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Abstract
We study provable multi-agent reinforcement
learning (MARL) in the general framework of
partially observable stochastic games (POSGs).
To circumvent the known hardness results and the
use of computationally intractable oracles, we pro-
pose to leverage the potential information-sharing
among agents, a standard practice in empirical
MARL and a common model for multi-agent con-
trol systems with communications. We first es-
tablish several computation complexity results
to justify the necessity of information-sharing,
as well as the observability assumption that has
enabled quasi-efficient single-agent RL with par-
tial observations, for computational efficiency in
solving POSGs. We then propose to further ap-
proximate the shared common information to con-
struct an approximate model of the POSG, in
which planning an approximate equilibrium (in
terms of solving the original POSG) can be quasi-
efficient, i.e., of quasi-polynomial-time, under
the aforementioned assumptions. Furthermore,
we develop a partially observable MARL algo-
rithm that is both statistically and computationally
quasi-efficient. We hope our study can open up
the possibilities of leveraging and even designing
different information structures, for developing
both sample- and computation-efficient partially
observable MARL.

1. Introduction
Recent years have witnessed fast development of reinforce-
ment learning (RL) in a wide range of applications, includ-
ing playing Go games (Silver et al., 2017), robotics (Lilli-
crap et al., 2016; Long et al., 2018), video games (Vinyals
et al., 2019; Berner et al., 2019), and autonomous driving
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(Shalev-Shwartz et al., 2016; Sallab et al., 2017). Many
of these application domains by nature involve multiple
decision-makers operating in a common environment, with
either aligned or misaligned objectives that are affected by
their joint behaviors. This has thus inspired surging research
interests in multi-agent RL (MARL), with both deeper theo-
retical and empirical understandings (Busoniu et al., 2008;
Zhang et al., 2021a; Hernandez-Leal et al., 2019).

One central challenge of multi-agent learning in these appli-
cations is the imperfection of information, or more generally,
the partial observability of environments. Specifically, each
agent may possess different information about the state and
action processes while making decisions. For example, in
vision-based multi-robot learning and autonomous driving,
each agent only accesses a first-person camera to stream
noisy measurements of the object/scene, without accessing
the observations or past actions of other agents. This is also
referred to as information asymmetry in game theory and de-
centralized decision-making (Nayyar et al., 2013a; Shi et al.,
2016). Despite its ubiquity in practice, theoretical under-
standings of MARL in partially observable settings remain
scant. This is somewhat expected since even in single-agent
settings, planning and learning under partial observability
suffer from well-known computational and statistical hard-
ness results (Papadimitriou & Tsitsiklis, 1987; Mundhenk
et al., 2000; Jin et al., 2020). The hardness is known to
be amplified for multi-agent decentralized decision-making
(Witsenhausen, 1968; Tsitsiklis & Athans, 1985). Existing
provable partially observable MARL algorithms either only
apply to a small subset of highly structured problems (Zinke-
vich et al., 2007; Kozuno et al., 2021), or computationally
intractable (Liu et al., 2022b).

With these hardness results that can be doubly exponen-
tial in the worst case, even a (quasi-)polynomial efficient
algorithm could represent a non-trivial improvement in par-
tially observable MARL. In particular, we ask and attempt
to answer the following question:

Can we have partially observable MARL algorithms that
are both statistically and computationally efficient?

We provide some results towards answering the question
positively, by leveraging the potential information-sharing
among agents, together with a careful compression of the
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shared information. Indeed, the idea of information sharing
has been widely used in empirical MARL, e.g., centralized
training that aggregates all agents’ information for more effi-
cient training (Lowe et al., 2017; Rashid et al., 2020); it has
also been widely used to model practical multi-agent control
systems, e.g., with delayed communications (Witsenhausen,
1971; Nayyar et al., 2010). We defer a thorough literature
review to §A, and detail our contributions as follows.

Contributions. We study provable MARL under the gen-
eral framework of partially observable stochastic games
(POSGs), with potential information sharing among agents.
First, we establish several computation complexity results
of solving POSGs in the presence of information sharing,
justifying its necessity, together with the necessity of the
observability assumption made in the literature. Second, we
propose to further approximate the shared common informa-
tion to construct an approximate model, and characterize the
computation complexity of planning in this model. We show
that for several standard information-sharing structures, a
simple finite-memory compression can lead to expected ap-
proximate common information models in which planning
an approximate equilibrium (in terms of solving the original
model) has quasi-polynomial time complexity. Third, based
on the planning results, we develop a partially observable
MARL algorithm that is both statistically and computation-
ally quasi-efficient. To the best of our knowledge, this is
the first provably quasi-efficient partially observable MARL
algorithm, in terms of both sample and computational com-
plexities. Finally, we also provide experiments to validate:
i) the benefit of information sharing as we considered in
partially observable MARL; ii) the implementability of our
theoretically supported algorithms.

Notation. For two sets B and D, we define B \D as set B
minus set D. We use ∅ to denote the empty set and [n] :=
{1, · · · ,n}. For integers a ≤ b, we abbreviate a sequence
(xa,xa+1, · · · ,xb) by xa:b. If a > b, then it denotes an empty
sequence. When the sequence index starts from m and ends
at n, we will treat xa:b as xmax{a,m}:min{b,n}.

2. Preliminaries
2.1. POSGs and common information

Model. Formally, we define a POSG with n agents by
a tuple G = (H,S , {Ai}ni=1, {Oi}

n
i=1,T ,O,µ1, {ri}

n
i=1), where

H denotes the length of each episode, S is the state space
with |S| = S, Ai denotes the action space for the ith agent
with |Ai | = Ai . We denote by a := (a1, · · · , an) the joint
action of all the n agents, and byA =A1×· · ·×An the joint
action space with |A| = A =Πn

i=1Ai . We use T = {Th}h∈[H]
to denote the collection of the transition matrices, so that
Th(· |s,a) ∈ ∆(S) gives the probability of the next state if
joint action a are taken at state s and step h. In the following

discussions, for any given a, we treat Th(a) ∈ R|S|×|S| as a
matrix, where each row gives the probability for the next
state. We use µ1 to denote the distribution of the initial
state s1, and Oi to denote the observation space for the
ith agent with |Oi | = Oi . We denote by o := (o1, . . . , on)
the joint observation of all n agents, and by O := O1 ×
· · · ×On with |O| =O =Πn

i=1Oi . We use O = {Oh}h∈[H+1]
to denote the collection of the joint emission matrices, so
that Oh(· |s) ∈ ∆(O) gives the emission distribution over
the joint observation space O at state s and step h. For
notational convenience, we will at times adopt the matrix
convention, where Oh is a matrix with rows Oh(· |sh). We
also denote Oi,h(· |s) ∈ ∆(Oi) as the marginalized emission
for the ith agent. Finally, ri = {ri,h}h∈[H+1] is a collection
of reward functions, so that ri,h(oh) is the reward of the ith

agent given the joint observation oh at step h. This general
formulation of POSGs includes several important subclasses.
For example, decentralized partially observable Markov
decision processes (Dec-POMDPs) are POSGs where the
agents share a common reward function, i.e., ri = r,∀i ∈
[n]; zero-sum POSGs are POSGs with n = 2 and r1 = −r2.
Hereafter, we will use the terminology cooperative POSG
and Dec-POMDP interchangeably.

In a POSG, the states are always hidden from agents, and
each agent can only observe its own individual observa-
tions. The game proceeds as follows. At the beginning
of each episode, the environment samples s1 from µ1. At
each step h, each agent i observes its own observation oi,h,
and receives the reward ri,h(oh) where oh := (o1,h, . . . , on,h)
is sampled jointly from Oh(· |sh). Then each agent i takes
the action ai,h. After that the environment transitions to
the next state sh+1 ∼ Th(· |sh, ah). The current episode ter-
minates immediately once sH+1 is reached and the reward
ri,H+1(oH+1) is received. Since the reward at the first step
ri,1(oi,1) does not depend on the policy, we will assume the
trajectory starts from a1 instead of o1.

Information sharing, common and private information.
Each agent i in the POSG maintains its own information,
τi,h, a collection of historical observations and actions at
step h, namely, τi,h ⊆ {a1, o2, · · · , ah−1, oh}, and the collec-
tion of the history at step h is given by Ti,h.

In many practical examples (see concrete ones in §3), agents
may share part of the history with each other, which may
introduce more structure in the game that leads to both sam-
ple and computation efficiency. The information sharing
splits the history into common/shared and private informa-
tion for each agent. The common information at step h is
a subset of the joint history τh: ch ⊆ {a1, o2, · · · , ah−1, oh},
which is available to all the agents in the system, and the
collection of the common information is denoted as Ch and
define Ch = |Ch|. Given the common information ch, each
agent also has the private information pi,h = τi,h \ ch, where
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the collection of the private information for the ith agent is
denoted as Pi,h and its cardinality as Pi,h. The joint private
information at step h is denoted as ph, where the collection
of the joint private history is given by Ph = P1,h × · · · × Pn,h
and the corresponding cardinality is Ph = Πn

i=1Pi,h. We
allow ch or pi,h to take the special value ∅ when there is
no common or private information. In particular, when
Ch = {∅}, the problem reduces to the general POSG without
any favorable information structure; when Pi,h = {∅}, every
agent holds the same history, and it reduces to a POMDP
when the agents share a common reward function and the
goal is usually to find the team optimal solution.

Throughout, we also assume that the common information
and private information evolve over time properly.

Assumption 1 (Evolution of common and private infor-
mation). We assume that common information and private
information evolve over time as follows:

• Common information ch is non-decreasing with time,
that is, ch ⊆ ch+1 for all h. Let zh+1 = ch+1 \ ch. Thus,
ch+1 = {ch, zh+1}. Further, we have

zh+1 = χh+1(ph, ah, oh+1), (2.1)

where χh+1 is a fixed transformation. We use Zh+1
to denote the collection of zh+1 at step h. Since we
assume the trajectory starts from a1 instead of o1, we
have c1 = ∅.

• Private information evolves according to:

pi,h+1 = ξi,h+1(pi,h, ai,h, oi,h+1), (2.2)

where ξi,h+1 is a fixed transformation.

Equation (2.1) states that the increment in the common infor-
mation depends on the “new" information ah, oh+1 generated
between step h and h+1 and part of the old information ph.
The increment common information can be implemented
by certain sharing and communication protocol among the
agents. Equation (2.2) implies that the evolution of private
information only depends on the newly generated private in-
formation ai,h and oi,h+1. These evolution rules are standard
in the literature (Nayyar et al., 2013a;b), clearly specifying
the source of common information and private information.

2.2. Policies and value functions

We define a stochastic policy for the ith agent at step h as:

πi,h :Ωh ×Pi,h ×Ch→ ∆(Ai). (2.3)

The corresponding policy class is denoted as Πi,h. Hereafter,
unless otherwise noted, when referring to policies, we mean
the policies given in the form of (2.3). Here ωi,h ∈ Ωh is
the random seed, and Ωh is the random seed space, which is
shared among agents. We further denote Πi = ×h∈[H]Πi,h
as the policy space for agent i and Π as the joint policy

space. As a special case, we define the space of deterministic
policy as Π̃i , where π̃i ∈ Π̃i maps the private information
and common information to an deterministic action for the
ith agent and the joint space as Π̃.

Another important concept in the common-information-
based framework is called the prescription (Nayyar et al.,
2013b;a), defined for the ith agent as

γi,h : Pi,h→ ∆(Ai).

With such a prescription function, agents can take actions
purely based on their local private information. We de-
fine Γi,h as the function class for prescriptions, and Γ :=
{Γi,h}i∈[n],h∈[H] as the function class for joint prescriptions.
Intuitively, the partial function πi,h(· |ωi,h, ch, ·) is a pre-
scription given some ωi,h and ch. We will define πi as a
sequence of policies for agent i at all steps h ∈ [H], i.e.,
πi = (πi,1, · · · ,πi,H ) and Πi as the corresponding collec-
tion of policies for agent i. A (potentially correlated) joint
policy is denoted as π = π1 ⊙π2 · · · ⊙πn ∈Π. A product
policy is denoted as π = π1 × π2 · · · × πn ∈ Π if the dis-
tribution of drawing each seed ωi,h for different agents is
independent. For Dec-POMDPs, using stochastic policies
will not yield better policies than using only deterministic
policies (Oliehoek & Amato, 2016). However, for general
POSGs, there might not exist a pure strategy solution in
the deterministic policy class. Furthermore, sometimes, we
might resort to the general joint policy π = {π1,π2, · · · ,πh},
which could potentially go beyond Π, where πh is defined
as: πh :Ah−1 ×Oh−1→ ∆(A). We denote the collection of
such policies as Πgen. For some policy π and event E, we
write P

G
s1:h,a1:h−1,o2:h∼π1:h−1(E) to denote the probability of E

when (s1:h, a1:h−1, o2:h) is drawn from a trajectory following
the policy π1:h−1 from step 1 to h− 1 in the model G. We
will use the shorthand notation P

π1:h−1,G
h (·) if the definition

of (s1:h, a1:h−1, o2:h) is evident. At times, if the time index
h is evident, we will write it as Pπ,Gh (·). If the event E does
not depend on the choice of π, we will use P

G
h (·) and omit

π. Similarly, we will write E
G
s1:h,a1:h−1,o2:h∼π[·] to denote

expectations and use the shorthand notation E
G[·] if the ex-

pectation does not depend on the choice of π. Furthermore,
if we are given some modelM (other than G), the notation
of PMh (·), EM[·] is defined in the same way. We also denote
the indicator of E as 1(E) = 1 if the event E is true and 0
otherwise. We will use strategy and policy interchangeably.

We are now ready to define the value function for each agent:

Definition 1 (Value function). For each agent i ∈ [n]
and step h ∈ [H], given common information ch and
joint π, the value function conditioned on the com-
mon information of agent i is defined as: V π,G

i,h (ch) :=

E
G
π

[∑H+1
h′=h+1 ri,h′ (oh′ )

∣∣∣ch], where the expectation is taken
over the randomness from the model G, policy π, and the
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random seeds. For any cH+1 ∈ CH+1 : V π,G
i,H+1(cH+1) := 0.

From now on, we will refer to it as value function for short.

Another key concept in our analysis is the belief about
the state and the private information conditioned on the
common information among agents. Formally, at step h,
given policies from 1 to h − 1, we consider the common
information-based conditional belief P

π1:h−1,G
h (sh,ph |ch).

This belief not only infers the current state sh, but also
each agent’s private information ph. With the common-
information-based conditional belief, the value function in
POSGs has the following recursive structure:

V π,Gi,h (ch) = E
G
π[ri,h+1(oh+1) +V

π,G
i,h+1(ch+1) |ch], (2.4)

where the expectation is taken over the randomness of
(sh,ph, ah, oh+1) given πi,hi∈[n] (and corresponding γh).
With this, we can define the prescription-value function
correspondingly, a generalization of the action-value func-
tion in Markov games and MDPs in Definition 11.

2.3. Equilibrium notions

With the definition of the value functions, we can accord-
ingly define the solution concepts. Here we define ϵ-Nash
equilibrium (NE) and team-optimal solution as follows, and
defer the standard definitions of coarse correlated equilib-
rium (CCE) and correlated equilibrium (CE) to §B.2.

Definition 2 (ϵ-approximate Nash Equilibrium). For any
ϵ ≥ 0, a product policy π⋆ ∈Π is an ϵ-approximate Nash
Equilibrium (NE) of the POSG G if:

NE-gap(π⋆) := max
i

(
max
π′i∈Πi

V
π′i×π

⋆
−i ,G

i,1 (∅)−V π⋆ ,G
i,1 (∅)

)
≤ ϵ.

Definition 3 (ϵ-approximate team-optimal policy in
Dec-POMDPs with information-sharing structures). When
the reward functions ri,h are identical for all i ∈ [n], i.e.,
ri,h = rh, and the POSG reduces to a Dec-POMDP, then

a policy π⋆ ∈ Π̃ is a team optimal policy if: V π⋆ ,G
1 (∅) ≥

maxπ′∈Π̃V
π′ ,G
1 (∅)− ϵ.

By restricting to deterministic policies, it does not lose any
optimality (Nayyar et al., 2013b). It is also worth noting
that, the team-optimal solution is always a NE, a NE is
always a CE, and a CE is always a CCE.

3. Information Sharing in Applications
The aforementioned information-sharing structure can in-
deed be common in real-world applications. For example,
for a self-driving car to avoid collision and successfully
navigate, the other cars from the same fleet/company would
necessarily communicate with each other (possibly with
delays) about the road situation. The separation between

common information and private information then arises
naturally (Gong et al., 2016). Similar examples can also be
found in cloud computing and power systems (Altman et al.,
2009). Here, we outline several representative information-
sharing structures that fit into our algorithmic framework,
and defer more examples in §B.4.

Example 1 (One-step delayed sharing). At any step h ∈
[H +1], the common and private information are given as
ch = {o2:h−1, a1:h−1} and pi,h = {oi,h}, respectively. In other
words, the players share all the action-observation history
until the previous step h− 1, with only the new observation
being private information. This model has been shown
useful for power control (Altman et al., 2009).

Example 2 (State controlled by one controller with asym-
metric delay sharing). We assume there are 2 players for
convenience. It extends naturally to n-player settings. Con-
sider the case where the state dynamics are controlled by
player 1, i.e., Th(· |sh, a1,h, a2,h) = Th(· |sh, a1,h, a′2,h) for all
sh, a1,h, a2,h, a

′
2,h,h. There are two kinds of delay-sharing

structures we could consider: Case A: the information
structure is given as ch = {o1,2:h, o2,2:h−d , a1,1:h−1}, p1,h = ∅,
p2,h = {o2,h−d+1:h}, i.e., player 1’s observations are avail-
able to player 2 instantly, while player 2’s observations are
available to player 1 with a delay of d ≥ 1 time steps. Case
B: similar to Case A but player 1’s observation is available
to player 2 with a delay of 1 step. The information structure
is given as ch = {o1,2:h−1, o2,2:h−d , a1,1:h−1}, p1,h = {o1,h},
p2,h = {o2,h−d+1:h}, where d ≥ 1. This kind of asymmetric
sharing is common in network routing (Pathak et al., 2008),
where packages arrive at different hosts with different de-
lays, leading to asymmetric delay sharing among hosts.

Example 3 (Symmetric information game). Consider the
case when all observations and actions are available for all
the agents, and there is no private information. Essentially,
we have ch = {o2:h, a1:h−1} and pi,h = ∅. We will also denote
this as fully sharing hereafter.

4. Hardness and Planning with Exact Model
4.1. Hardness on finding team-optimum and equilibria

Throughout, we mainly consider the NE, CE, and CCE
as our solution concepts. However, in Dec-POMDPs, a
special class of POSGs with common rewards, a more com-
mon and favorable objective is the team optimum. How-
ever, in Dec-POMDPs, it is known that computing even
approximate team optimal policies is NEXP-complete
(Bernstein et al., 2002; Rabinovich et al., 2003), i.e., the
algorithms as in (Hansen et al., 2004) may take doubly ex-
ponential time in the worst case. Such hardness cannot
be circumvented under our information-sharing framework
either without further assumptions, since even with fully
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sharing, the problem becomes solving a POMDP to its opti-
mum, which is still PSPACE-complete (Papadimitriou
& Tsitsiklis, 1987).

Recently, (Golowich et al., 2022b) considers observable
POMDPs that rule out the ones with uninformative observa-
tions, for which computationally (quasi)-efficient algorithms
can be developed. In the hope of obtaining computational
(quasi)-efficiency for POSGs (including Dec-POMDPs), we
could make a similar observability assumption on the joint
observations as below. Note that this observability assump-
tion is equivalent (up to a factor of at most

√
O) to the

ϵ-weakly revealing condition in (Liu et al., 2022b), under
which there also exists a statistically efficient algorithm for
solving POSGs.

Assumption 2 (γ-Observability). Let γ > 0. For h ∈ [H],
we say that the matrix Oh satisfies the γ-observability as-
sumption if for each h ∈ [H], for any b,b′ ∈ ∆(S),∥∥∥O⊤h b −O⊤h b′∥∥∥1 ≥ γ ∥∥∥b − b′∥∥∥

1
.

A POSG (Dec-POMDP) satisfies (one-step) γ-observability
if all its Oh for h ∈ [H] do so.

However, we show that even under such an assumption,
and with the favorable 1-step delayed sharing structure as
introduced in §3, computing team optimal policy in Dec-
POMDPs can be NP-Hard. Moreover, we show that miss-
ing either Assumption 2 or any information-sharing struc-
tures will make the problem of even computing NE/CE/CCE,
the more relaxed solution concepts than team optimum in
Dec-POMDPs, PSAPCE-Hard. This shows the necessity
of both Assumption 2 and certain information-sharing struc-
tures. Next, we will focus on planning and learning in
POSGs under these assumptions.

4.2. Planning with strategy-independent common belief

For optimal/equilibrium policy computation, it is known that
backward induction is one of the most useful approaches
for solving (fully-observable) Markov games. However, the
essential impediment to applying backward induction in
asymmetric information games is the fact that a player’s
posterior beliefs about the system state and about other play-
ers’ information may depend on the strategies used by the
players in the past. If the nature of system dynamics and the
information structure of the game ensure that the players’
posterior beliefs are strategy independent, then a backward
induction can be derived for equilibrium computation (Nay-
yar et al., 2013a; Gupta et al., 2014). We formalize this
conceptual argument as the following assumption.

Assumption 3 (Strategy independence of beliefs). Consider
any step h ∈ [H], any choice of joint policies π ∈ Π, and
any realization of common information ch that has a non-
zero probability under the trajectories generated by π1:h−1.

Consider any other policies π′1:h−1, which also give a non-
zero probability to ch. Then, we assume that: for any such
ch ∈ Ch, and any ph ∈ Ph, sh ∈ S , Pπ1:h−1,Gh (sh,ph |ch) =

P

π′1:h−1,G
h (sh,ph |ch) .

This assumption has been made in the literature (Nayyar
et al., 2013a; Gupta et al., 2014), which is related to the
notion of one-way separation in stochastic control, that is,
the estimation (of the state in standard stochastic control
and of the state and private information) in Assumption
3 is independent of the control strategy. A naive attempt
to relaxing this is to also include the past π1:h−1 in addi-
tion to ch when computing the belief of states and private
information. In other words, one can firstly find a solu-
tion π⋆ = {π⋆h }h∈[H], where the execution of π⋆h depends
on the past π⋆1:h−1. Then one can eliminate such depen-
dency through a methods called “forward-sweeping” to find
some policy π̂⋆ so that V π⋆ ,G

i (∅) = V π̂⋆ ,G
i (∅), and π̂⋆ can

be executed in a decentralized way. In fact, such an idea
turns out to be useful for computing team optimal policies
in Dec-POMDPs (Nayyar et al., 2013b), but not effective
for finding equilibrium in the game setting, since one joint
policy’s value being equal to that at an equilibrium does
not necessarily imply it is also an equilibrium policy. For
more detailed discussion, we refer to (Nayyar et al., 2013a).
There are also works not requiring this assumption (Ouyang
et al., 2016; Tavafoghi et al., 2016), but under a different per-
fect Bayesian equilibrium framework. We leave the study
of developing computationally tractable approaches under
this framework as our future work. Before proceeding with
further analysis, It is worth mentioning that examples intro-
duced in §3 all satisfy this assumption (see (Nayyar et al.,
2013a) and also §E.4).

