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Abstract—We prove a so-called outer kernel theorem
for bounded linear operators between co-orbit spaces
generated from a localised frame Ψ. In particular, we
show that there is a bijective correspondence between
the bounded linear operators mapping the co-orbit
space of test functions H1

w(Ψ) to the co-orbit space of
distributions H∞

1/w(Ψ) and their kernels in H∞,⊗
1/w (Ψ).

The proof of the theorem relies on general properties
of localised frames, tensor products and Galerkin’s
method for matrix represention of operators.

I. INTRODUCTION

Kernel theorems have a long history dating back to
Laurent Schwartz’ characterization of operators from
S(R) to S ′(R). In principle, kernel theorems state
that ’any’ operator O can be ’nicely’ represented.
In concrete function spaces, this means that it can
be written as an integral operator with kernel K
- in reminiscence of the matrix representation in
finite dimensional spaces. In a more formal way, this
principle may be written as

⟨Of, g⟩ = ⟨K, f ⊗ g⟩, (1)

with the definition of the brackets depending on the
particular spaces involved. Over the years, kernel the-
orems were established for various function spaces,
see, for example, [14], [7], or [3]. See also [5], [11]
for further variations of the topic.

In this article, we prove the so-called outer kernel
theorem (Theorem 4.1) for the case that the involved
function spaces are co-orbit spaces generated by a
localised frame Ψ. Leaving the technical details for
later (see Sections II and III), co-orbit spaces [9],
[10] are defined as those functions whose frame
coefficients are contained in certain function or se-
quence spaces. Typical examples are modulation [8],
or Besov spaces [15]. Classically, co-orbit spaces
are generated by integrable representations of locally
compact groups [9], [10]. In this article we consider
co-orbit spaces generated by (intrinsically) localised
frames, i.e. those frames whose Gramian matrices
(⟨ψi, ψj⟩)i,j are ’nice’ [12]. One should note here
that many of the classical co-orbit spaces can also
be understood in terms of localised frames. Kernel

theorems in the classical setting that are of similar
nature than Theorem 4.1 were established in [3]. This
shows that the essential ingredient to prove kernel
theorems for co-orbit spaces is in fact the localisation
of the frame and not the group structure.

Our proof of Theorem 4.1 relies on Galerkin’s
method to represent an operator O by the matrix
(⟨Oψi, ψj⟩)i,j . There is every reason to specifically
consider localised frames Ψ = {ψi}i∈I in the
Galerkin matrix [2]. For one, localised frames allow
atomic decompositions of the elements of their co-
orbit spaces. For another, the Gram matrix of any
localised frame is, by definition, well-behaved. Using
Galerkin’s method with localised frames therefore
gives rise to matrices representing bounded operators
mapping co-orbit spaces on one another [2]. This
can be very useful for solving corresponding operator
equations numerically [6].

As we shall see, the kernel of any bounded operator
mapping one co-orbit space on the other can be con-
structed from the matrix that represents the operator.
If the operator shows certain regularity, for example,
if it maps distributions to test-functions, then we are
guaranteed to have a well-behaved Galerkin matrix,
see [2, Proposition 6]. The interpretation of this result
in terms of the kernels is part of ongoing work of
ours.

II. BACKGROUND INFORMATION AND NOTATION

In this section we provide the bare minimum of
information necessary to follow the arguments of our
proof in Section IV. More information on (localised)
frames and co-orbit spaces can be found in [4], [12],
[2], [7], [9], and [10].

We will write f ≍ g if there exist constants c, C >
0 such that cf ⩽ g ⩽ Cf . A countable set Ψ :=
{ψi}i∈I ⊂ H is called a frame for the Hilbert space
H if there exist constants AΨ, BΨ > 0 such that

AΨ ∥f∥2H ⩽
∑
i∈I

|⟨f, ψi⟩|2 ⩽ BΨ ∥f∥2H , (2)



for every f ∈ H . The analysis operator and synthesis
operator are defined by

CΨ : H → ℓ2(I), f 7→ {⟨f, ψi⟩}i∈I ,

and

DΨ : ℓ2(I) → H, {ci}i∈I 7→
∑
i∈I

ciψi

respectively. Their combination SΨ = DΨCΨ is
called the frame operator, and is always positive
and self-adjoint. Moreover, SΨ is invertible if Ψ is
a frame. The canonical dual frame Ψ̃ := {ψ̃i}i∈I =
{S−1

Ψ ψi}i∈I allows the representation

f =
∑
i∈I

⟨f, ψi⟩ ψ̃i =
∑
i∈I

〈
f, ψ̃i

〉
ψi, f ∈ H.

