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Abstract

Text summarization is a user-preference based001
task. For one document, users often have dif-002
ferent priorities for summary. Granularity level003
of the summary is a core component of these004
preferences. However, most existing studies005
focus solely on single-granularity scenarios, re-006
sulting in models that are limited to producing007
summaries with similar semantic coverage and008
are not customizable. In this paper, we propose009
the first unsupervised multi-granularity summa-010
rization framework, GRANUSUM. We regard011
events as basic semantic units of the original012
text and design a model that can take these013
events as anchors when generating summary.014
Meanwhile, by ranking these hint events and015
controlling the number of events, GRANUSUM016
is capable of generating summaries at differ-017
ent granularities in an unsupervised manner.018
We develop a testbed for the multi-granularity019
summarization task, including a new human-020
annotated benchmark GranuDUC where each021
document is paired with multiple summaries022
with different granularities. Extensive experi-023
ments on this benchmark and other large-scale024
datasets show that GRANUSUM substantially025
outperforms previous baselines. We also find026
that GRANUSUM exhibits impressive perfor-027
mance on conventional unsupervised abstrac-028
tive summarization tasks via exploiting the029
event information, achieving new state-of-the-030
art results on three summarization datasets.031

1 Introduction032

In the information age, a plethora of information033

resources are at the fingertips of every user. Faced034

with a variety of complex and lengthy informa-035

tion, how to quickly understand the central idea036

has become a serious problem with increasing con-037

cerns. Therefore, the task of text summarization038

has grown in importance. Notably, the require-039

ments for summarization are highly customized040

and personalized for different users (Díaz and041

Gervás, 2007; Lerman et al., 2009; Yan et al., 2011;042

Multiple News Articles about Hurricane Mitch
Honduras braced for potential catastrophe Tuesday as Hurri-
cane Mitch roared through the northwest Caribbean, churning
up high waves and intense rain ... (Total 3,358 words)

Summary of Granularity Level 1
Hurricane Mitch, category 5 hurricane, brought widespread
death and destruction to Central American, and Honduras
was especially hard hit. (Total 19 words)

Summary of Granularity Level 2
Hurricane Mitch approached Honduras on Oct. 27, 1998 with
winds up to 180mph a Category 5 storm ... The European
Union, international relief agencies, Mexico, the U.S., Japan,
Taiwan, the U.K. and U.N. sent financial aid, relief workers
and supplies. (Total 53 words)

Summary of Granularity Level 3
A category 5 storm, Hurricane Mitch roared across the north-
west Caribbean with 180 mph winds across a 350-mile front
... The greatest losses were in Honduras where 6,076 people
perished ... At least 569,000 people were homeless across
Central America. Aid was sent from many sources (European
Union, the UN, US and Mexico). The U.S. and European
Union were joined by Pope John Paul II in a call for money
and workers to help the stricken area. However, Relief efforts
are hampered by extensive damage ... (Total 133 words)

Table 1: An example from our multi-granularity summa-
rization benchmark GranuDUC. Texts of the same color
(blue, red) denote similar points described in different
ways. Finer-grained summaries have higher semantic
coverage with the original text.

Fan et al., 2018). Thus, generating qualified sum- 043

maries to meet different preferences should be a 044

natural capability of summarization systems. 045

Granularity, a key aspect of customization in 046

summarization, is used to measure the degree of 047

semantic coverage between summary and source 048

documents (Mulkar-Mehta et al., 2011). To cater to 049

the diverse needs of readers, the granularity level of 050

summaries usually vary in a wide range. As shown 051

in Table 1, given multiple news about Hurricane 052

Mitch, the most compact summary (Granularity 053

1) can contain only the most important event to 054

help people grasp the overall picture of the original 055

text. Interested readers, on the other hand, may 056

prefer more fine-grained summaries (Granularity 2 057
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and 3) to acquire additional specifics, such as how058

