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ABSTRACT

Min-max optimization problems involving nonconvex-nonconcave objectives have
found important applications in adversarial training and other multi-agent learning
settings. Yet, no known gradient descent-based method is guaranteed to converge to
(even local notions of) min-max equilibrium in the nonconvex-nonconcave setting.
For all known methods, there exist relatively simple objectives for which they cycle
or exhibit other undesirable behavior different from converging to a point, let alone
to some game-theoretically meaningful one Vlatakis-Gkaragkounis et al. (2019);
Hsieh et al. (2021). The only known convergence guarantees hold under the strong
assumption that the initialization is very close to a local min-max equilibrium Wang
et al. (2019). Moreover, the afore-described challenges are not just theoretical
curiosities. All known methods are unstable in practice, even in simple settings.
We propose the first method that is guaranteed to converge to a local min-max
equilibrium for smooth nonconvex-nonconcave objectives. Our method is second-
order and provably escapes limit cycles as long as it is initialized at an easy-to-find
initial point. Both the definition of our method and its convergence analysis are
motivated by the topological nature of the problem. In particular, our method is
not designed to decrease some potential function, such as the distance of its iterate
from the set of local min-max equilibria or the projected gradient of the objective,
but is designed to satisfy a topological property that guarantees the avoidance of
cycles and implies its convergence.

1 INTRODUCTION

Min-max optimization lies at the foundations of Game Theory von Neumann (1928), Convex
Optimization Dantzig (1951a); Adler (2013) and Online Learning Blackwell (1956); Hannan (1957);
Cesa-Bianchi & Lugosi (2006), and has found many applications in theoretical and applied fields
including, more recently, in adversarial training and other multi-agent learning problems Goodfellow
et al. (2014); Madry et al. (2018); Zhang et al. (2019). In its general form, it can be written as

min
θ∈Θ

max
ω∈Ω

f(θ, ω), (1)

where Θ and Ω are convex subsets of the Euclidean space, and f is continuous.

Equation (1) can be viewed as a model of a sequential-move game wherein a player who is interested
in minimizing f chooses θ first, and then a player who is interested in maximizing f chooses ω after
seeing θ. Solving (1) corresponds to an equilibrium of this sequential-move game.

We may also study the simultaneous-move game with the same objective f wherein the minimizing
player and the maximizing player choose θ and ω simultaneously. The Nash equilibrium of the
simultaneous-move game, also called a min-max equilibrium, is a pair (θ?, ω?) ∈ Θ× Ω such that

f(θ?, ω?) ≤ f(θ, ω?), for all θ ∈ Θ and f(θ?, ω?) ≥ f(θ?, ω), for all ω ∈ Ω. (2)

It is easy to see that a Nash equilibrium of the simultaneous-move game also constitutes a Nash
equilibrium of the sequential-move game, but the converse need not be true Jin et al. (2019). Here,
we focus on solving the (harder) simultaneous-move game. In particular, we study the existence
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of dynamics which converge to solutions of the simultaneous-move game, namely the existence of
methods that make incremental updates to a pair (θt, ωt) so as the sequence (θt, ωt) converges, as
t→∞, to some (θ∗, ω∗) satisfying equation 2 or some relaxation of it.

This problem has been extensively studied in the special case where Θ and Ω are convex and compact
and f is convex-concave — i.e. convex in θ for all ω and concave in ω for all θ. In this case, the
set of Nash equilibria of the simultaneous-move game is equal to the set of Nash equilibria of the
sequential-move game, and these sets are non-empty and convex von Neumann (1928). Even in
this simple setting, however, many natural dynamics surprisingly fail to converge: gradient descent-
ascent, as well as various continuous-time versions of follow-the-regularized-leader, not only fail to
converge to a min-max equilibrium, even for very simple objectives, but may even exhibit chaotic
behavior Mertikopoulos et al. (2018); Vlatakis-Gkaragkounis et al. (2019); Hsieh et al. (2021). In
order to circumvent these negative results, an extensive line of work has introduced other algorithms,
such as extragradient Korpelevich (1976) and optimistic gradient descent Popov (1980), which
exhibit last-iterate convergence to the set of min-max equilibria in this setting; see e.g. Daskalakis
et al. (2018); Daskalakis & Panageas (2018); Mazumdar & Ratliff (2018); Rafique et al. (2018);
Hamedani & Aybat (2018); Adolphs et al. (2019); Daskalakis & Panageas (2019); Liang & Stokes
(2019); Gidel et al. (2019); Mokhtari et al. (2019); Abernethy et al. (2019); Golowich et al. (2020b;a);
Gorbunov et al. (2022); Cai et al.. Alternatively, one may take advantage of the convexity of the
problem, which implies that several no-regret learning procedures, such as online gradient descent,
exhibit average-iterate convergence to the set of min-max equilibria Cesa-Bianchi & Lugosi (2006);
Shalev-Shwartz (2012); Bubeck & Cesa-Bianchi (2012); Shalev-Shwartz & Ben-David (2014); Hazan
(2016). Beyond the convex/concave setting Lin et al. (2020); Kong & Monteiro (2021); Ostrovskii
et al. (2021) show that convexity with respect to one of the two players is enough to design algorithms
that exhibit average-iterate convergence to min-max equilibria while Diakonikolas et al. (2021) and
Pethick et al. (2022) provide convergence results for weak Minty variational inequalities.