To introduce the concept of localised frames we
first need the notion of a spectral matrix algebra.

Definition 2.1: An involutive Banach algebra A of
infinite matrices equipped with the norm ∥ · ∥A is
called spectral matrix algebra if

(i) any A ∈ A defines a bounded operator on
ℓ2(I) or, in shorthand, A ⊂ B(ℓ2(I));

(ii) A is inverse-closed in B(ℓ2(I)), that is if A ∈
A is invertible on B(ℓ2(I)), then A−1 ∈ A;
and

(iii) A is solid, that is A ∈ A and |bi,j | ⩽ |ai,j | for
any i, j ∈ I implies that B ∈ A and ∥B∥A ⩽
∥A∥A.

A weight sequence w := {wi}i∈I ⊂ R+ is called A-
admissible if every A ∈ A defines a bounded operator
on ℓpw(I) for every 1 ⩽ p ⩽ ∞.

Throughout the rest of this article, we will always
assume that A is a spectral matrix algebra and that
w is an A-admissible weight.

Examples of spectral matrix algebras are given
by Jaffard class, Sjöstrand class, and by Schur-type
conditions, see [12].

Definition 2.2: A frame Ψ = {ψi}i∈I ⊂ H is
said to be A-localised if its Gram matrix GΨ :=
(⟨ψi, ψj⟩)(i,j)∈I2 belongs to the spectral matrix al-
gebra A.

Let Ψ := {ψi}i∈I ⊂ H be an A-localised frame,
and Ψ̃ := {ψ̃i}i∈I ⊂ H its canonical dual. Moreover,
let

H00 :=

{∑
i∈I

ci ψi : {ci}i∈I ∈ c00

}
,

where c00 denotes the space of all infinite sequences
with finitely many non-zero terms. For 1 ⩽ p < ∞,
the co-orbit space Hp

w(Ψ) is defined as the norm
completion of H00 with respect to the norm

∥f∥p
Hp

w
:=

∥∥CΨ̃f
∥∥p
ℓpw(I)

=
∑
i∈I

∣∣(CΨ̃f)i
∣∣pwp

i ,

while H∞
w (Ψ) is defined as a certain weak-∗ com-

pletion of H00 with respect to the metric ∥CΨ̃f∥ℓ∞w .

For the details of the construction of H∞
1/w(Ψ) we

refer to [2, Section 3.1].
Proposition 2.3: Let Ψ be an A-localised frame,

and 1 ⩽ p ⩽ ∞. Then
(i) the co-orbit space Hp

w(Ψ) is a Banach space;
(ii) the synthesis operator DΨ : ℓpw(I) → Hp

w(Ψ)
is continuous;

(iii) H2
1 (Ψ) = H;

(iv) if 1 ⩽ p < ∞ and q satisfies 1/p + 1/q = 1,
then (Hp

w(Ψ))∗ = Hq
1/w(Ψ) where the duality

pairing is given by

⟨f, g⟩Hp
w,Hq

1/w
= ⟨CΨ̃f, CΨ̃g⟩ℓpw,ℓq

1/w
.

Throughout the rest of this paper we will omit
the subscripts whenever it does not undermine
clarity of the arguments;

(v) the canonical dual frame Ψ̃ is also A-localised,
and Hp

w(Ψ) = Hp
w

(
Ψ̃
)

with their norms being
equivalent;

(vi) the Gram matrix GΨ defines a bounded oper-
ator on ℓpw(I).

The next result can be found in [12].
Proposition 2.4: For any f ∈ H1

w(Ψ) there is a
sequence c := {ci}i∈I ∈ ℓ1w(I) such that

f =
∑
i∈I

ci ψi, (3)

where the series converges absolutely and

∥c∥ℓ1w ≍ ∥f∥H1
w(Ψ) .

III. CO-ORBIT SPACES INDUCED BY TENSOR
PRODUCT FRAMES

Let f1, f2 ∈ H . We define the simple tensor f1⊗f2
as the rank one operator

(f1 ⊗ f2)(f) := ⟨f, f1⟩f2, f ∈ H. (4)

The tensor product H ⊗ H is defined as the com-
pletion of the linear span of all simple tensors with
respect to the metric induced by the inner product

⟨f1 ⊗ f2, g1 ⊗ g2⟩ = ⟨f1, g1⟩⟨f2, g2⟩. (5)

Observe that for O ∈ H⊗H , and f1, f2 ∈ H it holds

⟨O, f1 ⊗ f2⟩ = ⟨Of1, f2⟩.