many casualties were caused and how different059

countries aided Honduras. Thus, multi-granularity060

summaries can meet the intent of different users061

and are more versatile in real-world applications.062

However, most existing studies and benchmarks063

focus on single-granularity summarization (they064

are only capable of generating summaries with065

similar semantic coverage). This limits the ability066

of these systems to adapt to different user prefer-067

ences and generalize to a wider range of practi-068

cal scenarios. To alleviate this issue, some recent069

works are dedicated to controlling the length of070

summary (Kikuchi et al., 2016; Fan et al., 2018; Liu071

et al., 2018). Although these models can control072

the length in certain degree, they do not take into073

account the level of semantic coverage between the074

summary and the original text. Another research075

direction is query-based or aspect-based summa-076

rization (Zhong et al., 2021; Hayashi et al., 2021;077

Ge et al., 2021). Based on different queries or as-078

pect names, models can focus on the content of dif-079

ferent parts of the document and create summaries080

of various granularities. In practice, this requires a081

user to provide a query or aspect name, implying082

that the user must have some prior knowledge of083

the domain or topic of the source text. Therefore,084

automatic granularity-aware summarization model085

is still an under-explored topic.086

In this paper, we propose an unsupervised087

multi-granularity summarization framework called088

GRANUSUM. Unlike previous work based on089

supervised learning to provide guidance signals,090

such as salient sentences (Dou et al., 2021),091

keywords (He et al., 2020), and retrieved sum-092

maries (An et al., 2021), our approach does not rely093

on any manually labeled data. To measure the level094

of granularity, we first regard events as the basic095

semantic units of the input texts. Events carry rich096

semantic information and are considered as infor-097

mative representations in many NLP tasks (Zhang098

et al., 2020a; Li et al., 2020; Chen et al., 2021).099

Inspired by this, our system consists of two event-100

related components: Event-aware Summarizer and101

Event Selector. Specifically, given the document102

and randomly selected events in it as the hint, we103

pre-train a sequence-to-sequence Summarizer that104

can generate event-related passages. Furthermore,105

in an unsupervised manner, our Event Selector can106

select the events with high salience from the origi-107

nal text by the following two steps: 1) Candidate108

events pruning: according to the relevance and 109

redundancy scores, extract several important sen- 110

tences from the document and treat the events in 111

these sentences as a candidate set, and 2) event 112

ranking: by the degree of influence of each event 113

on the target text generated by Summarizer, score 114

and re-rank each candidate. Finally, by selecting 115

different numbers of anchor events based on Event 116

Selector, we are able to control Summarizer to gen- 117

erate summaries with different semantic coverage. 118

With this pipeline, the obtained GRANUSUM be- 119

comes a powerful unsupervised system with the 120

ability of multi-granularity summarization. 121

Considering that none of the existing datasets 122

contain summaries of different granularities, we 123

re-annotate DUC2004 (Dang, 2005) as the first 124

benchmark for evaluating multi-granularity sum- 125

marization systems. For multiple documents on 126

the same topic, we annotate summaries at three 127

levels of granularity with different coverage of the 128

documents. We also use a bucket-based method 129

to evaluate model performance in buckets with 130

different semantic coverage levels. Experimen- 131

tally, GRANUSUM surpasses strong baselines on 132

all the multi-granularity evaluations. Furthermore, 133

we conduct unsupervised abstractive summariza- 134

tion experiments on three mainstream datasets in 135

different domains. Experimental results demon- 136

strate that, benefiting from the event information, 137

GRANUSUM substantially improves the previous 138

state-of-the-art model under different settings. 139

2 Related Work 140

Customized Summarization In order to meet 141

the needs of different users, existing neural sum- 142

marization systems attempt to control different 143

customizations of the summary, such as the as- 144

pects of content (Zhong et al., 2021; Hayashi et al., 145

2021), summary length (Kikuchi et al., 2016; Liu 146

et al., 2018) and writing style (An et al., 2021). 147

Also, some works seek to accommodate multiple 148

types of preferences simultaneously to achieve cus- 149

tomized summarization. Fan et al. (2018) addition- 150

ally introduces different special marker tokens to 151

the model to generate user-controllable summaries. 152

He et al. (2020) allows for entity-centric, length- 153

controllable, and question-guided summarization 154

by adjusting the prompts, i.e., changing the textual 155

input in the form of a set of keywords or descrip- 156

tive prompt words. However, these systems rely on 157

supervised learning, and diverse summary data are 158
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in short supply. Thus, we focus on unsupervised159