With Assumption 3, we are able to develop a planning al-
gorithm (shown in Algorithm 1) with the following time
complexity. The algorithm is based on value iteration on
the common information space, which runs in a backward
way, enumerating all possible ch at each step h and comput-
ing the corresponding equilibrium in the prescription space.
Detailed description of the algorithm is deferred to §C.

Theorem 1. Fix ϵ > 0. For the POSG G with information
structure satisfying Assumption 3, given access to the belief
P
G
h (sh,ph |ch), Algorithm 1 computes an ϵ-NE if G is zero-

sum or cooperative, and an ϵ-CE/CCE if G is general-sum,
with time complexity maxh∈[H] Ch ·poly(S,A,Ph,H, 1ϵ ).

This theorem characterizes the dependence of computation
complexity on the cardinality of the common information
set and private information set. Ideally, to get a computation-
ally efficient algorithm, we should design the information-
sharing strategy such that Ch and Ph are both small. To get a
sense of how large ChPh could be, we consider one common
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scenario where each player has perfect recall, i.e., she re-
members what she did in prior moves, and also remembers
everything that she knew before.

Definition 4 (Perfect recall). We say that player i has
perfect recall if for any h ∈ [H + 1], it holds that
{ai,1:h−1, oi,2:h} ⊆ τi,h, and τi,h ⊆ τi,h+1.

If each player has perfect recall as defined above, we can
show that ChPh must be exponential in the horizon index h.

Lemma 1. Fix any h ∈ [H]. If each player has perfect recall
as given in Definition 4, then for any information-sharing
structures ChPh ≥ (OA)h−1.

With this result, we know that the computation complexity
of our planning algorithm must suffer from the exponential
dependence of Ω((OA)h). This negative result tells us it is
barely possible to get computational efficiency for running
planning algorithms in the true model G, since the ChPh
has to be very large oftentimes. It is worth noting that for
obtaining this result (Theorem 1), we did not utilize our
Assumption 2. Thus, this negative result is consistent with
our hardness results in Proposition 3.

5. Planning and Learning with Approximate
Common Information

5.1. Computationally (quasi-)efficient planning

Previous exponential complexity comes from the fact that
Ch and Ph could not be made simultaneously small under
the common scenario with perfect recall. To address this
issue, we propose to further compress the information avail-
able to the agent with certain regularity conditions, while
approximately maintaining the optimality of the policies
computed/learned from the compressed information. No-
tably, there is a tradeoff between compression error and
computational tractability. We will show next that by prop-
erly compressing only the common information, we can
obtain efficient planning (and learning) algorithms with fa-
vorable suboptimality guarantees. To introduce the idea
more formally, we first define the concept of approximate
common information model in our settings.

Definition 5 (Approximate common information). We de-
fine an expected approximate common information model
of G as

M :=
(
{Ĉh}h∈[H+1], {φ̂h+1}h∈[H], {P

M,z
h ,PM,o

h }h∈[H],Γ , r̂
)
,

where Γ is the function class for joint prescriptions, PM,z
h :

Ĉh × Γh → ∆(Zh+1), gives the probability of zh+1 under
given ĉh ∈ Ĉh, where Zh+1 is the space of increment com-
mon information, and {γi,h}i∈[n] ∈ Γh. Similarly, PM,o

h :

Ĉh × Γh→ ∆(O) gives the probability of oh+1 under given
ĉh ∈ Ĉh, and {γi,h}i∈[n] ∈ Γh. We denote Ĉh := |Ĉh| for any
h ∈ [H + 1]. We say M is an (ϵr (M),ϵz(M))-expected-
approximate common information model of G with the ap-
proximate common information defined by {̂ch}h∈[H] for
some compression function ĉh = Compressh(ch), if it satis-
fies the following:

• It evolves in a recursive manner, i.e., for each h there
exists a transformation function φ̂h+1 such that

ĉh+1 = φ̂h+1(̂ch, zh+1), (5.1)

where we recall that zh+1 = ch+1 \ ch is the new com-
mon information added at step h.

• It suffices for approximate performance evaluation, i.e.,
for any prescription γh and joint policy π′ ∈Πgen

E
G
a1:h−1,o2:h∼π′

∣∣∣∣EG[ri,h+1(oh+1) | ch,γh]
−EM [̂ri,h+1(oh+1) | ĉh,γh]

∣∣∣∣ ≤ ϵr (M). (5.2)

• It suffices for approximately predicting the com-
mon information, i.e., for any prescription γh and
joint policy π′ ∈ Πgen, and for PGh (zh+1 |ch,γh) and
P
M,z
h (zh+1 | ĉh,γh), we have

E
G
a1:h−1,o2:h∼π′

∥∥∥PGh (· |ch,γh)−PM,z
h (· | ĉh,γh)

∥∥∥
1 ≤ ϵz(M).

(5.3)

Remark 1. M defined above is indeed a Markov game,
where the state space is {Ĉh}h∈[H+1], Γ is the joint action
space, {PM,z

h }h∈[H] together with {φ̂h+1}h∈[H] is the transi-
tion, and E

M [̂ri,h+1(oh+1) | ĉh,γh] is the reward given state
ĉh and joint action γh.

Remark 2. Note that our requirement of approximate in-
formation in the definition can be much weaker than the
existing and related definition (Kao & Subramanian, 2022;
Mao et al., 2020; Subramanian et al., 2022), which re-
quires the total variation distance between P

G
h (· |ch,γh) and

P
M,z
h (· | ĉh,γh) to be uniformly bounded for all ch. In con-

trast, we only require such distance to be small in expec-
tation. In fact, the kind of compression in (Kao & Subra-
manian, 2022; Mao et al., 2020; Subramanian et al., 2022)
may be unnecessary and computationally intractable when
it comes to efficient planning. Firstly, some common in-
formation may have very low visitation frequency under
any policy π, which means that we can allow large varia-
tion between true common belief and approximate common
belief for these ch, which are inherently less important for
the decision-making problem. Secondly, even in the single-
agent setting, where ch = {a1:h−1, o2:h}, the size of such
approximate information with errors uniformly bounded
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for all {a1:h−1, o2:h} could not be sub-exponential, as shown
by Example B.2 in (Golowich et al., 2022b). Therefore,
for some kinds of common information, it is actually not
possible to reduce the order of complexity through the ap-
proximate common belief with errors uniformly bounded.
Requiring only expected approximation errors to be small
is one key to enabling our efficient planning approach next.

Although we have characterized what conditions the ex-
pected approximate common information modelM should
satisfy to well approximate the underlying G, it is, in gen-
eral, unclear how to construct such anM, mainly how to
define {PM,z

h ,PM,o
h }h∈[H], even if we already know how

to compress the common information. To address this, in
the following definition, we provide a way to construct
{PM,z

h ,PM,o
h }h∈[H] by an approximate belief over states and

private information {PM,c
h (sh,ph | ĉh)}h∈[H] by Definition 13,

which will facilitate the construction forM later.

It is direct to verify that we can construct an expected ap-
proximate common information model M(G) for G such
that ϵz(M(G)) = ϵr (M(G)) = 0, where in this M(G), we
have ĉh = ch for any h ∈ [H +1], ch ∈ Ch, r̂ = r, andM(G)
is consistent with {PGh (sh,ph |ch)}h∈[H]. Without ambiguity,
we will use the shorthand notation ϵr ,ϵz for ϵr (M),ϵz(M),
respectively. With such an expected approximate common
information model, similar to Algorithm 1, we develop a
value-iteration-type algorithm (Algorithm 3) running on
the modelM instead of G, which outputs an approximate
NE/CE/CCE, enjoying the following guarantees.

Theorem 2. Fix ϵr ,ϵz,ϵe > 0. Suppose there exists an
(ϵr ,ϵz)-expected-approximate common information model
M for the POSG G that satisfies Assumption 3. Fur-
thermore, if M is consistent with some given approxi-
mate belief {PM,c

h (sh,ph | ĉh)}h∈[H], then Algorithm 3 out-
puts a π̂⋆ such that NE-gap(π̂⋆) ≤ 2Hϵr +H2ϵz +Hϵe
if G is zero-sum or cooperative, and CE/CCE-gap(π̂⋆) ≤
2Hϵr +H2ϵz +Hϵe if G is general-sum, where the time
complexity is maxh∈[H] Ĉh ·poly(S,A,Ph,H, 1ϵe ).

The detailed description of the algorithm is deferred to §C
and the consistency between the model and belief is defined
in Definition 13. As a sanity check, it is easy to see that if we
use previousM(G) as the expected approximate common
information model with the uncompressed common infor-
mation such that ϵz(M(G)) = ϵr (M(G)) = 0, then by letting
ϵe =

ϵ
H , we recover our Theorem 1. Then Theorem 2 shows

that one could use a compressed version, if it exists, instead
of the exact common information, to compute approximate
NE/CE/CCE, with the quantitative characterization of the
error bound due to this compression. To get an overview of
our algorithmic framework, we also refer to Figure 2.

Criteria of information-sharing design for efficient plan-
ning. Now we sketch the criterion of designing the
information-sharing strategy for efficient planning:

• {Ch}h∈[H+1] satisfies Assumption 3.
• Cardinality of {Ph}h∈[H+1] should be small.
• Cardinality of {Ĉh}h∈[H+1] should be small.
• Construction of the expected approximate common

information model M, i.e., the construction of
E
M [̂ri,h+1(oh+1) | ĉh,γh] and P

M,z
h (· | ĉh,γh) should be

computationally efficient.

Planning in observable POSGs without intractable or-
acles. Theorem 2 applies to any expected approximate
common information model as given in Definition 5, by
substituting the corresponding Ĉh. Note that it does not pro-
vide a way to construct such expected approximate common
information models that ensure the computation complexity
in the theorem is (quasi-)polynomial.

Next, we show that in several natural and standard infor-
mation structure examples, a simple finite-memory com-
pression can attain the goal of computing ϵ-NE/CE/CCE
without intractable oracles, where we refer to §E.4 for the
concrete form of the finite memory compression. Based on
this, we present the corresponding quasi-polynomial time
complexities as follows.

Theorem 3. Fix ϵ > 0. Under Assumption 2, there exists
a quasi-polynomial time algorithm that can compute ϵ-NE
if G is zero-sum or cooperative, and an ϵ-CE/CCE if G is
general-sum, with the information-sharing structures in §3.

5.2. Statistically (quasi-)efficient learning

Until now, we have been assuming the full knowledge of the
model G (the transition kernel, observation emission, and
reward functions). In this full-information setting, we are
able to construct some modelM to approximate the true
G according to the conditions we identified in Definition 5.
However, when we only have access to the samples drawn
from the POSG G, it is difficult to directly construct such a
model due to the lack of the model specification. To address
this issue, the solution is to construct a specific expected
approximate common information model that depends on
the policies that generate the data for such a construction,
which can be denoted by M̃(π1:H ). For such a model, one
could simulate and sample by running policies π1:H in the
true model G. To introduce such a model M̃(π1:H ), we have
the following formal definition.

Definition 6 (Policy-dependent expected approximate com-
mon information model). Given H joint policies π1:H ,
where πh ∈Πgen for h ∈ [H] and approximate reward func-
tions r̂, we define the policy-dependent approximate com-
mon information model M̃(π1:H ) such that it is consistent

7
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with the policy-dependent belief {Pπ
h,G

h (sh,ph | ĉh)}h∈[H] as
per Definition 13.

The key to the definition above resorts to an ap-
proximate common information-based conditional belief

{Pπ
h,G

h (sh,ph | ĉh)}h∈[H] that is defined by running policy
πh ∈Πgen in G. In particular, we have the following fact.

Proposition 1. Given M̃(π1:H ) as in Definition 6, it holds
that for any h ∈ [H], ĉh ∈ Ĉh, γh ∈ Γh, oh+1 ∈ O, zh+1 ∈
Zh+1: P

M̃(π1:H ),z
h (zh+1 | ĉh,γh) = P

πh,G
h (zh+1 | ĉh,γh),

P
M̃(π1:H ),o
h (oh+1 | ĉh,γh) = P

πh,G
h (oh+1 | ĉh,γh).

This proposition verifies that we can have access to the
samples from the transition and reward of M̃(π1:H ) at step
h, by executing the policy πh in the underlying model G.
Now we are ready to present the main theorem for learning
such an expected approximate common information model
M̃(π1:H ). A major difference from the analysis for plan-
ning is that in the learning setting, we need to explore the
space of approximate common information, which is the
function of a sequence of observations and actions, and we
need to characterize the length of the approximate common
information as defined below.

Definition 7 (Length of approximate common information).
Given {Ĉh}h∈[H+1], define the integer L̂ ≥ 0 as the minimum
length such that for each h ∈ [H + 1] and each ĉh ∈ Ĉh,
there exists some mapping f̂h : AL̂ × OL̂ → Ĉh and the
sequence xh = {amax{h−L̂,1}, omax{h−L̂,1}+1, · · · , oh}, such that

f̂h(xh) = ĉh.

Such an L̂ characterizes the length of the constructed ap-
proximate common information, for which our final sample
complexity would necessarily depend on, since we need
to do explorations for the steps after h − L̂. It is worth
noting that such an L̂ always exists since we can always
set L̂ = H , and there always exists the mapping f̂h such
that f̂h(a1:h−1, o2:h) = ĉh, where f̂h is a composition of the
mapping from {a1:h−1, o2:h} to ch, which is given by the evo-
lution rules in Definition 1, and the compression function
Compressh, the mapping from ch to ĉh. With this defini-
tion of L̂, we propose Algorithm 5, which learns the model
M̃(π1:H ), mainly the two quantities in Proposition 1 by ex-
ecuting policies π1:H in the true model G with the following
sample complexity depending on L̂.

Theorem 4. Suppose the POSG G satisfies Assumption
3. Given compression function of common infor-
mation, Compressh : Ch → Ĉh for h ∈ [H], L̂ is as
defined in Definition 7. For any H policies π1:H ,
where πh ∈ Πgen, πh

h−L̂:h
= Unif(A) for h ∈ [H], and

approximate reward functions r̂ = {{̂ri,h}ni=1}
H
h=1, we

assume M̃(π1:H ) is an (ϵr (π1:H , r̂),ϵz(π1:H )) expected
approximate common information model of G. Fix
some parameters δ1,θ1,θ2,ζ1,ζ2 > 0 for Algorithm 5,
ϵe > 0 for Algorithm 3, and φ > 0, define the approx-
imation error for estimating M̃(π1:H ) using samples
under the policy π1:H as ϵapx(π1:H , L̂,ζ1,ζ2,θ1,θ2,φ).
Then Algorithm 5, together with Algorithm 3, can
learn M̃(π1:H ) with the sample complexity N0 =
poly(maxh Ph,maxh Ĉh,H,A,O,

1
ζ1
, 1
ζ2
, 1
θ1
, 1
θ2
) log 1

δ1
,

and output an ϵ-NE if G is zero-sum or cooperative, and
an ϵ-CE/CCE if G is general-sum, with probability at least
1 − δ1, where ϵ := Hϵr (π1:H , r̂) + H2ϵz(π1:H ) + (H2 +
H)ϵapx(π1:H , L̂,ζ1,ζ2,θ1,θ2,φ) +Hϵe.

A detailed version of this theorem is deferred to §D.3.
This meta-theorem presents a sample complexity guar-
antee of learning expected approximate common infor-
mation model M̃(π1:H ) under the approximate common-
information framework, in the model-free setting. It
is agnostic to the choice of approximate common infor-
mation ĉh, policies π1:H , and approximate reward func-
tion r̂. Therefore, the final results will necessarily de-
pend on the three error terms ϵr (π1:H , r̂), ϵz(π1:H ), and
ϵapx(π1:H , L̂,ζ1,ζ2,θ1,θ2,φ), which will be instantiated
for different examples later to obtain both sample and time
complexity results. As before, the meta-theorem applies to
cases beyond the following examples, as long as one can
compress the common information properly. The follow-
ing examples just happen to be the ones where a simple
finite-memory truncation can give us desired complexities.

Sample (quasi-)efficient learning in POSGs without in-
tractable oracles. Now we apply the meta-theorem, Theo-
rem 4, and obtain polynomial sample and quasi-polynomial
time complexities for learning the ϵ-NE/CE/CCE, under
several standard information structures.

Theorem 5. Fix ϵ > 0. Under Assumption 2, there exists
a multi-agent RL algorithm that learns an ϵ-NE if G is
zero-sum or cooperative, and an ϵ-CE/CCE if G is general-
sum, with information-sharing structures in §3, in time and
sample complexities that are both quasi-polynomial.

A full version of the theorem is presented in §D.3, with proof
provided in §E.5. Note that our algorithm is computationally
(quasi-)efficient, in contrast to the only existing sample-
efficient MARL algorithm for POSGs in (Liu et al., 2022b),
which uses computationally intractable oracles.

Algorithm description. We briefly introduce the algo-
rithm that achieves the guarantees in Theorem 5, i.e., Al-
gorithm 7, and defer more details to §C due to space lim-
itation. The first step is to find the approximate reward
function r̂ and policies π1:H such that the three error terms
ϵapx(π1:H , L̂,ζ1,ζ2,θ1,θ2,φ), ϵr (π1:H , r̂), and ϵz(π1:H ) in
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Figure 1. Performance of MAPPO and IPPO in various delayed-sharing settings.

Theorem 4 are minimized. It turns out that the three er-
rors can be minimized using Barycentric-Spanner-based
(Awerbuch & Kleinberg, 2008; Golowich et al., 2022a) ex-
ploration techniques. The next step is to learn the empirical
estimate M̂(π1:H ) of M̃(π1:H ), by exploring the approxi-
mate common information space {Ĉh}h∈[H+1] using Algo-
rithm 5. The key to exploring the approximate common
information space is to take uniformly random actions from
step h − L̂ to h, which has been used for exploration in
finite-memory based state spaces in existing works (Uehara
et al., 2022; Efroni et al., 2022; Golowich et al., 2022a).
Once such a M̂(π1:H ) is constructed, we run our planning
algorithms (developed in §5.1) on M̂(π1:H ) to compute an
approximate NE/CE/CCE. The final step is to do policy
evaluation to select the equilibrium policy to output, since
for the first step we may only obtain a set of {π1:H,j , r̂j }j∈[K]
for some integer K > 0 and only some of them can mini-
mize the three error terms. Specifically, for any given policy
π⋆ and i ∈ [n], the key idea of policy evaluation is that we
compute its best response introduced in Algorithm 4 in
all the models {M̂(π1:H,j )}j∈[K], where K = poly(H,S) to

get {π⋆,j−i }j∈[K] and select the one π⋆,̂j−i for some ĵ with the
highest empirical rewards by rolling them out in the true
G. With the guarantee that there must be a j ∈ [K] such
that M̂(π1:H,j ) is a good approximation of G in the sense

of Definition 5, it can be shown that π⋆,̂j−i will be an approx-
imate best response in G with high probability. With the
best-response policy, we can select the equilibrium policy
with the lowest NE/CE/CCE-gap, which turns out to be an
approximate NE/CE/CCE in G .

6. Experimental Results
Information sharing improves performance. We con-
sider the popular deep MARL benchmarks, multi-agent
particle-world environment (MPE) (Lowe et al., 2017). We
train both state-of-the-art centralized-training algorithm
MAPPO and decentralized-training algorithm IPPO (Yu

Boxpushing Dectiger
Horizon Ours FM-E RNN-E Ours FM-E RNN-E
3 62.78 64.22 8.40 13.06 -6.0 -6.0
4 81.44 77.80 9.10 20.89 -4.76 -7.00
5 98.73 96.40 21.78 27.95 -6.37 -10.04
6 98.76 94.61 94.36 36.03 -7.99 -11.90
7 145.35 138.44 132.70 37.72 -7.99 -13.92

Table 1. Final evaluation rewards of our methods compared with
methods FM-E and RNN-E in (Mao et al., 2020).

et al., 2021) with different information-sharing mechanisms
by varying the information-sharing delay from 0 to∞. Note
that the original algorithm in (Yu et al., 2021) corresponds
to the case, where the delay is d =∞. The rewards during
training are shown in Figure 1. It is clear that in all domains
(except MAPPO on Spread) with either centralized training
or decentralized training, smaller delays, which correspond
to sharing more information will lead to faster convergence,
higher final performance, and reduced training variance. For
decentralized training where coordination is absent, sharing
information could be more useful.

Validating implementability and performance. To fur-
ther validate the tractability of our approaches, we test
our learning algorithm on two popular partially observable
benchmarks Dectiger (Nair et al., 2003) and Boxpushing
(Seuken & Zilberstein, 2012). Furthermore, for scalability
and compatibility with popular deep RL algorithms, we fit
the transition using neural networks instead of the count-
ing methods adopted in Algorithm 7. Both our algorithm
and baselines are trained with 80000 time steps. We com-
pare our approaches with two baselines, FM-E and RNN-E,
which are also common information-based approaches in
(Mao et al., 2020). The final rewards are reported in Ta-
ble 1. In both domains with various horizons, our methods
consistently outperform the baselines.
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Supplementary Materials for
“Partially Observable Multi-agent RL with (Quasi-)Efficiency:

The Blessing of Information Sharing”

A. Related Work
Decentralized stochastic control and decision-making. Decentralized stochastic control and decision-making are known
to have unique challenges, compared to the single-agent counterpart, since the seminal works (Witsenhausen, 1968; Tsitsiklis
& Athans, 1985). In particular, (Tsitsiklis & Athans, 1985) shows that variations of the classical “team decision problem” can
be NP-hard. Later, (Bernstein et al., 2002) shows that planning in Dec-POMDPs, a special class of POSGs with identical
reward functions among agents, can be NEXP-hard in finding the team-optimal solution. (Hansen et al., 2004) provides a
popular POSG planning algorithm, though without any complexity guarantees. There also exist other approximate/heuristic
algorithms for solving POSGs (Emery-Montemerlo et al., 2004; Kumar & Zilberstein, 2009; Horák et al., 2017).

Information sharing in theory and practice. The idea of information-sharing has been explored in decentralized
stochastic control (Witsenhausen, 1971; Nayyar et al., 2010; 2013b), as well as stochastic games with asymmetric information
(Nayyar et al., 2013a; Gupta et al., 2014; Ouyang et al., 2016). The common-information-based approach in the seminal
works (Nayyar et al., 2013a;b) provides significant inspiration for our work. However, no computation nor sample
complexities of algorithms were discussed in these works. On the other hand, information-sharing has become a normal
practice in empirical MARL, especially recently in deep MARL (Lowe et al., 2017; Foerster et al., 2018; Sunehag et al., 2018;
Rashid et al., 2020). The sharing was instantiated via so-called centralized training, where all agents’ information was shared
in training. Centralized training with shared information has been shown to significantly improve the learning efficiency.
One caveat is that these empirical works also popularize the centralized-training-decentralized-execution paradigm, while
our MARL algorithms under the common-information sharing framework require sharing in both training/learning and
execution.

