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ABSTRACT

While deep learning has outperformed other methods for various tasks, theoretical
frameworks that explain its reason have not been fully established. We investigate
the excess risk of two-layer ReLU neural networks in a teacher-student regression
model, in which a student network learns an unknown teacher network through its
outputs. Especially, we consider the student network that has the same width as
the teacher network and is trained in two phases: first by noisy gradient descent
and then by the vanilla gradient descent. Our result shows that the student net-
work provably reaches a near-global optimal solution and outperforms any kernel
methods estimator (more generally, linear estimators), including neural tangent
kernel approach, random feature model, and other kernel methods, in a sense of
the minimax optimal rate. The key concept inducing this superiority is the non-
convexity of the neural network models. Even though the loss landscape is highly
non-convex, the student network adaptively learns the teacher neurons.

1 INTRODUCTION

Explaining why deep learning empirically outperforms other methods has been one of the most sig-
nificant issues. In particular, from the theoretical viewpoint, it is important to reveal the mechanism
of how deep learning trained by an optimization method such as gradient descent can achieve supe-
rior generalization performance. To this end, we focus on the excess risk of two-layer ReLU neural
networks in a nonparametric regression problem and compare its rate to that of kernel methods.
One of the difficulties in showing generalization abilities of deep learning is the non-convexity of
the associated optimization problem Li et al. (2018), which may let the solution stacked in a bad
local minimum. To alleviate the non-convexity of neural network optimization, recent studies focus
on over-parameterization as the promising approaches. Indeed, it is fully exploited by (i) Neural
Tangent Kernel (NTK) (Jacot et al., 2018; Allen-Zhu et al., 2019; Arora et al., 2019; Du et al., 2019;
Weinan et al., 2020; Zou et al., 2020) and (ii) mean field analysis (Nitanda & Suzuki, 2017; Chizat
& Bach, 2018; Mei et al., 2019; Tzen & Raginsky, 2020; Chizat, 2021; Suzuki & Akiyama, 2021).

In the setting of NTK, a relatively large-scale initialization is considered. Then the gradient descent
related to parameters of neural networks can be reduced to the convex optimization in RKHS, which
is easier to analyze. However, in this regime, it is hard to explain the superiority of deep learning
because the estimation ability of the obtained estimator is reduced to that of the corresponding
kernel. From this perspective, recent works focus on the “beyond kernel” type analysis Allen-Zhu &
Li (2019); Bai & Lee (2020); Li et al. (2020); Chen et al. (2020); Refinetti et al. (2021); Abbe et al.
(2022). Although their analysis shows the superiority of deep learning to kernel methods in each
setting, in terms of the sample size (n), all derived bounds are essentially Ω(1/

√
n). This bound is

known to be sub-optimal for regression problems Caponnetto & De Vito (2007).
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In the mean field analysis setting, a kind of continuous limit of the neural network is considered, and
its convergence to some specific target functions has been analyzed. This regime is more suitable in
terms of a “beyond kernel” perspective, but it essentially deals with a continuous limit and hence is
difficult to control the discretization error when considering a teacher network with a finite width.
Indeed, the optimization complexity has been exploited recently in some research, but it still requires
an exponential time complexity in the worst case (Mei et al., 2018b; Hu et al., 2019; Nitanda et al.,
2021a). This problem is mainly due to the lack of landscape analysis that requires closer exploitation
of the problem structure. For example, we may consider the teacher student setting where the true
function is represented as a neural network. This allows us to use the landscape analysis in the
optimization analysis and give a more precise analysis of the statistical performance. In particular,
we can obtain a more precise characterization of the excess risk (e.g., Suzuki & Akiyama (2021)).