Our focus in this paper is on the more general case where f is not convex-concave, i.e. it may fail to
be convex in θ for all ω, or may fail to be concave in ω for all θ, or both. We call this general setting
where neither convexity with respect to θ nor concavity with respect to ω is assumed, the nonconvex-
nonconcave setting. This setting presents some substantial challenges. First, min-max equilibria are
not guaranteed to exist, i.e. for general objectives there may be no (θ?, ω?) satisfying equation 2;
this happens even in very simple cases, e.g. when Θ = Ω = [0, 1] and f(θ, ω) = (θ − ω)2. Second,
it is NP-hard to determine whether a min-max equilibrium exists Daskalakis et al. (2021) and, as
is easy to see, it is also NP-hard to compute Nash equilibria of the sequential-move game (which
do exist under compactness of the constraint sets). For these reasons, the optimization literature
has targeted the computation of local and/or approximate solutions in this setting Daskalakis &
Panageas (2018); Mazumdar & Ratliff (2018); Jin et al. (2019); Wang et al. (2019); Daskalakis et al.
(2021); Mangoubi & Vishnoi (2021). This is the approach we also take in this paper, targeting the
computation of (ε, δ)-local min-max equilibria, which were proposed in Daskalakis et al. (2021).
These are approximate and local Nash equilibria of the simultaneous-move game, defined as feasible
points (θ?, ω?) which satisfy a relaxed and local version of equation 2, namely:

f(θ?, ω?) < f(θ, ω?) + ε, for all θ ∈ Θ such that ‖θ − θ?‖ ≤ δ; (3)
f(θ?, ω?) > f(θ?, ω)− ε, for all ω ∈ Ω such that ‖ω − ω?‖ ≤ δ. (4)

Besides being a natural concept of local, approximate min-max equilibrium, an attractive feature
of (ε, δ)-local min-max equilibria is that they are guaranteed to exist when f is Λ-smooth and the
locality parameter, δ, is chosen small enough in terms of the smoothness, Λ, and the approximation

parameter, ε, namely whenever δ ≤
√

2ε
Λ . Indeed, in this regime of parameters the (ε, δ)-local

min-max equilibria are in correspondence with the approximate fixed points of the Projected Gradient
Descent/Ascent dynamics. Thus, the existence of the former can be established by invoking Brouwer’s
fixed point theorem to establish the existence of the latter. (Theorem 5.1 of Daskalakis et al. (2020)).

There are a number of existing approaches which would be natural to use to find a solution (θ?, ω?)
satisfying equation 3 and equation 4, but all run into significant obstacles. First, the idea of averaging,
which can be leveraged in the convex-concave setting to obtain provable guarantees for otherwise
chaotic algorithms, such as online gradient descent, no longer works, as it critically uses Jensen’s
inequality which needs convexity/concavity. On the other hand, negative results abound for last-
iterate convergence: Hsieh et al. (2021) show that a variety of zeroth, first, and second order methods
may converge to a limit cycle, even in simple settings. Vlatakis-Gkaragkounis et al. (2019) study a
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particular class of nonconvex-nonconcave games and show that continuous-time gradient descent-
ascent (GDA) exhibits recurrent behavior. Furthermore, common variants of gradient descent-ascent,
such as optmistic GDA (OGDA) or extra-gradient (EG), may be unstable even in the proximity of
local min-max equilibria, or converge to fixed points that are not local min-max equilibria Daskalakis
& Panageas (2018); Jin et al. (2019). While there do exist algorithms, such as FOLLOW-THE-RIDGE
proposed by Wang et al. (2019), which provably exhibit local convergence to a (relaxation of) local
min-max equilibrium, these algorithms do not enjoy global convergence guarantees, and no algorithm
is known with guaranteed convergence to a local min-max equilibrium.

