets. Note that, with only 1% of the training data, MedDelinea
achieves mDice scores of 77.52% (BTCV) and 78.92% (AMOS), demonstrating its robustness and
efficiency in few-shot learning scenarios. As the training data increases, MedDelinea further
solidifies its lead, showcasing its superior scalability and effectiveness.

Altas8k Dataset: Table 1 shows that our proposed method, MedDelinea , outperforms pre-
vious baselines with superior scalability. The incorporation of the Control DiT Module in MedDe-
linea mitigates the issue of weight distribution shift caused by learning new segmentation tasks,
leading to improved scalability and adaptability. This confirms that MedDelinea is a more reliable
and efficient model for segmentation tasks. Organ-specific Dice scores for ATLAS-8K are provided
in Appendix Table 9.

Details on the zero-shot segmentation performance analysis of models on MRI and CT, are
provided in the supplementary section.

Inference Time and Model Parameter Comparison: A detailed comparison of the num-
ber of parameters and inference time across baseline models and MedDelinea is provided in the
Table 4. To ensure a fair comparison, all inference evaluations were conducted on a single NVIDIA
A6000 GPU. MedDelinea consists of 227 million parameters and achieves state-of-the-art (SOTA)
performance with competitive inference time relative to other models. While MedDelinea has a
slightly larger parameter count compared to TransUNet and DiT, it maintains efficient inference
time while significantly outperforming these models in segmentation accuracy. Notably, it is less
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Table 4: Comparison of model parameters (in millions) and inference time (in seconds) across various
baseline methods and MedDelinea.

Methods Parameters M Inference Time
UNet 33 0.25

TransUnet 182 0.76
SynergyNet 23 0.46
ControlNet 400 6.32
MedSegDiff 372 8.89
VQDiffusion 340 3.11

DiT 187 2.72
MedDelinea 227 2.88

Table 5: Ablation Study. Default settings indicate the architectural choices used for all experiments.

Experiments mDSE (↑) mHD95 (↓) mASSD (↓)
Ablation Based on Training Stratergy

Training only Noise Predictor 86.21 26.11 08.03
Abaltion Based on loss (Default: Ldiff and Lseg)

Only Ldiff 86.92 26.01 08.01

Ablation based on Number of Control-DiT Transformer Blocks (Default: K=15)
K=1 86.57 26.54 08.33
K=5 86.72 26.37 08.27
K=10 87.37 25.98 08.01

Abaltion Based on Noise Schedulers (Default: EulerAncestralDiscreteScheduler (Karras et al., 2022))
DDIM (Song et al., 2020) 87.51 25.32 08.11

DPMSolver++ (Lu et al., 2022) 87.22 25.45 08.11
UniPCMultistepScheduler (Zhao et al., 2024) 87.92 25.78 07.97
LMSDiscreteScheduler (Karras et al., 2022) 87.76 25.34 07.96

computationally expensive than MedSegDiff, VQ-Diffusion, and ControlNet while delivering supe-
rior performance. This comparison underscoresMedDelinea’s ability to balance model complexity
and inference efficiency, making it a highly effective solution for medical image segmentation.

3.2. Qualitative Comparison

Qualitative results in Fig. 3 demonstrate MedDelinea ’s superior segmentation performance on
BTCV and AMOS datasets in both fine-tuned and zero-shot scenarios. Compared to other models
(e.g., MedSegDiff, ControlNet, VQ-Diffusion, and DiT), MedDelinea consistently delivers accu-
rate segmentations with fewer artifacts and mis-segmentations. Notably, MedDelinea excels in
delineating organ boundaries, particularly in the pancreas and spleen (BTCV) and liver, kidneys,
and pancreas (AMOS). MedDelinea captures fine details and complex structures, achieving superior
boundary delineation and segmentation performance. See Appendix Fig. 6 for attention maps.

Additional quantitative class-wise metrics for the BTCV and AMOS datasets (See Tables 5 and
6 in Appendix), along with qualitative results from ATLAS-8k (See Fig. 5 in Appendix) and 3D
segmentation results for BTCV and AMOS (See Fig. 7 in Appendix), are provided in the appendix.

3.3. Ablation Study

We conducted ablation studies to assess the impact of different components and configurations
on the model’s performance, using the Atlas-8K dataset for these experiments. The results are
summarized in Table 5. All results for the default choices are presented in Table 1.