More recently, some studies have focused on the feature learning ability of neural networks (Abbe
et al., 2021; 2022; Chizat & Bach, 2020; Ba et al., 2022; Nguyen, 2021). Among them, Abbe et al.
(2021) considers estimation of the function with staircase property and multi-dimensional Boolean
inputs and shows that neural networks can learn that structure through stochastic gradient descent.
Moreover, Abbe et al. (2022) studies a similar setting and shows that in a high-dimensional setting,
two-layer neural networks with sufficiently smooth activation can outperform the kernel method.
However, obtained bound is still O(1/

√
n) and requires a higher smoothness for activation as the

dimensionality of the Boolean inputs increases.

The teacher-student setting is one of the most common settings for theoretical studies, e.g., (Tian,
2017; Safran & Shamir, 2018; Goldt et al., 2019; Zhang et al., 2019; Safran et al., 2021; Tian, 2020;
Yehudai & Shamir, 2020; Suzuki & Akiyama, 2021; Zhou et al., 2021; Akiyama & Suzuki, 2021) to
name a few. Zhong et al. (2017) studies the case where the teacher and student have the same width,
shows that the strong convexity holds around the parameters of the teacher network and proposes
a special tensor method for initialization to achieve the global convergence to the global optimal.
However, its global convergence is guaranteed only for a special initialization which excludes a pure
gradient descent method. Safran & Shamir (2018) empirically shows that gradient descent is likely
to converge to non-global optimal local minima, even if we prepare a student that has the same
size as the teacher. More recently, Yehudai & Shamir (2020) shows that even in the simplest case
where the teacher and student have the width one, there exist distributions and activation functions
in which gradient descent fails to learn. Safran et al. (2021) shows the strong convexity around
the parameters of the teacher network in the case where the teacher and student have the same
width for Gaussian inputs. They also study the effect of over-parameterization and show that over-
parameterization will change the spurious local minima into the saddle points. However, it should be
noted that this does not imply that gradient descent can reach the global optima. Akiyama & Suzuki
(2021) shows that the gradient descent with a sparse regularization can achieve the global optimal
solution for an over-parameterized student network. Thanks to the sparse regularization, the global
optimal solution can exactly recover the teacher network. However, this research requires a highly
over-parameterized network. Indeed, it requires an exponentially large number of widths in terms
of the dimensionality and the sample size. Moreover, they impose quite strong assumptions such
that there is no observation noise and the parameter of each neuron in the teacher network should be
orthogonal to each other.

The superiority of deep learning against kernel methods has also been discussed in the nonparametric
statistics literature. They show the minimax optimality of deep learning in terms of excess risk.
Especially a line of research (Schmidt-Hieber, 2020; Suzuki, 2018; Hayakawa & Suzuki, 2020;
Suzuki & Nitanda, 2021; Suzuki & Akiyama, 2021) shows that deep learning achieves faster rates
of convergence than linear estimators in several settings. Here, the linear estimators are a general
class of estimators that includes kernel ridge regression, k-NN regression, and Nadaraya-Watson
estimator. Among them, Suzuki & Akiyama (2021) treats a tractable optimization algorithm in
a teacher-student setting, but they require an exponential computational complexity and smooth
activation function, which does not include ReLU.

In this paper, we consider a gradient descent with two phases, a noisy gradient descent first and
a vanilla gradient descent next. Our analysis shows that through this method, the student network
recovers the teacher network in a polynomial order computational complexity (with respet to the
sample size) without using an exponentially wide network, even though we do not need the strong
assumptions such as the no-existence of noise and orthogonality. Moreover, we evaluate the excess
risk of the trained network and show that the trained network can outperform any linear estimators,
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including kernel methods, in terms of its dependence on the sample size. More specifically, our
contributions can be summarized as follows:

• We show that by two-phase gradient descent, the student network, which has the same
width as the teacher network, provably reaches the near-optimal solution. Moreover, we
conduct a refined analysis of the excess risk and provide the upper bound for the excess risk
of the student network, which is much faster than that obtained by the generalization bound
analysis with the Rademacher complexity argument. Throughout this paper, our analysis
does not require the highly over-parameterization and any special initialization schemes.