These negative theoretical results are consistent with the practical experience with min-maximization
of nonconvex-nonconcave objectives, which is rife with frustration as well. A common experience is
that the training dynamics of first-order methods are unstable, oscillatory or divergent, and the quality
of the points encountered in the course of training can be poor; see e.g. Goodfellow (2016); Metz et al.
(2016); Daskalakis et al. (2018); Mescheder et al. (2018); Daskalakis & Panageas (2018); Mazumdar &
Ratliff (2018); Mertikopoulos et al. (2018); Adolphs et al. (2019). In light of the failure of essentially
all non-trivial, i.e., non brute-force, algorithms to guarantee convergence, even asymptotically, to
local min-max equilibria, we ask the following question: Is there any local-search algorithm which is
guaranteed to converge to a local min-max equilibrium in the nonconvex-nonconcave setting? (see
Table 1)

1.1 OUR CONTRIBUTION

In this work we answer the above question in the affirmative: we propose a second-order method
that is guaranteed to converge to a local min-max equilibrium (Theorem 1).. Our algorithm,
called STAY-ON-THE-RIDGE or STON’R, has some similarity to FOLLOW-THE-RIDGE or FTR,
which only converges locally. STON’R is the first method guaranteed to local min-max equilibrium
beyond the brute-force grid-search in the non-convex/non-concave setting. Both the structure of our
algorithm and its global convergence analysis are motivated by the topological nature of the problem,
as established by Daskalakis et al. (2021) who showed that the problem is equivalent to Brouwer fixed
point computation. In particular, the structure and analysis of STON’R are not based on a potential
function argument but on a parity argument (see Section 4), akin to the argument used to prove the
existence of Brouwer fixed points. The main challenge of our work is to prove that there exists an
algorithm that uses only local information of the objective function f , i.e., only its second derivative,
while satisfying the topological properties that are necessary to guarantee global convergence. In
order to understand the main technical contributions of our paper we need first to introduce the main
steps of showing the convergence using a topological argument in Section 4. Then in Section 5.4 we
provide a sketch of our proof and we highlight the technical difficulties that we face.

convex-concave nonconvex-concave nonconvex-nonconcave

existence yes2 no† no†

complexity poly-time‡ NP-hard? NP-hard?

N
as

h
E

q.

convergent
dynamics many‡ not applicable not applicable

existence same as above yes+ yes?

complexity same as above poly-time+ PPAD-hard?

L
oc

al
N

as
h

E
q.

convergent
dynamics same as above many+ This paper

Table 1: Summary of known results for simultaneous zero-sum games with differing complexity
in their objective function. (2) v. Neumann (1928) (†) e.g., the min-max game with objective function
f(θ, ω) = −(θ−ω)2, where θ ∈ [−1, 1] and ω ∈ [−1, 1], does not have any Nash Equilibrium. (?) Daskalakis
et al. (2021) (‡) e.g., Dantzig (1951b); Freund & Schapire (1997); Shalev-Shwartz (2012); Cesa-Bianchi &
Lugosi (2006) (+) e.g., Lin et al. (2020); Kong & Monteiro (2021); Ostrovskii et al. (2021)
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2 SOLUTION CONCEPT

We begin with formulating our problem in the more general framework of variational inequalities.
This simplifies our definitions and notations and also makes our result applicable to more general
settings such as multi-player concave games Rosen (1965).

Variational Inequalities (VI). For K ⊆ Rn, consider a continuous map V : K → Rn. We say that
x ∈ K is a solution of the variational inequality VI(V,K) iff: V (x)> · (x− y) ≥ 0 for all y ∈ K.

It is well known that finding local min-max equilibria of smooth objectives can be expressed as
a non-monotone VI problem. Specifically, consider the min-max optimization problem (1), take
K = Θ× Ω and simplify notation by using x ∈ K to denote points (θ, ω) ∈ K. Call the subset of
coordinates of x identified with θ the “minimizing coordinates” and the subset of coordinates of x
identified with ω the “maximizing coordinates.” Then define V : K → Rn as follows:

For j ∈ [n]: set Vj(x) := −∂f(x)

∂xj
, if j is minimizing, and Vj(x) :=

∂f(x)

∂xj
, otherwise.

Computing (ε, δ)-local min-max equilibria of smooth objectives, i.e. points satisfying (3) & (4), can
be reduced to finding solutions to VI(V,K). In fact, finding even an approximate VI solution x
satisfying V (x)>(x− y) ≥ −α,∀y ∈ K, would suffice as long as α > 0 is small enough. For more
details see Theorem 5.1 of Daskalakis et al. (2020). Hence, for the rest of the paper we focus on
solving variational inequality problems. For simplicity of exposition we take our constraint set to be
K = [0, 1]n. In this case there is a simple characterization of the solutions to VI(V,K).
Definition 1. We call a coordinate i satisfied at point x ∈ [0, 1]n if one of the following holds:
1. i is zero-satisfied at x, i.e, Vi(x) = 0, or

2. i is boundary-satisfied at x, i.e, (Vi(x) ≤ 0 and xi = 0) or (Vi(x) ≥ 0 and xi = 1).
Lemma 1 (Proof in Appendix D). x is a solution of VI(V, [0, 1]n) iff j is satisfied at x, ∀j ∈ [n].