approaches and are committed to solving the gran-160

ularity aspect, which remains an under-explored161

direction in customized summarization.162

Unsupervised Summarization In contrast to su-163

pervised learning, unsupervised models do not164

require any human-annotated summaries during165

training. Unsupervised summarization can be di-166

vided into two branches: extractive methods and167

abstractive approaches. Most extractive methods168

rank the sentences and select the highest ranked169

ones to form the summary. Specifically, they170

score sentences based on graph (Erkan and Radev,171

2004; Hirao et al., 2013; Parveen et al., 2015),172

centrality (Zheng and Lapata, 2019; Liang et al.,173

2021), pointwise mutual information (Padmaku-174

mar and He, 2021), or sentence-level self-attention175

in pre-trained models (Xu et al., 2020). Another176

direction is unsupervised abstractive approaches,177

and these studies typically employ sequence-to-178

sequence auto-encoding method (Chu and Liu,179

2019) with adversarial training and reinforcement180

learning (Wang and Lee, 2018). In addition, Yang181

et al. (2020) pre-train a Transformer model for un-182

supervised abstractive summarization by exploiting183

the lead bias phenomenon (See et al., 2017; Zhong184

et al., 2019) in the news domain. In this work,185

our framework is a combination of these two ap-186

proaches, and can be further enhanced on top of187

the extractive method.188

3 Multi-Granularity Framework189

In this section, we describe in detail our frame-190

work GRANUSUM, which has two major compo-191

nents: Event-aware Summarizer and Event Selector.192

Combining them enables multi-granularity genera-193

tion. Next, we introduce the new human-annotated194

benchmark, GranuDUC.195

3.1 Event-Aware Summarizer196

In this work, we focus on abstractive summariza-197

tion approaches. The way we make the model198

perceive the granularity is by inputting hints with199

different degrees of specificity, and here we formal-200

ize the hints as a sequence of events.201

Event Extraction We follow previous work to202

define an event as a verb-centric phrase (Zhang203

et al., 2020a). A lightweight method is utilized to204

extract events from open-domain unstructured data:205

we extract frequently-occurring syntactic patterns206

that contain verbs as events. On the basis of Zhang 207

et al. (2020a), we extend a total of 57 syntactic pat- 208

terns for matching events. For instance, the most 209

common patterns contain n1-nsubj-v1 (e.g., Hur- 210

ricane hits) and n1-nsubj-v1-dobj-n2 (e.g., Earth- 211

quake damages buildings)1. 212

Event-based Summarizer Pre-training Previ- 213

ous studies reveal that event information can be 214

an effective building block for models to generate 215

summaries (Daniel et al., 2003; Glavaš and Šna- 216

jder, 2014), so we attempt to obtain a Summarizer 217

with the ability to generate event-related text in 218

an unsupervised way. Concretely, we pre-train a 219

sequence-to-sequence model in the following steps: 220

1) randomly select a few sentences from the text; 2) 221

extract events in these selected sentences; 3) mask 222

these sentences in the source document; 4) take 223

events and masked text as input, and use these se- 224

lected sentences as target for the model. For exam- 225

ple, for a dialogue text as “Do you have any plans 226

tomorrow? How about playing basketball? Sure, I 227

just finished my homework, it’s time to exercise.”, 228

we can select How about playing basketball? and 229

extract the event play basketball. In this case, the 230

specific format given to the model is: 231

• Input: play basketball ⟨seg⟩ Do you have any 232

plans tomorrow? ⟨mask⟩ Sure, I just finished 233

my homework, it’s time to exercise. 234

• Target: How about playing basketball? 235

where ⟨seg⟩ is segmentation token and ⟨mask⟩ 236

indicates that a sentence at this position is masked. 237

In our experiments, we randomly mask 1 to n sen- 238

tences from a document, which becomes n samples 239

to pre-train our Summarizer. Here we set n to the 240

smaller of a constant number 10 and one-third of 241

the number of sentences in the document. 242

3.2 Event Selector 243

The salience of the selected events determines 244

whether the Summarizer can generate a qualified 245

summary or an irrelevant and uninformative para- 246

graph. A long document can contain hundreds of 247

events, and finding the best event subset involves 248

an exponential search space. Therefore, it is cru- 249

cial to have an Event Selector that selects the most 250

important events in the text to feed to the Summa- 251

rizer. Our event selector first reduces the search 252
1Here nsubj and dobj are nominal subject and direct object,

respectively. They are different relations between verbs and
nouns.
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Figure 1: Overview of GRANUSUM. It consists of two
components: Event Selector and Event-based Summa-
rizer. The red line indicates that Selector extracts the
salient events from the original text, and the dotted line
means that Summarizer assists in this process. The blue
line denotes the multi-granularity summary generation
process. By inputting different numbers of events as
anchors (purple and green boxes), Summairzer can gen-
erate summaries at different granularities.