• We provide a comparison of the excess risk between the student network and linear estima-
tors and show that while the linear estimators much suffer from the curse of dimensionality,
the student network less suffers from that. Particularly, in high dimensional settings, the
convergence rate of the excess risk of any linear estimators becomes close to O(n−1/2),
which coincides with the classical bound derived by the Rademacher complexity argument.

• The lower bound of the excess risk derived in this paper is valid for any linear estimator.
The analysis is considerably general because the class of linear estimators includes kernel
ridge regression with any kernel. This generality implies that the derived upper bound can-
not be derived by the argument that uses a fixed kernel, including Neural Tangent Kernel.

2 PROBLEM SETTINGS

Notations For m ∈ N, let [m] := {1, . . . ,m}. For x ∈ Rd, ‖x‖ denotes its Euclidean norm. We
denote the inner product between x, y ∈ Rd by 〈x, y〉 =

∑d
j=1 xiyi. Sd−1 denotes the unit sphere in

Rd. For a matrix W , we denote its operator and Frobenius norm by ‖W‖2 and ‖W‖F , respectively.

Here, we introduce the problem setting and the model that we consider in this paper. We focus on
a regression problem where we observe n training examples Dn = (xi, yi)

n
i=1 generated by the

following model for an unknown measurable function f◦ : Rd → R:

yi = f◦(xi) + εi,

where (xi)
n
i=1 is independently identically distributed sequence from PX that is the uniform distri-

bution over Ω = Sd−1, and εi are i.i.d. random variables satisfying E[εi] = 0, E[ε2i ] = v2, and
|εi| ≤ U a.s.. Our goal is to estimate the true function f◦ through the training data. To this end,
we consider the square loss `(y, f(x)) = (y − f(x))2 and define the expected risk and the em-
pirical risk as L(f) := EX,Y [`(Y, f(X)] and L̂(f) := 1

n`(yi, f(xi)), respectively. In this paper,
we measure the performance of an estimator f̂ by the excess risk L(f̂) − inf

f :measurable
L(f). Since

inf L(f) = L(f◦) = 0, we can check that the excess risk coincides with ‖f̂ − f◦‖
2

L2(PX ), the L2-

distance between f̂ and f◦. We remark that the excess risk is different from the generalization gap
L(f̂) − L̂(f̂). Indeed, when considering the convergence rate with respect to n, the generalization
gap typically converges to zero with O(1/

√
n) Wainwright (2019). On the other hand, the excess

risk can converge with the rate faster than O(1/
√
n), which is known as fast learning rate.

2.1 MODEL OF TRUE FUNCTIONS

To evaluate the excess risk, we introduce a function class in which the true function f◦ is included.
In this paper, we focus on the teacher-student setting with two-layer ReLU neural networks, in which
the true function (called teacher) is given by

fa◦,W◦(x) =

m∑
j=1

a◦jσ(〈w◦j , x〉),

where σ(u) = max{u, 0} is the ReLU activation, m is the width of the teacher model satisfying
m ≤ d, and a◦j ∈ R, w◦j ∈ Rd for j ∈ [m] are its parameters. We impose several conditions for the
parameters of the teacher networks. LetW ◦ = (w◦1 w

◦
2 · · · w◦m) ∈ Rd×m and σ1 ≥ σ2 ≥ · · · ≥ σm
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be the singular values of W ◦. First, we assume that a◦j ∈ {±1} for any j ∈ [m]. Note that by 1-
homogeneity of the ReLU activation1, this condition does not restrict the generality of the teacher
networks. Moreover, we assume that there exists σmin > 0 such that σm > σmin. If σm = 0, there
exists an example in which fa◦,W◦ has multiple representations. Indeed, Zhou et al. (2021) shows
that in the case a◦j = 1 for all j ∈ [m] and

∑
w◦j = 0, it holds that fa◦,W◦ =

∑m
j=1 σ(〈w◦j , x〉) =∑m

j=1 σ(〈−w◦j , x〉). Hence, throughout this paper, we focus on the estimation problem in which the
true function is included in the following class:

F◦ := {fa◦,W◦ | a◦ ∈ {±1}m, ‖W ◦‖2 ≤ 1, σm > σmin}. (1)

This class represents the two-layer neural networks with the ReLU activation whose width is at
most the dimensionality of the inputs. The constraint ‖W ◦‖2 ≤ 1 is assumed only for the analytical
simplicity and can be extended to any positive constants.