Ablation Based on Training Stratergy: We analyzed the impact of different training
strategies for the decoder and noise predictor. Training only the noise predictor yielded lower
performance, with an mDSE of 86.21, mHD95 of 26.11, and mASSD of 8.03. However, training
both the noise predictor and the decoder together (default choice) improved results across all metrics
(refer Table 1).

Ablation Based on Loss: Using only diffusion loss (Ldiff ) resulted in poor boundary accu-
racy. Adding segmentation loss (Lseg) with a BCE Dice component improved performance, raising
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the mDSE from 86.92 to 87.98, lowering mHD95 from 26.01 to 25.92, and improving mASSD from
8.01 to 7.98. This highlights the value of segmentation-specific losses for better boundary accuracy.

Ablation based on Number of Control-DiT Transformer Blocks: Increasing the number
of Control-DiT transformer blocks (K) led to better segmentation performance. With K rising from
1 to 15, the model reached its best scores—mDSE of 87.98, mHD95 of 25.92, and mASSD of 7.98.
However, this improvement came with a substantial increase in trainable parameters, from 7.83
million at K=1 to 117.45 million at K=15.

Ablation Based on Noise Schedulers: The results in Table 1 show that the Euler Ancestral
Discrete Scheduler outperforms others, with the highest mDSE score (87.98), fastest inference time
(2.78s), and strong boundary accuracy. In comparison, the UniPC and LMSDiscreteSchedulers
(Table 5) have slightly lower mDSE scores (87.92 and 87.76) and longer inference times (8.54s and
5.32s). This indicates the Euler Ancestral Discrete Scheduler offers the best balance of speed and
accuracy.

4. Conclusion

In conclusion, MedDelinea presents a novel and scalable architecture that significantly enhances
medical image segmentation by integrating controllable neural networks with Diffusion Transform-
ers (DiT). The model demonstrates strong generalization capabilities, achieving state-of-the-art
performance with minimal fine-tuning and excelling in zero-shot settings. Its modular design al-
lows for efficient adaptation across various medical imaging tasks, ensuring both computational
efficiency and high accuracy. MedDelinea ’s success highlights the potential of leveraging pre-
trained models combined with adaptive control mechanisms, offering a robust solution for diverse
and complex medical image segmentation challenges.
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Appendix A. Training and Implementation Details

Pre-training Details: The MedDelinea model was pre-trained over 35,000 steps using the
AdamW optimizer with a learning rate of 2.0e-5. A Cosine annealing scheduler was applied for
learning rate decay. The model was trained on 8 Nvidia A6000 GPUs (48 GB each), with a batch
size of 32 per GPU. Image resolutions were dynamically adjusted per batch, alternating between
256 × 256 and 512 × 512. Gradient accumulation was set to 8 steps, and mixed precision training
was employed to improve computational efficiency and reduce memory usage. Pre-training was
conducted using the Atlas 8K dataset, following a 90:10 split for training and validation.

Fine-tuning Details: Fine-tuning was conducted for 1,500 steps using the same AdamW
optimizer with a learning rate of 2.0e-5. A Linear scheduler was used for learning rate adjustments.
The batch size remained at 32 per GPU, with the same hardware configuration. During fine-tuning,
the image resolution was fixed at 256 × 256. Similar to pre-training, gradient accumulation was set
to 8 steps, and mixed precision training was used to optimize both speed and memory efficiency.
This fine-tuning process was consistently applied across all datasets. Fine-tuning and evaluation
were performed using the BTCV, AMOS, and CirrMri600+ datasets, following a standardized
80:10:10 split for training, validation, and testing.

Data Augmentation: To improve generalization and robustness to variations in medical
imaging data, we applied the same data augmentation strategies during both pre-training and
fine-tuning across MedDelinea and all baseline methods. The augmentation techniques included
Random Cropping, which extracts random patches to introduce spatial variability, and Random
Affine Transformations, which apply scaling, shearing, and translation to enhance invariance to
spatial deformations. Additionally, Elastic Distortion was employed to simulate realistic non-rigid
deformations commonly seen in medical scans, while Random Rotation introduced angular pertur-
bations to improve robustness to orientation differences. These augmentations were consistently
applied throughout both training stages, ensuring that the learned representations remain invariant
to common geometric transformations and distortions in medical imaging data.