Finally, in the rest of the paper we make the following assumptions for V :

(Λ-Lipschitz) ‖V (x)− V (y)‖2 ≤ Λ · ‖x− y‖2, for all x, y ∈ [0, 1]n.
(L-smooth) ‖J(x)− J(y)‖F ≤ L · ‖x− y‖2, for all x, y ∈ [0, 1]n.

where J is the Jacobian of V, and ‖A‖F denotes the Frobenious norm of the matrix A.

3 STAY-ON-THE-RIDGE: HIGH-LEVEL DESCRIPTION

In this section we describe our algorithm and discuss the main design ideas leading to its convergence
properties presented in Section 5. As explained in the previous section, our goal is to find a point x
such that every coordinate i ∈ [n] is satisfied at x according to the Definition 1.

Our algorithm is initialized at x(0) = (0, . . . , 0). The goal of the algorithm is to satisfy all unsatisfied
coordinates one-by-one in lexicographic order (although, as we will see, coordinates may go from
being satisfied to being unsatisfied in the course of the algorithm). We say that our algorithm “starts
epoch i at point x” iff all coordinates ≤ i− 1 are satisfied at x and the algorithm’s immediate goal is
to find a point x′ 6= x that satisfies all coordinates ≤ i, namely:

Goal of epoch i, starting at point x: find x′ 6= x satisfying all coordinates ≤ i.
Let us assume that, at time t, our algorithm starts epoch i at point x(t). Let us also assume that, at
x(t), all coordinates≤ i−1 are zero-satisfied (see Section 5.1 for the general case), i.e., Vj(x(t)) = 0
for all j ≤ i− 1. Our algorithm tries to achieve the goal of epoch i starting at x(t) as follows:
• Our algorithm tries to find such a point inside the connected subset Si(x(t)) ⊆ [0, 1]n that contains

all points z satisfying the following: (a) all coordinates ≤ i− 1 are zero-satisfied at z, and (b) for
all j ≥ i+ 1, zj = xj(t).

• Our algorithm navigates Si(x(t)) in the hopes of satisfying the goal of epoch i. A natural approach
is to navigate Si(x(t)) is to run a continuous-time dynamics {z(τ)}τ≥0 that is initialized at
z(0) = x(t) and moves inside Si(x(t)). What are possible directions of movement so that our
dynamics stay within Si(x(t))? If the dynamics is at some point z ∈ Si(x(t)), it will remain in
this set if it moves, infinitessimally, in a unit direction d satisfying the following constraints:
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1. dj = 0, for all j ≥ i+ 1; /* to guarantee (b) in the definition of Si(x(t)) */
2. (∇Vj(z))> · d = 0, for all j ∈ {1, . . . , j − 1}. /* to guarantee (a) */

Notice that 1 and 2 specify n − 1 constraints on n variables. We will place mild assumptions
on V so that there is a unique, up to a sign flip, unit direction satisfying these constraints (see
Assumption 1). Moreover, in Definition 2 we specify a rule to choose one of the two unit directions
satisfying our constraints. We denote by Di(z) the direction that our tie-breaking rule selects at z.

• With the above choices, the continuous-time dynamics ż(τ) = Di(z(τ)), initialized at z(0) = x(t),
is well-defined. We follow this dynamics until the earliest time that one of the following happens:
– (Good Event): the dynamics stops at a point x′ 6= x(t) where coordinate i is satisfied;
– (Bad Event): the dynamics stops at a point x′ lying on the boundary of [0, 1]n (and if it were to

continue it would violate the constraints).
So we have described what our algorithm does if, at time t, it starts epoch i at x(t). Suppose x′
is the point where our dynamics executed during epoch i terminates. If the good event happened,
coordinate i is satisfied at x′, and our algorithm starts epoch i+ 1 at x′. If the bad event happened,
our algorithm will in fact start epoch i − 1 at point x′. What does this mean? That it will run the
continuous-time dynamics corresponding to epoch i− 1 on the set Si−1(x′) starting at x′ in order to
find some point x′′ 6= x′ where all coordinates ≤ i− 1 are satisfied. It may fail to do this, in which
case it will start epoch i− 2 next. Or it may succeed, in which case, it will start epoch i, and so on
so forth until (as we will show!) all coordinates will be satisfied. The high-level pseudocode of our
algorithm is given in Dynamics 1.