space by pruning out less salient event and sen-253

tences, and then ranks the remaining events using254

the pre-trained summarizer.255

Event Ranking When we have several candi-256

date events extracted from the source document,257

there are still differences in the salience of each258

event. Some of them are informative and relevant259

to the original text, but others are too general or260

too specific. For instance, two events club say and261

Malone be remember can be extracted from the262

sentence “The club said Malone will forever be263

remembered as a genuine icon and pillar in the264

Philadelphia 76ers team". The former is not impor-265

tant to this news about Malone, while the latter is266

indispensable. And in the sentence “Malone won267

MVP awards by averaging 24.5 points and 15.3 re-268

bounds", “average 24.5 points and 15.3 rebounds269

is too detailed to be included in a high-level sum-270

mary. Therefore, ranking candidate events is a key271

function of our Event Selector.272

Inspired by Yuan et al. (2021), where a pre-273

trained generative model is capable of evaluating274

the correlation between the input and the target,275

we also use our pre-trained Event-based Summa-276

rizer to calculate the salience score for each event.277

Given the candidate event set E and the source278

document D, our Summarizer can generate a can-279

didate summary cE . Whenever an event e in the280

input is removed, if the generated candidate sum-281

mary cE\{e} differs greatly from cE , this indicates282

that the removed event e is salient. As in the ex-283

ample above, removing “club say" does not cause284

an obstacle for the model to recover the sentence285

whose main meaning is that Malone is remembered 286

by people, while removing “Malone be remember" 287

makes the model unable to output the correct sen- 288

tence. Thus, the latter should be the more important 289

event. Formally, the salience score of event e can 290

be defined as: 291

Sal(e)
def
= −Sim(cE\{e}; cE), (1) 292

Sim(x1, x2)
def
= R1(x1, x2) + R2(x1, x2), (2) 293

where Sim(x1, x2) is a function based on ROUGE 294

score (Lin, 2004) to measure the similarity between 295

any two text sequences x1 and x2. R1 and R2 296

are ROUGE-1 and ROUGE-2 scores, respectively. 297

Based on this score, our event Selector can rank 298

all the events in the candidate set. However, a 299

single sentence may contain multiple events, so a 300

long document can encompass hundreds of events. 301

Using all events as a candidate set would result in 302

a costly and unaffordable computational efficiency. 303

To solve this issue, we prune the candidate events 304

before we re-rank them. 305

Candidate Event Pruning We aim to collect a 306

small set of candidate events from the given docu- 307

ment, which can be considered as a compact sum- 308

mary of the original text. To this end, we first select 309

several salient sentences and extract the events in 310

them as a candidate set. Intuitively, if a sentence 311

has a high semantic overlap with other input sen- 312

tences, it will have a higher centrality and a higher 313

probability to be included in the summary (Pad- 314

makumar and He, 2021). Thus, we define relevance 315

score of each sentence as: 316

Rel(s,D)
def
= Sim(s;D \ {s}), (3) 317

where s means the sentence and D represents 318

the given document. D \ {s} indicates that the 319

sentence s is removed from the original text D. 320

In addition, the sentences in the summary should 321

contain low redundancy information when com- 322

pared with each other. When we extract the k-th 323

sentence, we define its redundancy score with re- 324

spect to the previous selected sentences as follows. 325

Red(s, S)
def
=

k−1∑
i=1

Sim(si; s), (4) 326

where S is the previously selected summary con- 327

taining a total of k-1 sentences. By maximizing 328

relevance and minimizing redundancy, we can cal- 329

culate the importance score of each sentence as: 330

Imp(s) = λ1Rel(s,D)− λ2Red(s, S). (5) 331
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Through iteratively calculating the score of each332