Provable multi-agent reinforcement learning. There has been fast-growing literature on provable MARL algorithms
with sample efficiency guarantees, e.g., (Bai et al., 2020; Liu et al., 2020; Zhang et al., 2020; Xie et al., 2020; Zhang et al.,
2021b; Daskalakis et al., 2020; Jin et al., 2021; Song et al., 2021; Daskalakis et al., 2022; Mao et al., 2022). However, these
works have exclusively focused on the fully observable Markov/stochastic games. The only MARL algorithms under partial
observability that enjoy finite-sample guarantees, to the best of our knowledge, are those in (Liu et al., 2022b; Kozuno et al.,
2021). However, the algorithms in (Kozuno et al., 2021) only apply to POSGs with certain tree-structured transitions, while
those in (Liu et al., 2022b) require computationally intractable oracles.

RL in partially observable environments. It is known that in general, even planning in single-agent POMDPs can be
PSPACE-complete (Papadimitriou & Tsitsiklis, 1987) and thus computationally hard. Statistically, learning POMDPs
can also be hard in general (Krishnamurthy et al., 2016; Jin et al., 2020). There has thus been a growing literature on RL in
POMDPs with additional assumptions, e.g., (Azizzadenesheli et al., 2016; Jin et al., 2020; Liu et al., 2022a; Wang et al.,
2022; Zhan et al., 2022). However, these works only focus on statistical efficiency, and the algorithms usually require
computationally intractable oracles. More recently, (Golowich et al., 2022b) has identified the condition of γ-observability
in POMDPs, and has shown that quasi-polynomial-time-complexity planning algorithm exists for solving such POMDPs.
Subsequently, (Golowich et al., 2022a) has developed an RL algorithm based on the planning one in (Golowich et al.,
2022b), which is both sample and computation quasi-efficient.

B. Additional Definitions and Examples
B.1. Belief states

In such partially observable games, each agent cannot know the underlying state but could infer the underlying distribution
of states through the observations and actions. Following the convention in POMDPs, we call such distributions as the belief
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states. Such posterior distributions over states can be updated whenever the agent receives new observations and actions.
Formally, we define the belief update as:

Definition 8 (Belief state update). For each h ∈ [H + 1], the Bayes operator (with respect to the joint observation)
Bh : ∆(S)×O → ∆(S) is defined for b ∈ ∆(S), and y ∈ O by:

Bh(b;y)(x) =
Oh(y | x)b(x)∑
z∈SOh(y | z)b(z)

.

Similarly, for each h ∈ [H], i ∈ [n], we define the Bayes operator with respect to individual observations Bi,h : ∆(S)×Oi →
∆(S) by:

Bi,h(b;y)(x) =
Oi,h(y | x)b(x)∑
z∈SOi,h(y | z)b(z)

.

For each h ∈ [H], the belief update operator Uh : ∆(S)×A×O → ∆(S), is defined by

Uh(b;a,y) = Bh+1 (Th(a) · b;y) ,

where Th(a) · b represents the matrix multiplication. We use the notation bh to denote the belief update function, which
receives a sequence of actions and observations and outputs a distribution over states at the step h: the belief state at step
h = 1 is defined as b1(∅) = µ1. For any 1 ≤ h ≤H and any action-observation sequence (a1:h−1, o2:h), we inductively define
the belief state:

bh+1(a1:h, o2:h) = Th(ah) · bh(a1:h−1, o2:h),
bh(a1:h−1, o2:h) = Bh(bh(a1:h−1, o2:h−1);oh).

Also, we slightly abuse the notation and define the belief state containing individual observations as

bh(a1:h−1, o2:h−1, oi,h) = Bi,h(bh(a1:h−1, o2:h−1);oi,h).

We also define the approximate belief update using the most recent L-step history. For 1 ≤ h ≤H , we follow the notation of
(Golowich et al., 2022b) and define

b
apx,G
h (∅;D) =

µ1 if h = 1
D otherwise ,

where D ∈ ∆(S) is the prior for the approximate belief update. Then for any 1 ≤ h−L < h ≤H and any action-observation
sequence (ah−L:h−1, oh−L+1:h), we inductively define

b
apx,G
h+1 (ah−L:h, oh−L+1:h;D) = Th(ah) · b

apx,G
h (ah−L:h−1, oh−L+1:h;D),

b
apx,G
h (ah−L:h−1, oh−L+1:h;D) = Bh(b

apx,G
h (ah−L:h−1, oh−L+1:h−1;D);oh).

For the remainder of our paper, we shall use the important initialization for the approximate belief, which are defined as

b′h(ah−L:h−1, oh−L+1:h) := b
apx,G
h (ah−L:h−1, oh−L+1:h;Unif(S)).

B.2. Additional definitions of solution concepts

Definition 9 (ϵ-approximate Coarse Correlated Equilibrium). For any ϵ ≥ 0, a joint policy π⋆ ∈Π is an ϵ-approximate
Coarse Correlated Equilibrium of the POSG G if:

CCE-gap(π⋆) := max
i

(
max
π′i∈Πi

V
π′i×π

⋆
−i ,G

i,1 (∅)−V π⋆ ,G
i,1 (∅)

)
≤ ϵ.
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Definition 10 (ϵ-approximate Correlated Equilibrium). For any ϵ ≥ 0, a joint policy π⋆ ∈Π is an ϵ-approximate Correlated
Equilibrium of the POSG G if:

CE-gap(π⋆) := max
i

(
max
φi

V
(φi⋄π⋆i )⊙π

⋆
−i ,G

i,1 (∅)−V π⋆ ,G
i,1 (∅)

)
≤ ϵ,

where φi is called strategy modification and φi = {φi,h,ch,pi,h }h,ch,pi,h , with each φi,h,ch,pi,h : Ai → Ai being a mapping
from the action set to itself. The space of φi is denoted as Φi . The composition φi ⋄ πi will work as follows: at
the step h, when the agent i is given ch and pi,h, the action chosen to be (a1,h, · · · , ai,h, · · · , an,h) will be modified to
(a1,h, · · · ,φi,h,ch,pi,h(ai,h), · · · , an,h). Note this definition follows the definition in (Song et al., 2021; Liu et al., 2021; Jin et al.,
2021) when there exists common information and is a natural generalization from the normal-form game case (Roughgarden,
2010).

B.3. Additional definitions of value functions and policies

First, we define the prescription-value function in the POSG G below as a generalization of action-value function in Markov
game.

Definition 11 (Prescription-value function). At step h, given the common information ch, joint policies π = {πi}ni=1, and
prescriptions {γi,h}ni=1, the prescription-value function of the ith agent is defined as:

Qπ,Gi,h (ch, {γj,h}j∈[n]) := E
G
π[ri,h+1(oh+1) +V

π,G
i,h+1(ch+1) |ch, {γj,h}j∈[n]],

where the prescription γi,h ∈ ∆(Ai)Pi,h replaces the partial function πi,h(· |ωi,h, ch, ·) in the value function.

This prescription-value function indicates the expected return for the ith agent when all agents firstly adopt the prescriptions
{γj,h}j∈[n] and then follow the policy π.

With the expected approximate common information modelM defined in Definition 5, we can define the value function and
policy underM accordingly as follows.

Definition 12 (Value function and policy underM). Given an approximate common information modelM. For any policy
π ∈Π, for each i ∈ [n],h ∈ [H], we define the value function as

V π,M
i,h (ch) = E{ωj,h}j∈[n]E

M [̂ri,h+1(oh+1) +V
π,M
i,h+1(ch+1) | ĉh, {πj,h(· |ωj,h, ch, ·)j∈[n]}]. (B.1)

For any cH+1 ∈ CH+1, we define V π,M
i,H+1(cH+1) = 0. Furthermore, for a policy π̂ whose π̂i,h :Ωh ×Pi,h × Ĉh→ ∆(Ai) takes

approximate instead of the exact common information as the input, we define

V π̂,M
i,h (̂ch) = E{ωj,h}j∈[n]E

M [̂ri,h+1(oh+1) +V
π̂,M
i,h+1(̂ch+1) | ĉh, {π̂j,h(· |ωj,h, ĉh, ·)j∈[n]}], (B.2)

where similarly, for each ĉH+1 ∈ ĈH+1, we define V π̂,M
i,H+1(̂cH+1) = 0. With a slight abuse of notation, sometimes π̂i,h may

also take ch ∈ Ch as input and thus π̂ ∈Π. In this case, whenM and the corresponding compression function Compressh
are clear from the context, it means π̂i,h(· | ·, ch, ·) := π̂i,h(· | ·,Compressh(ch), ·). Accordingly, in this case, the definitions of
V π̂,G
i,h (ch) and V π̂,M

i,h (ch) follows from Definition 1 and Equation (B.1), respectively.

B.4. More examples of information sharing

Example 4 (Information sharing with one-directional-one-step delay). Similar to the previous cases, we also assume there
are 2 players for convenience. Similar to the one-step delay case, we consider the situation where all observations of the
player 1 are available to player 2, while the observations of player 2 are available to player 1 with one-step delay. All
past actions are available to both players. That is, in this case, ch = {o1,2:h, o2,2:h−1, a1:h−1}, and player 1 has no private
information, i.e., p2,h = ∅, and player 2 has private information p2,h = {o2,h}.
Example 5 (Uncontrolled state process). Consider the case where the state transition does not depend on the actions, that
is, Th(· | sh, ah) = Th(· | sh, a′h) for any sh, ah, a′h,h. Note here the evolution of common and private information does not
need include the actions anymore since doing so does not lose any optimality. Meanwhile, different agents are still coupled
through the joint cost. An example of this case is the information structure where controllers share their observations
with a delay of d ≥ 1 time steps. In this case, the common information is ch = {o2:h−d} and the private information is
pi,h = {oi,h−d+1:h}.
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B.5. Model-belief consistency

Definition 13. We say the approximate common information modelM is consistent with some belief {PM,c
h (sh,ph | ĉh)}h∈[H]

if it satisfies the following for any i ∈ [n], h ∈ [H],

P
M,z
h (zh+1 | ĉh,γh) =

∑
sh

∑
ph,ah,oh+1:χh+1(ph,ah,oh+1)=zh+1

P
M,c
h (sh,ph | ĉh) Πn

j=1γj,h(aj,h |pj,h)
∑
sh+1

Th(sh+1 |sh, ah)Oh+1(oh+1 |sh+1),

(B.3)

P
M,o
h (oh+1 | ĉh,γh) =

∑
sh,ph,ah

P
M,c
h (sh,ph | ĉh) Πn

j=1γj,h(aj,h |pj,h)
∑
sh+1

Th(sh+1 |sh, ah)Oh+1(oh+1 |sh+1). (B.4)
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C. Collection of Algorithm Pseudocodes
Here we collect both our planning and learning algorithms as in Algorithms 1, 2, 3, 4, 5, 6. For a high-level overview of our
algorithmic framework, we refer to Figure 2.

Common information evolution:

Virtual coordinator:

Common information-based
decomposition

(Nayyar et al 2013a,b)

Proposition C.7 

Computing equilibrium in prescription space

Brute-force search

Decision making from the perspective of the virtual coordinator

Figure 2. An overview of our algorithmic framework. The left part of the figure shows that there is a virtual coordinator collecting the
information shared among agents. Based on the common information ch, it will compute an equilibrium in the prescription space and
assign it to all the agents. The right part shows the computation of equilibrium. Let’s take the example of Ai = 2, Pi,h = 3, Ch = 2. If

we search over all deterministic prescriptions, the corresponding matrix game will have the size of A
ChPi,h
i = 64. Then (Nayyar et al.,

2013a;b) propose the common information-based decomposition and solves Ch games of smaller size. However, (Nayyar et al., 2013b)

treats each deterministic prescription as an action and the size of each sub-game will be A
Pi,h
i = 8. Furthermore, Proposition 9 shows

that we can reformulate each sub-game as a game whose payoff is multi-linear with respect to each agent’s prescription, and whose
dimensionality is AiPi,h = 6.

Algorithm 1 Value iteration with common information

Input: G,ϵe
for each i ∈ [n] and cH+1 do

V ⋆,G
i,H+1(cH+1)← 0

end for
for h =H, · · · ,1 do

for each ch do
Define Q⋆,Gi,h (ch,γ1,h, · · · ,γn,h) := Esh,ph∼P

G
h (·,· |ch)

E{aj,h∼γj,h(· |pj,h)}j∈[n]Eoh+1∼O⊤h+1Th(· |sh,ah)
[ri,h+1(oh+1) +

V ⋆,G
i,h+1(ch+1)](

π⋆1,h(· | ·, ch, ·), · · · ,π
⋆
n,h(· | ·, ch, ·)

)
← NE/CE/CCE({Q⋆,Gi,h (ch, ·, · · · , ·)}

n
i=1,ϵe) // we refer the implementation to

§E.2
for each i ∈ [n] do

V ⋆,G
i,h (ch)← E{ωj,h}j∈[n]Esh,ph∼P

G
h (·,· |ch)

E{aj,h∼π⋆j,h(· |ωj,h,ch,pj,h)}j∈[n]
Eoh+1∼O⊤h+1Th(· |sh,ah)

[ri,h+1(oh+1) +V
⋆,G
i,h+1(ch+1)]

end for
end for

end for
return π⋆
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Algorithm 2 BR(G,π, i,ϵe): Best Response for agent i

Input: G,π, i,ϵe
V ⋆,G
i,H+1(cH+1)← 0 for all cH+1

for h =H, · · · ,1 do
for each ch do

Define Q⋆,Gi,h (ch,γ1,h, · · · ,γn,h) := Esh,ph∼P
G
h (·,· |ch)

E{aj,h∼γj,h(· |pj,h)}j∈[n]Eoh+1∼O⊤h+1Th(· |sh,ah)
[ri,h+1(oh+1) +

V ⋆,G
i,h+1(ch+1)]

π⋆i,h(· | ·, ch, ·)←NE/CE/CCE-BR(Q⋆,Gi,h (ch, ·, · · · , ·), {πj,h(· | ·, ch, ·)}j∈[n], i,ϵe) // we refer the implementation to
§E.2

V ⋆,G
i,h (ch)← E{ωj,h}j∈[n]Esh,ph∼P

G
h (·,· |ch)

Eai,h∼π⋆i,h(· |ωi,h,ch,pi,h),a−i,h∼π−i,h(· |ω−i,h,ch,p−i,h)
Eoh+1∼O⊤h+1Th(· |sh,ah)

[ri,h+1(oh+1)+

V ⋆,G
i,h+1(ch+1)]

end for
end for
return π⋆i

Algorithm 3 VIACM(M,ϵe): Value Iteration with (expected) Approximate Common-Information Model

Input:M,ϵe
for each i ∈ [n] and ĉH+1 do

V ⋆,M
i,H+1(̂cH+1)← 0

end for
for h =H, · · · ,1 do

for each ĉh do
Define Q⋆,Mi,h (̂ch,γ1,h, · · · ,γn,h) := E

M [̂ri,h+1(oh+1) +V
⋆,M
i,h+1(̂ch+1) | ĉh, {γj,h}j∈[n]] for any i ∈ [n](

π̂⋆1,h(· | ·, ĉh, ·), · · · , π̂
⋆
n,h(· | ·, ĉh, ·)

)
←NE/CE/CCE({Q⋆,Mi,h (̂ch, ·, · · · , ·)}ni=1,ϵe) // we refer the implementation to

§E.2
for each i ∈ [n] do

V ⋆,M
i,h (̂ch)← E{ωj,h}j∈[n]E

M [̂ri,h+1(oh+1) +V
⋆,M
i,h+1(̂ch+1) | ĉh, {π̂

⋆
j,h(· |ωj,h, ĉh, ·)}j∈[n]]

end for
end for

end for
return π̂⋆

Algorithm 4 ABR(M, π̂, i,ϵe): Approximate Best Response for agent i under approximate common information model

Input:M, π̂, i,ϵe
V ⋆,M
i,H+1(̂cH+1)← 0 for all ĉH+1

for h =H, · · · ,1 do
for each ĉh do

Define Q⋆,Mi,h (̂ch,γ1,h, · · · ,γn,h) := E
M [̂ri,h+1(oh+1) +V

⋆,M
i,h+1(̂ch+1) | ĉh, {γj,h}j∈[n]]

π̂⋆i,h(· | ·, ĉh, ·)←NE/CE/CCE-BR(Q⋆,Mi,h (̂ch, ·, · · · , ·), {π̂j,h(· | ·, ĉh, ·)}j∈[n], i,ϵe) // we refer the implementation to
§E.2

V ⋆,M
i,h (̂ch)← E{ωj,h}j∈[n]E

M [̂ri,h+1(oh+1) +V
⋆,M
i,h+1(̂ch+1) | ĉh, {π̂

⋆
i,h(· |ωi,h, ĉh, ·), π̂−i,h(· |ω−i,h, ĉh, ·)}]

end for
end for
return π̂⋆i
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Algorithm 5 Construct(π1:H,j , {̂rji }
n
i=1, {Ĉh}h∈[H+1], {φ̂h+1}h∈[H],Γ ,ζ1,ζ2,θ1,θ2,δ1): Constructing empirical estimator

M̂(π1:H ) of M̃(π1:H )

Input: π1:H,j , {̂rji }
n
i=1, {Ĉh}h∈[H+1], {φ̂h+1}h∈[H],Γ ,ζ1,ζ2,θ1,θ2,δ1

for 1 ≤ h ≤H do
Define N0 as in Equation (D.1).
Draw N0 independent trajectories by executing the policy πh,j , and denote the kth trajectory by (ak1:H−1, o

k
2:H ), for

k ∈ [N0].
for each ĉh ∈ Ĉh do

Define ϕ(ph) := |{k : Compressh(fh(a
k
1:h−1, o

k
2:h)) = ĉh, and gh(ak1:h−1, o

k
2:h) = ph}|.

Set PM̂(π1:H )
h (ph |̂ch) :=

ϕ(ph)∑
p′h
ϕ(p′h)

for all ph ∈ Ph.

end for
for each ĉh ∈ Ĉh, ph ∈ Ph, ah ∈ A do

Define ψ(oh+1) := |{k : Compressh(fh(a
k
1:h−1, o

k
2:h)) = ĉh, gh(a

k
1:h−1, o

k
2:h) = ph, a

k
h = ah, and okh+1 = oh+1}|.

Set PM̂(π1:H )
h (oh+1 |̂ch,ph, ah) :=

ψ(oh+1)∑
o′h+1

ψ(o′h+1)
for all oh+1 ∈ O.

end for
end for
Define for any h ∈ [H], ĉh ∈ Ĉh, γh ∈ Γh, oh+1 ∈ Oh+1, zh+1 ∈ Zh+1:

P
M̂(π1:H ),z
h (zh+1 | ĉh,γh)←

∑
ph,ah,oh+1:χh+1(ph,ah,oh+1)=zh+1

P
M̂(π1:H )
h (ph |̂ch)Πn

i=1γi,h(ai,h |pi,h)P
M̂(π1:H )
h (oh+1 |̂ch,ph, ah)

P
M̂(π1:H ),o
h (oh+1 | ĉh,γh)←

∑
ph,ah

P
M̂(π1:H )
h (ph |̂ch)Πn

i=1γi,h(ai,h |pi,h)P
M̂(π1:H )
h (oh+1 |̂ch,ph, ah)

return M̂(π1:H ) := ({Ĉh}h∈[H+1], {φ̂h+1}h∈[H], {P
M̂(π1:H ),z
h ,P

M̂(π1:H ),o
h }h∈[H],Γ , {̂r

j
i }
n
i=1

Algorithm 6 PoS({M̂(π1:H,j )}j∈[m], {π⋆,j }Kj=1,ϵe,N2): Policy Selection

Input: {M̂(π1:H,j )}j∈[m], {π⋆,j }Kj=1,ϵe,N2

for i ∈ [n], j ∈ [K],m ∈ [K] do
π
⋆,j,m
i ← ABR(M̂(π1:H,m),π⋆,j , i,ϵe) //i.e., Algorithm 4

end for
for j ∈ [K] do

Execute π⋆,j for N2 trajectories and let the mean reward for player i be Rji
end for
for i ∈ [n], j ∈ [K],m ∈ [K] do

Execute π⋆,j,mi ⊙π⋆,j−i for N2 trajectories and let the mean reward for player i be Rj,mi
end for
ĵ← argminj

(
maximaxm(R

j,m
i −R

j
i )
)

return π⋆,̂j
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Algorithm 7 LACI(G, {Ĉh}h∈[H+1], {φ̂h+1}h∈[H],Γ , L̂,ϵ,δ2,ζ1,ζ2,θ1,θ2,δ1,N2,ϵe): Learning with Approximate Common
Information

Input: G, {Ĉh}h∈[H+1], {φ̂h+1}h∈[H],Γ , L̂,ϵ,δ2,ζ1,ζ2,θ1,θ2,δ1,N2,ϵe

{π1:H,j }Kj=1, {{̂r
j
i }
n
i=1}

K
j=1← BaSeCAMP(G, L̂,ϵ,δ2) // i.e., Algorithm 3 of (Golowich et al., 2022a)

for j ∈ [K] do
M̂(π1:H,j )← Construct(π1:H,j , {̂rji }

n
i=1, {Ĉh}h∈[H+1], {φ̂h+1}h∈[H],Γ ,ζ1,ζ2,θ1,θ2,δ1) // i.e., Algorithm 5

π⋆,j ← VIACM(M̂(π1:H,j ),ϵe) // i.e., Algorithm 3
end for
π⋆,̂j ← PoS({M̂(π1:H,j )}Kj=1, {π

⋆,j }Kj=1,ϵe,N2) // i.e., Algorithm 6

return π⋆,̂j

21



Partially Observable Multi-agent RL with (Quasi-)Efficiency: The Blessing of Information Sharing

D. Full Versions of the Results
D.1. Hardness of finding team optimum and NE/CE/CCE

Throughout, we mainly consider the NE, CE, and CCE as our solution concepts. However, in Dec-POMDPs, a special class
of POSGs with common rewards, a more common and favorable objective is the team optimum, where all agents jointly
maximize the same expected return. In normal-form games, this team-optimal policy can be achieved by choosing the entry
with the largest value in the payoff matrix and naturally extends to cooperative Markov games, when the model is known
and the algorithm is centralized. However, in Dec-POMDPs, when partial observations appear, computing even approximate
team optimal policies is NEXP-complete (Bernstein et al., 2002; Rabinovich et al., 2003), which means algorithms as in
(Hansen et al., 2004) may take doubly exponential time in the worst case.

Then a natural question arises: if Dec-POMDPs have some favorable information-sharing structures, is computing the
team-optimal policy still intractable? Unfortunately, even the agents share all the information without delays, which makes
this Dec-POMDP a centralized POMDP, it is still PSPACE-complete to find the (team-)optimal solution (Papadimitriou
& Tsitsiklis, 1987).

