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ABSTRACT

Many recent developments on generative models for natural images have relied on
heuristically-motivated metrics that can be easily gamed by memorizing a small
sample from the true distribution or training a model directly to improve the metric.
In this work, we critically evaluate the gameability of such metrics by running
a competition that ultimately resulted in participants attempting to cheat. Our
competition received over 11000 submitted models and allowed us to investigate
both intentional and unintentional memorization. To stop intentional memorization,
we propose the “Memorization-Informed Fréchet Inception Distance” (MiFID)
as a new memorization-aware metric and design benchmark procedures to ensure
that winning submissions made genuine improvements in perceptual quality. Fur-
thermore, we manually inspect the code for the 1000 top-performing models to
understand and label different forms of memorization. The inspection reveals that
unintentional memorization is a serious and common issue in popular generative
models. The generated images and our memorization labels of those models as well
as code to compute MiFID are released to facilitate future studies on benchmarking
generative models.

1 INTRODUCTION

Recent work on generative models for natural images has produced huge improvements in image
quality, with some models producing samples that can be indistinguishable from real images (Karras
et al., 2017; 2019a;b; Brock et al., 2018; Kingma & Dhariwal, 2018; Maaløe et al., 2019; Menick
& Kalchbrenner, 2018; Razavi et al., 2019). Improved sample quality is important for tasks like
super-resolution (Ledig et al., 2017) and inpainting (Yu et al., 2019), as well as creative applications
(Park et al., 2019; Isola et al., 2017; Zhu et al., 2017a;b). These developments have also led to useful
algorithmic advances on other downstream tasks such as semi-supervised learning (Kingma et al.,
2014; Odena, 2016; Salimans et al., 2016; Izmailov et al., 2019) or representation learning (Dumoulin
et al., 2016; Donahue et al., 2016; Donahue & Simonyan, 2019).

Modern generative models utilize a variety of underlying frameworks, including autoregressive
models (Oord et al., 2016), Generative Adversarial Networks (GANs; Goodfellow et al., 2014),
flow-based models (Dinh et al., 2014; Rezende & Mohamed, 2015), and Variational Autoencoders
(VAEs; Kingma & Welling, 2013; Rezende et al., 2014). This diversity of approaches, combined
with the philosophical nature of evaluating generative performance, has prompted the development of
heuristically-motivated metrics designed to measure the perceptual quality of generated samples such
as the Inception Score (IS; Salimans et al., 2016) or the Fréchet Inception Distance (FID; Heusel
et al., 2017). These metrics are used in a benchmarking procedure where “state-of-the-art” results are
claimed based on a better score on standard datasets.

Indeed, much recent progress in the field of machine learning as a whole has relied on useful
benchmarks on which researchers can compare results. Specifically, improvements on the benchmark
metric should reflect improvements towards a useful and nontrivial goal. Evaluation of the metric
should be a straightforward and well-defined procedure so that results can be reliably compared. For
example, the ImageNet Large-Scale Visual Recognition Challenge (Deng et al., 2009; Russakovsky
et al., 2015) has a useful goal (classify objects in natural images) and a well-defined evaluation
procedure (top-1 and top-5 accuracy of the model’s predictions). Sure enough, the ImageNet
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benchmark has facilitated the development of dramatically better image classification models which
have proven to be extremely impactful across a wide variety of applications.

Unfortunately, some of the commonly-used benchmark metrics for generative models of natural
images do not satisfy the aforementioned properties. For instance, although the IS is demonstrated
to correlate well with human perceived image quality (Salimans et al., 2016), Barratt & Sharma
(2018) points out several flaws of the IS when used as a single metric for evaluating generative
modeling performance, including its sensitivity to pretrained model weights which undermines
generalization capability. Seperately, directly optimizing a model to improve the IS can result in
extremely unrealistic-looking images (Barratt & Sharma, 2018) despite resulting in a better score. It
is also well-known that if a generative model memorizes images from the training set (i.e. producing
non-novel images), it will achieve a good IS (Gulrajani et al., 2018). On the other hand, the FID is
widely accepted as an improvement over IS due to its better consistency under perturbation (Heusel
et al., 2017). However, there is no clear evidence of the FID resolving any of the flaws of the IS. A
large-scale empirical study is necessary to provide robust support for understanding quantitatively
how flawed the FID is.