Appendix B. Datasets and Metrics

Datasets: To evaluate MedDelinea ’s performance in medical image segmentation, we fine-tuned
the model on three datasets after pre-training on ATLAS-8k (Qu et al., 2024), which contains
8,000 CT scans. For fine-tuning, we used BTCV (Fang and Yan, 2020), AMOS (Ji et al., 2022),
Cirr600+ (Jha et al., 2024), and PanSegData (Zhang et al., 2024). BTCV includes 50 multi-organ
abdominal CT scans for benchmarking. AMOS provides 600 volumes (500 CT, 100 MRI) for multi-
modal segmentation of abdominal organs. Cirr600+ features 608 MRI scans focused on cirrhotic
liver cases, and Pancreas-MRI comprises 767 MRI scans from 499 participants across five centers.
This diverse dataset combination enhances MedDelinea ’s robustness and generalizability across
medical imaging scenarios.

Metrics: To assess model performance, we used mean Dice Similarity Coefficient (mDSC),
mean Hausdorff Distance 95 (mHD95), and Dice. mDSC and Dice quantify segmentation overlap,
where 1 indicates perfect agreement. mHD95 measure boundary errors and surface distances,
with lower values indicating better accuracy and precision. These metrics offer a comprehensive
evaluation of segmentation accuracy and boundary precision.

Appendix C. Detailed Pre-training Strategy

Our pre-training strategy leverages the ATLAS-8K dataset, which contains 8,000 3D CT volumes
annotated with 15 abdominal structures. The dataset provides comprehensive anatomical coverage,
allowing models to learn robust feature representations for medical image segmentation. During
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pre-training, we initialize the Control DiT Module and Pre-trained DiT Module weights from a
model pre-trained as described in (Peebles and Xie, 2023). However, we employ selective training,
wherein only the Control DiT Module and the final layer of the VAE Decoder are updated, while
the remaining weights remain frozen. This preserves the generalization capability of the original
model while allowing for effective adaptation to medical imaging.

Motivation for Pre-training: While popular diffusion models such as DiT, Stable Diffusion,
and VQ-Diffusion are pre-trained on natural images, they lack domain-specific knowledge crucial
for medical image segmentation. Directly applying them to CT/MRI data leads to suboptimal
generalization due to differences in contrast, texture, and domain-specific noise characteristics.
Our pre-training on ATLAS-8K addresses this issue in the following ways:

• Domain Alignment: The dataset’s intensity distributions, anatomical priors, and noise char-
acteristics ensure the model learns medical image representations rather than natural image
statistics.

• Improved Generalization: Exposure to diverse anatomical variations improves the model’s
ability to segment structures across different CT/MRI scans.

• Segmentation-Specific Guidance: We integrate segmentation loss at the decoder stage, rein-
forcing feature learning for anatomical edges and overlapping structures.

Appendix D. Quantitative Results

Tables 6 and 7 present the classwise Dice scores for various models on the BTCV (Fang and Yan,
2020) and AMOS (Ji et al., 2022) datasets, highlighting both fine-tuned and zero-shot results after
pre-training on the ATLAS-8k (Qu et al., 2024) dataset.

In Table 6, the models were fine-tuned on the BTCV and AMOS datasets. MedDelinea
consistently achieves the highest Dice scores across nearly all organs in both datasets. On the BTCV
dataset, MedDelinea shows superior performance in complex organs such as the liver (96.72%)
and pancreas (63.77%), outperforming models like MedSegDiff and DiT, which also perform well
but not to the same degree of accuracy. Similarly, in the AMOS dataset, MedDelinea achieves
the highest Dice scores for the liver (93.14%) and spleen (91.72%), maintaining its edge across most
organ classes.

Table 7 presents the results from zero-shot inference on the BTCV and AMOS test sets without
additional fine-tuning. Again, MedDelinea outperforms other models, particularly in difficult

Table 6: Classwise quantitative results on the BTCV and AMOS datasets, where models are fine-tuned on
these datasets after pre-training on the ATLAS-8k dataset.