We note here that if Ψ is a frame for H , then

Ψ⊗Ψ := {ψi ⊗ ψj}(i,j)∈I2

is a frame for H ⊗ H , see, for example, [1]. This
now allows us to define co-orbit spaces generated by
Ψ⊗Ψ.

Definition 3.1: Let 1 ⩽ p < ∞, and Ψ be an A-
localised frame. The co-orbit space Hp,⊗

w (Ψ) associ-
ated with Ψ ⊗ Ψ is defined as the norm-completion
of

H⊗
00 =

∑
i,j∈I

ci, j ψi ⊗ ψj : {ci,j}(i,j)∈I2 ∈ c00

 ,



with respect to

∥F∥Hp,⊗
w (Ψ) := ∥C

Ψ̃⊗Ψ
F∥ℓpw⊗w

,

while H∞,⊗
w (Ψ) is defined as the weak-∗ completion

of H⊗
00 with respect to the metric ∥C

Ψ̃⊗Ψ
F∥ℓ∞w⊗w

.
The construction works the same as in the setting
described in Section II

Observe that, while these spaces are well-defined,
it can lead to pathological examples [13, Example
2.18]. It can, e.g., yield empty spaces. Localization
guarantees that those spaces are well-behaved. Also
note that, in order for the co-orbit spaces to have the
properties of Propositions 2.3 and 2.4, Ψ⊗Ψ would
have to be localised. This seems to be a non-trivial
problem though, and is the topic of current research.
Therefore, we have to derive some results ”by hand”,
without the advantages of the localization property.

As before, we may introduce a duality pairing via

⟨F,G⟩Hp,⊗
w ,Hq,⊗

1/w
=⟨C

Ψ̃⊗Ψ
F,C

Ψ̃⊗Ψ
G⟩ℓpw⊗w,ℓq

1/(w⊗w)
,

and note that one can show

(Hp,⊗
w (Ψ))∗ = Hq,⊗

1/w(Ψ), 1 ≤ p <∞. (6)

Let us shortly state two auxiliary results.
Proposition 3.2: Let Ψ be an A-localised frame.

Then for any F ∈ H1,⊗
w (Ψ) there exists a sequence

c = {ci, j}(i, j)∈I2 ∈ ℓ1w⊗w(I
2) such that

F =
∑
i∈I

∑
j∈I

ci, j ψi ⊗ ψj = DΨ⊗Ψc (7)

converges absolutely and ∥c∥ℓ1w⊗w
≍ ∥F∥H1,⊗

w (Ψ) .

The proof of this Proposition follows closely the
arguments of the proof of [12, Proposition 2.4] and
that of [2, Lemma 6]; and will be provided elsewhere.

The next lemma is a version of the so-called
correspondence principle in the setting of the co-
orbit spaces Hp,⊗

w (Ψ) generated by tensor products
of frames. Its proof is similar to the corresponding
result for Hp

w(Ψ) and will therefore be omitted.
Lemma 3.3: Let Ψ be an A-localised frame. For

M ∈ ℓ∞w⊗w(I
2) there exists F ∈ H∞,⊗

w (Ψ) such that

M = C
Ψ̃⊗Ψ

F (8)

if and only if

M = G
Ψ̃⊗Ψ,Ψ⊗Ψ

M = C
Ψ̃⊗Ψ

DΨ⊗ΨM. (9)

The statement also applies to M ∈ ℓ∞1/(w⊗w)

(
I2
)

and F ∈ H∞,⊗
1/w (Ψ).

IV. OUTER KERNEL THEOREM

With all notation and auxiliary results in place, we
are now ready to state and prove our main result.

Theorem 4.1: Let Ψ ⊂ H be an A-localised frame.
Then, to any K ∈ H∞,⊗

1/w (Ψ) corresponds a unique
bounded linear O : H1

w(Ψ) → H∞
1/w(Ψ) via

⟨Of1, f2⟩ = ⟨K, f1 ⊗ f2⟩, f1, f2 ∈ H1
w (10)

and

∥K∥H∞,⊗
1/w

(Ψ) ≍ ∥O∥H1
w(Ψ)→H∞

1/w
(Ψ) . (11)

Conversely, to any bounded operator O : H1
w(Ψ) →

H∞
1/w(Ψ) corresponds a unique K ∈ H∞,⊗

1/w (Ψ) that
satisfies (10).