Dynamics 1 STay-ON-the-Ridge (STON’R) — High-Level Description

1: Initially x(0)← (0, . . . , 0), i← 1, t← 0.
2: while x(t) is not a VI solution do
3: Initialize epoch i’s continuous-time dynamics, ż(τ) = Di(z(τ)), at z(0) = x(t).
4: while exit condition of this dynamics has not been reached do
5: Execute ż(τ) = Di(z(τ)) forward in time.
6: end while
7: Set x(t+ τ) = z(τ) for all τ ∈ [0, τexit] (where τexit is time exit condition was met).
8: if x(t+ τexit) 6= x(t) and coordinate i is satisfied at x(t+ τexit) then
9: Update the epoch i← i+ 1.

10: else
11: (Bad event happened so) move to the previous epoch i← i− 1.
12: end if
13: Set t← t+ τexit.
14: end while
15: return x(t)

At this point we have described an algorithm that explores the space in a natural way in its effort to
satisfy coordinates, but it is unclear why it would eventually satisfy all of them, how it would escape
cycles, and how it would not get stuck at non-equilibrium points. Importantly, there is no quantity
that seems to be consistently improving during the execution of the algorithm.

How we can show convergence since no quantity seems to be consistently improving?

4 A TOPOLOGICAL ARGUMENT OF CONVERGENCE

Our main idea to show the convergence of the STON’R algorithm is to use a topological argument illu-
trated in Lemma 2 that has been employed to show the convergence of other equilibrium computation
algorithms such as the elebrated Lemke-Howson algorithm Lemke & Howson (1964).
Lemma 2. Let G = (N,E) be a directed graph such that every node has in-degree at most 1 and
out-degree at most 1. If there exists some node v ∈ N with in-degree 0 and out-degree 1, then there is
unique directed path starting at v and ending at some v′ ∈ N that has in-degree 1 and out-degree 0.

The proof of Lemma 2 is straightforward, as Figure 1 illustrates. The lemma suggests a recipe for
proving the convergence of some deterministic, iterative algorithm, with update rule vt+1 ← F (vt),
whose iterates lie in a finite set N :
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Figure 1: A directed graph whose nodes have in-degree and out-degree at most 1 is a collection of
directed paths, directed cycles, and isolated nodes. Hence, if a node v has in-degree 0 and out-degree
1 then it has to be the start of a directed path that must end at a node v′ after a finite number of steps.

1. Define a graph G with vertices N and edges E = {(u, v) | u 6= v and v = F (u)}, i.e., there is an
edge from u to v iff v 6= u and v is reached after an iteration of the algorithm starting at u.

2. Argue that every vertex of G has in-degree ≤ 1. It is clear that every vertex has out-degree ≤ 1.
3. Show that the algorithm can be initialized at some v0 that has in-degree 0 and out-degree 1.
4. Employ Lemma 2 to argue that if the algorithm is initialized at v0 it must, eventually, arrive at

some node vend whose out-degree is 0. Out-degree 0 means that vend = F (vend).
5. The above prove that if the algorithm starts at v0 it is guaranteed to converge.

In the course of the description of the algorithm and its convergence proof in Section 5, we specify a
finite set of nodes N of the graph that we will construct to employ the above convergence argument.
Intuitively, these are all the points at which our algorithm can possibly start a new epoch. The
map F (·) that we use to construct our graph is the outcome of the continuous-time process that our
algorithm execute when it starts an epoch at such a point.

5 DETAILED DESCRIPTION OF STON’R AND MAIN RESULT

We provide a formal description of our algorithm (Section 5.1), state our main convergence theorem
(Section 5.2), and the main components of its proof building on the ideas (Section 5.4).

5.1 STON’R: DETAILED DESCRIPTION

In Section 3 we focused on the epochs where all coordinates ≤ i− 1 are zero-satisfied at the initial
point x and the goal is to identify some x′ 6= x all coordinates ≤ i are satisfied. To achieve this, we
execute a continuous-time dynamics constrained by keeping all coordinates ≤ i− 1 zero-satisfied.
However, in the course of these dynamics we be hit the boundary. So, when we start a new epoch,
some coordinates will be zero-satisfied and some will be boundary-satisfied. In that general case, the
algorithm needs to execute a continuous-time dynamics constrained by keeping the zero-satisfied
coordinates zero-satisfied as well as the boundary-satisfied coordinates at the right boundary.

Namely, the epochs are indexed by some coordinate i ∈ [n] and a subset of coordinates S ⊆ [i− 1]
that are zero-satisfied at the point x where the epoch starts. The goal of each epoch is the following.

Goal of epoch (i, S), starting at point x (where S ⊆ [i− 1], coordinates in S are zero-satisfied and
coordinates in [i− 1] \S are boundary-satisfied): find x′ 6= x where all coordinates ≤ i are satisfied,
all coordinates in S are zero-satisfied, and all coordinates in [i− 1] \ S are boundary-satisfied.