sentence, we can eventually obtain a fixed number333

of sentences and extract the events from them as334

a candidate set. At this point, candidate events335

usually account for less than 1/10 of all events336

in the original text, which greatly improves the337

efficiency of subsequent calculations.338

3.3 Multi-Granularity Summary Generation339

With the Event-aware Summarizer and Event Se-340

lector, it is possible to generate summaries at dif-341

ferent granularities. By taking different numbers342

of ranked events as hints, Summarizer can sense343

the specific level of semantic coverage required to344

enable the generation of different summaries. An345

example of our model output is as follows.346

• Input 1: Malone win MVP | Moses Malone347

die ⟨seg⟩ ⟨mask⟩ [Source Documents]348

• Summary of Granularity 1: Moses Malone, a349

three-time NBA MVP and one of basketball’s350

most ferocious rebounders, died on Sunday.351

• Input 2: Malone win MVP | Moses Malone die352

| Malone be remember | Team compile a 65-17353

record ⟨seg⟩ ⟨mask⟩ [Source Documents]354

• Summary of Granularity 2: Moses Malone, a355

three-time NBA MVP and one of basketball’s356

most ferocious rebounders, died on Sunday.357

He helped the team compile a 65-17 record358

in the first season. These achievements make359

him be remembered as a genuine icon and360

pillar in the history of 76ers basketball team.361

In the inference phase, no sentences are masked362

and the ⟨mask⟩ token is simply added at the be-363

ginning of source texts, following (Zhang et al.,364

2020c). The example shows that events selected by365

our Selector are informative and highly relevant to366

Malone. When more events are added (“Malone367

be remember" and “Team compile a 65-17 record"368

), our Summarizer can output additional sentences369

that are relevant and faithful. In general, with an un-370

supervised framework, we are capable to generate371

qualified summaries at different granularities.372

3.4 New Benchmark: GranuDUC373

Considering that there is no dataset for evaluat-374

ing multi-granularity summarization models, we375

re-annotate a new benchmark called GranuDUC376

for this case on the basis of multi-document dataset377

DUC2004 (Dang, 2005). Our annotation teams378

consists of 4 PhD students in NLP or people with 379

equivalent expertise. For each document cluster, 380

annotators are required to read multiple source doc- 381

uments and write summaries at three different gran- 382

ularities. The summary of granularity level 1 is 383

limited to 1 sentence, the summary of granularity 384

level 2 should be 3-5 sentences, and the summary of 385

granularity level 3 contains 7-10 sentences. Newly 386

annotated sentences are allowed to be copied or 387

rewritten from DUC2004’s original reference sum- 388

maries. In addition, we required annotators not 389

to use the same sentences in different summaries 390

of a sample, even when describing the same event. 391

Each annotated summary is required to be reviewed 392

by another annotator, then these two people discuss 393

and revise until agreement is reached. In the end, 394

GranuDUC contains a total of 50 clusters, each 395

cluster contains an average of 10 related documents 396

and 3 summaries of different granularity, ranging 397

from 10 words to more than 200 words in length. 398

4 Experiments 399

To evaluate our model, we design three settings 400

of experiments: 1) experiments on GranuDUC, 401

2) bucket-based evaluation and 3) unsupervised 402

abstractive summarization. The first two settings 403

constitute a new testbed for multi-granularity sum- 404

marization. Respectively, they are employed to 405

evaluate the ability of a model to generate multi- 406

granularity summaries and the model performance 407

on samples of different semantic coverage. In addi- 408

tion to multi-granularity scenarios, the last experi- 409

ment auxiliarily evaluates the quality of summaries 410

generated by our framework under conventional 411

unsupervised abstractive summarization setting. 412

4.1 Experimental Setup 413

Datasets To verify the effectiveness of our frame- 414

work and to obtain more convincing results, we 415

conduct experiments on four datasets from two do- 416

mains. Notably, we focus on two types of datasets, 417

multi-document and long-document summariza- 418

tion, which are two main scenarios where users call 419

for a multi-granularity system. For multi-document 420

summarization, we concatenate the multiple arti- 421

cles into a single text and input it to the model. 422

Besides our benchmark GranuDUC, we use the 423

following three datasets. 424

Multi-News (Fabbri et al., 2019) is a large-scale 425

multi-document summarization dataset in the news 426

domain. We use it in bucket-based evaluation (Sec- 427
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tion 4.2.2) and unsupervised summarization exper-428