3 ESTIMATORS

In this section, we introduce the classes of estimators: linear estimators and neural networks (student
networks) trained by two-phase gradient descent. The linear estimator is introduced as a general-
ization of the kernel method. We will show separation between any linear estimator and neural net-
works by giving a suboptimal rate of the excess risk for the linear estimators (Theorem 4.1), which
simultaneously gives separation between the kernel methods and the neural network approach. A
detailed comparison of the excess risk of these estimators will be conducted in Section 4.

3.1 LINEAR ESTIMATORS

Given observation (x1, y1), . . . , (xn, yn), an estimator f̂ is called linear if it is represented by

f̂(x) =

n∑
i=1

yiϕi(x1, . . . , xn, x),

where (ϕi)
n
i=1 is a sequence of measurable and L2(PX )-integrable functions. The most important

example in this study is the kernel ridge regression estimator. We note that the kernel ridge estimator
is given by f̂(x) = Y T(KX + λI)−1k(x), where KX = (k(xi, xj))

n
i,j=1 ∈ Rn×n, k(x) =

[k(x, x1), . . . ,k(x, xn)]T ∈ Rn and Y = [y1, . . . , yn]T ∈ Rn for a kernel function k : Rd × Rd →
R, which is linear to the output observation Y . Since this form is involved in the definition of linear
estimators, the kernel ridge regression with any kernel function can be seen as one of the linear
estimators. The choice of ϕi is arbitrary, and thus the choice of the kernel function is also arbitrary.
Therefore, we may choose the best kernel function before we observe the data. However, as we will
show in Theorem 4.1, it suffers from a suboptimal rate. Other examples include the k-NN estimator
and the Nadaraya-Watson estimator. Thus our analysis gives a suboptimality of not only the kernel
method but also these well-known linear estimators. Suzuki (2018); Hayakawa & Suzuki (2020)
utilized such an argument to show the superiority of deep learning but did not present any tractable
optimization algorithm.

3.2 STUDENT NETWORKS TRAINED BY TWO-PHASE GRADIENT DESCENT

We prepare the neural network trained through the observation data (called student), defined by

f(x; θ) =

m∑
j=1

ajσ(〈wj , x〉),

where θ = ((a1, w1), . . . (am, wm)) ∈ R(d+1)m =: Θ. We assume that the student and teacher
networks have the same width. Based on this formulation, we aim to train the parameter θ that will
be provably close to that of the teacher network. To this end, we introduce the training algorithm,
two-phase gradient descent, which we consider in this paper.

1σ(〈w, x〉) = ‖w‖σ(〈w/‖w‖, x〉) for any w ∈ Rd/{0} and x ∈ Rd.
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Phase I: noisy gradient descent For r ∈ R, let r̄ := R · tanh (r|r|/2R) be a clipping of r, where
R > 1 is a fixed constant. In the first phase, we conduct a noisy gradient descent with the weight
decay regularization. The objective function used to train the student network is given as follows:

R̂λ(θ) :=
1

2n

n∑
i=1

(yi − f(xi; θ̄))2 + λ

m∑
j=1

(
|aj |2 + ‖wj‖2

)
,

where θ̄ is the element-wise clipping of θ and λ > 0 is a regularization parameter. The parameter
clipping ensures the bounded objective value and smoothness of the expected risk around the origin,
which will be helpful in our analysis. Then, the parameters of the student network are updated by

θ(k+1) = θ(k) − η(1)∇R̂λ
(
θ(k)