Epoch (i, S) starting at x might achieve its goal or end before it achieves its goal. In both cases, a new
epoch will start. Within each epoch our algorithm executes a continuous-time dynamics that maintains
all the coordinates j ∈ S zero-satisfied, all the coordinates j ∈ [i− 1] \ S boundary-satisfied, and
leaves all coordinates [n] \ [i] unchanged.

Definition 2 (Tangent Unit Vector of Epoch (i, S)). Let i ∈ [n], S = {s1, . . . , sm} ⊆ [i− 1], and
x ∈ [0, 1]n, we say that a unit vector d ∈ Rn is admissible if:

1. dj = 0, for all j /∈ S ∪ {i}, and

2. ∇Vj(x)> · d = 0, for all j ∈ S, and

3. the sign of

∣∣∣∣∣∣∣∣∣∣∣

∂Vs1
(x)

∂xs1

∂Vs2 (x)

∂xs1
. . .

∂Vsm (x)
∂xs1

ds1
...

...
...

...
...

∂Vs1
(x)

∂xsm

∂Vs2
(x)

∂xsm
. . .

∂Vsm (x)
∂xsm

dsm
∂Vs1 (x)

∂xi

∂Vs2 (x)

∂xi
. . .

∂Vsm (x)
∂xi

di

∣∣∣∣∣∣∣∣∣∣∣
equals the sign of (−1)|S|.

If there is a unique unit direction satisfying the above constraints, we denote that direction Di
S(x).
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Conditions 1 and 2 above describe a line in Rn and condition 3 specifies a direction on this line. We
will place some assumptions on V so that Di

S(x) is defined for all x ∈ [0, 1]n where coordinates S
are zero-satisfied (see Assumption 1). Now, when we start epoch (i, S) at point x, we will execute
the continuous-time dynamics ż(τ) = Di

S(z(τ)), initialized at z(0) = x, forward in time. We this
dynamics until the earliest time τexit such that z(τexit) is an exit point according to the next definition.
Definition 3. Suppose i ∈ [n], S ⊆ [i − 1], at x′ ∈ [0, 1]n, the coordinates in S are zero-satisfied
at x′, the coordinates in [i− 1] \ S are boundary-satisfied at x′. Then x′ is an exit point for epoch
(i, S) iff it satisfies one of the following:
• (Good Exit Point): Coordinate i is satisfied at x′, i.e., Vi(x′) = 0, or x′i = 0 and Vi(x′) < 0, or
x′i = 1 and Vi(x′) > 0.

• (Bad Exit Point): ∃j ∈ S ∪ {i} s.t. (Di
S(x′))j > 0 and x′j = 1, or (Di

S(x′))j < 0 and x′j = 0,
i.e., if the dynamics of epoch (i, S) were to continue from x′, they would violate the constraints.

• (Middling Exit Point): ∃j ∈ [i− 1] \ S s.t. Vj(x′) = 0 and (∇Vj(x′)>Di
S(x′) > 0 and x′j = 0)

or (∇Vj(x′)>Di
S(x′) < 0 and x′j = 1), i.e., if the dynamics for epoch (i, S) were to continue from

x′, some boundary-satisfied coordinate would become unsatisfied.

We will place some assumptions on V so that there can be a unique j triggering the condition of Bad
Exit Point and there can be a unique j triggering the Middling Exit Point condition (see Assumptions
2). Below we describe the actions that we take when one of the above exit conditions is triggered.

Action at Good Events. In case of a good event, we start epoch (i+1, S′) at x′, where S′ = S∪{i},
if i is zero-satisfied at x′, and S′ = S, if i is boundary-satisfied at x′.

Action at Bad Events. In case of a bad event, note that the coordinate j responsible for the condition
in the bad event must belong to S ∪ {i} because in all other coordinates (Di

S(x′))j = 0 by definition.
Our action depends on which j triggers the bed event as follows:
(1) if the triggering j = i, then we start epoch (i− 1, S \ {i− 1}) at x′, otherwise
(2) if the triggering j 6= i, then we start epoch (i, S \ {j}) at x′.

Action at Middling Events. In this case, we start epoch (i, S ∪ {j}) at x′ because the coordinate j
is both zero- and boundary-satisfied at x′ so we add j to S to keep it zero-satisfied next.

Combining the above rules we get a full description of our algorithm in Dynamics 2. In Appendix B
we do a step-by-step execution of this algorithm for a simple 2D min-max optimization problem.