iments (Section 4.3).429

DUC2004 (Dang, 2005) contains 50 clusters,430

each with 10 relevant news articles and 4 reference431

summaries written by human. Due to its small size,432

it is used directly as a test set. We use it in the unsu-433

pervised summarization experiment (Section 4.3).434

ArXiv (Cohan et al., 2018) is a collection of435

long documents derived from scientific papers. It436

takes the full text of the paper as input, and the437

corresponding abstract as the reference summary.438

We use it in the unsupervised summarization exper-439

iment (Section 4.3).440

Implementation Details To process long in-441

put text, we choose the Longformer-Encoder-442

Decoder (LED) (Beltagy et al., 2020) equipped443

with sparse attention as our backbone model. For444

Multi-News and ArXiv, we further pre-train LED445

with our event-related generation task on the train-446

ing corpus (without using reference summaries) for447

total 10,000 and 30,000 steps, respectively. The448

first 10% of these are warm-up steps. We set batch449

size to 32 and the maximum learning rate to 2e-5.450

λ1 in the importance score is 1.0 and λ2 is 0.4. Em-451

pirically, we extract 9 sentences for Multi-News452

and 4 sentences for ArXiv to form a candidate set,453

and input 90% events according to salience score454

to the Summarizer under unsupervised summariza-455

tion setting. For DUC2004 and GranuDUC, we456

test directly with the Summaizer pre-trained on457

Multi-News, since these datasets are all in the news458

domain. In all the experiments, we use standard459

pyrouge2 to calulate ROUGE scores. Due to the460

limitation of computational resources, we truncate461

all input text to 3,072 tokens for LED models.462

Baselines We compare GRANUSUM with strong463

baselines as follows:464

BART (Lewis et al., 2020) is the state-of-the-art465

sequence-to-sequence pre-trained model for var-466

ious generation tasks, including abstractive dia-467

logue, question answering, and text summarization.468

We use BART-large in all the experiments.469

PEGASUS (Zhang et al., 2020b) is a powerful470

generation model with gap-sentences generation471

as a pretraining objective tailored for abstractive472

text summarization. We use the large version of473

PEGASUS for comparison.474

LED (Beltagy et al., 2020) has the same architec-475

ture as BART, except that the attention in encoder476

24pypi.python.org/pypi/pyrouge/0.1.3

introduces additional local attention and extends 477

the position embedding to 16K tokens by copy- 478

ing the original embedding. The parameters in the 479

LED are initialized by the weights in BART. 480

PRIMER (Xiao et al., 2021) is a pre-trained 481

model for multi-document summarization that re- 482

duces the need for dataset-specific architectures 483

and extensive labeled data. It achieved state-of- 484

the-art results on multi-document summarizaion 485

datasets under multiple settings. 486

LED-Length-Control (LED-LC) is a baseline 487

that we obtained by further pre-training LED. In- 488

spired by Fan et al. (2018). Given a document and 489

the desired number of sentences k, we randomly 490

place k sentences in the document with the ⟨mask⟩ 491

token, and let the model to recover these sentences. 492

During inference, we input the text and the desired 493

number of sentences as a hint to the model so that 494

it can control length of the output summary. For 495

example, if we need a two-sentence summary, the 496

input format would be: ⟨2⟩ ⟨seg⟩ ⟨mask⟩ source 497

documents. It is exactly the same as GRANUSUM 498

in terms of the training details and data. 499

4.2 Multi-granularity Evaluation 500

The first testbed we built for multi-granularity sum- 501

marization systems includes two evaluation meth- 502

ods: 1) To test the ability of the model to generate 503

summaries with different granularity level when 504

given the same document, we evaluate different 505

models on our proposed benchmark GranuDUC; 2) 506

To supplement the limited size of GranuDUC, we 507

design a bucket-based evaluation approach, where 508

we divide a large-scale summarization test set into 509

different buckets based on their granularity levels, 510

and test the ability of models to generate qualified 511

summaries in different granularity buckets. 512

4.2.1 Results on GranuDUC 513

The summaries of each sample in GranuDUC can 514

be divided into three granularity levels, where 515

granularity level 1 represents the most compact 516

summary, and granularity level 3 is the most 517

fine-grained summary. We use automatic metrics 518

ROUGE and perform human evaluation to evaluate 519

the performance of different models in GranuDUC. 520

Notably, both LED-LC and GRANUSUM have the 521

ability to adjust the output according to specific 522

granularity scenarios. At three different granularity 523

levels on GranuDUC, we let LED-LC output 1, 3 524

and 8 sentences, respectively. For our model, we 525

first extract 1, 3, and 8 sentences based on impor- 526
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Granularity 1 Granularity 2 Granularity 3
Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGASUS 20.74 4.20 15.11 24.86 4.39 14.34 29.79 5.70 14.83
LED-LC 21.83 4.80 15.29 26.73 5.59 15.76 30.18 5.57 15.24
GRANUSUM 23.61 6.60 17.12 29.69 6.84 16.23 34.71 7.49 17.42

Model Flu. Rel. Faith. Flu. Rel. Faith. Flu. Rel. Faith.
PEGASUS 3.25 3.36 3.15 3.46 3.49 2.72 3.73 3.44 2.58
LED-LC 3.97 3.39 3.08 3.93 3.57 3.14 3.67 3.62 2.73
GRANUSUM 4.13 3.82 3.59 4.09 3.78 3.46 3.82 4.05 3.17

Table 2: Results on GranuDUC. The top half of the Table shows the result of the automatic metric ROUGE, and the
bottom half presents the result of human evaluation, including fluency, relevance and faithfulness.

Model
Low Medium High

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
PRIMER 37.21 9.92 17.68 42.50 13.19 20.24 46.95 18.10 23.99
LED-LC 37.28 9.56 16.64 42.37 12.65 19.15 47.57 17.88 22.40
GRANUSUM 38.19 10.27 18.07 44.73 14.12 20.10 50.23 19.62 24.11

- Ranking 37.34 9.36 16.69 43.41 13.28 19.12 49.66 19.35 23.37

Table 3: Result of bucket-based evaluation on Multi-news. We use BERTScore-recall to divide the test set into three
buckets. Low means that the summary has low semantic coverage with the source documents. This approach can be
used to evaluate the performance of the summarization system in scenarios with different granularity level.