Recently, (Golowich et al., 2022b) considers observable POMDPs that rule out the ones with uninformative observations,
for which computationally (quasi)-efficient algorithms can be developed. For POSGs including Dec-POMDPs, we could
make a similar observability assumption, Assumption 2, on the joint observations, in the hope of obtaining computational
(quasi)-efficiency.

This assumption only holds for the undercomplete setting where S ≤ O. For the overcomplete setting, whether there
also exists a computationally tractable algorithm is still open even for POMDPs. In fact, this observability assumption is
equivalent (up to a factor of at most

√
O) to the ϵ-weakly revealing condition in (Liu et al., 2022b), under which there also

exists statistically efficient algorithms. Directly adopting the main conclusion from (Golowich et al., 2022b), we can obtain
the guarantee that with this full information sharing, there exists a quasi-polynomial algorithm computing the approximate
team-optimal policy (see Proposition 4).

Given this simple positive result, one may wonder for Dec-POMDPs if we relax the strict requirement of fully sharing, but
only with partial information sharing (but still under Assumption 2), is computing the team optimal policy still tractable?
Unfortunately, we show that even under the strong sharing structure of only one-step delayed sharing, computing the team
optimal policy is NP-hard. The formal proposition is introduced here.

Proposition 2. With 1-step delayed information-sharing structure and Assumption 2, computing the team optimal policy in
Dec-POMDPs with n = 2 is NP-hard.

Proposition 2 implies that the standard observability assumption as in both single- (Golowich et al., 2022a) and multi-agent
(Liu et al., 2022b) partially observable RL (i.e., Assumption 2) is not enough. Hence, instead of finding the overall team-
optimum, hereafter we will mainly focus on finding the approximate equilibrium solutions (also known as person-by-person
optimum in the team decision literature (Radner, 1962; Ho, 1980)). In particular, we focus on finding the NE in zero-sum
or cooperative games, and CE/CCE in general-sum games, which are weaker notions than the team optimal solution in
Dec-POMDPs.

Although the tractability of NE/CE/CCE in both zero-sum and general-sum normal-form games has been extensively studied,
its formal tractability in POSGs has been less studied. Here by the following proposition, we will show that both Assumption
2 and some favorable information-sharing structure are necessary for NE/CE/CCE to be a computationally tractable solution
concept even for zero-sum or cooperative POSGs, the proof of which is deferred to §E.1.

Proposition 3. For zero-sum or cooperative POSGs with only information sharing structures, or only Assumption 2, but not
both, computing ϵ-NE/CE/CCE is PSPACE-hard.

This proposition shows that in order to seek a tractable algorithm even in zero-sum or cooperative POSGs, and even for the
approximate and more relaxed solution concepts as CE/CCE, the condition of informative observations in Assumption 2 and
the sharing of information are both necessary, in the sense that missing either one of them would make seeking approximate
NE/CE/CCE computationally hard.
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D.2. Planning

Here we state and prove our claims regarding planning in POSGs with the fully-sharing structure in §4.1.

Proposition 4. Let ϵ > 0. Suppose the POSG G has a fully sharing structure and satisfies Assumption 2, then there is an
algorithm that outputs an ϵ-suboptimal joint policy and has quasi-polynomial time complexity H(AO)Cγ

−4 log( SHϵ ) for some
universal constant C > 0, where we recall γ is the constant appeared in Assumption 2.

To prove this, we first notice the following fact:

Fact 1. A Dec-POMDP with fully sharing structures can be solved by treating it as a (centralized) POMDP. The only
difference is that in Dec-POMDPs, we care about policy πi ∈ Π̃i . Meanwhile, a POMDP planning algorithm will provide a
solution π⋆ ∈Πgen, where there could be a potential correlation among agents when taking actions. However, since there
always exists deterministic solutions in POMDPs (Kaelbling et al., 1998) and as long as π⋆ is deterministic, it could be
splitted into π⋆ = (π1,π2, · · · ,πn) such that πi ∈ Π̃i .

Hence, Proposition 4 comes from Fact 1 since the planning algorithm in (Golowich et al., 2022b) computes a deterministic
policy, the Dec-POMDP is essentially a centralized POMDP, with joint observation and action space.

Below we state the full version of Theorem 2.

Theorem 6. Fix ϵr ,ϵz,ϵe > 0. Suppose there exists an (ϵr ,ϵz)-expected-approximate common information modelM for
the POSG G that satisfies Assumption 3. Furthermore, ifM is consistent with some given belief {PM,c

h (sh,ph | ĉh)}h∈[H],
then there exists a planning algorithm (Algorithm 1) outputting π̂⋆ such that NE-gap(π̂⋆) ≤ 2Hϵr +H2ϵz +Hϵe, if G is
zero-sum or cooperative, and CE/CCE-gap(π̂⋆) ≤ 2Hϵr +H2ϵz +Hϵe if G is general-sum, where the time complexity is
maxh∈[H] Ĉh ·poly(S,A,Ph,H, 1ϵe ).

Now let us state the full version of Theorem 3.

Theorem 7. Fix ϵ > 0. Suppose the POSG G satisfies Assumption 2. There exists a quasi-polynomial time algorithm
computing ϵ-NE if G is zero-sum or cooperative and ϵ-CE/CCE if G is general-sum with the following information-sharing
structures and time complexities, where we recall γ is the constant appeared in Assumption 2:

• One-step delayed information sharing: (AO)Cγ
−4 log SH

ϵ for some universal constant C > 0.
• State controlled by one controller with asymmetric d = poly(logH)-step delayed sharing sharing:
(AO)C(γ

−4 log SH
ϵ +d) for some constant C > 0.

• Information sharing with one-directional-one-step delay: (AO)Cγ
−4 log SH

ϵ for some universal constant C > 0.
• Uncontrolled state process with d = poly(logH)-step delayed sharing: (AO)C(γ

−4 log SH
ϵ +d) for some universal

constant C > 0.
• Symmetric information game: (AO)Cγ

−4 log SH
ϵ for some universal constant C > 0.

D.3. Learning

Here we state the full version of Theorem 4.

Theorem 8. Given compression function of common information, Compressh : Ch→ Ĉh for h ∈ [H], L̂ is as defined in
Definition 7. Given H policies π1:H , where πh ∈Πgen, πh

h−L̂:h
= Unif(A) for h ∈ [H], and approximate reward functions

r̂ = {(̂ri,h)ni=1}
H
h=1, assume M̃(π1:H ) is an (ϵr (π1:H , r̂),ϵz(π1:H ))-approximate common information model of G that satisfies

Assumption 3. Fix some parameters δ1,θ1,θ2,ζ1,ζ2 > 0 for Algorithm 5, ϵe > 0 for Algorithm 3, and φ > 0, define the
approximation error for estimating M̃(π1:H ) using samples under the policy π1:H as:

ϵapx(π
1:H , L̂,ζ1,ζ2,θ1,θ2,φ) =Oθ1 +2Amax

h
Ph
ζ2
ζ1

+Amax
h
Phθ2 +

A2̂LOL̂ζ1
φ

+max
h

max
π∈Πgen

1[h > L̂] · 2 · dπ,G
S ,h−L̂

(
UG
φ,h−L̂

(πh)
)
,

where for any policy π′ ∈ Πgen,h ∈ [H],φ > 0, we define dπ
′ ,G
S ,h (s) := P

π′ ,G
h (sh = s), UGφ,h(π

′) := {s ∈ S : dπ
′ ,G
S ,h (s) < φ},

representing the under-explored states under the policy π′ .
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Then, Algorithm 5 can learn an model M̂(π1:H ) with the sample complexity

N0 =max

C(maxh Ph + log 4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

,
CA(O+ log 4Hmaxh(ĈhPh)A

δ1
)

ζ2θ
2
2

 , (D.1)

for some universal constant C > 0, such that with probability at least 1− δ1, for any policy π ∈Π, and i ∈ [n]:∣∣∣∣V π,G
i,1 (∅)−V π,M̂(π1:H )

i,1 (∅)
∣∣∣∣ ≤H · ϵr (π1:H , r̂) +

H2

2
ϵz(π

1:H ) +
(
H2

2
+H

)
ϵapx(π

1:H , L̂,ζ1,ζ2,θ1,θ2,φ).

Furthermore, the policy output from the planning on M̂(π1:H ) is an ϵ-NE if G zero-sum or cooperative and ϵ-CE/CCE if G
is general-sum, where

ϵ :=Hϵr (π
1:H , r̂) +H2ϵz(π

1:H ) + (H2 +H)ϵapx(π
1:H , L̂,ζ1,ζ2,θ1,θ2,φ) +Hϵe.

Below we state the full version of Theorem 5.

Theorem 9. Fix ϵ,δ > 0. Suppose the POSG G satisfies Assumption 2. There exists a multi-agent RL algorithm (Algorithm
7) that learns an ϵ-NE if G is zero-sum or cooperative and ϵ-CE/CCE if G is general-sum with probability 1− δ, under the
following information-sharing structures and corresponding sample and time complexities:

• One-step delayed information sharing: (AO)Cγ
−4 log SHO

γϵ log 1
δ for some universal constant C > 0.

• State controlled by one controller with asymmetric d = poly(logH)-step delayed sharing sharing:
(AO)C(γ

−4 log SHO
γϵ +d) log 1

δ for some constant C > 0.

• Information sharing with one-directional-one-step delay: (AO)Cγ
−4 log SHO

γϵ log 1
δ for some universal constant C > 0.

• Uncontrolled state process with d = poly(logH)-step delayed sharing: (AO)C(γ
−4 log SHO

γϵ +d) log 1
δ for some univer-

sal constant C > 0.
• Symmetric information game: (AO)Cγ

−4 log SHO
γϵ log 1

δ for some universal constant C > 0.
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E. Technical Details and Omitted Proofs
E.1. Hardness of finding team optimum and NE/CE/CCE

To prove Proposition 2, we will firstly consider Dec-POMDPs with H = 1 and then connect the 1-step Dec-POMDP with
Dec-POMDPs that have 1-step delayed sharing. We will show the reduction from Team Decision Problem (Tsitsiklis &
Athans, 1985):

Problem 1 (Team Decision Problem). Given finite sets Y1, Y2, U1, U2, a rational probability function p : Y1 ×Y2→Q and
an integer cost function c : Y1 ×Y2 ×U1 ×U2→N, find decision rules γi : Yi →Ui , i = 1,2, which minimize the expected
cost:

J(γ1,γ2) =
∑
y1∈Y1

∑
y2∈Y2

c(y1, y2,γ1(y1),γ2(y2))p(y1, y2).

Proposition 5. Without any information sharing, computing jointly team optimal policies in Dec-POMDP with H = 1,
n = 2 is NP-hard.

Proof. We can notice that the team decision problem is quite similar as our two-agent one-step Dec-POMDP. The only
difference in Dec-POMDP is that the joint observations are sampled given the initial state, which is again sampled from µ1.
Now we will show how to reduce the team decision problem to a Dec-POMDP. For any team decision problem, we can
construct the following Dec-POMDP:

• Ai = Ui , i = 1,2
• Oi = Yi ∪ (Yi ×Ui), i = 1,2
• S = O1 ×O2
• O(o1,h, o2,h |sh) = 1 if sh = (o1,h, o2,h), else 0, for h ∈ {1,2}.
• r2(o1,2, o2,2) = −c(y1, y2, a1, a2), where o1,2 = (y1, a1) and o2,2 = (y2, a2). We also define r1 = 0.
• µ1(s1) = p(y1, y2), where s1 = (y1, y2)
• T1(s2 |s1, a1, a2) = 1 if s2 = (s1, a1, a2).

Based on the construction, computing the optimal policies (π⋆1,1,π
⋆
2,1) under the no-sharing structures in the reduced

Dec-POMDP problem will give us the optimal policies (γ⋆1 ,γ
⋆
2 ) in the original team decision problem. Concretely,

γ⋆i (yi) = π
⋆
i,1(oi,1), where oi,1 = yi . Given the NP-hardness of the team decision problem shown in (Tsitsiklis & Athans,

1985), solving the corresponding Dec-POMDP without information sharing is also NP-hard.

This result immediately implies the hardness of Dec-POMDPs with 1-step delayed sharing structure:

Proposition 6. With 1-step delayed information-sharing structure, computing jointly team optimal policies in Dec-POMDPs
with n = 2 is at least NP-hard.

Proof. Since there exists 1-step delay for the common information to be shared, when the Dec-POMDPs have only 1-step,
there is no shared common information among agents. Therefore, based on Proposition 5, which concerns exactly such a
case, computing joint optimal policies in Dec-POMDPs with n = 2 is also at least NP-hard.

Finally, we are ready to prove Proposition 2.

Proof. Similar to the proof of Proposition 6, it suffices to show that the proposition holds for Dec-POMDPs, with H = 1
and without information sharing. Note in the proof of Proposition 5, the constructed Dec-POMDPs has the state space
defined as the joint observation space (the Cartesian product of the individual observation space), the observation emission
is actually a one-to-one mapping from state space to joint observation space. Correspondingly, Oh is indeed an identity
matrix. Therefore, we have

∥∥∥O⊤h b −O⊤h b′∥∥∥1 = ∥b − b′∥1, for any b,b′ ∈ ∆(S), verifying that γ = 1.

Now let us restate and prove our hardness results regarding NE/CE/CCE in Proposition 3 as the following two propositions.

Proposition 7. For zero-sum or cooperative POSGs with any kind of information-sharing structure (including the fully-
sharing structure), computing ϵ-NE/CE/CCE is PSPACE-hard.
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Proof. The proof leverages the known results of the hardness of solving POMDPs. Given any instance of POMDPs, one
could add a dummy player with only one dummy observation and one available action, which does not affect the transition,
and use any desired information-sharing strategy. Since this dummy player only has one action and therefore it has only one
policy. And the reward could be identical to the original player for cooperative games or the opposite of that for zero-sum
games. Therefore, ϵ-NE/CE/CCE in this constructed POSGs with desired information-sharing strategy gives the ϵ-optimal
policy in the original POMDP. Given the known PSPACE-hardness of POMDPs (Papadimitriou & Tsitsiklis, 1987;
Lusena et al., 2001), we conclude our proof.

Proposition 8. For zero-sum or cooperative POSGs satisfying Assumption 2 without information sharing, computing
ϵ-NE/CE/CCE is PSPACE-hard.

Proof. Similar to the proof of Proposition 7, given any instance of POMDPs, we could add a dummy player with only one
available action, and the observation of the dummy player is exactly the underlying state. Formally, given an instance of
POMDP P = (SP ,AP ,OP , {OPh }h∈[H+1], {TPh }h∈[H+1], r

P ), we construct the POSG G as follows:

• S = SP .
• A1 =AP , and A2 = {∅}.
• O1 = OP , and O2 = SP .
• For any h ∈ [H +1], o1,h ∈ O1, o2,h ∈ O2, sh ∈ S , it holds that

Oh(o1,h, o2,h |sh) =

OPh (o1,h |sh) if o2,h = sh
0 otherwise ,

• For any h ∈ [H +1], a1,h ∈ A1, a2,h ∈ A2, sh, sh+1 ∈ S , it holds that Th(sh+1 |sh, a1,h, a2,h) = T
P
h (sh+1 |sh, a1,h).

• For any h ∈ [H +1], o1,h ∈ O1, o2,h ∈ O2, it holds that r1,h(o1,h, o2,h) = r
P
h (o1,h), and r2 = r1 for cooperative games and

r2 = −r1 for zero-sum games.

Now we are ready to verify that the joint observation emission satisfies Assumption 2 with γ = 1. Consider any b,b′ ∈ ∆(S),
denote b − b′ = (δs)

⊤
s∈S as the column vector. For any h ∈ [H +1], it holds that

∥O⊤h (b − b
′)∥1 =

∑
o1,h,o2,h

|
∑
s∈S

Oh(o1,h, o2,h |s)δs | =
∑

o1,h,o2,h

|Oh(o1,h |o2,h)δo2,h | =
∑
o2,h

|δo2,h | = ∥b − b
′∥,

which verifies that γ = 1 for our constructed POSG. Computing ϵ-NE/CE/CCE in such a 1-observable POSG immediately
gives us the ϵ-optimal policy in the original POMDP. Furthermore, note that γ ≤ 1 for any possible emission, therefore, the
conclusion also holds for any γ-observable POSG, which proves our conclusion.

Finally, we provide the proof for Lemma 1.

Proof. Fix any h ∈ [H + 1]. If each player has perfect recall, then it holds that for any joint history (a1, o2, · · · , oh) ∈
Oh−1 ×Ah−1, there exists some ch ∈ Ch and ph ∈ Ph such that (ch,ph) = (a1, o2, · · · , ah−1, oh). Therefore, we conclude that
Oh−1 ×Ah−1 ⊆ Ch ×Ph, implying that ChPh ≥ (OA)h−1.

E.2. Common information-based value iteration for POSGs

Similar to the value iteration algorithm in Markov games (Shapley, 1953), which solves a normal-form game at each step,
we utilize a similar value iteration framework. However, it is not really possible to utilize the structure in Equation (2.4)
to perform backward induction since {Pπ1:h−1,Gh (sh,ph |ch)}h∈[H] has dependency on the past policies π1:h−1. Therefore, to

compute π⋆h , one not only needs to know π⋆h+1:H but also π⋆1:h−1 because of the dependence of Pπ1:h−1,Gh on π1:h−1. However,
with Assumption 3, we can actually avoid the dependency on past policies and have

V π,G
i,h (ch) = E{ωj,h}j∈[n]Esh,ph∼P

G
h (·,· |ch)

E{aj,h∼πj,h(· |ωj,h,ch,pj,h)}j∈[n]Eoh+1∼O⊤h+1Th(· |sh,ah)
[ri,h+1(oh+1) +V

π,G
i,h+1(ch+1)].

With Assumption 3, we are ready to present our Algorithm 1.
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Now we will discuss the three equilibrium or best response (BR) subroutines we consider, where NE or NE-BR is used for
zero-sum or cooperative games, and CE/CCE (or CE/CCE-BR) is used for general-sum games for computation tractability.
To find efficient implementation for these subroutines, we need the following important properties on the prescription-value
function.

Proposition 9. Q⋆,Gi,h (ch,γ1,h, · · · ,γn,h) defined in Algorithm 1 is linear with respect to each γi,h. More specifically, we have:

∂Q⋆,Gi,h (ch,γ1,h, · · · ,γn,h)
∂γi,h(ai,h |pi,h)

= (E.1)∑
s′h,p

′
−i,h

∑
a′−i,h

P
G
h (s
′
h,pi,h,p

′
−i,h |ch)γ−i,h(a

′
−i,h |p

′
−i,h)

∑
oh+1,s

′
h+1

Oh+1(oh+1|s′h+1)Th(s
′
h+1|s

′
h, ah)[ri,h+1(oh+1) +V

⋆,G
i,h+1(ch+1)].

Proof. The partial derivative can be easily verified by algebraic manipulations and the definition of Q⋆,Gi,h . From Equation

(E.1), we could notice γi,h does not appear on the RHS, which proves Q⋆,Gi,h (ch,γ1,h, · · · ,γn,h) is linear with respect to
γi,h.

With such kind of linear structures, we are ready to introduce how to implement those oracles efficiently.

• The NE subroutine will give us the approximate NE γ⋆1,h, · · · ,γ
⋆
n,h up to some error ϵe, which satisfies:

Q⋆,Gi,h (ch,γ
⋆
i,h,γ

⋆
−i,h) ≥ max

γi,h∈∆(Ai )
Pi,h
Q⋆,Gi,h (ch,γi,h,γ

⋆
−i,h)− ϵe,∀i ∈ [n].

This NE subroutine will be intractable for general-sum games even with only two players (Daskalakis et al., 2009; Chen
et al., 2009). However, for cooperative games and zero-sum games, this NE subroutine can be implemented efficiently.
At first look, this can be done by formulating it as a normal-form game, where each agent has the corresponding action
space APi,hi . However, this could not be tractable since the action space is indeed exponentially large. Fortunately, for
cooperative games and two-player zero-sum games, we could utilize the linear (concave) structure, where γi,h is a
vector of dimension AiPi,h to develop an efficient algorithm to compute ϵe-NE using standard no-external-regret or
specifically gradient-play algorithms (Daskalakis et al., 2011; Zhang et al., 2021c; Leonardos et al., 2022; Ding et al.,
2022; Mao et al., 2022), which will run in poly(S,A,Ph,

1
ϵe
) time. To further illustrate how we avoid the dependence of

APi,hi , we refer to Figure 2. Similarly, the best response (BR) subroutine for NE, NE-BR subroutine will give us the
approximate best response γ⋆i,h for agent i given {γj,h}j∈[n] up to some error ϵe, which satisfies:

Q⋆,Gi,h (ch,γ
⋆
i,h,γ−i,h) ≥ max

γ ′i,h∈∆(Ai )
Pi,h
Q⋆,Gi,h (ch,γ

′
i,h,γ−i,h)− ϵe.

Its implementation is straightforward by linear programming since Q⋆,Gi,h is linear with respect to each player’s
prescription.

• The CCE subroutine will give us the approximate CCE {γ⋆,t1,h, · · · ,γ
⋆,t
n,h}

T
t=1 up to some error ϵe, which satisfy:

1
T

T∑
t=1

Q⋆,Gi,h (ch,γ
⋆,t
i,h ,γ

⋆,t
−i,h) ≥ max

γi,h∈∆(Ai )
Pi,h

1
T

T∑
t=1

Q⋆,Gi,h (ch,γi,h,γ
⋆,t
−i,h)− ϵe,∀i ∈ [n].

This subroutine can be implemented using standard no-external-regret learning algorithm as in (Gordon et al., 2008;
Daskalakis et al., 2011) with poly(S,A,Ph,

1
ϵe
) time.

Similarly, the CCE-BR subroutine will give us the best response γ⋆i,h given {γ t1,h, · · · ,γ
t
n,h}

T
t=1 up to some error ϵe,

which satisfies:

1
T

T∑
t=1

Q⋆,Gi,h (ch,γ
⋆
i,h,γ

t
−i,h) ≥ max

γ ′i,h∈∆(Ai )
Pi,h

1
T

T∑
t=1

Q⋆,Gi,h (ch,γ
′
i,h,γ

t
−i,h)− ϵe.

The implementation of CCE-BR is the same as CCE except that only the player i runs the no-external-regret algorithm
and other players remain fixed. Once we get the sequence {γ⋆,ti,h }

T
t=1 from the no-external-regret algorithm, we can take

γ⋆i,h =
1
T

∑T
t=1γ

⋆,t
i,h since Q⋆,Gi,h is linear with respect to each player’s prescription.