Motivated by these issues, we want to benchmark generative models in the “real world”, i.e. outside
of the research community by holding a public machine learning competition. To the extent of
our knowledge, no large-scale generative modeling competitions have ever been held, possibly due
to the immense difficulty of identifying training sample memorization in a efficient and scalable
manner. We designed a more rigorous procedure for evaluating competition submissions, including a
memorization-aware variant of FID for autonomously detecting cheating via intentional memorization.
We also manually inspected the code for the top 1000 submissions to reveal different forms of
intentional or unintentional cheating, to ensure that the winning submissions reflect meaningful
improvements, and to confirm efficacy of our proposed metric. We hope that the success of the
first-ever generative modeling competition can serve as future reference and stimulate more research
in developing better generative modeling benchmarks.

Our main goal in this paper is to conduct an empirical study on issues of relying on the FID as a
benchmark metric to guide the progression of generative modeling. In Section 2, we briefly review
the metrics and challenges of evaluating generative models. In Section 3, we explain in detail the
competition design choices and propose a novel benchmarking metric, the Memorization-Informed
Fréchet Inception Distance (MiFID). We show that MiFID enables fast profiling of participants that
intentionally memorize the training dataset. In Section 4, we introduce a dataset released along with
this paper that includes over one hundred million generated images and manual labels obtained by
painstaking code review. In Section 5, we connect phenomena observed in large-scale benchmarking
of generative models in the real world back to the research community and point out crucial but
neglected flaws in the FID.

2 BACKGROUND

In generative modeling, our goal is to produce a model pθ(x) (parameterized by θ) of some true
distribution p(x). We are not given direct access to p(x); instead, we are provided only with samples
drawn from it x ∼ p(x). In this paper, we will assume that samples x from p(x) are 64-by-64 pixel
natural images, i.e. x ∈ R64×64×3. A common approach is to optimize θ so that pθ(x) assigns high
likelihood to samples from p(x). This provides a natural evaluation procedure which measures the
likelihood assigned by pθ(x) to samples from p(x) that were held out during the optimization of θ.
However, not all models facilitate exact computation of likelihoods. Notably, Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) learn an “implicit” model of p(x) from which we can
draw samples but that does not provide an exact (or even an estimate) of the likelihood for a given
sample. The GAN framework has proven particularly successful at learning models which can
generate extremely realistic and high-resolution images, which leads to a natural question: How
should we evaluate the quality of a generative model if we can’t compute the likelihood assigned to
held-out samples?

This question has led to the development of many alternative ways to evaluate generative models
(Borji, 2019). A historically popular metric, proposed in (Salimans et al., 2016), is the Inception
Score (IS) which computes

IS(pθ) = Ex∼pθ(x)[DKL(IN(y|x)‖ IN(y))]
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where IN(y|x) is the conditional probability of a class label y assigned to a datapoint x by a pre-
trained Inception Network (Szegedy et al., 2015). More recently, (Heusel et al., 2017) proposed the
Fréchet Inception Distance (FID) which better correlates with perceptual quality. The FID uses the
estimated mean and covariance of the Inception Network feature space distribution to calculate the
distance between the real and fake distributions up to second order. The FID between the real images
r and generated images g is computed as:

FID(r, g) = ‖µr − µg‖22 + Tr
(

Σr + Σg − 2 (ΣrΣr)
1
2

)
where µr and µg are the mean of the real and generated images in latent space, and Σr and Σg are
the covariance matrices for the real and generated feature vectors. A drawback of both the IS and FID
is that they assign a very good score to a model which simply memorizes a small and finite sample
from p(x) (Gulrajani et al., 2018), an issue we address in section 3.1.