tance score, and then select the top 90% events527

with the highest salience score as the input hint.528

Automatic Evaluation As illustrated in Table 2,529

compared to PEGASUS, LED-LC can bring a cer-530

tain degree of improvement due to the ability to531

control the length of the output summary. This532

improvement is not remarkable at granularity level533

3. But for granularity levels 1 and 2, LED-LC can534

control the number of output sentences, while PE-535

GASUS does not have a similar capability and it536

can only generate shorter summaries by truncat-537

ing the output (to 32 and 64 words), which leads538

to a performance degradation. On the other hand,539

GRANUSUM exceeds LED-LC and PEGASUS by540

a large margin in all the granularity levels. Al-541

though GRANUSUM and LED-LC are trained on542

the same data, GRANUSUM increases the R-1 score543

by 1.78 at granularity level 1 (21.83→23.61), and544

this improvement reaches to 4.53 at granularity 3545

(30.18→34.71). With the benefit of event infor-546

mation as a guide, our model can generate more547

relevant and qualified summaries, and this advan-548

tage is more pronounced in fine-grained summaries.549

Therefore, GRANUDUC is a more suitable system550

for multi-granularity scenarios than existing con-551

trollable summarization models.552

Human Evaluation In addition to the automatic553

metrics, we also conduct human evaluation to have554

a more comprehensive understanding of the model555

output. A total of 6 graduate students are involved556

in this evaluation process to score the generated557

summaries from three different perspectives: flu- 558

ency, relevance and faithfulness to the source doc- 559

uments. The score range is 1-5, with 1 being the 560

worst and 5 being the best. Each sample requires 561

two people to discuss and agree on the scoring. 562

According to the fluency scores in Table 2, both 563

LED-LC and GRANUDUC can generate coherent 564

sentences, while PEGASUS performs poorly in 565

granularity levels 1 and 2 due to truncating the 566

output to a fixed length. From the perspective of 567

relevance and faithfulness, a clear trend is that the 568

more fine-grained the summary, the more relevant 569

it is to the original text and the more likely it is 570

to contain factual errors. Specific to the models, 571

since GRANUSUM has additional event-related in- 572

formation as hints, it does generate more relevant 573

and faithful summaries in all granularity scenarios 574

compared to other baselines. 575

4.2.2 Bucket-based Approach 576

Besides our benchmark, we seek to utilize exist- 577

ing large-scale datasets for multi-granularity eval- 578

uation. We first design a metric to calculate the 579

granularity score between the source document and 580

the reference summary to categorize the different 581

samples. Because the same events in original text 582

and human-written summary may have different de- 583

scriptions, we use BERTScore (Zhang et al., 2019) 584

to perform soft matching due to its ability to mea- 585

sure semantic coverage between two sequences. 586

Specifically, we extract all the events in the source 587

document and the reference summary as two text 588
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Model Multi-News ArXiv DUC2004
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD 42.9 14.3 19.2 32.7 8.1 17.5 32.3 6.5 16.3
RULE 43.3 14.1 19.1 35.3 10.8 17.8 34.3 7.1 17.1
LED 17.3 3.7 10.4 15.0 3.1 10.8 16.6 3.0 12.0
BART 27.3 6.2 15.1 29.2 7.5 16.9 24.1 4.0 15.3
PEGASUS 32.0 10.1 16.7 29.5 7.9 17.1 32.7 7.4 17.6
PRIMER 42.2 13.7 20.6 34.6 9.4 18.3 34.7 6.9 17.6
LED-LC 42.0 13.3 19.2 34.9 9.9 18.1 33.9 6.6 16.8
GRANUSUM 43.7 14.2 20.1 36.0 11.3 18.6 34.8 7.3 17.9

- Ranking 43.5 14.0 19.7 35.4 10.8 18.5 34.3 7.0 17.2

Table 4: Results of unsupervised abstractive summarization on three datasets.