27



Partially Observable Multi-agent RL with (Quasi-)Efficiency: The Blessing of Information Sharing

• The CE subroutine will give us the approximate CE {γ⋆,t1,h, · · · ,γ
⋆,t
n,h}

T
t=1 up to some error ϵe, which satisfy:

1
T

T∑
t=1

Q⋆,Gi,h (ch,γ
⋆,t
i,h ,γ

⋆,t
−i,h) ≥max

ui,h

1
T

T∑
t=1

Q⋆,Gi,h (ch,ui,h ⋄γ
⋆,t
i,h ,γ

⋆,t
−i,h)− ϵe,∀i ∈ [n].

Here ui,h = {ui,h,pi,h }pi,h is the strategy modification, where ui,h,pi,h :Ai →Ai will modify the action ai,h to ui,h,pi,h(ai,h)
given the private information pi,h. It is easy to see that the composition of ui,h with any prescription γi,h is equivalent to
(ui,h ⋄γi,h)(ai,h |pi,h) :=

∑
ui,h,pi,h (a

′
i,h)=ai,h

γi,h(a′i,h |pi,h). One can verify that ui,h ⋄γi,h =U ·γi,h, for some matrix U ∈
R
AiPi,h×AiPi,h (in a block diagonal form). Therefore, the composition of ui,h and γi,h is indeed a linear transformation.

Now, as long as the functionQ⋆i,h(ch,γ1,h, · · · ,γn,h) is concave with respect to each γi,h, one can run the no-linear-regret
algorithm as in (Gordon et al., 2008) in poly(S,A,Ph,

1
ϵe
) time, such that the time-averaged policy will give us the

approximate CE.
The CE-BR subroutine will give us the best strategy modification u⋆i,h given {γ t1,h, · · · ,γ

t
n,h}

T
t=1 up to some error ϵe,

which satisfies:

1
T

T∑
t=1

Q⋆,Gi,h (ch,u
⋆
i,h ⋄γ

t
i,h,γ

t
−i,h) ≥max

ui,h

1
T

T∑
t=1

Q⋆,Gi,h (ch,ui,h ⋄γ
t
i,h,γ

t
−i,h)− ϵe.

For notational convenience, we shall slightly abuse the notation, writing γ⋆,ti,h := u⋆i,h ⋄ γ
t
i,h for any t ∈ [T ] and we

assume our CE-BR subroutine returns {u⋆i,h ⋄ γ
t
i,h}t∈[T ] instead of u⋆i,h. Its implementation still follows that of CE

except that only the agent i runs the no-linear-regret algorithm.

E.3. Near optimality of policies with approximate common information

To prove the main theorem, Theorem 2, we will first bound the sub-optimality at each step h through the following two
lemmas.

Lemma 2. Fix the input M and ϵe > 0 for Algorithm 3. For any h ∈ [H + 1], ch ∈ Ch, and πi ∈ Πi , for computing
approximate NE/CCE, the output of Algorithm 3, π̂⋆ satisfies that

V
πi×π̂⋆−i ,M
i,h (ch) ≤ V

π̂⋆ ,M
i,h (ch) + (H +1− h)ϵe.

Proof. Obviously, the proposition holds for h =H +1. Note that πi does not share the randomness with π̂⋆−i . In other words,
the following ω′i,h is independent of ω−i,h. Then, we have that

V
πi×π̂⋆−i ,M
i,h (ch) = Eω′i,h

E{ωj,h}j∈[n]E
M [̂ri,h+1(oh+1) +V

πi×π̂⋆−i ,M
i,h+1 (ch+1) | ĉh, {πi,h(· |ω′i,h, ch, ·), π̂

⋆
−i,h(· |ω−i,h, ĉh, ·)}]

≤ Eω′i,h
E{ωj,h}j∈[n]E

M [̂ri,h+1(oh+1) +V
π̂⋆ ,M
i,h+1 (ch+1) | ĉh, {πi,h(· |ω′i,h, ch, ·), π̂

⋆
−i,h(· |ω−i,h, ĉh, ·)}] + (H − h)ϵe (E.2)

= Eω′i,h
E{ωj,h}j∈[n]Q

π̂⋆i ×π̂
⋆
−i ,M

i,h (ch,πi,h(· |ω′i,h, ch, ·), π̂
⋆
−i,h(· |ω−i,h, ĉh, ·)) + (H − h)ϵe

≤ Eω′i,h
E{ωj,h}j∈[n]Q

π̂⋆i ×π̂
⋆
−i ,M

i,h (ch, π̂
⋆
i,h(· |ωi,h, ch, ·), π̂

⋆
−i,h(· |ω−i,h, ĉh, ·)) + (H − h+1)ϵe (E.3)

= V π̂⋆ ,M
i,h (ch) + (H − h+1)ϵe.

Equation (E.2) comes from the inductive hypothesis. Equation (E.3) holds since V π̂⋆ ,M
i,h+1 (ch+1) = V π̂⋆ ,M

i,h+1 (̂ch+1) and
π̂⋆h (· | ·, ĉh, ·) is an ϵe-NE/CCE.

Lemma 3. For any h ∈ [H], ch ∈ Ch, and φi ∈ Φi , for computing approximate CE, the output of Algorithm 3, π̂⋆ satisfies
that

V
(φi⋄π̂⋆i )⊙π̂

⋆
−i ,M

i,h (ch) ≤ V
π̂⋆ ,M
i,h (ch) + (H − h+1)ϵe.
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Proof. Obviously, the proposition holds for h =H +1. Moreover, we have

V
(φi⋄π̂⋆i )⊙π̂

⋆
−i ,M

i,h (ch) = E{ωj,h}j∈[n]E
M [̂ri,h+1(oh+1) +V

(φi⋄π̂⋆i )⊙π̂
⋆
−i ,M

i,h+1 (ch+1) | ĉh, {φi,h,ch ⋄ π̂
⋆
i,h(· |ωi,h, ĉh, ·), π̂

⋆
−i,h(· |ω−i,h, ĉh, ·)}]

≤ E{ωj,h}j∈[n]E
M [̂ri,h+1(oh+1) +V

π̂⋆ ,M
i,h+1 (ch+1) | ĉh, {φi,h,ch ⋄ π̂

⋆
i,h(· |ωi,h, ĉh, ·), π̂

⋆
−i,h(· |ω−i,h, ĉh, ·)] + (H − h)ϵe (E.4)

≤ E{ωj,h}j∈[n]E
M [̂ri,h+1(oh+1) +V

π̂⋆ ,M
i,h+1 (ch+1) | ĉh, {π̂⋆i,h(· |ωi,h, ĉh, ·), π̂

⋆
−i,h(· |ω−i,h, ĉh, ·)}] + (H − h)ϵe (E.5)

= V π̂⋆ ,M
i,h (ch) + (H − h+1)ϵe.

Equation (E.4) comes from the inductive hypothesis. Equation (E.5) holds since V π̂⋆ ,M
i,h+1 (ch+1) = V π̂⋆ ,M

i,h+1 (̂ch+1) and
π̂⋆h (· | ·, ĉh, ·) is an ϵe-CE.

Now we need the following lemma, showing the difference between the approximate value functions and true value functions
under the same set of policies.

Lemma 4. For any given policy π′ ∈Πgen, π ∈Π, and h ∈ [H +1], we have

Ea1:h−1,o2:h∼π′ [|V
π,G
i,h (ch)−V

π,M
i,h (ch)|] ≤ (H − h+1)ϵr +

(H − h+1)(H − h)
2

ϵz.

Proof. Obviously, the proposition holds for h =H +1. Furthermore, we have

Ea1:h−1,o2:h∼π′ [|V
π,G
i,h (ch)−V

π,M
i,h (ch)|]

≤ Ea1:h−1,o2:h∼π′ [|E{ωj,h}j∈[n]E
G[ri,h+1(oh+1) | ch, {πj,h(· |ωj,h, ch, ·)}nj=1]−E{ωj,h}j∈[n]E

M [̂ri,h+1(oh+1) | ĉh, {πj,h(· |ωj,h, ch, ·)}nj=1]|]

+Ea1:h−1,o2:h∼π′ [|E{ωj,h}j∈[n]Ezh+1∼PGh (· |ch,{πj,h(· |ωj,h,ch,·)}nj=1)
[V π,Gi,h+1({ch, zh+1})]

−E{ωj,h}j∈[n]Ezh+1∼PM,z
h (· | ĉh,{πj,h(· |ωj,h,ch,·)}nj=1)

[V π,Mi,h+1({ch, zh+1})]|]

≤ ϵr + (H − h)Ea1:h−1,o2:h∼π′E{ωj,h}j∈[n] ||P
G
h (· |ch, {πj,h(· |ωj,h, ch, ·)}

n
j=1)−P

M,z
h (· | ĉh, {πj,h(· |ωj,h, ch, ·)}nj=1)||1

+Ea1:h,o2:h+1∼(π′1:h−1,πh:H )
[|V π,Mi,h+1(ch+1)−V

π,G
i,h+1(ch+1)|]

≤ ϵr + (H − h)ϵz + (H − h)ϵr +
(H − h− 1)(H − h)

2
ϵz

≤ (H − h+1)ϵr +
(H − h)(H − h+1)

2
ϵz,

which completes the proof.

Finally, we are ready to prove our main theorem, Theorem 2.

Proof. For computing NE/CCE, we define

π⋆i ∈ arg max
πi∈Πi

V
πi×π̂⋆−i ,M
i,1 (∅).

Now note that

Ea1:h−1,o2:h∼π′ [V
π⋆i ×π̂

⋆
−i ,G

i,h (ch)−V
π̂⋆ ,G
i,h (ch)]

= Ea1:h−1,o2:h∼π′
[(
V
π⋆i ×π̂

⋆
−i ,G

i,h (ch)−V
π̂⋆ ,M
i,h (ch)

)
+
(
V π̂⋆ ,M
i,h (ch)−V

π̂⋆ ,G
i,h (ch)

)]
≤ Ea1:h−1,o2:h∼π′

[(
V
π⋆i ×π̂

⋆
−i ,G

i,h (ch)−V
π⋆i ×π̂

⋆
−i ,M

i,h (ch)
)
+
(
V π̂⋆ ,M
i,h (ch)−V

π̂⋆ ,G
i,h (ch)

)]
+ (H +1− h)ϵe

≤ 2(H − h+1)ϵr + (H − h)(H − h+1)ϵz + (H − h+1)ϵe.
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Let h = 1, and note that c1 = ∅, we get

V
π⋆i ×π̂

⋆
−i ,G

i,1 (∅)−V π̂⋆ ,G
i,1 (∅) ≤ 2Hϵr +H

2ϵz +Hϵe.

By the definition of π⋆i , we conclude

NE/CCE-gap(π̂⋆) ≤ 2Hϵr +H
2ϵz +Hϵe.

For computing CE, define

φ⋆i ∈ argmax
φi

V
(φi⋄π̂⋆i )⊙π̂

⋆
−i ,M

i,1 (∅).

Now note that

Ea1:h−1,o2:h∼π′ [V
(φ⋆i ⋄π̂

⋆
i )⊙π̂

⋆
−i ,G

i,h (ch)−V
π̂⋆ ,G
i,h (ch)]

= Ea1:h−1,o2:h∼π′
[(
V

(φ⋆i ⋄π̂
⋆
i )⊙π̂

⋆
−i ,G

i,h (ch)−V
π̂⋆ ,M
i,h (ch)

)
+
(
V π̂⋆ ,M
i,h (ch)−V

π̂⋆ ,G
i,h (ch)

)]
≤ Ea1:h−1,o2:h∼π′

[(
V

(φ⋆i ⋄π̂
⋆
i )⊙π̂

⋆
−i ,G

i,h (ch)−V
(φ⋆i ⋄π̂

⋆
i )⊙π̂

⋆
−i ,M

i,h (ch)
)
+
(
V π̂⋆ ,M
i,h (ch)−V

π̂⋆ ,G
i,h (ch)

)]
+ (H +1− h)ϵe

≤ 2(H − h+1)ϵr + (H − h)(H − h+1)ϵz + (H − h+1)ϵe.

Let h = 1, and note that c1 = ∅, we get

V
(φ⋆i ⋄π̂

⋆
i )⊙π̂

⋆
−i ,G

i,1 (∅)−V π̂⋆ ,G
i,1 (∅) ≤ 2Hϵr +H

2ϵz +Hϵe.

By the definition of φ⋆i , we conclude

CE-gap(π̂⋆) ≤ 2Hϵr +H
2ϵz +Hϵe.

The last step is the analysis of the computation complexity. A major difference with the exact common information setting
is that it is unclear whether there exists efficient NE/CE/CCE subroutines at each step h. However, ifM is consistent with
some approximate belief {PM,c

h (sh,ph |̂ch)}h∈[H], through exactly the same argument as in Proposition 9 with P
G
h (sh,ph |ch)

replaced by P
M,c
h (sh,ph | ĉh), we conclude the NE subroutine for zero-sum or cooperative games and CE/CCE subroutine for

general-sum games can be implemented efficiently in the computation complexity of poly(S,A,Ph, 1ϵe ). Now computation

complexity of the Algorithm 3 is Hmaxh Ĉhpoly(S,A,Ph,
1
ϵe
), where Ĉh comes from the loop at each step h.

E.4. Approximate common information with finite memory

Theorem 2 provides a structural result for the optimality of NE/CE/CCE policy computed with approximate common
information in the underlying POSG when the approximate common information satisfies the condition in Definition 5.
However, it is not clear how to construct such approximate common information and how high the induced computational
complexity is. Here we will show when the joint observation is informative enough, specifically satisfying Assumption 2,
we could simply use truncation to compress the common information and the corresponding most recent L steps of history is
indeed a kind of approximate common information. Here we need the following result showing that most recent history
is enough to predict the latent state of the POSG. Here we shall use a slightly stronger argument than (Golowich et al.,
2022b), since we need to allow the policy π′ ∈Πgen to be stochastic while in POMDPs, deterministic policies are enough
for optimal solutions. The proof goes quite similar to that in (Golowich et al., 2022b). Firstly, we shall need the following
important lemmas.

Lemma 5 (Lemma 4.9 in (Golowich et al., 2022b)). Suppose the POSG satisfies Assumption 2, b,b′ ∈ ∆(S) with b≪ b′ ,
and fix any h ∈ [H]. Then

Ey∼O⊤h b


√
exp

(
D2 (Bh(b;y)∥Bh (b′ ;y))

4

)
− 1

 ≤ (
1−γ4/240

)
·

√
exp

(
D2 (b∥b′)

4

)
− 1.
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This lemma states that once the emission Oh satisfies the condition in Assumption 2, the Bayes operator Bh is a contraction
in expectation. Since the individual emission Oi,h does not necessarily satisfy Assumption 2, the individual Bayes operator
Bi,h follows a weaker proposition. We first state a more generalized lemma as follows.

Lemma 6. Given two finite domains X,Y , and the conditional probability q(y |x) for x ∈ X,y ∈ Y . Define the posterior
update Fq(P ;y) : ∆(X)→ ∆(X) for P ∈ ∆(X), y ∈ Y as

Fq(P ;y)(x) =
P (x)q(y |x)∑

x′∈X P (x′)q(y |x′)
. (E.6)

Then for any δ1,δ2 ∈ ∆(X) such that δ1≪ δ2, it holds that

Ex∼δ1,y∈q(· |x)

√
exp

(
D2(Fq(δ1;y)||Fq(δ2;y))

4

)
− 1 ≤

√
exp

(
D2(δ1||δ2)

4

)
− 1.

Proof. This is a direct consequence from the proof of Lemma 4.9 in (Golowich et al., 2022b) by allowing γ = 0 since here
we do not assume any observability on q.

Corollary 1. Suppose b,b′ ∈ ∆(S) with b≪ b′ , and fix any h ∈ [H], i ∈ [n]. Then

Ey∼O⊤i,hb


√
exp

(
D2

(
Bi,h(b;y)∥Bi,h (b′ ;y)

)
4

)
− 1

 ≤
√
exp

(
D2 (b∥b′)

4

)
− 1.

Lemma 7 (Lemma 4.8 in (Golowich et al., 2022b)). Consider probability distributions P , Q. Then

∥P −Q∥1 ≤ 4 ·
√
exp(D2(P ∥Q)/4)− 1.

Theorem 10 (Adapted from Theorem 4.7 in (Golowich et al., 2022b)). There is a constant C ≥ 1 so that the following
holds. Suppose that the POSG satisfies Assumption 2 with parameter γ . Let ϵ ≥ 0. Fix a policy π′ ∈Πgen and indices
1 ≤ h−L < h− 1 ≤H . If L ≥ Cγ−4 log(Sϵ ), then the following set of propositions hold

E
G
a1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h−1)− b

′
h(ah−L:h−1, oh−L+1:h−1)||1 ≤ ϵ. (E.7)

E
G
a1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h)− b

′
h(ah−L:h−1, oh−L+1:h)||1 ≤ ϵ. (E.8)

E
G
a1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h−1, o1,h)− b

′
h(ah−L:h−1, oh−L+1:h−1, o1,h)||1 ≤ ϵ. (E.9)

Furthermore, for any finite domain Y , conditional probability q(y |s) and the posterior update operator Fq : ∆(S)→ ∆(S) as
defined in Lemma 6, it holds that

E
G
a1:h−1,o2:h∼π′Ey∼q·bh(a1:h−1,o2:h)||F

q(bh(a1:h−1, o2:h);y)−Fq(b′h(ah−L:h−1, oh−L+1:h);y)||1 ≤ ϵ. (E.10)

Proof. Let us prove (E.7) first. Note that if h − L ≤ 1, then we have bh(a1:h−1, o2:h−1) = b′h(ah−L:h−1, oh−L+1:h−1). The
proposition trivially holds. Now let us consider h > L+1. Fix some history (a1:h−L−1, o2:h−L−1). We condition on this history
throughout the proof. For 0 ≤ t ≤ L, define the random variables

bh−L+t = bh−L+t (a1:h−L+t−1, o2:h−L+t−1) ,

b′h−L+t = b′h−L+t (ah−L:h−L+t−1, oh−L+1:h−L+t−1) ,

Yt =

√√√
exp

D2

(
bh−L+t∥b′h−L+t

)
4

− 1.
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ThenD2(bh−L||b′h−L) = logEx∼bh
bh(x)
b′h(x)
≤ log(S) since bh−L = b′h−L(∅) = Unif(S), so we have Y0 ≤

√
exp(D2(bh−L||b′h−L)) ≤

S. Moreover, for any 0 ≤ t ≤ L− 1, we have

Eah−L:h−L+t ,oh−L+1:h−L+t∼π′Yt+1 = Eah−L:h−L+t−1,oh−L+1:h−L+t∼π′Eah−L+t∼π′(· |a1:h−L+t−1,o2:h−L+t)√
exp

(
D2(Th−L+t(ah−L+t) ·Bh−L+t(bh−L+t ;oh−L+t)||Th−L+t(ah−L+t) ·Bh−L+t(b′h−L+t ;oh−L+t))

4

)
− 1

≤ Eah−L:h−L+t−1,oh−L+1:h−L+t−1∼π′Eoh−L+t∼O⊤h−L+tbh−L+t

√
exp

(
D2(Bh−L+t(bh−L+t ;oh−L+t)||Bh−L+t(b′h−L+t ;oh−L+t))

4

)
− 1

≤
(
1−

γ4

240

)
Eah−L:h−L+t−1,oh−L+1:h−L+t−1∼π′Yt ,

where the second last step comes from the data processing inequality and the last step comes from Lemma 5. By induction
and the choice of L, we have that

Eoh−L:h−1,ah−L:h−1∼π′

√√√
exp

D2

(
bh∥b′h

)
4

− 1 ≤
(
1−

γ4

240

)L
S ≤ ϵ

4
. (E.11)

It follows from Lemma 7 that

Eah−L:h−1,oh−L+1:h−1∼π′ ||bh − b
′
h||1 ≤ ϵ.

Taking expectation over the history (oh−L:h−1, ah−L:h−1) completes the proof of (E.7). Finally, (E.8) follows from (E.11) and
Lemma 5. (E.9) follows from (E.11) and Corollary 1. The (E.10) follows from (E.11) and Lemma 6.

Before instantiating our information structure with particular cases, for convenience of our proof, we firstly identify a more
sufficient condition for our Definition 5.

Lemma 8. Given any belief {PM,c
h (sh,ph |̂ch)}h∈[H], assumeM is consistent with {PM,c

h (sh,ph |̂ch)}h∈[H]. Then it holds that
for any h ∈ [H], ch ∈ Ch,γh ∈ Γh:

||PGh (·|ch,γh)−P
M,z
h (·|̂ch,γh)||1 ≤ ||PGh (·, · |ch)−P

M,c
h (·, · | ĉh)||1, (E.12)

|EG [̂ri,h+1(oh+1) | ch,γh]−EM [̂ri,h+1(oh+1) | ĉh,γh]| ≤ ||PGh (·, · |ch)−P
M,c
h (·, · | ĉh)||1. (E.13)

Proof. Note that

|EG [̂ri,h+1(oh+1) | ch,γh]−EM [̂ri,h+1(oh+1) | ĉh,γh]| ≤
∑
oh+1

|PGh (oh+1|ch,γh)−P
M,o
h (oh+1 |̂ch,γh)|.

Therefore, it suffices to bound
∑
oh+1
|PGh (oh+1|ch,γh)−P

M,o
h (oh+1 |̂ch,γh)| for (E.13). Now, note that for any ch ∈ Ch,γh ∈ Γh:∑

sh,ph,ah,sh+1,oh+1

|PGh (sh, sh+1,ph, ah, oh+1 |ch,γh)−P
M
h (sh, sh+1,ph, ah, oh+1 |̂ch,γh)|

=
∑

sh,ph,ah,sh+1,oh+1

|PGh (sh,ph |ch)Π
n
j=1γj,h(aj,h |pj,h)Th(sh+1|sh, ah)Oh+1(oh+1|sh+1)

−PM,c
h (sh,ph |̂ch)Πn

j=1γj,h(aj,h |pj,h)Th(sh+1|sh, ah)Oh+1(oh+1|sh+1)|

=
∑
sh,ph

|PGh (sh,ph|ch)−P
M,c
h (sh,ph |̂ch)|.
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Finally, since after marginalization, the total variation will not increase, we conclude that∑
zh+1

|PGh (zh+1 |ch,γh)−P
M,z
h (zh+1 |̂ch,γh)|

≤
∑

sh,ph,ah,sh+1,oh+1

|PGh (sh, sh+1,ph, ah, oh+1 |ch,γh)−P
M
h (sh, sh+1,ph, ah, oh+1 |̂ch,γh)|,∑

oh+1

|PGh (oh+1 |ch,γh)−P
M,o
h (oh+1 |̂ch,γh)|

≤
∑

sh,ph,ah,sh+1,oh+1

|PGh (sh, sh+1,ph, ah, oh+1 |ch,γh)−P
M
h (sh, sh+1,ph, ah, oh+1 |̂ch,γh)|,

which proved the lemma.