Remark 4.2: Note that for simplicity we restrict
ourselves to the case when both co-orbit spaces are
generated by the same localized frame and the same
weight. The statement of Theorem 4.1 can however
be easily adjusted for O : H1

w1
(Ψ1) → H∞

1/w2
(Ψ2).

Proof of Theorem 4.1. First of all, we note that
the scalar product on the right hand side of (10) is
a duality relation by definition and (6). The fact that
C

Ψ̃⊗Ψ
(f1 ⊗ f2) = CΨ̃f1 CΨ̃f2, implies by (6) that

|⟨K, f1⊗f2⟩| ⩽ ∥K∥H∞,⊗
1/w

(Ψ) ∥f1∥H1
w(Ψ)∥f2∥H1

w(Ψ).

Secondly, (f1, f2) 7→ ⟨K, f1 ⊗ f2⟩ is a bounded
sesquilinear form on H1

w(Ψ)×H1
w(Ψ) and therefore,

for any fixed f1 ∈ H1
w(Ψ), the map f2 7→ ⟨K, f1 ⊗

f2⟩ is a bounded antilinear functional on H1
w(Ψ),

which we call Of1. The mapping f1 7→ Of1 is
linear and so (10) defines a linear operator O map-
ping H1

w(Ψ) on H∞
1/w(Ψ). This operator is bounded.

Indeed,∣∣⟨Of1, f2⟩∣∣ = |⟨K, f1 ⊗ f2⟩|
⩽ ∥K∥H∞,⊗

1/w
(Ψ) ∥f2∥H1

w(Ψ) ∥f1∥H1
w(Ψ) ,

and consequently

∥Of1∥H∞
1/w

(Ψ) ⩽ ∥K∥H∞,⊗
1/w

(Ψ) ∥f1∥H1
w(Ψ) ,

as well as

∥O∥H1
w(Ψ)→H∞

1/w
(Ψ) ⩽ ∥K∥H∞,⊗

1/w
(Ψ) . (12)

This also proves that the map K 7→ O is bounded.
For the first direction, it is left to show that this

mapping is injective. So let us assume the contrary,
i.e. that the bounded linear operator O mapping
H1

w(Ψ) on H∞
1/w(Ψ) has two distinct kernels K1

and K2 ∈ H∞,⊗
1/w (Ψ) both satisfying (10). Then, in

particular,〈
K1, ψi ⊗ ψj

〉
=

〈
Oψi, ψj

〉
=

〈
K2, ψi ⊗ ψj

〉
,



for any ψi and ψj ∈ Ψ. By Proposition 3.2, any
F ∈ H1,⊗

w (Ψ) can be expressed by an absolutely
convergent series as in (7). Hence we infer that

⟨K1, F ⟩ =
〈
K1 ,

∑
i∈I

∑
j∈I

ci, j ψi ⊗ ψj

〉
=

∑
i∈I

∑
j∈I

ci, j ⟨K1, ψi ⊗ ψj⟩

=
∑
i∈I

∑
j∈I

ci, j⟨K2, ψi ⊗ ψj⟩

=
〈
K2,

∑
i∈I

∑
j∈I

ci, j ψi ⊗ ψj

〉
= ⟨K2, F ⟩,

and so K1 = K2, by (6).
To prove the second statement, let us assume that

the operator O : H1
w(Ψ) → H∞

1/w(Ψ) is bounded and
consider its Galerkin matrix M defined by

Mi, j :=
〈
Oψ̃i, ψ̃j

〉
, for (i, j) ∈ I2. (13)

By [2, Prop. 6 (23)] M ∈ ℓ∞1/(w⊗w)(I
2). We will

derive a concrete bound. By Proposition 2.3, the
Gram matrix GΨ̃ is a bounded operator on ℓ1w(I) as
Ψ is A-localised and w is A-admissible. Therefore∥∥ψ̃i

∥∥
H1

w(Ψ)
=

∑
k∈I

∣∣〈ψ̃i, ψ̃k

〉∣∣wk =
∑
k∈I

∣∣(GΨ̃

)
k, i

∣∣wk

=
∑
k∈I

∣∣(GΨ̃ei
)
k

∣∣wk =
∥∥GΨ̃ei

∥∥
ℓ1w

≲ ∥ei∥ℓ1w = wi.

where ei denotes the i-th vector of the standard basis
of ℓ1w(I). Combining this estimate with (13) shows

|Mi, j | ⩽
∥∥O∥∥

H1
w(Ψ)→H∞

1/w
(Ψ)