)
+

√
2η(1)

β
ζ(k),

where η(1) > 0 is a step-size,
{
ζ(k)

}∞
k=1

are independently identically distributed noises from the
standard normal distribution, and β > 0 is a constant called inverse temperature. This type of noisy
gradient descent is called gradient Langevin dynamics. It is known that by letting β be large, we
can ensure that the smooth objective function will decrease. On the other hand, because of the
non-smoothness of the ReLU activation, the objective function R̂λ is also non-smooth. Hence it is
difficult to guarantee the small objective value. To overcome this problem, we evaluate the expected
one instead in the theoretical analysis, which is given by

Rλ(θ) :=
1

2
Ex
[(
fa◦,W◦(x)− f(x; θ̄)

)2]
+ λ

m∑
j=1

(
|aj |2 + ‖wj‖2

)
.

We can ensure a smallRλ(θ) after a sufficient number of iterations (see Section 4.2 for the detail).

Phase II: vanilla gradient descent After phase I, we can ensure that for each node of the student
network, there is a node of the teacher network that is relatively close to each other. Then we move
to conduct the vanilla gradient descent to estimate the parameters of the teacher more precisely.
Before conducting the gradient descent, we rescale the parameters as follows:

a
(k)
j ← sgn(ā(k)), w

(k)
j ←

∣∣∣ā(k)
∣∣∣w̄j(k), ∀j ∈ [m].

We note this transformation does not change the output of the student network thanks to the 1-
homogeneity of the ReLU activation. After that, we update the parameters of the first layer by

W (k+1) = W (k) − η(2)∇W R̂
(
W (k)

)
,

where η(2) > 0 is a step-size different from η(1) and R̂(W ) := 1
2n

∑n
i=1(yi − f(xi; θ))2. In this

phase, we no longer need to update the parameters of both layers. Moreover, the regularization
term and the gradient noise added in phase I are also unnecessary. These simplifications of the
optimization algorithm are based on the strong convexity of R̂(W ) around W ◦, the parameters of
the teacher network. The analysis for this local convergence property is based on that of Zhang et al.
(2019), and eventually, we can evaluate the excess risk of the student network.

The overall training algorithm can be seen in Algorithm 1. In summary, we characterize the role
of each phase as follows: in phase I, the student network explore the parameter space globally and
finds the parameters that are relatively close to that of teachers, and in phase II, the vanilla gradient
descent for the first layer outputs more precise parameters, as we analyze in Section 4.2.
Remark 3.1. Akiyama & Suzuki (2021) also considered the convergence of the gradient descent in
a teacher-student model. They considered a sparse regularization,

∑m
j=1 |aj |‖wj‖, for the ReLU

activation while we consider the L2-regularization given by
∑m
j=1(|aj |2 + ‖wj‖2). These two

regularizations are essentially the same since the minimum of the later regularization under the
constraint of |aj |‖wj‖ = const. is given by 2

∑m
j=1 |aj |‖wj‖ by the arithmetic-geometric mean

relation. On the other hand, Akiyama & Suzuki (2021) consider a vanilla gradient descent instead
of the noisy gradient descent. This makes it difficult to reach the local region around the optimal
solution, and their analysis required an exponentially large width to find the region. We may use a
narrow network in this paper with the same width as the teacher network. This is due to the ability of
the gradient Langevin dynamics to explore the entire space and find the near global optimal solution.
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Algorithm 1 Two-Phase Gradient Descent

Input: max iteration k(1) and k(2), stepsize parameter η(1), η(2) > 0, regularization parameter
λ > 0, inverse temperature β > 0.