3 GENERATIVE MODELING COMPETITION DESIGN

We designed the first generative model competition where participants were invited to generate realis-
tic dog images given 20,579 images of dogs from ImageNet (Russakovsky et al., 2015). Participants
were required to implement their generative model in a constrained computation environment to
prevent them from obtaining unfair advantages. The computation environment was designed with:

• Limited computation resource (9 hours on a NVIDIA P100 GPU for each submission) since
generative model performance is known to be highly related to the amount of computational
resources used (Brock et al., 2018)
• Isolated containerization to avoid continuous training by reloading model checkpoints from

previous sessions
• No access to external resources (i.e. the internet) to avoid usage of pre-trained models or

additional data

Each submission is required to provide 10,000 generated images of dimension 64 × 64 × 3 and
receives a public score in return. Participants are allowed to submit any number of submissions during
the two-month competition. Before the end of the competition, each team is required to choose two
submissions, and the final ranking is determined by the better private score (described below) out of
the two selected submissions.

In the following sections, we discuss how the final decisions were made regarding pretrained model
selection (for FID feature projection) and how we enforced penalties to ensure the fairness of the
competition.

3.1 MEMORIZATION-INFORMED FRÉCHET INCEPTION DISTANCE (MIFID)

The most crucial part of the competition is the performance evaluation metric to score the submissions.
To assess the quality of generated images, we adopted the Fréchet Inception Distance (Heusel et al.,
2017) which is a widely used metric for benchmarking generative tasks. Compared to the Inception
Score (Salimans et al., 2016), the FID has the benefits of better robustness against noise and distortion
and more efficient computation (Borji, 2019).

For a generative modeling competition, a good metric not only needs to reflect the quality of generated
samples but must also allow easy identification of cheating with as little manual intervention as
possible. Many forms of cheating were prevented by setting up the aforementioned computation
environment, but even with these safeguards it would be possible to “game” the FID score. Specifically,
we predicted that memorization of training data would be a major issue, since current generative
model evaluation metrics such as IS or FID are prone to reward high scores to memorized instances
(Gulrajani et al., 2018). This motivated the addition of a ”memorization-aware” metric that penalizes
models producing images too similar to the training set.

Combining memorization-aware and generation quality components, we introduced the Memorization-
Informed Fréchet Inception Distance (MiFID) as the metric used for the competition:

MiFID(Sg, St) = mτ (Sg, St) · FID(Sg, St)
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where Sg is the generated set, St is the original training set, FID is the Fréchet Inception Distance,
and mτ is the memorization penalty which we discuss in the following section.

3.1.1 MEMORIZATION PENALTY

To capture the similarity between two sets of data – in our case, generated images and original training
images – we started by measuring similarity between individual images. Cosine similarity, the inner
product of two vectors, is a commonly used similarity measure. It is easy to implement with high
computational efficiency (with existing optimized BLAS libraries) which is ideal when running a
competition with hundreds of submissions each day. The value is also bounded, making it possible to
intuitively understand and compare the degree of similarity.

We define the memorization distance s of a target projected generated set Sg ⊆ Rd with respect to a
reference projected training set St ⊆ Rd as 1 subtracted by the mean of minimum (signed cosine)
similarity of all elements Sg and St. Intuitively, lower memorization distance is associated with more
severe training sample memorization. Note that the distance is asymmetric i.e. s(Sg, St) 6= s(St, Sg),
but this is irrelevant for our use-case.

s(Sg, St) := 1− 1

|Sg|
∑
xg∈Sg

min
xt∈St

|〈xg, xt〉|
|xg| · |xt|

We hypothesize that cheating submissions with intentional memorization would generate images with
significantly lower memorization distance. To leverage this idea, only submissions with distance
lower than a specific threshold τ are penalized. Thus, the memorization penalty mτ is defined as

mτ (Sg, St) =

{
1

s(Sg,St)+ε
(ε� 1), if s(Sg, St) < τ

1, otherwise

More memorization (subceeding the predefined threshold τ ) will result in higher penalization. Dealing
with false positives and negatives under this penalty scheme is further discussed in Section 3.2.

3.1.2 PREVENTING OVERFITTING

In order to prevent participants of the competition from overfitting to the public leaderboard, we
used different data for calculating the public and private score and we generalized the FID to use any
visually-relevant latent space for feature projection. Specifically, we selected different pre-trained
ImageNet classification models for public and private score calculation. For the same score, the same
pre-trained model is used for both feature projection for the memorization penalty and for standard
FID calculation. Inception V3 was used for public score following past literature, while the private
score used NASNet (Zoph et al., 2018). We will discuss how NASNet was selected in Section 3.2.1.