∥∥ψ̃i

∥∥
H1

w

∥∥ψ̃j

∥∥
H1

w

≲ ∥O∥H1
w(Ψ)→H∞

1/w
(Ψ) ωi ωj . (14)

In what follows, we show that M satisfies (9), which,
according to Lemma 3.3, implies that there is a
unique K ∈ H∞,⊗

1/w (Ψ) that satisfies C
Ψ̃⊗Ψ

K = M .
Indeed, for any (i, j) ∈ I2,(
C

Ψ̃⊗Ψ
DΨ⊗ΨM

)
r, s

=

=
∑
i∈I

∑
j∈I

〈
Oψ̃i, ψ̃j

〉 〈
ψi ⊗ ψj , ψ̃r ⊗ ψ̃s

〉
=

∑
i∈I

∑
j∈I

〈
Oψ̃i, ψ̃j

〉 〈
ψi, ψ̃r

〉 〈
ψj , ψ̃s

〉
=

∑
i∈I

⟨Oψ̃i, ψ̃s⟩
〈
ψi, ψ̃r

〉
(15)

=
∑
i∈I

⟨ψ̃i, O
′ψ̃s⟩

〈
ψ̃r, ψi

〉
= ⟨ψ̃r, O

′ψ̃s⟩ = ⟨Oψ̃r, ψ̃s⟩ =Mr, s,

where O′ : H1
w(Ψ) → H∞

1/w(Ψ) is the unique
operator that satitsfies ⟨Of, g⟩ = ⟨f,O′g⟩ for every
f, g ∈ H1

w(Ψ). Note that (15) is independent of the
order chosen because{〈

Oψ̃i, ψ̃j

〉 〈
ψ̃r, ψi

〉 〈
ψj , ψ̃s

〉}
(i, j)∈I2

is in ℓ1(I2) for any given (r, s) ∈ I2 as{〈
Oψ̃i, ψ̃j

〉}
(i, j)∈I2 ∈ ℓ∞1/(w⊗w)(I

2),

and
{〈
ψ̃r, ψi

〉 〈
ψj , ψ̃s

〉}
(i, j)∈I2 ∈ ℓ1w⊗w(I

2), by
Proposition 2.3 and Definition 2.1. Moreover, (14)
implies that

∥K∥H∞,⊗
1/w

(Ψ) = ∥C
Ψ̃⊗Ψ

K∥ℓ∞
1/(w⊗w)

= ∥M∥ℓ∞
1/(w⊗w)

≲ ∥O∥H1
w(Ψ)→H∞

1/w
(Ψ). (16)

According to the first direction, to this unique K ∈
H∞,⊗

1/w (Ψ) corresponds a bounded linear operator
mapping H1

w(Ψ) on H∞
1/w(Ψ) via (10). This operator

is the bounded linear operator O. Indeed let us
assume that to the kernel K ∈ H∞,⊗

1/w (Ψ) corresponds
via (10) a linear operator Ô mapping H1

w(Ψ) on
H∞

1/w(Ψ) that is different from O. By (13) and
CΨ⊗ΨK =M we get〈

Ôψ̃i, ψ̃j

〉
=

〈
K, ψ̃i ⊗ ψ̃j

〉
=

〈
Oψ̃i, ψ̃j

〉
,

for any ψi ⊗ ψj ∈ H1,⊗
w (Ψ). From this and the fact

that, according to Proposition 2.4, any f1, f2 ∈ H1
w

can be expressed by an absolutely convergent series
as in (3) we infer that

⟨Ôf1,f2⟩ =
〈
Ô
∑
i∈I

c1, i ψ̃i,
∑
j∈I

c2, j ψ̃j

〉
=

∑
i∈I

∑
j∈I

c1, i c2, j
〈
Ôψ̃i, ψ̃j

〉
=

∑
i∈I

∑
j∈J

c1, i c2, j
〈
Oψ̃i, ψ̃j

〉
=

〈
O
∑
i∈I

c1, i ψ̃i,
∑
j∈I

c2, j ψ̃j

〉
= ⟨Of1, f2⟩ .

Thus Ôf1 = Of1 for any f1 ∈ H1
w(Ψ) or, in other

words, Ô = O. Therefore, the function O 7→ K
that maps the Banach space B

(
H1

w(Ψ), H∞
1/w(Ψ)

)
on

the Banach space H∞,⊗
1/w (Ψ) is injective and bounded

by (16). Combining (12) and (16) finally shows (11)
which concludes the proof. □
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