Therefore, in the following discussion, we only need to define ĉh and the corresponding belief
{PM,c

h (sh,ph |̂ch)}h∈[H]. The definition of PM,z
h (zh+1 |̂ch,γh) and E

M [̂ri,h+1(oh+1)|̂ch,γh] will follow from the consistency
(B.3) and (B.4). Furthermore, it suffices to bound Ea1:h−1,o2:h∼π′ ||P

G
h (·, · |ch)−P

M,c
h (·, · | ĉh)||1 since for the following discus-

sion, we have been assuming knowledge of G and can just use true r for r̂. Now we will show when the information structure
satisfies our Assumption 3 how we can construct approximate common information with history truncation that satisfies
Definition 5.

One-step delayed information-sharing. For this, the information structure has ch = {a1:h−1, o2:h−1}, pi,h = {oi,h}, zh+1 =
{oh, ah}. Fix L > 0, we define the approximate common information as ĉh = {ah−L:h−1, oh−L+1:h−1}. Furthermore, define
the common information conditioned belief as PM,c

h (sh,ph |̂ch) = b′h(ah−L:h−1, oh−L:h−1)(sh)Oh(oh|sh). Now we are ready to
verify that it satisfies Definition 5.

• Obviously, it satisfies condition (5.1).
• Note that for any ch ∈ Ch:

||PGh (·, · |ch)−P
M,c
h (·, · | ĉh)||1

=
∑
sh,oh

|bh(a1:h−1, o2:h−1)(sh)Oh(oh|sh)− b′h(ah−L:h−1, oh−L+1:h−1)(sh)Oh(oh|sh)|

= ||bh(a1:h−1, o2:h−1)− b′h(ah−L:h−1, oh−L+1:h−1)||1.

Therefore, by setting L ≥ Cγ−4 log(Sϵ ), according to Equation (E.7) in Theorem E.4, we conclude that for any
π′ ∈Πgen,h ∈ [H]:

Ea1:h−1,o2:h∼π′ ||P
G
h (·, · |ch)−P

M,c
h (·, · | ĉh)||1

≤ Ea1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h−1)− b
′
h(ah−L:h−1, oh−L+1:h−1)||1 ≤ ϵ.

Therefore, conditions (5.2), (5.3) are satisfied with ϵr = ϵz = ϵ.

Finally, to guarantee π̂⋆ is an ϵ-NE/CE/CCE, according to our Theorem 2, one needs L ≥ Cγ−4 log(SHϵ ). Formally, we
have the following theorem:

Theorem 11. Let ϵ,γ > 0. Algorithm 1 given a γ-observable POSG of one-step delayed information sharing has time
complexity H(AO)Cγ

−4 log SH
ϵ poly(S,A,O,H, 1ϵ ) for some universal constant C > 0.

Proof. It is obvious that Ĉh = (AO)L and Ph = AO, the polynomial dependence on S, H , A, and O comes from computing
P
M,c
h (sh,ph |̂ch) and equilibrium subroutines.

State controlled by one controller with asymmetric delay sharing. The information structure is given as ch =
{o1,2:h, o2,2:h−d , a1,1:h−1}, p1,h = ∅, p2,h = {o2,h−d+1:h}. It is a little tricky to verify Assumption 3 and P

G
h (sh,ph |ch) can

be computed as follows. Denote τh−d = {a1:h−d−1, o2:h−d}, fa = {a1,h−d:h−1}, fo = {o1,h−d+1:h}. Now P
G
h (sh,ph |ch) =
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sh−d

P
G(sh,ph |sh−d , fa, fo)PG(sh−d |τh−d , fa, fo). It is easy to see that PGh (sh,ph |sh−d , fa, fo) does not depend on the policy.

For PG(sh−d |τh−d , fa, fo), the following holds

P
G(sh−d |τh−d , fa, fo) =

P
G(sh−d , fa, fo |τh−d)∑

s′h−d
P
G(s′h−d , fa, fo |τh−d)

.

Now note that

P
G(sh−d , fa, fo |τh−d) = bh−d(a1:h−d−1, o2:h−d)(sh−d)P

G(a1,h−d |τh−d)PG(o1,h−d+1 |sh−d , a1,h−d) · · ·PG(o1,h |sh−d , a1,h−d:h−1).

Now let us use the notation P (fo |ss−d , fa) :=Πd
t=1P

G(o1,h−d+t |sh−d , a1,h−d:h−d+t−1). Then it holds that
∑
fo
P (fo |sh−d , fa) =

1, which suggests that the notation P (fo |ss−d , fa) can be understood as a conditional probability. With such nota-
tion, PG(sh−d |τh−d , fa, fo) =

bh−d (a1:h−d−1,o2:h−d )(sh−d )P (fo |sh−d ,fa)∑
s′h−d

bh−d (a1:h−d−1,o2:h−d )(s′h−d )P (fo |s
′
h−d ,fa)

= FP (· | ·,fa)(bh−d(a1:h−d−1, o2:h−d);fo)(sh−d). Finally,

we compute:

P
G
h (sh,ph |ch) =

∑
sh−d

P
G(sh,ph |sh−d , fa, fo)FP (· | ·,fa)(bh−d(a1:h−d−1, o2:h−d);fo)(sh−d).

Now for some fixed L > 0, we construct the approximate common information
ĉh := {o1,h−d−L+1:h, o2,h−d−L+1:h−d , a1,h−d−L:h−1} and correspondingly.

P
M,c
h (sh,ph | ĉh) =

∑
sh−d

P
G(sh,ph |sh−d , fa, fo)FP (· | ·,fa)(b′h−d(ah−d−L:h−d−1, oh−d−L+1:h−d);fo)(sh−d). (E.14)

To verify Definition 5:

• Obviously, it satisfies the condition (5.1).
• For any ch ∈ Ch, it holds that

∥PGh (·, · |ch)−P
M,c
h (·, · | ĉh)∥1

≤ ∥FP (· | ·,fa)(bh−d(a1:h−d−1, o2:h−d);fo)−FP (· | ·,fa)(b′h−d(ah−d−L:h−d−1, oh−d−L+1:h−d);fo)∥1.

Finally, for any policy π′ ∈Πgen taking expectations over τh−d , fa, fo, we conclude that as long as L ≥ Cγ−4 log Sϵ , we
conclude that

E
G
a1:h−1,o2:h∼π′∥P

G
h (·, · |ch)−P

M,c
h (·, · | ĉh)∥1 ≤ ϵ.

Finally, to guarantee π̂⋆ is ϵ-NE/CE/CCE, according to Theorem 2, one needs L ≥ Cγ−4 log(SHϵ ). Formally, we have the
following theorem:

Theorem 12. Let ϵ,γ > 0. Algorithm 1 given a γ-observable POSG of state controlled by one controller with asymmetric
delay sharing has time complexity H(AO)C(γ

−4 log SH
ϵ +d)poly(S,A,O,H, 1ϵ ) for some universal constant C > 0.

Proof. It follows from the fact that Ĉh ≤ (AO)L+d and Ph ≤ Od2 . The polynomial dependence on S, H , A, and O comes
from computing P

M,c
h (sh,ph |̂ch) and the equilibrium subroutines.

Information sharing with one-directional-one-step delay. For this case, we have
ch = {a1:h−1, o2:h−1, o1,h}, p1,h = ∅, p2,h = {o2,h}, and zh+1 = {o1,h+1, o2,h, ah}. Fix L > 0, we construct the approximate
common information as ĉh = {ah−L:h−1, oh−L+1:h−1, o1,h}. Furthermore, define the belief as

P
M,c
h (sh,ph | ĉh) = b′h(ah−L:h−1, oh−L+1:h−1, o1,h)(sh)Ph(o2,h|sh, o1,h), where Ph(o2,h|sh, o1,h) =

Oh(o1,h,o2,h |sh)∑
o′2,h

Oh(o1,h,o′2,h |sh)
. Now we

are ready to verify that Definition 5 is satisfied.

• Obviously, the condition 5.1 is satisfied.
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• Note that for any ch ∈ Ch:

||PGh (·, · |ch)−P
M,c
h (·, · | ĉh)||1

=
∑
sh,o2,h

|bh(a1:h−1, o2:h−1, o1,h)(sh)Ph(o2,h|sh, o1,h)

− b′h(ah−L:h−1, oh−L+1:h−1, o1,h)(sh)Ph(o2,h|sh, o1,h)|
= ||bh(a1:h−1, o2:h−1, o1,h)− b′h(ah−L:h−1, oh−L+1:h−1, o1,h)||1

Therefore, by setting L ≥ Cγ−4 log(Sϵ ), according to (E.9) in Theorem E.4, we conclude that for any π′ ∈Πgen:

Ea1:h−1,o2:h∼π′ ||P
G
h (·, · |ch)−P

M,c
h (·, · | ĉh)||1

≤ Ea1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h−1, o1,h)− b
′
h(ah−L:h−1, oh−L+1:h−1, o1,h)||1 ≤ ϵ.

Therefore, conditions (5.2), (5.3) are satisfied with ϵr = ϵz = ϵ.

Finally, to guarantee π̂⋆ is an ϵ-NE/CE/CCE, according to Theorem 2, one needs L ≥ Cγ−4 log(SHϵ ). Formally, we have the
following theorem:

Theorem 13. Let ϵ,γ > 0. Algorithm 1 given a γ-observable POSG of information sharing with one-directional-one-step
delay has time complexity H(AO)Cγ

−4 log SH
ϵ poly(S,A,O,H, 1ϵ ) for some universal constant C > 0.

Proof. It is obvious that Ĉh = (AO)L and Ph =O2. The polynomial dependence on S, H , A, and O comes from computing
P
M,c
h (sh,ph |̂ch) and the equilibrium subroutines.

Uncontrolled state process with delayed sharing. As long as the state transition does not depend on the actions,
Assumption 3 is satisfied. For convenience we consider the most general d-step delayed sharing information structure,
where d ≥ 0 and not necessarily d = 1 like in the one-step delayed information sharing structure. The information
structure satisfies ch = {o2:h−d}, pi,h = {oi,h−d+1:h}, and zh+1 = {oh−d+1}. Fix a L ≥ 0, the approximate common information
is ĉh = {oh−d−L+1:h−d}, the corresponding belief is PM,c

h (sh,ph |̂ch) =
∑
sh−d

b′h−d(oh−d−L+1:h−d)(sh−d)P
G
h (sh, oh−d+1:h|sh−d).

Now we are ready to verify Definition 5.

• Obviously, the condition (5.1) is satisfied.
• Note that for any ch:

||PGh (·, · |ch)−P
M,c
h (·, · | ĉh)||1

=
∑

sh,oh−d+1:h

|
∑
sh−d

bh−d(o2:h−d)(sh−d)P
G
h (sh, oh−d+1:h|sh−d)−

∑
sh−d

b′h−d(oh−d−L+1:h−d)(sh−d)P
G
h (sh, oh−d+1:h|sh−d)|

=
∑

sh,oh−d+1:h

|
∑
sh−d

(bh−d(o2:h−d)(sh−d)− b′h−d(oh−d−L+1:h−d)(sh−d))P
G
h (sh, oh−d+1:h|sh−d)|

≤ ||bh−d(o2:h−d)− b′h−d(oh−d−L+1:h−d)||1,

where for the last step, we use Lemma 9. Therefore, by setting L ≥ Cγ−4 log(Sϵ ), according to (E.8) in Theorem E.4,
we conclude that for any π′ ∈Πgen:

Ea1:h−1,o2:h∼π′ ||P
G
h (·, · |ch)−P

M,c
h (·, · | ĉh)||1

≤ Ea1:h−1,o2:h∼π′ ||bh−d(o2:h−d)− b
′
h−d(oh−d−L+1:h−d)||1 ≤ ϵ.

This verifies the conditions (5.2), (5.3) with ϵr = ϵz = ϵ.

Finally, to guarantee π̂⋆ is ϵ-NE/CE/CCE, according to our Theorem 2, one needs L ≥ Cγ−4 log(SHϵ ). Formally, we have
the following theorem:

Theorem 14. Let ϵ,γ > 0. Algorithm 1 given a γ-observable POSG of uncontrolled state process has time complexity
H(O)Cγ

−4 log SH
ϵ poly(S,A,Od ,H, 1ϵ ) for some universal constant C > 0.
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Proof. It is obvious that Ĉh =OL and Ph =Od , The polynomial dependence on S, A, H , and Od comes from computing
P
M,c
h (sh,ph |̂ch) and the equilibirum subroutines.

Symmetric information game. For symmetric information game, it has the following information structure. ch =
{a1:h−1, o2:h}, pi,h = ∅, and zh+1 = {ah, oh+1}. Fix L ≥ 0, we construct the approximate common information as ĉh =
{ah−L:h−1, oh−L+1:h}. Furthermore, we define the belief PM,c

h (sh,ph | ĉh) = b′h(ah−L:h−1, oh−L+1:h)(sh). Now we are ready to
verify Definition 5.

• Obviously, it satisfies the condition (5.1).
• Note that for any ch ∈ Ch:

||PGh (·, · |ch)−P
M,c
h (·, · | ĉh)||1 = ||bh(a1:h−1, o2:h)− b′h(ah−L,h−1, oh−L+1:h)||1.

Therefore, by setting L ≥ Cγ−4 log(Sϵ ), according to (E.8) in Theorem E.4, we conclude that for any π′ ∈Πgen:

Ea1:h−1,o2:h∼π′ ||P
G
h (·, · |ch)−P

M,c
h (·, · | ĉh)||1 = ||bh(a1:h−1, o2:h)− b′h(ah−L,h−1, oh−L+1:h)||1 ≤ ϵ.

Therefore, the conditions (5.2) and (5.3) are satisfied with ϵr = ϵz = ϵ.

Finally, to guarantee π̂⋆ is ϵ-NE/CE/CCE, according to Theorem 2, one needs L ≥ Cγ−4 log(SHϵ ). Formally, we have the
following theorem:

Theorem 15. Let ϵ,γ > 0. Algorithm 1 given a γ-observable POSG of symmetric information has time complexity
H(AO)Cγ

−4 log SH
ϵ poly(S,A,H,O, 1ϵ ) for some universal constant C > 0.

Proof. It is obvious that Ĉh = (AO)L and Ph = A, the polynomial dependence on S, H , A, and O comes from computing
P
M,c
h (sh,ph |̂ch) and equilibrium subroutines.

Lemma 9. For any given sequence {xi}mi=1 and {{yi,j }mi=1}
n
j=1 such that

∑n
j=1 |yi,j | = 1 , ∀i ∈ [m], j ∈ [n]. The following

holds

n∑
j=1

|
m∑
i=1

xiyi,j | ≤
n∑
i=1

|xi |.

Proof. Let x = (x1, · · · ,xm)⊤, yj = (y1,j , · · · , ym,j )⊤, and Y = (y1, · · · ,yn). Therefore, we have

n∑
j=1

|
m∑
i=1

xiyi,j | =
n∑
j=1

|x⊤yj | = ||Y ⊤x||1 ≤ ||Y ⊤||1||x||1.

Note that ||Y ⊤||1 = ||Y ||∞ =maxi
∑n
j=1 |yi,j | = 1. Therefore, we conclude by

n∑
j=1

|
m∑
i=1

xiyi,j | ≤
n∑
i=1

|xi |.

E.5. Learning with approximate common information

Note for our previous planning algorithm, we have been assuming that we know the true model (transition dynamics and
rewards) of the POSG G, which avoids the issue of strategic explorations. For learning NE/CE/CCE in G, one could treat G
as a (fully-observable) Markov game on the state space of ch. However, this formulation could be neither computationally or
sample efficient because of the typical large space of common information. Therefore, we have to learn NE/CE/CCE in an
approximationM with the state space of ĉh in Definition 5. However, the key problem is that we can only sample according
to the model of G instead ofM. To circumvent this issue, similar to the idea of (Golowich et al., 2022a), the solution is
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to construct M̃(π1:H ) for a sequence of H policies π1:H = (π1, · · · ,πH ), where πh ∈Πgen for any h ∈ [H] such that the
transition and rewards of M̃(π1:H ) at each step h is defined by executing the policy πh. Formally, Proposition 1 verifies that
M̃(π1:H ) can be simulated by executing policies πh at each step h in G. Therefore, different from a genericM in Definition
5, to which we do not have algorithmic access, such a delicately designed transition dynamic and reward function allow us
to actually simulate M̃(π1:H ) by executing policies π1:H in G.

The next question is how to explore the state space {Ĉ}h∈[H+1]. It turns out that when such a state ĉh comes from a sequence
of observations and actions, a uniform policy can be used to explore the state space (Efroni et al., 2022; Uehara et al., 2022).
Formally, define the under-explored set of ĉh and ĉh ∪ ph under some policy π as follows.

Definition 14. For each h ∈ [H], ζ > 0, and a policy π, define the set Clow
h,ζ (π) ⊆ Ĉh as

Clow
h,ζ (π) := {̂ch ∈ Ĉh : d

π,G
C,h (̂ch) ≤ ζ},

the set V low
h,ζ (π) ⊆ Vh := Ĉh ×Ph as

V low
h,ζ (π) := {vh ∈ Vh : d

π,G
V ,h (vh) ≤ ζ},

and the set X low
h,ζ (π) ⊆ Xh :=A

min{h,̂L} ×Omin{h,̂L} as

X low
h,ζ (π) := {xh ∈ Xh : d

π,G
X ,h(xh) ≤ ζ},

where dπ,GC,h (̂ch) := P
π,G
h (̂ch), d

π,G
S ,h (sh) := P

π,G
h (sh), d

π,G
V ,h (vh) := P

π,G
h (vh), and dπ,GX ,h(xh) := P

π,G
h (xh).

Now we shall relate the under-explored set of ĉh with the under-explored set of sh′ for some h′ ∈ [H]. Firstly, define the
under-explored states under some policy π as

UGφ,h(π) := {s ∈ S : dπ,GS ,h (s) < φ}.

Then the following lemma holds.

Lemma 10. Fix any ζ > 0,φ > 0,h ∈ [H]. Consider any policy π, π′ , such that π′ takes uniformly random actions at each
step from max{h− L̂,1} to h, each chosen independently of all previous states, actions, and observations. Then

dπ,GC,h (C
low
h,ζ (π

′)) ≤ A
2̂LOL̂ζ
φ

+1[h > L̂] · dπ,G
S ,h−L̂

(UG
φ,h−L̂

(π′)). (E.15)

Proof. Note that we have for each ĉh ∈ Ĉh

dπ,GC,h (̂ch) =
∑

xh:f̂h(xh)=ĉh

dπ,GX ,h(xh).

Therefore, we have∑
ĉh<Clow

h,ζ (π
′)

dπ,GC,h (̂ch) =
∑

ĉh<Clow
h,ζ (π

′)

∑
xh:f̂h(xh)=ĉh

dπ,GX ,h(xh) =
∑

f̂h(xh)<Clow
h,ζ (π

′)

dπ,GX ,h(xh) ≥
∑

xh<X low
h,ζ (π′)

dπ,GX ,h(xh).

This leads to that

dπ,GC,h (C
low
h,ζ (π

′)) ≤ dπ,GX ,h(X
low
h,ζ (π

′)) ≤ A
2̂LOL̂ζ
φ

+1[h > L̂] · dπ,G
S ,h−L̂

(UG
φ,h−L̂

(π′)),

where in the second inequality, we use Lemma 10.4 of (Golowich et al., 2022a).
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The next step is to learn the transition and reward P
M̃(π1:H ),z
h (zh+1 | ĉh,γh), P

M̃(π1:H ),o
h (oh+1 | ĉh,γh) of the model M̃(π1:H ),

which is equivalent to P
πh,G
h (zh+1 |̂ch,γh) and P

πh,G
h (oh+1 |̂ch,γh) through executing policies π1:H in G. The challenge

here is that although γh serves as the actions for the approximate game M̃(π1:H ), it is not possible to enumerate all
possible actions, since γh is indeed continuous, and even if we only consider all the deterministic γh, the number of
all possible mappings from the private information to the real actions in G is still of the order APh . Therefore, learning

P
M̃(π1:H ),z
h (zh+1 | ĉh,γh) by enumerating all possible ĉh and γh is not statistically efficient. To circumvent this issue, note

the fact that PM̃(π1:H ),z
h (zh+1 | ĉh,γh) = P

πh,G
h (zh+1 |̂ch,γh) =

∑
χh+1(ph,ah,oh+1)=zh+1 P

πh,G
h (ph, ah, oh+1 |̂ch,γh), and the same

for PM̃(π1:H ),o
h . Further, notice the decomposition for Pπ

h,G
h (ph, ah, oh+1 |̂ch,γh):

P
πh,G
h (ph, ah, oh+1 |̂ch,γh) = P

πh,G
h (ph |̂ch)Πn

i=1γi,h(ai,h |pi,h)P
πh,G
h (oh+1 |̂ch,ph, ah).

Therefore, it suffices to learn P
πh,G
h (ph |̂ch,γh) and P

πh,G
h (oh+1 |̂ch,ph, ah). Formally, the following algorithm learns an

approximation M̂(π1:H ) of M̃(π1:H ). The algorithm for constructing the approximation enjoys the following guarantee.
Before stating the guarantees, based on the evolution, we define {fh}h∈[H+1] and {gh}h∈[H+1] as mappings that maps the joint
history to common information and private information.

Lemma 11. Fix δ1,ζ1,ζ2,θ1,θ2 > 0. Suppose for all h ∈ [H], πh satisfies the pre-conditions of Lemma 10, then as long as

N0 ≥max{
C(maxh Ph+log

4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

,
CA(O+log

4Hmaxh(ĈhPh)A
δ1

)

ζ2θ
2
2

} for some sufficiently large constant C, with probability at least

1− δ1, the following event E1 holds:

• For all h ∈ [H], ĉh < Clow
h,ζ1

(πh), we have that

||PM̂(π1:H )
h (· | ĉh)−P

πh,G
h (· | ĉh)||1 ≤ θ1. (E.16)

• For all h ∈ [H], (̂ch,ph) < V low
h,ζ (π

h), ah ∈ A, we have that

||PM̂(π1:H )
h (· | ĉh,ph, ah)−P

πh,G
h (· | ĉh,ph, ah)||1 ≤ θ2. (E.17)

Proof. We will prove the Equation (E.16) first. Note for any trajectory k of Algorithm 5, the distribution of pkh conditioned

on ĉkh is exactly P
πh,G
h (· | ĉkh).

Now consider any ĉh < Clow
h,ζ1

(πh). By Chernoff bound, with probability at least 1 − exp(−ζ1N0
8 ), there are at least ζ1N0

2

trajectories k ∈ [N0], such that Compressh(fh(a
k
1:h−1, o

k
2:h)) = ĉh. By the folklore theorem of learning a discrete probability

distribution (Canonne, 2020), with probability 1− p′ , (E.16) holds as long as

ζ1N0

2
≥
C(Ph + log 1

p′ )

θ2
1

, (E.18)

for some constant C > 1. By a union bound over all possible h ∈ [H], and ĉh ∈ Ĉh, (E.16) holds with probability at least

1−Hmax
h
Ĉh exp(−

ζ1N0

8
)−Hmax

h
Ĉhp

′ .