3.2 DETERMINING FINAL RANKS

After the competition was closed to submission there is a two-week window to re-process all the
submissions and remove ones violating the competition rules (e.g. by intentionally memorizing the
training set) before the final private leaderboard was announced. The memorization penalty term in
MiFID was efficiently configured for re-running with a change of the parameter τ , allowing finalizing
of results within a short time frame.

3.2.1 SELECTING PRE-TRAINED MODEL FOR THE PRIVATE SCORE

As it is commonly assumed that FID is generally invariant to the projection space, the pre-trained
model for private score was selected to best combat cheating via training set memorization. The
goal is to separate cheating and non-cheating submissions as cleanly as possible. We calculate the
memorization distance for a subset of submissions projected with the chosen pre-trained model and
coarsely label whether the submission intentionally memorized training samples. Coarse labeling of
submissions was achieved by exploiting competition-related clues to obtain noisy labels.

There exists a threshold τ∗ that best separates memorized versus non-memorized submissions via
the memorization distance (see Figure 1). Here we define the memorization margin d of pre-trained
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model M as
d(M) = min

τ

∑
∀Sg

(s(Sg, St)− τ)2

The pre-trained model with largest memorization margin was then selected for calculation of the
private score, in this case, NASNet (Zoph et al., 2018), and the optimal corresponding memorization
penalty mτ where τ = τ∗.
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Figure 1: Histogram of memorization distance for private (left) and public (right) leaderboards
(using NASNet and Inception). As shown in the figure, the two classes (legitimate models and
memorizing/cheating models) are well separated.

3.2.2 HANDLING FALSE PENALIZATION

While MiFID was designed to handle penalization automatically, in practice we observed minor
mixing of cheating and non-cheating submissions between the well-separated peaks (Figure 1). While
it is well accepted that no model can be perfect, it was necessary to ensure that competition was fair.
Therefore, different strategies were adopted to resolve false positives and negatives. For legitimate
submissions that are falsely penalized (false positives), participants are allowed to actively submit
rebuttals for the result. For cheating submissions that are dissimilar enough to the training set to
dodge penalization (false negatives), the code was manually reviewed to determine if intentional
memorization was present. This manual reviewing process of code submissions was labor intensive,
as it required expert knowledge of generative modeling. The goal was to review enough submissions
such that the top 100 teams on the leaderboard would be free of cheaters, since we reward the top
100 ranked teams. Thanks to our design of MiFID, it is possible to set the penalty threshold τ such
that we were comfortable that most users ranked lower than 100 on the leaderboard who cheated with
memorization were penalized by MiFID. This configuration of MiFID significantly reduced the time
needed to finish the review, approximately by 5x. The results of the manual review is presented in
Section 4.2.

4 RESULTS AND DATA RELEASE

A total of 924 teams joined the competition, producing over 11,192 submissions. Visual samples
from submitted images are shown in the appendix.

4.1 DATA RELEASE

The complete dataset will be released with the publication of this paper to facilitate future work on
benchmarking generative modeling. It includes:

• A total of 11,192 submissions, each containing 10,000 generated dog images with dimension
64× 64× 3.
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• Manual labels for the top 1000 ranked submissions of whether the code is a legitimate
generative method and the type of illegitimacy involved if it is not. This was extremely
labor-intensive to obtain.

• Crowd-labeled image quality: 50,000 human labeled quality and diversity of images
generated from the top 100 teams (non-memorized submissions).

We will also release the code to reproduce results in the paper.

4.2 MEMORIZATION METHODS SUMMARY

The 1000 top submissions are manually labeled as to whether or not (and how) they cheated. As we
previously predicted, the most pronounced way of cheating was training sample memorization. We
observed different levels of sophistication in these methods - from very naive (submitting the training
images) to highly complex (designing a GAN to memorize). The labeling results are summarized in
Table 1.