Dynamics 2 STay-ON-the-Ridge (STON’R)

1: Initially x(0)← (0, . . . , 0), i← 1, S ← ∅, t← 0.
2: while x(t) is not a VI solution do
3: Initialize epoch (i, S)’s continuous-time dynamics, ż(τ) = Di

S(z(τ)), at z(0) = x(t).
4: while z(τ) is not an exit point as per Definition 3 do
5: Execute ż(τ) = Di

S(z(τ)) forward in time.
6: end while
7: Set x(t+ τ) = z(τ) for all τ ∈ [0, τexit] (where τexit is the time z(τ) became an exit point).
8: if x(t+ τexit) is (Good Exit Point) as in Definition 3 then
9: if i is zero-satisfied at x(t+ τexit) then

10: Update S ← S ∪ {i}.
11: end if
12: Update i← i+ 1.
13: else if x(t+ τexit) is a (Bad Exit Point) as in Definition 3 for j = i then
14: Update i← i− 1 and S ← S \ {i− 1}.
15: else if x(t+ τexit) is a (Bad Exit Point) as in Definition 3 for j 6= i then
16: Update S ← S \ {j}.
17: else if x(t+ τexit) is a (Middling Exit Point) as in Definition 3 for j < i then
18: Update S ← S ∪ {j}.
19: end if
20: Set t← t+ τexit.
21: end while
22: return x(t)
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5.2 OUR ASSUMPTIONS AND OUR MAIN THEOREM

We next present the assumptions on V that are needed for our convergence proof. We discuss these
assumptions further in Appendix A where we present some high level reasons why they are mild.
Assumption 1. There exist real numbers σmax > σmin > 0 such that: for all x ∈ [0, 1]n and for all
S = {s1, . . . , sm} ⊆ [n], if V`(x) = 0 for all ` ∈ S, then the singular values of the m×m matrix
JKS (x) are greater than σmin and less than σmax, where

JKS (x) :=


∂Vs1

(x)

∂xs1
. . .

∂Vs1
(x)

∂xsm

...
...

∂Vsm (x)
∂xs1

. . .
∂Vsm (x)
∂xsm

 .

Assumption 1 ensures that the direction Di
S(·) of Definition 2 is uniquely defined (see Lemma 11 in

Appendix 8).
Assumption 2. For all x ∈ [0, 1]n, for all i ∈ [n], and for all S ⊆ [i− 1]: if V`(x) = 0 ∀` ∈ S and
x` ∈ {0, 1} ∀` /∈ S ∪ {i} then there is at most one coordinate j ∈ S ∪ {i} such that xj ∈ {0, 1}.

Assumption 2 ensures that any time at most one coordinate can trigger a middling or a bad event.
To see this, imagine there are two different coordinates j1, j2 triggering a bad event at x, then
xj1 ∈ {0, 1}, xj2 ∈ {0, 1} and Vj1(x) = Vj2(x) = 0 and therefore Assumption 2 is violated. A
similar observation applies for middling events. See also Lemma 8 and Lemma 10 in the Appendix.
Assumption 3. For all x ∈ [0, 1]n, for all i ∈ [n], for all S ⊆ [i− 1] such that V`(x) = 0 ∀` ∈ S
and x` ∈ {0, 1} ∀` /∈ S ∪ {i}, and for all vectors (ds1 , . . . , dsm , di) satisfying the equations,

∇S∪{i}Vj(x)> · (ds1 , . . . , dsm , di) = 0 for all j ∈ S,
we have that dj 6= 0 if xj = 0 or xj = 1.

Assumption 3 ensures that we can determine whether a coordinate begins or stops being satisfied by
looking at the Jacobian of V . For example, consider a coordinate j such that xj = 0 and Vj(x) = 0.
If also Di

S(x)>Vj(x) = 0 then higher-order information is needed in order to determine whether the
direction Di

S(·) makes the coordinate j satisfied or unsatisfied (see Lemma 4 in the Appendix).

We are now ready to state our main theorem.
Theorem 1. Under Assumptions 1, 2, and 3, there exists some T̄ = T̄ (σmin, σmax, n, L,Λ) > 0
such that STAY-ON-THE-RIDGE (Dynamics 2) will stop, at some time T ≤ T̄ , at some point
x(T ) ∈ [0, 1]n that is a solution of VI(V, [0, 1]n).
Remark 1 (Discrete-time Algorithm). It is possible to combine the proof of Theorem 1 with standard
numerical analysis techniques to show the convergence of a simple discrete version of the dynamics
assuming that the step size is small enough. For more details about this we refer to Appendix J.