1: Initialization: θ(0) ∼ ρ0.
2: for k = 1, 2, . . . , k(1) do
3: ζ(k) ∼ N (0, Im(d+1))

4: θ(k+1) = θ(k) − η(1)∇R̂λ
(
θ(k)

)
+
√

2η(1)

β ζ(k)

5: end for
6: Reparameterization: a(k)

j = sgn(ā
(k)
j ), w(k)

j =
∣∣∣ā(k)
j

∣∣∣w̄(k)
j

7: for k = k(1) + 1, k(1) + 2, . . . , k(2) do
8: W (k+1) = W (k) − η(2)∇W R̂

(
W (k)

)
9: end for

4 EXCESS RISK ANALYSIS AND ITS COMPARISON

This section provides the excess risk bounds for linear estimators and the deep learning estimator
(the trained student network). More precisely, we give its lower bound for linear estimators and
upper bound for the student network. As a consequence, it will be provided that the student network
achieves a faster learning rate and less hurt from a curse of dimensionality than linear estimators.

4.1 MINIMAX LOWER BOUND FOR LINEAR ESTIMATORS

Here, we analyze the excess risk of linear estimators and introduce its lower bound. More specifi-
cally, we consider the minimax excess risk over the class of linear estimators given as follows:

Rlin(F◦) = inf
f̂ :linear

sup
f◦∈F◦

EDn [‖f̂ − f◦‖2L2(PX )],

where the infimum is taken over all linear estimators, and the expectation is taken for the training
data. This expresses the infimum of worst-case error over the class of linear estimators to estimate
a function class F◦. Namely, any class of linear estimators cannot achieve a faster excess risk
than Rlin(F◦). Based on this concept, we provide our result about the excess risk bound for linear
estimators. Under the definition of F◦ by Eq. (1), we can obtain the lower bound as follows:
Theorem 4.1. For arbitrary small κ > 0, we have that

Rlin(F◦) & n−
d+2
2d+2n−κ.

The proof can be seen in Appendix A. This theorem implies that under d ≥ 2, the convergence
rate of excess risk is at least slower than n−

2+2
2·2+2 = n−2/3. Moreover, since − d+2

2d+2 → −1/2 as
d → ∞, the convergence rate of excess risk will be close to n−1/2 in high dimensional settings,
which coincides with the generalization bounds derived by the Rademacher complexity argument.
Hence, we can conclude that the linear estimators suffer from the curse of dimensionality.

The key strategy to show this theorem is the following “convex-hull argument” given as follows:

Rlin(F◦) = Rlin(conv(F◦)),

where conv(F◦) := {
∑N
j=1 λjfj | N ∈ N, fj ∈ F◦, λj ≥ 0,

∑N
j=1 λj = 1} and conv(·) is the

closure of conv(·) in L2(PX ). By combining this argument with the minimax optimal rate analysis
exploited in Zhang et al. (2002) for linear estimators, we obtain the rate in Theorem 4.1.

This equality implies that the linear estimators cannot distinguish the original classF◦ and its convex
hull conv(F◦). Therefore, if the function class F◦ is highly non-convex, then the linear estimators
result in a much slower convergence rate since conv(F◦) will be much larger than that of the original
class F◦. Indeed, we can show that the convex hull of the teacher network class is considerably
larger than the original function class, which causes the curse of dimensionality. For example, the
mean of two teacher networks with a width m can be a network with width 2m, which shows that
conv(F◦) can consist of much wider networks. See Appendix A for more details.
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4.2 EXCESS RISK OF THE NEURAL NETWORKS

Here, we give an upper bound of the excess risk of the student network trained by Algorithm 1. The
main result is shown in Theorem 4.6, which states that the student network can achieve the excess
risk with O(n−1). This consequence is obtained by three-step analysis. First, (1) we provide a con-
vergence guarantee for phase I and phase II in Algorithm 1. We first show that by phase I, the value
of Rλ(θ(k)) will be sufficiently small (see Proposition 4.3). Then, (2) we can show that the param-
eters of the student network and the teacher networks are close to each other by Proposition 4.4. By
using the strong convexity around the parameters of the teacher network, the convergence of phase II
is ensured. By combining these result, (3) we get the excess risk bound as Theorem 4.6.