Table 1: Training sample memorization methods

METHOD DESCRIPTION
MEMORIZATION GAN (MGAN) MEMORIZATION GANS ARE PURPOSELY TRAINED TO MEMORIZE

THE TRAINING SET WHILE MAINTAINING THE ARCHITECTURE OF A
TYPICAL GAN BY MODIFYING THE UPDATE POLICY OF THE GENER-
ATOR AND DISCRIMINATOR. THE TRAINING PROCESS IS SPLIT INTO
TWO PARTS: (1) TRAIN DISCRIMINATOR ONLY WITH REAL TRAINING
IMAGES (DEGENERATES TO CLASSIFIER OF TRAINING SET MEMBER-
SHIP), (2) TRAIN GENERATOR ONLY WITH FIXED DISCRIMINATOR.

SUPERVISED MAPPING (SUP) CONSTRUCTS PAIRS OF LABELED DATA CONSISTING OF NOISE VEC-
TORS AND TRAINING SAMPLES AND TRAIN A NEURAL NETWORK TO
LEARN THE MAPPING.

AUTOENCODER (AE) AUTOENCODERS ARE RELATIVELY STRAIGHTFORWARD BY TRAIN-
ING DIRECTLY ON TRAINING SAMPLES AND RECONSTRUCTING
THEM.

AUGMENTATION (AUG) COMBINATIONS OF TYPICAL IMAGE AUGMENTATION TECHNIQUES
SUCH AS CROPPING, MORPHING, BLENDING AND ADDITIVE NOISE.
THE NAIVETY OF THIS APPROACH MAKES IT THE EASIEST TO IDEN-
TIFY AND GENERALLY CAN BE FILTERED OUT WITH THE MIFID.

4.3 COMPETITION RESULTS SUMMARY

In Figure 2 (left), we observe that non-generative methods score extremely good (low) FID scores
on both the public and private leaderboard. Specifically, memorization GAN achieved top tier
performance and it was a highly-debated topic for a long time whether it should be allowed in the
competition. Ultimately, memorization GAN was banned, but it serves as a good reminder that
generative-looking models may not actually be generative. In Figure 2 (right), we observe that the
range of memorization calculated by NASNet (private) spans twice as wide as Inception (public),
allowing easier profiling of cheating submissions by memorization penalty. It reflects the effectiveness
of our strategy selecting the model for calculating private score.

Participants generally started with basic generative models such as DCGAN (Radford et al., 2015) and
moved to more complex ones as they grow familiar with the framework. Most notably BigGAN (Brock
et al., 2018), SAGAN (Zhang et al., 2018) and StyleGAN (Karras et al., 2019a) achieved the
most success. Interestingly, one submission using DCGAN (Radford et al., 2015) with spectral-
normalization (Miyato et al., 2018) made it into top 10 in the private leaderboard, suggesting that
different variations of GANs with proper tuning might all be able to achieve good FID scores (Lucic
et al., 2017).
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Figure 2: Distribution of FID (left) and memorization distances (right) for public vs private scores
with manual labels. The better (lower) FIDs are the ones using various memorization techniques.

5 INSIGHTS

5.1 UNINTENTIONAL CHEATING: MODELS WITH BETTER FID MEMORIZE MORE

In our observation, almost all cheating submissions attempted to cheat by memorizing the training set.
This is likely because it is well-known that memorization achieves a good FID score. The research
community has long been aware that memorization can be an issue for the FID metric. However, there
has been no formal studies on the impact of IS or FID scores affected by memorization. This can pose
a serious problem when researchers continue to claim state-of-the-art results based on improvements
to the FID score if there is not a systematic way to measure and address training set memorization.
With disturbing findings from our study, we caution the danger of ignoring memorization in research
benchmark metrics, especially with unintentional memorization of training data.

In Figure 3 (right) we plot the relationship between FID and memorization distance for all 500
non-cheating models in the public and private leaderboard, respectively. Note that these models are
non-cheating, most of which popular variants of state-of-the-art generative models such as DCGAN
and SAGAN recently published in top machine learning conferences. Disturbingly, the Pearson
correlation between FID and memorization distance is above 0.95 for both leaderboards. High
correlation does not imply that memorization solely enables good model performance evaluated by
FID but it is reasonable to suspect that generation of images close to the training set can result in a
high FID score.