Dice (↑)
Methods

Aorta Gallbladder KidneyL KidneyR Liver Pancreas Spleen Stomach
BTCV

UNet 75.12 59.77 72.31 70.88 86.67 47.78 80.19 73.21
TransUnet 77.05 61.92 74.11 73.08 88.79 49.97 81.37 73.98
SynergyNet 86.10 65.49 82.78 78.24 95.06 58.28 88.95 81.30
ControlNet 89.19 68.78 85.92 83.19 95.98 61.09 90.28 85.09
MedSegDiff 89.92 69.03 86.67 83.32 96.88 61.12 90.11 84.11
VQDiffusion 88.56 66.77 85.12 83.23 94.11 59.92 88.63 81.01

DiT 88.88 67.42 86.15 84.11 95.02 61.21 88.91 84.21
MedDelinea 91.77 72.78 88.09 85.18 96.72 63.77 92.96 86.61

AMOS
UNet 74.01 55.71 71.88 67.82 86.02 42.21 77.88 71.18

TransUnet 75.82 56.86 73.42 69.01 87.18 44.78 81.82 72.01
SynergyNet 83.89 63.16 81.01 82.11 88.12 44.17 87.19 84.12
ControlNet 84.99 64.77 82.76 82.62 89.19 45.22 89.02 85.32
MedSegDiff 86.08 65.92 83.44 83.19 91.78 46.04 90.65 86.78
VQDiffusion 85.19 65.01 84.17 83.02 90.72 45.99 89.77 85.27

DiT 85.99 64.88 84.76 82.92 91.44 45.34 90.02 84.98
MedDelinea 87.12 66.94 87.12 84.05 93.14 48.19 91.72 87.67
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Table 7: Classwise quantitative results on the BTCV and AMOS datasets, obtained through zero-shot
inference on the test set following fine-tuning on the ATLAS-8k dataset.

Dice (↑)
Methods

Aorta Gallbladder KidneyL KidneyR Liver Pancreas Spleen Stomach
BTCV

UNet 69.67 54.12 65.43 65.24 80.11 39.12 71.21 59.77
TransUnet 71.22 55.77 69.88 66.54 82.11 40.14 73.22 61.01
SynergyNet 83.01 58.92 74.57 72.34 86.78 49.92 78.56 70.99
ControlNet 84.33 61.72 78.22 76.52 88.99 53.17 79.90 73.42
MedSegDiff 85.19 62.23 80.01 78.12 90.11 51.02 81.27 76.77
VQDiffusion 83.19 59.12 79.11 79.88 90.02 54.92 84.22 78.71

DiT 85.33 60.61 81.21 80.53 87.15 57.33 86.17 80.11
MedDelinea 89.17 68.18 85.19 83.09 94.21 60.88 89.78 83.10

AMOS
UNet 63.11 46.44 63.17 54.72 68.34 27.55 60.75 60.53

TransUnet 65.12 48.34 64.77 59.11 70.57 31.51 65.32 63.21
SynergyNet 68.92 50.02 69.24 71.02 73.76 36.28 71.54 66.54
ControlNet 71.12 56.72 73.77 74.57 78.91 38.91 77.33 74.58
MedSegDiff 70.92 58.21 75.26 75.72 82.65 40.42 82.37 79.91
VQDiffusion 71.24 54.11 77.56 77.01 83.72 38.76 80.22 77.82

DiT 75.12 60.21 81.56 77.01 87.46 41.42 80.22 77.82
MedDelinea 78.44 62.01 80.92 81.11 90.51 46.01 88.52 84.01
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Figure 4: Pancreas and Liver dataset results.
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organs like the liver (94.21% in BTCV, 90.51% in AMOS) and pancreas (60.88% in BTCV, 46.01% in
AMOS) The reason forMedDelinea ’s strong performance is its architecture choice which combines
diffusion transformers (DiT) with a controllable module. This combination allows the model to
effectively capture intricate anatomical structures. The use of extensive pre-training on the ATLAS-
8k dataset helps MedDelinea build a strong representation of organ structures, making it more
adept at handling fine-tuning on target datasets like BTCV and AMOS. This pre-training also
explains its strong zero-shot performance, as it generalizes well to new organs without requiring
further training.

Additionally, Table 9 reports the per-organ Dice scores (%) on the ATLAS-8k dataset. It is
clear that our proposed method, MedDelinea, outperforms the other approaches across multiple
organs, achieving higher Dice scores in most categories

Zero-Shot Performance Analysis on MRI and CT: To further evaluate the generalization
capability of models pretrained solely on CT scans, we report the zero-shot segmentation perfor-
mance on the AMOS MRI and CT subsets. All models were pretrained on ATLAS-8K (CT-only
dataset) and tested on AMOS without any fine-tuning. The quantitative results are presented in
Table 8. While the pretraining dataset (ATLAS-8K) comprises only CT scans, we observe that
models maintain relatively high segmentation performance on MRI scans under zero-shot settings.
However, as evident from Table 8, the performance on MRI remains consistently lower than on CT
across all models; but still its competitive. This can be attributed to several factors:

Figure 5: Validation Dice score progression across training iter-
ations.