sequences, and calculate BERTScore-recall as the589

granularity score between them. Based on this met-590

ric, we divide the samples in Multi-news test set591

into three buckets with exactly the same number of592

document clusters. Low indicates that the summary593

in this bucket has low semantic coverage with the594

source documents.595

Although PRIMER is the state-of-the-art model,596

it does not have the flexibility to change the out-597

put in response to different buckets. For LED-LC,598

we let the model generate 7, 8, and 9 sentences in599

low, medium, and high buckets, respectively. For600

our model, we first extract 9 sentences, and then601

take the top 70%, 80%, and 90% of the events602

with the higher salience score (see Section 3.2)603

in these sentences as the input for three different604

buckets. As shown in Table 3, LED-LC has no605

significant benefits over PRIMER, indicating that606

controlling the output length and ignoring its con-607

nection to the original text is not a good solution for608

multi-granularity system. In contrast, GRANUSUM609

achieves substantial improvements in all buckets610

compared to powerful baselines. In particular, in611

buckets with high semantic coverage, our model im-612

proves the R-1 score by 3.28 compared to PRIMER.613

Besides, “- Ranking” means that we no longer filter614

out some events based on the salience score, which615

causes a performance drop. This confirms that our616

selector can indeed exclude irrelevant events and617

thus improve the quality of the generated summary.618

4.3 Unsupervsied Abstractive Summarization619

The quality of the summary is a key factor620

for all summarization systems. So despite the621

multi-granularity scenario, we likewise compare622

GRANUSUM with unsupervised abstractive summa-623

rization models. Table 4 provides results on three624

datasets. The first section includes two baselines:625

LEAD and RULE. LEAD is a strong baseline in626

the news domain because there is a lead bias prob-627

lem (See et al., 2017; Zhong et al., 2019) in this628

field. It refers to extracting the first few sentences 629

at the beginning of the text as a summary. RULE 630

indicates that we extract several sentences from the 631

source document based on our importance score 632

described in Section 3.2 as the summary. The sec- 633

ond section lists the performance of state-of-the-art 634

summarization models and the last section contains 635

the results of our model. 636

Surprisingly, although GRANUSUM is not spe- 637

cially designed for the conventional unsupervised 638

summarization task, when enhanced with event- 639

based information, it beats all the competitors un- 640

der this setting and achieves new state-of-the-art 641

results on most metrics across datasets. Notably, 642

GRANUSUM outperforms RULE, which is a strong 643

extractive baseline, and extractive approaches usu- 644

ally dominate unsupervised summarization tasks. 645

We believe this improvement is due to two reasons: 646

1) In pre-training, important content in the masked 647

sentences are easier to reconstruct due to the redun- 648

dancy of input texts. Thus, our Summarizer learn to 649

filter those unimportant content in inference, gen- 650

erating more concise summaries; 2) Our Selector 651

screens out less critical events which should not 652

appear in the summary. In addition, our model can 653

boost average 1.0 R-1 score on three datasets com- 654

pared to the previous best results. This indicates 655

that our model is sufficient to generate qualified 656

summaries besides its multi-granularity capability. 657

5 Conclusion 658

In this paper, we highlight the importance of multi- 659

granularity summarization systems in catering to 660

user preferences and applying them to real-world 661

scenarios. To facilitate research in this direction, 662

we propose the first unsupervised multi-granularity 663

summarization framework GRANUSUM and build 664

a corresponding well-established testbed. Exper- 665

iments in three different settings demonstrate the 666

effectiveness of our framework. 667

8



References668

Chenxin An, Ming Zhong, Zhichao Geng, Jianqiang669
Yang, and Xipeng Qiu. 2021. Retrievalsum: A re-670
trieval enhanced framework for abstractive summa-671
rization. arXiv preprint arXiv:2109.07943.672

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.673
Longformer: The long-document transformer. arXiv674
preprint arXiv:2004.05150.675

Muhao Chen, Hongming Zhang, Qiang Ning, Manling676
Li, Heng Ji, Kathleen McKeown, and Dan Roth. 2021.677
Event-centric natural language processing. In Pro-678
ceedings of the 59th Annual Meeting of the Asso-679
ciation for Computational Linguistics and the 11th680
International Joint Conference on Natural Language681
Processing: Tutorial Abstracts, pages 6–14.682

Eric Chu and Peter Liu. 2019. Meansum: a neural683
model for unsupervised multi-document abstractive684
summarization. In International Conference on Ma-685
chine Learning, pages 1223–1232. PMLR.686

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,687
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli688
Goharian. 2018. A discourse-aware attention model689
for abstractive summarization of long documents. In690
Proceedings of the 2018 Conference of the North691
American Chapter of the Association for Computa-692
tional Linguistics: Human Language Technologies,693
Volume 2 (Short Papers), pages 615–621.694

Hoa Trang Dang. 2005. Overview of duc 2005. In Pro-695
ceedings of the document understanding conference,696
volume 2005, pages 1–12.697

Naomi Daniel, Dragomir Radev, and Timothy Allison.698
2003. Sub-event based multi-document summariza-699
tion. In Proceedings of the HLT-NAACL 03 Text700
Summarization Workshop, pages 9–16.701

Alberto Díaz and Pablo Gervás. 2007. User-model702
based personalized summarization. Information Pro-703
cessing & Management, 43(6):1715–1734.704

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao705
Jiang, and Graham Neubig. 2021. Gsum: A gen-706
eral framework for guided neural abstractive sum-707
marization. In Proceedings of the 2021 Conference708
of the North American Chapter of the Association709
for Computational Linguistics: Human Language710
Technologies, pages 4830–4842.711

Günes Erkan and Dragomir R Radev. 2004. Lexrank:712
Graph-based lexical centrality as salience in text sum-713
marization. Journal of Artificial Intelligence Re-714
search, 22:457–479.715

Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi716
Li, and Dragomir Radev. 2019. Multi-news: A large-717
scale multi-document summarization dataset and ab-718
stractive hierarchical model. In Proceedings of the719
57th Annual Meeting of the Association for Compu-720
tational Linguistics, pages 1074–1084.721

Angela Fan, David Grangier, and Michael Auli. 2018. 722
Controllable abstractive summarization. In Proceed- 723
ings of the 2nd Workshop on Neural Machine Trans- 724
lation and Generation, pages 45–54. 725

Suyu Ge, Jiaxin Huang, Yu Meng, Sharon Wang, and 726
Jiawei Han. 2021. Fine-grained opinion summa- 727
rization with minimal supervision. arXiv preprint 728
arXiv:2110.08845. 729

Goran Glavaš and Jan Šnajder. 2014. Event graphs for 730
information retrieval and multi-document summariza- 731
tion. Expert systems with applications, 41(15):6904– 732
6916. 733

Hiroaki Hayashi, Prashant Budania, Peng Wang, Chris 734
Ackerson, Raj Neervannan, and Graham Neubig. 735
2021. Wikiasp: A dataset for multi-domain aspect- 736
based summarization. Transactions of the Associa- 737
tion for Computational Linguistics, 9:211–225. 738

Junxian He, Wojciech Kryściński, Bryan McCann, 739
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