It is important for us to take memorization more seriously, given how easy it is for memorization to
occur unintentionally. The research community needs to better study and understand the limitation of
current generative model benchmark metrics. When proposing new generative techniques, it is crucial
to adopt rigorous inspections of model quality, especially regarding training sample memorization.
Existing methods such as visualizing pairs of generated image and their nearest neighbors in the
training dataset should be mandatory in benchmarks. Furthermore, other methods such as the FID
and memorization distance correlation (Figure 3) for different model parameters can also be helpful
to include in publications.

5.2 DEBUNKING FID: CHOICE OF LATENT SPACE FOR FEATURE PROJECTION IS NON-TRIVIAL

In the original paper where FID is proposed (Heusel et al., 2017), features from the coding layer of
an Inception model are used as the projected latent space to obtain “vision-relevant” features. It is
generally assumed that Fréchet Distance is invariant to the chosen latent space for projection as long
as the space is ”information-rich”, which is why the arbitrary choice of the Inception model has been
widely accepted. Interestingly, there has not been much study on the extent of our knowledge as to
whether the assumption holds true even though a relatively large amount of new generative model
architectures are being proposed (many of which rely heavily on FID for performance benchmarking).
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Figure 3: Public FID Inception vs private FID NASNet (left) and FID vs memorization distance
distribution with non-memorized submissions (right). It shows that FID is highly correlated to
memorization.

In our competition, we used different models for the public and private leaderboards in an attempt to
avoid models which “overfit” to some particular feature space.

In Figure 3 (left), we examine the relationship between Fréchet Distance calculated by two different
pre-trained image models that achieved close to state-of-the-art performance on ImageNet classi-
fication (specifically, Inception (Szegedy et al., 2016) and NasNet (Zoph & Le, 2016)). At first
glance, a Spearman correlation of 0.93 seems to support the assumption of FID being invariant to the
projection space. However, on closer inspection we noticed that the mean absolute rank difference
is 124.6 between public and private leaderboards for all 1675 effective submissions. If we take out
the consistency of rank contributed by intentional memorization by considering the top 500 labeled,
non-memorized submissions only, the mean absolute rank difference is as large as 94.7 (18.9 %). To
put it into perspective, only the top 5 places receive monetary awards and there is only 1 common
member between the top 5 evaluated by FID projected with the two models.

It’s common to see publications claiming state-of-art performance with less than 5% improvement
compared to others. As summarized in the Introduction section of this paper, generated model evalua-
tion, compared to other well-studied tasks such as classification, is extremely difficult. Observing that
model performance measured by FID fluctuates in such great amplitude relative to the improvement
of many newly proposed generation techniques, we would suggest taking progression on the FID
metric with a grain of salt.

6 CONCLUSIONS

We summarized our design of the first ever generative modeling competition and shared insights
obtained regarding FID as a generative modeling benchmark metric. By running a public generative
modeling competition we observed how participants attempted to game the FID, specifically with
memorization, when incentivized with monetary awards. Our proposed Memorization-Informed
Fréchet Inception Distance (MiFID) effectively punished models that intentionally memorize the
training set which current popular generative modeling metrics do not take into consideration.

We shared two main insights from analyzing the 11,000+ submissions. First, unintentional training
sample memorization is a serious and possibly widespread issue. Careful inspection of the models
and analysis on memorization should be mandatory when proposing new generative model techniques.
Second, contrary to popular belief, the choice of pre-trained model latent space when calculating
FID is non-trivial. The top 500 labeled, non-memorized submission mean absolute rank difference
percentage between our two models is 18.9 %, suggesting that FID is rather unstable to serve as the
benchmark metric for new studies to claim minor improvement over past methods.
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A APPENDIX

Table 2: Public and Private leaderboards MiFID configurations

PUBLIC PRIVATE
MODEL INCEPTION NASNET

DATASET
IMAGENET DOGS
120 BREEDS,
20579 IMAGES

IMAGENET DOGS +
PRIVATE
DOGS +
INTERNET DOGS

Figure 4: Submissions from ranks 1 (first row), 2, 3, 5, 10, 50, 100 (last row) on the private
leaderboard. Each row is a random sample of 10 images from the same team. Visually, the quality of
the generated images gets lower as the ranks get higher.
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