5.3 SIMULATED 2-DIMENSIONAL EXAMPLE

Figure 2

In Figure 2 we present the behavior of the main existing al-
gorithms for min-max optimization in the 2-dimensional min-
max problem with objective f(θ, ω) := −θω − 1

20 · ω
2 + 2

20 ·
S
(
θ2+ω2

2

)
·ω2, where S(z) is the smooth-step function equal to

0 for z ≤ 0, 1 for z ≥ 1 and z2 − 2z3 otherwise. With blue we
observe the behavior of GDA, EG, and OGDA that have the same
behavior in this example when initialized at (−0.5,−1). With
orange we observe the behavior of the follow-the-ridge (FtR)
algorithm initialized at (−0.5,−0.5) and with green we observe
the behavior of STON’R. As we can see GDA, EG, OGDA are get-
ting trapped to a cycle whereas FtR hits the boundary at (−1,−1)
that does not correspond to an equilibrium point. Our algorithm is
the only one that directly converges to the equilibrium following
a very short path. In Appendix C we provide a more detailed

explanation of this example and we observe similar behavior for different initializations of GDA, EG,
OGDA, and FtR.
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5.4 SKETCH OF PROOF OF THEOREM 1

For a sketch of our proof of Theorem 1 we follow the recipe that we described in Section 4. During
this proof sketch we highlight some technical challenges that we face. (The full proof can be found in
Appendix E.)

1. We start with the definition of the set of nodes N . The set N contains triples of the form (i, S, x)
where i ∈ [n], S is a subset of [i− 1] and x ∈ [0, 1]n that satisfies the following:

(a) all coordinates in S are zero-satisfied, (b) all coordinates in [i− 1] \ S are boundary-satisfied,
(c) xj = 0 for all j ≥ i + 1, and either (d1) xi = 0 or (d2) x is an exit point for epoch (i, S)
according to Definition 3 1.

Our first technical challenge is to show that the size of N is finite (see Lemma 3 in the Appendix).
Next we describe a mapping F : N → N . Let (i, S, x) ∈ N , we use the dynamics ż = Di

S(z)
with initial condition z(0) = x and we find the minimum time τexit such that z(τexit) is an exit
point. We then update i, S to i′, S′ according to the rules for actions on exit points of Section 5.1
and we define F ((i, S, x)) = (i′, S′, z(τexit)). One of our main technical challenges is to show
that the dynamics ż = Di

S(z) have a unique solution under our assumptions and hence F is well
defined (see Lemma 4 in the Appendix).
The set N and the mapping F define the directed graph G, as described in Section 4, that is
guaranteed to have vertices with out-degree at most 1. We also show that any v ∈ V with
out-degree 0 is an equilibrium point (see Lemma 4 in the Appendix).

2. To show that the in-degree is at most 1, we face our next technical challenge which is to show that
we can actually solve the dynamics backwards in time. In particular, if we specify z(0) and there
is the smallest time τexit such that z(−τexit) is an exit point then z(−τexit) is uniquely determined.
This means that there exists F−1 : N → N such that if v′ = F (v) then F−1(v′) = v which
means that no vertex in N can have in-degree more than 1 (see Lemma 5 in the Appendix).

3. We show that v0 = (1, ∅, (0, . . . , 0)) ∈ N and that if run the dynamics ż = D1
∅(z) backwards in

time starting at z(0) = 0 then we get outside [0, 1]n and so v0 has in-degree 0. We also show that
the dynamics ż = D1

∅(z) can move forward in time and stay inside [0, 1]n so v0 has out-degree 1
(see Lemma 6 in the Appendix).

4. The above show that our algorithm converges according to Section 4.

6 CONCLUSIONS

Summary. In this work we propose a novel local-search algorithm, called STON’R, that is guaranteed
to converge to local min-max equilibrium in the general case of non-convex non-concave objectives.
To the best of our knowledge STON’R is the first method, beyond trivial brute-force, that is guaranteed
to find a local min-max equilibrium starting from a simple initialization. We remark that existing
min-max optimization methods required either convexity (resp. concavity) in one of the players or an
initialization very close to the optimal point in order to guarantee convergence. Finally, our approach
differs from existing methods in the fundamental way that both its design and analysis are based on
topological rather than potential arguments. We believe that these types of arguments can play an
important role in the future of multi-agent machine learning.

Comparison with Brute-Force. Since we assume that V is a Lipschitz function and that K is an
n-dimensional hypercube, it is not hard to see that there exists a small enough discretization of the
space such that the brute-force search over all the discrete points is guaranteed to find a solution.
Such brute-force algorithms exist in most of the optimization problems like solving linear programs
or finding Nash equilibria in normal form games. These trivial algorithms suffer from the curse of
dimensionality even in very simple instances and hence they are almost never useful. Instead local-
search algorithms such as simplex or Lemke-Howson Lemke & Howson (1964) have been extremely
successful in practice because they converge very fast in the majority of real world instances although
in the worst-case their complexity is the same as the brute-force. Our contribution is to provide the
first such algorithm for the fundamental problem of nonconvex-nonconcave min-max optimization
and we believe that it will play an important role in the future of multi-agent optimization in machine
learning.

1The actual set of nodes that we used in the proof does not contain the information of i and S but we refer to
the Appendix for the exact proof.
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