Now set p′ = δ1
4Hmaxh Ĉh

and it’s easy to verify that (E.18) holds since N0 ≥
C(maxh Ph+log

4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

. Furthermore, as long as

C is sufficiently large, we have that Hmaxh Ĉh exp(−
ζ1N0
8 ) ≤ δ1

4 . Therefore, we proved that with probability at least 1− δ12 ,
equation (E.16) holds for all h ∈ [H], and ĉh < Clowh,ζ1(π

h).

Similarly, consider any trajectory k, the distribution of oh+1 conditioned on ĉkh,ph, ah is exactly P
πh,G
h (· | ĉh,ph, ah). Now

consider any (̂ch,ph) < Clowh,ζ2(π
h) and ah ∈ A. Now note due to the assumption for πh, it holds that Pπ

h,G
h (̂ch,ph, ah) =

38



Partially Observable Multi-agent RL with (Quasi-)Efficiency: The Blessing of Information Sharing

P
πh,G
h (̂ch,ph)P

πh,G
h (ah |̂ch,ph) ≥

ζ2
A . By Chernoff bound, with probability at least 1− exp(−ζ1N0

8A ), there are at least ζ2N0
2A

trajectories k ∈ [N0], such that Compressh(fh(a
k
1:h−1, o

k
2:h)) = ĉh, gh(a

k
1:h−1, o

k
2:h) = ph, a

k
h = ah. Again with probability at

least 1− p′ , (E.17) holds as long as

ζ2N0

2A
≥
C(O+ log 1

p′ )

θ2
2

,

for some constant C ≥ 1. By a union bound over all possible h ∈ [H], ĉh,ph, ah, (E.17) holds with probability at least

1−Hmax
h

(ĈhPh)Aexp(−ζ2N0

8A
)−Hmax

h
(ĈhPh)Ap

′ .

Now we set p′ = δ1
4Hmaxh(ĈhPh)A

. Then since N0 >
CA(O+log

4Hmaxh(ĈhPh)A
δ1

)

ζ2θ
2
2

, it holds that

Hmaxh(ĈhPh)Aexp(−ζ2N0
8A ) ≤ δ1

4 and Hmaxh(ĈhPh)Ap′ ≤
δ1
4 as long as the constant C is sufficiently large. Therefore,

we conclude that with probability at least 1− δ12 , equation (E.17) holds for all h ∈ [H], ĉh ∈ Ĉh, ph ∈ Ph, ah ∈ A. Finally, by
a union bound, we proved the lemma.

With the previous lemma, the next step is to bound the two important quantity in Definition 5. In the following discussion,
we will use M̃ for M̃(π1:H ), and M̂ for M̂(π1:H ).

Lemma 12. Under the event E1 in Lemma 11, for any h ∈ [H], policy π ∈Πgen, reward function r̂i,h : O → [0,1] for any
i ∈ [n], h ∈ [H +1], and prescription γh ∈ Γh, it holds that

E
G
a1:h−1,o2:h∼π

∑
zh+1

|PM̃,z
h (zh+1 | ĉh,γh)−P

M̂,z
h (zh+1 | ĉh,γh)| ≤

Oθ1 +2APh
ζ2
ζ1

+APhθ2 +
A2̂LOL̂ζ1

φ
+1[h > L̂] · 2 · dπ,G

S ,h−L̂
(UG
φ,h−L̂

(πh)), (E.19)

E
G
a1:h−1,o2:h∼π |E

M̃ [̂ri,h+1(oh+1) | ĉh,γh]−EM̂ [̂ri,h+1(oh+1) | ĉh,γh]| ≤

Oθ1 +2APh
ζ2
ζ1

+APhθ2 +
A2̂LOL̂ζ1

φ
+1[h > L̂] · 2 · dπ,G

S ,h−L̂
(UG
φ,h−L̂

(πh)). (E.20)

Proof. Note that

|EM̃ [̂ri,h+1(oh+1) | ĉh,γh]−EM̂ [̂ri,h+1(oh+1) | ĉh,γh]| ≤
∑
oh+1

|PM̃,o
h (oh+1 | ĉh,γh)−P

M̂,o
h (oh+1 |̂ch,γh)|.

Therefore, to prove (E.20), it suffices to bound
∑
oh+1
|PM̃,o
h (oh+1 | ĉh,γh)−P

M̂,o
h (oh+1 |̂ch,γh)|. Under the event E1, consider
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any ĉh < Clow
h,ζ1

(πh) and γh ∈ Γh:∑
ph,ah,oh+1

|PM̃h (ph, ah, oh+1 |̂ch,γh)−PM̂h (ph, ah, oh+1 |̂ch,γh)|

=
∑

ph,ah,oh+1

|Pπ
h,G

h (ph |̂ch)Πn
i=1γi,h(ai,h |pi,h)P

πh,G
h (oh+1 |̂ch,ph, ah)−PM̂h (ph |̂ch)Πn

i=1γi,h(ai,h |pi,h)P
M̂,o
h (oh+1 |̂ch,ph, ah)|

≤
∑

ph,ah,oh+1

Πn
i=1γi,h(ai,h |pi,h)|P

πh,G
h (ph |̂ch)−PM̂h (ph |̂ch)|+

Πn
i=1γi,h(ai,h |pi,h)P

πh,G
h (ph |̂ch)|P

πh,G
h (oh+1 |̂ch,ph, ah)−P

M̂,o
h (oh+1 |̂ch,ph, ah)|

≤O||Pπ
h,G

h (· | ĉh)−PM̂h (· | ĉh)||1 +
∑
ph,ah

P
πh,G
h (ph |̂ch)||P

πh,G
h (· | ĉh,ph, ah)−PM̂h (· | ĉh,ph, ah)||1

≤Oθ1 +


∑

ph:P
πh,G
h (ph |̂ch)≤

ζ2
ζ1

+
∑

ph:P
πh,G
h (ph |̂ch)>

ζ2
ζ1


∑
ah

P
πh,G
h (ph |̂ch)||P

πh,G
h (· | ĉh,ph, ah)−PM̂h (· | ĉh,ph, ah)||1

≤Oθ1 +2APh
ζ2
ζ1

+APhθ2,

where the last inequality comes from the fact that if ĉh < Clow
h,ζ1

(πh) and P
πh,G
h (ph |̂ch) >

ζ2
ζ1

, then (̂ch,ph) < V low
h,ζ2

(πh). Finally,
for any policy π, by taking expectations over ĉh, we conclude that

E
G
a1:h−1,o2:h∼π

∑
ph,ah,oh+1

|PM̃h (ph, ah, oh+1 |̂ch,γh)−PM̂h (ph, ah, oh+1 |̂ch,γh)|

≤Oθ1 +2APh
ζ2
ζ1

+APhθ2 +2 · dπ,GC,h (C
low
h,ζ1

(πh))

≤Oθ1 +2APh
ζ2
ζ1

+APhθ2 +
A2̂LOL̂ζ1

φ
+1[h > L̂] · 2 · dπ,G

S ,h−L̂
(UG
φ,h−L̂

(πh)),

where the last step comes from Lemma 10. By noticing that after marginalization the total variation will not increase:∑
zh+1

|PM̃,z
h (zh+1 | ĉh,γh)−P

M̂,z
h (zh+1 | ĉh,γh)| ≤

∑
ph,ah,oh+1

|PM̃h (ph, ah, oh+1 |̂ch,γh)−PM̂h (ph, ah, oh+1 |̂ch,γh)|∑
oh+1

|PM̃,o
h (oh+1 | ĉh,γh)−P

M̂,o
h (oh+1 |̂ch,γh)| ≤

∑
ph,ah,oh+1

|PM̃h (ph, ah, oh+1 |̂ch,γh)−PM̂h (ph, ah, oh+1 |̂ch,γh)|,

we proved the lemma.

Finally, we are ready to prove Theorem 8, building the relationship between G and M̂(π1:H ) through M̃(π1:H ).

Proof. In the following proof, we will use M̃ for M̃(π1:H ) and M̂ for M̂(π1:H ). Note that for ϵr (M̂, r̂), it holds that

ϵr (M̂, r̂) = max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EM̂ [̂ri,h+1(oh+1) | ĉh,γh]|

≤max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

+max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

M̃ [̂ri,h+1(oh+1) | ch,γh]−EM̂ [̂ri,h+1(oh+1) | ĉh,γh]|

≤ ϵr (π1:H , r̂) + ϵapx(π
1:H ),
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where the last step comes from Lemma 12. Similarly, for ϵz(M̂), it holds that

ϵz(M̂) = max
h

max
π,γh

E
G
a1:h−1,o2:h∼π ||P

G
h (· |ch,γh)−P

M̂,z
h (· | ĉh,γh)||1

≤max
h

max
π,γh

E
G
a1:h−1,o2:h∼π ||P

G
h (· |ch,γh)−P

M̃,z
h (· | ĉh,γh)||1

+max
h

max
π,γh

E
G
a1:h−1,o2:h∼π ||P

M̃,z
h (· |ch,γh)−P

M̂,z
h (· | ĉh,γh)||1

≤ ϵz(π1:H ) + ϵapx(π
1:H )

where the last step again comes from Lemma 12. Therefore, with Lemma 4 and Theorem 2, we proved the Theorem.

E.6. Learning with finite memory as approximate common information

Until now, we have not considered the relationship between M̃(π1:H ) and G, which will necessarily depend on the choice
of approximate common information ĉh and π1:H . For planning, we have seen how to construct an approximate ĉh using
finite memory. Similarly, here we will also show how to construct ĉh with finite memory so that M̃(π1:H ) is a good
approximation of G. In the following discussions, we shall use another important policy-dependent approximate belief
b̃πh (ah−L:h−1, oh−L+1:h) := b

apx,G
h (ah−L:h−1, oh−L+1:h;d

π,G
S ,h−L).We shall need the following important lemmas.

Lemma 13. There is a constant C ≥ 1 so that the following holds. If Assumption 2 holds, then for any ϵ,φ > 0,L ∈N so
that L ≥ Cγ−4 log( 1

ϵφ ), it holds that for any policies π ∈Π, π′ ∈Πgen,

E
G
a1:h−1,o2:h∼π′

∥∥∥bh (a1:h−1, o2:h)− b̃πh (ah−L:h−1, oh−L+1:h)∥∥∥1 ≤ ϵ+1[h > L] · 6 · dπ′ ,GS ,h−L (UGφ,h−L (π)) ,
E
G
a1:h−1,o2:h∼π′

∥∥∥bh (a1:h−1, o2:h−1)− b̃πh (ah−L:h−1, oh−L+1:h−1)∥∥∥1 ≤ ϵ+1[h > L] · 6 · dπ′ ,GS ,h−L (UGφ,h−L (π)) ,
E
G
a1:h−1,o2:h∼π′

∥∥∥bh (a1:h−1, o2:h−1, o1,h)− b̃πh (
ah−L:h−1, oh−L+1:h−1, o1,h

)∥∥∥
1
≤ ϵ+1[h > L] · 6 · dπ

′ ,G
S ,h−L

(
UGφ,h−L (π)

)
.

Furthermore, for any finite domain Y , conditional probability q(y |s), and the posterior update operator Fq : ∆(S)→ ∆(S)
as defined in Lemma 6, it holds that

E
G
a1:h−1,o2:h∼π′Ey∼q·bh(a1:h−1,o2:h)||F

q(bh(a1:h−1, o2:h);y)−Fq(b′h(ah−L:h−1, oh−L+1:h);y)||1 ≤ ϵ.

Proof. It directly follows from Theorem E.4 and Lemma 12.2 in (Golowich et al., 2022a).

Note the lemma shows that if we use the dπ,G
S ,h−L̂

instead of a Unif(S) as the prior, the approximate belief will suffer from an

additional error term dπ
′ ,G
S ,h−L

(
UGφ,h−L (π)

)
. The following lemma shows there already exists an efficient algorithm for finding

π to minimize dπ
′ ,G
S ,h−L

(
UGφ,h−L (π)

)
.

Lemma 14. Given α,β > 0, L̂ ≥ C log(HSO/(αγ))
γ4 , and φ = αγ2

C3H10S5O4 for some constant C > 0. There exists an algorithm

BaSeCAMP with both computation and sample complexity bounded by (OA)̂L log( 1β ) outputting K = 2HS groups of

policies {π1:H,j }Kj=1, where πh,jh′ = Unif(A) for h′ ≥ h− L̂, j ∈ [K] and rewards {(̂rji )
n
i=1}

K
j=1. It holds that with probability at

least 1− β, there is at least one j⋆ ∈ [K] such that for any h > L̂, policy π ∈Πgen

dπ,G
S ,h−L̂

(UG
φ,h−L̂

(πh,j
⋆
)) ≤ α

CH2 ,

E
G
a1:h−1,o1:h∼π |ri,h(oh)− r̂

j⋆

i,h(oh)| ≤
α

CH2 .

Proof. It follows from Theorem 3.1 in (Golowich et al., 2022a).

By combining two previous lemmas, we can show the following corollary:
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Corollary 2. Given ϵ,δ2 > 0, L ≥ C log(HSO/(ϵγ))
γ4 , and φ = ϵγ2

C2H8S5O4 for some constant C > 0. There exists an algorithm

BaSeCAMP with both computation and sample complexity bounded by N1 = (OA)L log( 1
δ2
) outputting K = 2HS groups

of policies {π1:H,j }Kj=1, where πh,jh′ = Unif(A) for h′ ≥ h−L,j ∈ [K]. The following event E2 holds with probability at least
1− δ2: there is at least one j⋆ ∈ [K] such that for any h > L, policy π′ ∈Πgen

E
G
a1:h−1,o2:h∼π′

∥∥∥∥∥bh (a1:h−1, o2:h)− b̃πh,j⋆h (ah−L:h−1, oh−L+1:h)
∥∥∥∥∥
1
≤ ϵ+1[h > L] · 6 · dπ

′ ,G
S ,h−L

(
UGφ,h−L

(
πh,j

⋆ ))
,

E
G
a1:h−1,o2:h∼π′

∥∥∥∥∥bh (a1:h−1, o2:h−1)− b̃πh,j⋆h (ah−L:h−1, oh−L+1:h−1)
∥∥∥∥∥
1
≤ ϵ+1[h > L] · 6 · dπ

′ ,G
S ,h−L

(
UGφ,h−L

(
πh,j

⋆ ))
,

E
G
a1:h−1,o2:h∼π′

∥∥∥∥∥bh (a1:h−1, o2:h−1, oi,h)− b̃πh,j⋆h

(
ah−L:h−1, oh−L+1:h−1, oi,h

)∥∥∥∥∥
1
≤ ϵ+1[h > L] · 6 · dπ

′ ,G
S ,h−L

(
UGφ,h−L

(
πh,j

⋆ ))
,

dπ
′ ,G
S ,h−L(U

G
φ,h−L(π

h,j⋆ )) ≤ ϵ,

E
G
a1:h−1,o2:h∼π |ri,h(oh)− r̂

j⋆

i,h(oh)| ≤ ϵ.

Proof. Let α = CH2ϵ
2 , δ2 = β, and L ≥max{C

log( 1
ϵφ )

γ4 ,C log(HSO/(αγ))
γ4 }. Combing Lemma 13 and 14 leads to the conclusion.

In the discussion thereafter, we will use M̃ for M̃(π1:H,j⋆ ) and Ĝ for M̂(π1:H,j⋆ ), and r̂i,h for r̂j
⋆

i,h interchangeably. There is
still one issue unsolved, which is that BaSeCAMP does not tell us which j ∈ [K] is the j⋆ we want. Therefore, we have to
evaluate the policies {π⋆,j }Kj=1. The policy evaluation and selection algorithm is described in Algorithm 6.

Lemma 15. For Algorithm 6, suppose that the K groups of policies {π1:H,j }Kj=1 and K reward functions {(̂rji )
n
i=1}

K
j=1 satisfy

that there exists some j⋆ ∈ [K] such that for any policy π ∈ Π, i ∈ [n], we have |V π,G
i,1 (∅) − V π,M̂(π1:H,j⋆ )

i,1 (∅)| ≤ ϵ. If

N2 ≥ C
H2 log K2n

δ3
ϵ2

for some constant C > 0, then with probability at least 1− δ3, the following event E3 holds

NE/CE/CCE-gap(π⋆,̂j ) ≤NE/CE/CCE-gap(π⋆,j
⋆
) + 6ϵ+Hϵe.

Proof. For NE/CCE, note that π⋆,j,mi ∈ argmaxπi V
πi×π

⋆,j
−i ,M̂(π1:H,m)m

i,1 (∅) for m ∈ [K]. By a union bound, with probability
at least 1− δ3, the following event E3 holds for any i ∈ [n], j ∈ [K],m ∈ [K]:

|Rji −V
π⋆,j ,G
i,1 (∅)| ≤ ϵ,

|Rj,mi −V
π
⋆,j,m
i ×π⋆,j−i ,G

i,1 (∅)| ≤ ϵ.

In the following proof, we will assume the previous event holds. Define m⋆i,j = argmaxmR
j,m
i . Now we will firstly show

that maxmR
j,m
i approximates the best response of π⋆,j−i . Note that for any i ∈ [n], j ∈ [K]:

max
πi

V
πi×π

⋆,j
−i ,G

i,1 (∅)−max
m

R
j,m
i ≥max

πi
V
πi×π

⋆,j
−i ,G

i,1 (∅)−V π
⋆,j,m⋆i,j
i ×π⋆,j−i ,G

i,1 (∅)− ϵ ≥ −ϵ.
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On the other hand,

max
πi

V
πi×π

⋆,j
−i ,G

i,1 (∅)−max
m

R
j,m
i ≤max

πi
V
πi×π

⋆,j
−i ,G

i,1 (∅)−max
m

V
π
⋆,j,m
i ×π⋆,j−i ,G

i,1 (∅) + ϵ

≤max
πi

V
πi×π

⋆,j
−i ,G

i,1 (∅)−max
m

V
π
⋆,j,m
i ×π⋆,j−i ,M̂(π1:H,j⋆ )

i,1 (∅) + 2ϵ

≤max
πi

V
πi×π

⋆,j
−i ,G

i,1 (∅)−V π
⋆,j,j⋆

i ×π⋆,j−i ,M̂(π1:H,j⋆ )
i,1 (∅) + 2ϵ

≤max
πi

V
πi×π

⋆,j
−i ,G

i,1 (∅)−max
πi

V
πi×π

⋆,j
−i ,M̂(π1:H,j⋆ )

i,1 (∅) + 2ϵ+Hϵe

≤ 3ϵ+Hϵe,

where the second last step comes from Lemma 2 and the last step comes from the fact that the max-operator is non-expansive.
Now we are ready to evaluate π⋆,̂j :

NE/CCE-gap(π⋆,̂j ) = max
i

max
πi

V πi×π
⋆,̂j
−i ,G

i,1 (∅)−V π⋆,̂j ,G
i,1 (∅)


≤max

i
max
πi

V πi×π
⋆,̂j
−i ,G

i,1 (∅)−Rĵi

+ ϵ
≤max

i

(
max
m

R
ĵ ,m
i −R

ĵ
i

)
+4ϵ+Hϵe.

Meanwhile for π⋆,̂j , we have that

NE/CCE-gap(π⋆,j
⋆
) = max

i
max
πi

V πi×π
⋆,j⋆

−i ,G
i,1 (∅)−V π⋆,j

⋆
,G

i,1 (∅)


≥max
i

max
πi

V πi×π
⋆,j⋆

−i ,G
i,1 (∅)−Rj

⋆

i

− ϵ
≥max

i

(
max
m

R
j⋆ ,m
i −Rj

⋆

i

)
− 2ϵ.

Recall the definition of ĵ = argminj
(
maximaxm(R

j,m
i −R

j
i )
)
, we conclude that NE/CCE-gap(π⋆,̂j ) ≤NE-gap(π⋆,j

⋆
) +

6ϵ+Hϵe.

For CE, let φ⋆,j,mi ∈ argmaxφi V
(φi⋄π

⋆,j
i )⊙π⋆,j−i ,M̂(π1:H,m)m

i,1 (∅), write π⋆,j,mi := φ⋆,j,mi ⋄π⋆,ji for m ∈ [K]. Similarly, by a union
bound, with probability at least 1− δ3, the following event E3 holds for any i ∈ [n], j ∈ [K],m ∈ [K]:

|Rji −V
π⋆,j ,G
i,1 (∅) ≤ ϵ,

|Rj,mi −V
π
⋆,j,m
i ⊙π⋆,j−i ,G

i,1 (∅)| ≤ ϵ.

In the following proof, we will assume the previous event holds. Define m⋆i,j = argmaxmR
j,m
i . Now we will firstly show

that maxmR
j,m
i approximates the best strategy modification with respect to π⋆,j−i . Note that for any i ∈ [n], j ∈ [K]:

max
φi

V
(φi⋄π

⋆,j
i )⊙π⋆,j−i ,G

i,1 (∅)−max
m

R
j,m
i ≥max

φi
V

(φi⋄π
⋆,j
i )⊙π⋆,j−i ,G

i,1 (∅)−V π
⋆,j,m⋆i,j
i ⊙π⋆,j−i ,G

i,1 (∅)− ϵ ≥ −ϵ.
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On the other hand,

max
φi

V
(φi⋄π

⋆,j
i )⊙π⋆,j−i ,G

i,1 (∅)−max
m

R
j,m
i ≤max

φi
V

(φi⋄π
⋆,j
i )⊙π⋆,j−i ,G

i,1 (∅)−max
m

V
π
⋆,j,m
i ⊙π⋆,j−i ,G

i,1 (∅) + ϵ

≤max
φi

V
(φi⋄π

⋆,j
i )⊙π⋆,j−i ,G

i,1 (∅)−max
m

V
π
⋆,j,m
i ⊙π⋆,j−i ,M̂(π1:H,j⋆ )

i,1 (∅) + 2ϵ

≤max
φi

V
(φi⋄π

⋆,j
i )⊙π⋆,j−i ,G

i,1 (∅)−V π
⋆,j,j⋆

i ⊙π⋆,j−i ,M̂(π1:H,j⋆ )
i,1 (∅) + 2ϵ

≤max
φi

V
(φi⋄π

⋆,j
i )⊙π⋆,j−i ,G

i,1 (∅)−max
φi

V
(φi⋄π

⋆,j
−i )⊙π

⋆,j
−i ,M̂(π1:H,j⋆ )

i,1 (∅) + 2ϵ+Hϵe

≤ 3ϵ+Hϵe,

where the second last step comes from Lemma 3 and the last step comes from the fact that the max-operator is non-expansive.
Now we are ready to evaluate π⋆,̂j :

CE-gap(π⋆,̂j ) = max
i

max
φi

V (φi⋄π
⋆,̂j
i )⊙π⋆,̂j−i ,G

i,1 (∅)−V π⋆,̂j ,G
i,1 (∅)


≤max

i
max
φi

V (φi⋄π
⋆,̂j
i )⊙π⋆,̂j−i ,G

i,1 (∅)−Rĵi

+ ϵ
≤max

i

(
max
m

R
ĵ ,m
i −R

ĵ
i

)
+4ϵ+Hϵe.