1. Structural vs. Intensity-Based
Representations in Diffusion Mod-
els: Our latent diffusion-based model,
MedDelinea, prioritizes shape, spa-
tial structure, and anatomical bound-
aries rather than absolute intensity
values. Unlike CNN-based models,
which may rely heavily on modality-
specific intensity statistics, diffusion
models focus on structural regular-
ities, which are largely consistent
across MRI and CT. This enables
the model to achieve relatively ro-
bust MRI segmentation, despite hav-
ing been pretrained exclusively on CT
scans.

2. Impact of Large-Scale Pre-
training on Generalization: The di-
verse range of CT scans within
ATLAS-8K allows the model to de-
velop robust representations of organ morphology, which can be effectively leveraged for MRI
segmentation. However, differences in contrast, intensity profiles, and noise distributions between
CT and MRI still result in an inherent performance gap, as reflected in the lower mDSC and higher
mHD95 for MRI.

Additionally, to complement the training loss curves presented in Figure 1 of the main manuscript,
we provide an evaluation of model performance on the validation set using the Dice Similarity Co-
efficient (DSC). The purpose of this analysis is to assess the segmentation accuracy of different
models throughout training and compare their convergence behavior in terms of validation per-
formance. Figure 5 illustrates the mean Dice score computed on the validation set at different
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Table 8: Comparison of zero-shot performance on MRI and CT data.

Models
MRI CT

mDSC mHD95 mDSC mHD95
UNet 73.37 35.45 74.17 34.01

TransUnet 74.89 34.47 75.09 33.65
SynergyNet 76.22 33.39 77.38 32.88
ControlNet 77.54 32.46 79.37 32.05
MedSegDiff 77.28 31.98 79.54 30.89
VQDiffusion 78.35 32.16 80.22 30.19

DiT 78.39 32.44 80.78 29.87
nnUnet 78.11 31.05 81.37 29.56

nnFormer 79.35 30.65 81.28 30.34
UNITER++ 79.36 29.09 82.28 28.89
MedSAM 80.11 28.98 82.98 28.21

MedDelinea 81.27 28.23 85.32 26.62

training iterations for MedDelinea and baseline models (DiT, ControlNet, and Stable Diffusion).
MedDelinea consistently outperforms all baseline models across the training process, achieving the
highest Dice score at convergence. On the other hand, DiT and ControlNet demonstrate steady
improvement, with their Dice scores plateauing at lower values compared to MedDelinea.

Appendix E. Qualitative Results

Figure 6: ATLAS-8k dataset results.

Additional External Data for Test: MRI Pancreas and liver: The qualitative results
in Fig.4 highlight the segmentation performance of various models for the pancreas and liver. In
the fine-tuned pancreas results (top row), MedDelinea closely matches the ground truth, accu-
rately capturing the pancreas boundaries, while models like MedSegDiff and VQ-Diffusion struggle
with precision. In the zero-shot pancreas results (second row), MedDelinea still outperforms
other models, maintaining accurate segmentation without additional training, whereas DiT and
MedSegDiff miss finer details. For the liver segmentation (third and fourth rows), MedDelinea
demonstrates superior performance in both fine-tuned and zero-shot scenarios. In the fine-tuned
case (third row), MedDelinea provides precise liver boundaries, surpassing models like SynergyNet
and MedSegDiff, which miss key regions. In the zero-shot liver results (fourth row), MedDelinea
continues to lead, while models like ControlNet and VQ-Diffusion fail to fully capture the liver’s
structure. Overall, MedDelinea excels in both settings, particularly for complex organs like the
pancreas and liver, where other models struggle.

ATLAS-8k Dataset Results: The qualitative results in Fig. 6 show the segmentation per-
formance of various models on the ATLAS-8k dataset (Qu et al., 2024), including SynergyNet,
MedSegDiff, ControlNet, VQ-Diffusion, DiT, and MedDelinea . Across different input images,
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Figure 7: Attention maps for BTCV and AMOS datasets.

MedDelinea consistently provides more accurate and precise segmentation results, closely match-
ing the ground truth. For larger organs like the liver and spleen, MedDelinea performs well,
capturing their shape and boundaries with high fidelity. Similarly, for smaller and more challeng-
ing organs, MedDelinea shows fewer segmentation errors compared to other models, which either
over-segment or under-segment the regions.

Attention Maps: Attention maps in Fig. 7 further highlightMedDelinea ’s targeted attention
mechanism, which focuses on fine-grained details and captures complex structures more effectively
than other models. This superior attention enables MedDelinea to achieve better boundary
delineation and segmentation performance, making it a robust and generalizable model for clinical
applications.

Appendix F. 3D Visualization:

In Fig. 8, shows a clearer comparison of how different models—MedSegDiff, ControlNet, DiT,
and MedDelinea (ours) capture the anatomical structures from the BTCV and AMOS datasets.
These visualisations help to assess the overall quality and consistency of segmentation across various
organs.

MedDelinea consistently produces segmentation maps that closely align with the ground truth,
demonstrating its ability to capture fine details and maintain accurate boundaries, particularly in
complex and small anatomical regions. In comparison, MedSegDiff and ControlNet show more in-
consistencies and less precision, often struggling with challenging areas where boundary delineation
is critical. DiT performs better than MedSegDiff and ControlNet but still exhibits less refinement
in capturing finer structures compared to MedDelinea .

For instance, in the pancreas region of the AMOS dataset, as visualized in the third row of
the maps, MedDelinea produces a segmentation that closely aligns with the ground truth. The
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Figure 8: 3D Visualisation of AMOS and BTCV Dataset Segmentation Map
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Table 9: Per organ Dice scores (%) on the ATLAS-8k dataset. Higher values indicate better segmentation
performance.

Methods Aorta Gallbladder KidneyL KidneyR Liver Pancreas Spleen Stomach
UNet 67.72 53.37 64.11 63.34 86.02 35.67 77.88 73.21
TransUnet 74.51 58.92 67.82 67.54 87.18 41.34 81.82 73.98
SynergyNet 78.11 60.11 70.11 71.52 88.12 46.89 87.19 81.30
ControlNet 80.01 65.73 73.39 73.78 89.19 54.78 89.02 85.09
MedSegDiff 79.92 65.27 75.11 76.01 91.78 58.94 90.65 84.11
VQDiffusion 79.17 65.34 76.23 77.02 90.72 58.55 89.77 81.01
DiT 79.17 65.34 76.23 77.02 90.72 58.55 89.77 81.01
MedDelinea 82.34 68.09 79.01 80.11 93.14 61.21 91.72 86.61

pancreas, a smaller and more complex organ to segment, is accurately captured by MedDelinea
with well-defined boundaries and minimal missing regions. In contrast, MedSegDiff and ControlNet
show visible errors in this region, with fragmented or incomplete segmentations. MedSegDiff,
for instance, misses part of the pancreas, leaving gaps, while ControlNet over-segments, blending
boundaries with adjacent structures. DiT provides a better representation compared to MedSegDiff
and ControlNet, but still lacks the sharp precision that MedDelinea demonstrates in this area.

Appendix G. Further Related Works

Traditional Approaches: Medical image segmentation plays a critical role in clinical diagnostics,
involving the classification of pixels in medical images (e.g., CT and MRI) to delineate anatomical
structures or abnormalities. Convolutional neural network (CNN) based models, particularly UNet
(Ronneberger et al., 2015) and its variants (Oktay et al., 2018; Zhang et al., 2019; Lou et al.,
2021), have been widely used due to their encoder-decoder architecture, which captures both local
and global context. Despite their success, CNNs struggle with long-range dependencies, limiting
their effectiveness in segmenting complex anatomical structures. This has led to a shift towards
transformer-based methods.

Shift to Transformer-Based Models: To address the limitations of CNNs, transformer-
based models have been introduced. TransUNet (Chen et al., 2021) combines the strengths of CNNs
for local feature extraction with transformers for long-range dependency modeling. This hybrid
architecture significantly improves segmentation accuracy. Other models like Swin-UNet (Cao
et al., 2022) and DS-TransUNet (Lin et al., 2022) further refine this approach by incorporating Swin
Transformers, which capture multi-scale features using shifted windows and hierarchical structures.
While these models enhance the understanding of complex anatomical features, they introduce
challenges like increased computational complexity and reliance on large-scale pre-training datasets.
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