Meanwhile for π⋆,̂j , we have that

CE-gap(π⋆,j
⋆
) = max

i
max
φi

V (φi⋄π
⋆,j⋆

i )⊙π⋆,j
⋆

−i ,G
i,1 (∅)−V π⋆,j

⋆
,G

i,1 (∅)


≥max
i

max
φi

V (φi⋄π
⋆,j⋆

i )⊙π⋆,j
⋆

−i ,G
i,1 (∅)−Rj

⋆

i

− ϵ
≥max

i

(
max
m

R
j⋆ ,m
i −Rj

⋆

i

)
− 2ϵ.

Recall the definition of ĵ = argminj
(
maximaxm(R

j,m
i −R

j
i )
)
, we conclude that CE-gap(π⋆,̂j ) ≤ CE-gap(π⋆,j

⋆
) + 6ϵ +

Hϵe.

We put together the entire learning procedure in Algorithm 7. In the following discussion, we will see the sample complexity
of our algorithm instantiated with particular information structures.

One-step delayed information sharing. For this, the information structure has ch = {a1:h−1, o2:h−1}, pi,h = {oi,h}, zh+1 =
{oh, ah}. Fix L > 0, we define the approximate common information as ĉh = {ah−L:h−1, oh−L+1:h−1}. For any π1:H , it is easy
to verify that

P
M̃(π1:H ),c
h (sh,ph | ĉh) = P

πh,G
h (sh,ph |̂ch) = b̃π

h

h (ah−L:h−1, oh−L+1:h−1)(sh)Oh(oh|sh).
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Meanwhile, L̂ = L. Therefore, we conclude that if L ≥ C log(HSO/(ϵγ))
γ4 , by a union bound, with probability at least

1− δ1 − δ2 − δ3, it holds that

ϵr (π
1:H,j⋆ , r̂) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

=max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EG [̂ri,h+1(oh+1) | ch,γh]|

+max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G [̂ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

≤ ϵ+max
h

max
π

E
G
a1:h−1,o2:h∼π ||bh(a1:h−1, o2:h−1)− b̃

πh,j
⋆

h (ah−L:h−1, oh−L+1:h−1)||1

≤ 2ϵ+max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
.

ϵz(π
1:H,j⋆ ) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π ||P

G
h (· |ch,γh)−P

M̃,z
h (· |ch,γh)||1

≤max
h

max
π,γh

E
G
a1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h−1)− b̃

πh,j
⋆

h (ah−L:h−1, oh−L+1:h−1)||1

≤ ϵ+max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
.

According to the choice π1:H,j⋆ , it holds that

max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
≤ 6ϵ.

Therefore, for any α,δ > 0, setting ϵ = α
200(H+1)2 , θ1 = α

200(H+1)2O , ζ2 = ζ21 , θ2 = α
200(H+1)2Amaxh Ph

, ζ1 =

min{ αφ
200(H+1)2A2LOL

, α
400(H+1)2Amaxh Ph

}, φ = ϵγ2

C2H8S5O4 , ϵe = α
200H , δ1 = δ2 = δ3 = δ

3 , M̂(π1:H,j⋆ ) is an (ϵr ,ϵz)-expected-

approximate common information model of G, where ϵr ,ϵz ≤ 14α
200(H+1)2 . This leads to that π⋆,j

⋆
is a 15α

200 -NE/CE/CCE,

and |V π,G
i,1 (∅) − V π,M̂(π1:H,j⋆ )

i,1 (∅)| ≤ 15α
200 for any policy π ∈ Π by Lemma 4. By Lemma 15, NE/CE/CCE-gap(π⋆,̂j ) ≤

NE/CE/CCE-gap(π⋆,j
⋆
) + 91α

200 ≤ α. Finally, we are ready to analyze the computation and sample complexity of our
algorithm.

Theorem 16. Let α,δ,γ > 0. Algorithm 7 given a γ-observable POSG of one-step delayed information sharing structure

has time and sample complexity bounded by (AO)Cγ
−4 log SHO

γα log 1
δ for some universal constant C > 0 outputting an

α-NE/CE/CCE with probability at least 1− δ.

Proof. Recall that Ĉh ≤ (OA)L, Ph ≤ O, N0 = max{
C(maxh Ph+log

4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

,
CA(O+log

4Hmaxh(ĈhPhA)
δ1

)

ζ2θ
2
2

}, N1 = (OA)L log( 1
δ2
),

and N2 = C
H2 log K2n

δ3
ϵ2

for some constant C > 0. The total number of samples used is KN0+N1+(K +nK2)N2. Substituting
the choices of parameters intoN0,N1, andN2, we proved the sample complexity. Furthermore, for time complexity analysis,
since our algorithm only calls the BaseCAMP and our planning algorithm polynomial number of times, time complexity is

also bounded by (OA)Cγ
−4 log SHO

γα log 1
δ .

State controlled by one controller with asymmetric delay sharing. The information structure is given as ch =
{o1,2:h, o2,2:h−d , a1,1:h−1}, p1,h = ∅, p2,h = {o2,h−d+1:h}. Fix some L ≥ 0, the approximate common information is con-
structed as ĉh := {o1,h−d−L+1:h, o2,h−d−L+1:h−d , a1,h−d−L:h−1}. Then for any given policy π1:H , following exactly the same
derivation as in (E.14), it holds that

P
M̃(π1:H ),c
h (sh,ph | ĉh) = P

πh,G
h (sh,ph | ĉh) =

∑
sh−d

P
G(sh,ph |sh−d , fa, fo)FP (· | ·,fa)(̃bπ

h

h−d(a1:h−d−1, o2:h−d);fo)(sh−d).
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Meanwhile, L̂ = L + d. Therefore, we conclude that if L ≥ C log(HSO/(ϵγ))
γ4 , by a union bound, with probability at least

1− δ1 − δ2 − δ3:

ϵr (π
1:H,j⋆ , r̂) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

=max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EG [̂ri,h+1(oh+1) | ch,γh]|

+max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G [̂ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

≤ ϵ+max
h

max
π

E
G
a1:h−1,o2:h∼π∥F

P (· | ·,fa)(bh−d (a1:h−d−1, o2:h−d );fo)−FP (· | ·,fa) (̃bπ
h,j⋆

h−d (ah−d−L:h−d−1, oh−d−L+1:h−d );fo)∥1

≤ 2ϵ+max
h

max
π

1[h > L̂] · 6 · dπ,G
S ,h−L̂

(
UG
φ,h−L̂

(
πh,j

⋆
))
.

ϵz(π
1:H,j⋆ ) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π ||P

G
h (· |ch,γh)−P

M̃,z
h (· |ch,γh)||1

≤max
h

max
π,γh

E
G
a1:h−1,o2:h∼π′ ∥F

P (· | ·,fa)(bh−d (a1:h−d−1, o2:h−d );fo)−FP (· | ·,fa) (̃bπ
h,j⋆

h−d (ah−d−L:h−d−1, oh−d−L+1:h−d );fo)∥1

≤ ϵ+max
h

max
π

1[h > L̂] · 6 · dπ,G
S ,h−L̂

(
UG
φ,h−L̂

(
πh,j

⋆
))
.

According to the choice π1:H,j⋆ , it holds that

max
h

max
π

1[h > L̂] · 6 · dπ,G
S ,h−L̂

(
UG
φ,h−L̂

(
πh,j

⋆ ))
≤ 6ϵ.

Therefore, for any α,δ > 0, setting ϵ = α
200(H+1)2 , θ1 = α

200(H+1)2O , ζ2 = ζ21 , θ2 = α
200(H+1)2Amaxh Ph

, ζ1 =

min{ αφ

200(H+1)2A2(L+d)OL+d
, α
400(H+1)2Amaxh Ph

}, φ = ϵγ2

C2H8S5O4 , ϵe = α
200H , δ1 = δ2 = δ3 = δ

3 , M̂(π1:H,j⋆ ) is an (ϵr ,ϵz)-

expected-approximate common information model of G, where ϵr ,ϵz ≤ 14α
200(H+1)2 . This leads to that π⋆,j

⋆
is a

15α
200 -NE/CE/CCE, and |V π,G

i,1 (∅) − V π,M̂(π1:H,j⋆ )
i,1 (∅)| ≤ 15α

200 for any policy π ∈ Π by Lemma 4. By Lemma 15,

NE/CE/CCE-gap(π⋆,̂j ) ≤ NE/CE/CCE-gap(π⋆,j
⋆
) + 91α

200 ≤ α. Finally, we are ready to analyze the computation and
sample complexity of our algorithm.

Theorem 17. Let α,δ,γ > 0. Algorithm 7 given a γ-observable POSG of state controlled by one controller with asymmetric

delay sharing has computation and sample complexity bounded by (OA)C(γ
−4 log SHO

γα +d) log 1
δ for some universal constant

C > 0 outputting an α-NE/CE/CCE with probability at least 1− δ.

Proof. Recall that Ĉh ≤ (AO)L, Ph ≤ (AO)d , N0 = max{
C(maxh Ph+log

4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

,
CA(O+log

4Hmaxh(ĈhPh)A
δ1

)

ζ2θ
2
2

}, N1 =

(OA)̂L log( 1
δ2
), andN2 = C

H2 log K2n
δ3

ϵ2
for some constantC > 0. The total number of samples used isKN0+N1+(K+nK2)N2.

Substituting the choices of parameters into N0, N1, and N2, we proved the sample complexity. Furthermore, for time
complexity analysis, since our algorithm only calls the BaseCAMP and our planning algorithm polynomial number of times,

time complexity is also bounded by (OA)C(γ
−4 log SHO

γα +d) log 1
δ .

Information sharing with one-directional-one-step delay. For this case, we have
ch = {o1,2:h, o2,2:h−1, a1:h−1}, p1,h = ∅, p2,h = {o2,h}, and zh+1 = {o1,h+1, o2,h, ah}. Fix L > 0, we construct the approximate
common information as ĉh = {o1,h−L+1:h, o2,h−L+1:h−1, ah−L:h−1}. For any π1:H , it is easy to verify that

P
M̃(π1:H ),c
h (sh,ph | ĉh) = P

πh,G
h (sh,ph |̂ch) = b̃π

h

h (o1,h−L:h, o2,h−L:h−1, ah−L:h−1)(sh)Ph(o2,h|sh, o1,h),
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where Ph(o2,h|sh, o1,h) =
Oh(o1,h,o2,h |sh)∑
o′2,h

Oh(o1,h,o′2,h |sh)
. Furthermore, L̂ = L. Therefore, we conclude that if L ≥ C log(HSO/(ϵγ))

γ4 , by a

union bound, with probability at least 1− δ1 − δ2 − δ3:

ϵr (π
1:H,j⋆ , r̂) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

=max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EG [̂ri,h+1(oh+1) | ch,γh]|

+max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G [̂ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

≤ ϵ+max
h

max
π

E
G
a1:h−1,o2:h∼π ||bh(a1:h−1, o2:h−1, o1,h)− b̃

πh,j
⋆

h (ah−L:h−1, oh−L+1:h−1, o1,h)||1

≤ 2ϵ+max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
.

ϵz(π
1:H,j⋆ ) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π ||P

G
h (· |ch,γh)−P

M̃,z
h (· |ch,γh)||1

≤max
h

max
π,γh

E
G
a1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h−1, o1,h)− b̃

πh,j
⋆

h (ah−L:h−1, oh−L+1:h−1, o1,h)||1

≤ ϵ+max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
.

According to the choice π1:H,j⋆ , it holds that

max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
≤ 6ϵ.

Therefore, for any α,δ > 0, setting ϵ = α
200(H+1)2 , θ1 = α

200(H+1)2O , ζ2 = ζ21 , θ2 = α
200(H+1)2Amaxh Ph

, ζ1 =

min{ αφ
200(H+1)2A2LOL

, α
400(H+1)2Amaxh Ph

}, φ = ϵγ2

C2H8S5O4 , ϵe = α
200H , δ1 = δ2 = δ3 = δ

3 , M̂(π1:H,j⋆ ) is an (ϵr ,ϵz)-expected-

approximate common information model of G, where ϵr ,ϵz ≤ 14α
200(H+1)2 . This leads to that π⋆,j

⋆
is a 15α

200 -NE/CE/CCE,

and |V π,G
i,1 (∅) − V π,M̂(π1:H,j⋆ )

i,1 (∅)| ≤ 15α
200 for any policy π ∈ Π by Lemma 4. By Lemma 15, NE/CE/CCE-gap(π⋆,̂j ) ≤

NE/CE/CCE-gap(π⋆,j
⋆
) + 91α

200 ≤ α. Finally, we are ready to analyze the computation and sample complexity of our
algorithm.

Theorem 18. Let α,δ,γ > 0. Algorithm 7 given a γ-observable POSG of one-directional-one-step delayed information

sharing structure has time and sample complexity bounded by (AO)Cγ
−4 log SHO

γα log 1
δ for some universal constant C > 0

outputting an α-NE/CE/CCE with probability at least 1− δ.

Proof. Recall that Ĉh ≤ (OA)L, Ph ≤ O, N0 = max{
C(maxh Ph+log

4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

,
CA(O+log

4Hmaxh(ĈhPhA)
δ1

)

ζ2θ
2
2

}, N1 = (OA)L log( 1
δ2
),

and N2 = C
H2 log K2n

δ3
ϵ2

for some constant C > 0. The total number of samples used is KN0+N1+(K +nK2)N2. Substituting
the choices of parameters intoN0,N1, andN2, we proved the sample complexity. Furthermore, for time complexity analysis,
since our algorithm only calls the BaseCAMP and our planning algorithm polynomial number of times, time complexity is

also bounded by (OA)Cγ
−4 log SHO

γα log 1
δ .

Uncontrolled state process with delayed sharing. The information structure satisfies ch = {o2:h−d}, pi,h = {oi,h−d+1:h},
and zh+1 = {oh−d+1}. Fix a L ≥ 0, the approximate common information is ĉh = {oh−d−L+1:h−d}. For any policy π1:H , it is
easy to verify that

P
M̃(π1:H ),c
h (sh,ph | ĉh) = P

πh,G
h (sh,ph |̂ch) =

∑
sh−d

b̃π
h

h−d(oh−d−L+1:h−d)(sh−d)P(sh, oh−d+1:h|sh−d).
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Furthermore, L̂ = L+ d. Therefore, we conclude that if L ≥ C log(HSO/(ϵγ))
γ4 , by a union bound, with probability at least

1− δ1 − δ2 − δ3:

ϵr (π
1:H,j⋆ , r̂) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

=max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EG [̂ri,h+1(oh+1) | ch,γh]|

+max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G [̂ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

≤ ϵ+max
h

max
π

E
G
a1:h−1,o2:h∼π ||bh−d(o2:h−d)− b̃

πh,j
⋆

h−d (oh−d−L+1:h−d)||1

≤ 2ϵ+max
h

max
π

1[h > L̂] · 6 · dπ,G
S ,h−L̂

(
UG
φ,h−L̂

(
πh,j

⋆ ))
.

ϵz(π
1:H,j⋆ ) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π ||P

G
h (· |ch,γh)−P

M̃,z
h (· |ch,γh)||1

≤max
h

max
π,γh

E
G
a1:h−1,o2:h∼π′ ||bh−d(o2:h−d)− b̃

πh,j
⋆

h−d (oh−d−L+1:h−d)||1

≤ ϵ+max
h

max
π

1[h > L̂] · 6 · dπ,G
S ,h−L̂

(
UG
φ,h−L̂

(
πh,j

⋆ ))
.

According to the choice π1:H,j⋆ , it holds that

max
h

max
π

1[h > L̂] · 6 · dπ,G
S ,h−L̂

(
UG
φ,h−L̂

(
πh,j

⋆ ))
≤ 6ϵ.

Therefore, for any α,δ > 0, setting ϵ = α
200(H+1)2 , θ1 = α

200(H+1)2O , ζ2 = ζ21 , θ2 = α
200(H+1)2Amaxh Ph

, ζ1 =

min{ αφ

200(H+1)2A2(L+d)OL+d
, α
400(H+1)2Amaxh Ph

}, φ = ϵγ2

C2H8S5O4 , ϵe = α
200H , δ1 = δ2 = δ3 = δ

3 , M̂(π1:H,j⋆ ) is an

(ϵr ,ϵz)-expected-approximate common information model of G, where ϵr ,ϵz ≤ 14α
200(H+1)2 . This leads to that π⋆,j

⋆

is a 15α
200 -NE/CE/CCE, and |V π,G

i,1 (∅) − V π,M̂(π1:H,j⋆ )
i,1 (∅)| ≤ 15α

200 for any policy π by Lemma 4. By Lemma 15,

NE/CE/CCE-gap(π⋆,̂j ) ≤ NE/CE/CCE-gap(π⋆,j
⋆
) + 91α

200 ≤ α. Finally, we are ready to analyze the computation and
sample complexity of our algorithm.

Theorem 19. Let α,δ,γ > 0. Algorithm 7 given a γ-observable POSG of uncontrolled state process and delayed information

sharing structure has time and sample complexity bounded by (OA)C(γ
−4 log SHO

γα +d) log 1
δ for some universal constant C > 0

outputting an α-NE/CE/CCE with probability at least 1− δ.

Proof. Recall that Ĉh ≤ OL, Ph ≤ Od , N0 = max{
C(maxh Ph+log

4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

,
CA(O+log

4Hmaxh(ĈhPh)A
δ1

)

ζ2θ
2
2

}, N1 = (OA)̂L log( 1
δ2
),

and N2 = C
H2 log K2n

δ3
ϵ2

for some constant C > 0. The total number of samples used is KN0+N1+(K +nK2)N2. Substituting
the choices of parameters intoN0,N1, andN2, we proved the sample complexity. Furthermore, for time complexity analysis,
since our algorithm only calls the BaseCAMP and our planning algorithm polynomial number of times, time complexity is

also bounded by (OA)C(γ
−4 log SHO

γα ) log 1
δ .

Symmetric information game. For symmetric information game, ch = {o1:h, a1:h−1}, pi,h = ∅, and zh+1 = {ah, oh+1}. Fix
L ≥ 0, we construct the approximate common information as ĉh = {oh−L+1:h, ah−L:h−1}. For any π1:H , it is easy to verify that

P
M̃(π1:H ),c
h (sh,ph | ĉh) = P

πh,G
h (sh,ph |̂ch) = b̃π

h

h (ah−L:h−1, oh−L+1:h)(sh).
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Meanwhile, L̂ = L. Therefore, we conclude that if L ≥ C log(HSO/(ϵγ))
γ4 , by a union bound, with probability at least

1− δ1 − δ2 − δ3:

ϵr (π
1:H,j⋆ , r̂) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

=max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G[ri,h+1(oh+1) | ch,γh]−EG [̂ri,h+1(oh+1) | ch,γh]|

+max
h

max
π,γh

E
G
a1:h−1,o2:h∼π |E

G [̂ri,h+1(oh+1) | ch,γh]−EM̃ [̂ri,h+1(oh+1) | ĉh,γh]|

≤ ϵ+max
h

max
π

E
G
a1:h−1,o2:h∼π ||bh(a1:h−1, o2:h)− b̃

πh,j
⋆

h (ah−L:h−1, oh−L+1:h)||1

≤ 2ϵ+max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
.

ϵz(π
1:H,j⋆ ) = max

h
max
π,γh

E
G
a1:h−1,o2:h∼π ||P

G
h (· |ch,γh)−P

M̃,z
h (· |ch,γh)||1

≤max
h

max
π,γh

E
G
a1:h−1,o2:h∼π′ ||bh(a1:h−1, o2:h)− b̃

πh,j
⋆

h (ah−L:h−1, oh−L+1:h)||1

≤ ϵ+max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
.

According to the choice π1:H,j⋆ , it holds that

max
h

max
π

1[h > L] · 6 · dπ,GS ,h−L
(
UGφ,h−L

(
πh,j

⋆ ))
≤ 6ϵ.

Therefore, for any α,δ > 0, setting ϵ = α
200(H+1)2 , θ1 = α

200(H+1)2O , ζ2 = ζ21 , θ2 = α
200(H+1)2Amaxh Ph

, ζ1 =

min{ αφ
200(H+1)2A2LOL

, α
400(H+1)2Amaxh Ph

}, φ = ϵγ2

C2H8S5O4 , ϵe = α
200H , δ1 = δ2 = δ3 = δ

3 , M̂(π1:H,j⋆ ) is an (ϵr ,ϵz)-expected-

approximate common information model of G, where ϵr ,ϵz ≤ 14α
200(H+1)2 . This leads to that π⋆,j

⋆
is a 15α

200 -NE/CE/CCE,

and |V π,G
i,1 (∅) − V π,M̂(π1:H,j⋆ )

i,1 (∅)| ≤ 15α
200 for any policy π ∈ Π by Lemma 4. By Lemma 15, NE/CE/CCE-gap(π⋆,̂j ) ≤

NE/CE/CCE-gap(π⋆,j
⋆
) + 91α

200 ≤ α. Finally, we are ready to analyze the computation and sample complexity of our
algorithm.

Theorem 20. Let α,δ,γ > 0. Algorithm 7 given a γ-observable POSG of symmetric information sharing structure has time

and sample complexity bounded by (AO)Cγ
−4 log SHO

γα log 1
δ for some universal constant C > 0 outputting an α-NE/CE/CCE

with probability at least 1− δ.

Proof. Recall that Ĉh ≤ (OA)L, Ph = 1, N0 = max{
C(maxh Ph+log

4Hmaxh Ĉh
δ1

)

ζ1θ
2
1

,
CA(O+log

4Hmaxh(ĈhPh)A
δ1

)

ζ2θ
2
2

}, N1 = (OA)L log( 1
δ2
),

and N2 = C
H2 log K2n

δ3
ϵ2

for some constant C > 0. The total number of samples used is KN0+N1+(K +nK2)N2. Substituting
the choices of parameters intoN0,N1, andN2, we proved the sample complexity. Furthermore, for time complexity analysis,
since our algorithm only calls the BaseCAMP and our planning algorithm polynomial number of times, time complexity is

also bounded by (OA)C(γ
−4 log SHO

γα ) log 1
δ .
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F. Experimental Details
Implementation details on MPE. We train both state-of-the-art centralized-training algorithm MAPPO and decentralized-
training algorithm IPPO (Yu et al., 2021) with different information sharing mechanisms by varying the information sharing
delay from 0 to∞. For the centralized MAPPO, we also adopt parameter sharing when agents are homogenous, which
is reported as important for improved performance. For decentralized IPPO, we do not enforce any coordination during
training among agents. Note that the original algorithm in (Yu et al., 2021) corresponds to the case, where the delay is
d =∞.

Implementation details on our approaches. Furthermore, for scalability and compatibility with popular deep RL
algorithms, we fit the transition using neural networks instead of the counting methods adopted in Algorithm 7. For the
planning oracles used in Algorithm 7, we choose to use Q-learning instead of backward-induction style algorithms as in
Algorithm 3, for which we found working very well empirically. Finally, for constructing approximate common information,
we used finite memory with a length of 4. Both our algorithm and baselines are trained with 80000 time steps.
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