(1) Convergence in phase I: First, we provide a convergence result and theoretical strategy of the
proof for phase I. Since the ReLU activation is non-smooth, the loss function R̂λ(·) is also non-
smooth. Therefore it is difficult to ensure the convergence of the gradient Langevin dynamics. To
overcome this problem, we evaluate the value of Rλ(·) instead by considering the update θ(k+1) =

θ(k) − η(1)∇Rλ
(
θ(k)

)
+
√

2η(1)

β ζ(k), and bound the residual due to using the gradient of R̂λ(·).
This update can be interpreted as the discretization of the following stochastic differential equation:

dθ = −β∇Rλ(θ)dt+
√

2dBt,

where (Bt)t≥0 is the standard Brownian motion in Θ(= R(d+1)m). It is known that this process has
a unique invariant distribution π∞ that satisfies dπ∞

dθ (θ) ∝ exp(−βRλ(θ)). Intuitively, as β →∞,
this invariant measure concentrates around the minimizer of Rλ. Hence, by letting β sufficiently
large, obtaining a near-optimal solution will be guaranteed.

Such a technique for optimization is guaranteed in recent works (Raginsky et al., 2017; Erdogdu
et al., 2018). However, as we stated above, they require a smooth objective function. Therefore we
cannot use the same technique here directly. To overcome this difficulty, we evaluate the difference
between ∇R̂λ and∇Rλ as follows:
Lemma 4.2. There exists a constant C > 0 such that with probability at least 1− δ, it holds that

Vgrad := sup
θ

∥∥∥∇Rλ(θ)−∇R̂λ(θ)
∥∥∥ ≤ CR3m

√
d log(mdn/δ)

n
.

This lemma implies that with high probability, the difference between ∇R̂λ and ∇Rλ will vanish
as n → ∞. Thanks to this lemma, we can connect the dynamics of the non-smooth objective with
that of the smooth objective and import the convergence analysis developed so far in the smooth
objective. In particular, we utilize the technique developed by Vempala & Wibisono (2019) (see
Appendix C for more details). We should note that our result extends the existing one Vempala &
Wibisono (2019) in the sense that it gives the convergence for the non-differential objective function
R̂λ(·). As a consequence, we obtain the following convergence result as for phase I.
Proposition 4.3. Let R∗λ be the minimum value of Rλ in Θ, q be a density function of π∞ (i.e.,
q(θ) ∝ exp(−βRλ(θ))) and Hq(p) :=

∫
R p(θ) log p(θ)

q(θ) dx be the KL-divergence. There exists a
constant c, C > 0 and the log-Sobolev constant α (defined in Lemma C.4) such that with step-size
0 < η(1) < c δλα

βR3m3d , after k(1) ≥ β
αη(1) log

2Hq(ρ0)
δ iteration, the output θ(k) satisfies

E[Rλ(θ(k))]−R∗λ ≤ C

[
(λ+m) exp

(
m2β

)√
δ +

1

3nλ
+

d

2β
log

(
m3dβ

λ

)]
with probability at least 1 − δ, where the expectation is taken over the initialization and Gaussian
random variables added in the algorithm.

Therefore, we can see that phase I optimization can find a near optimal solution with a polynomial
time complexity (with respect to n) even though the objective function is non-smooth. It also may
be considered to use the gradient Langevin dynamics to reach the global optimal solution by using
higher β. However, it requires increasing the inverse temperature β exponentially related to n and
other parameters, which leads to exponential computational complexity. To overcome this difficulty,
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we utilize the local landscape of the objective function. We can show the objective function will be
strongly convex around the teacher parameters and we do not need to use the gradient noise and any
regularization. Indeed, we can show that the vanilla gradient descent can reach the global optimal
solution in phase II, as shown in the following.

(2) Convergence in phase II: Next, we prove the convergence guarantee of phase II and provide
an upper bound of the excess risk. The convergence result is based on the fact that when Rλ(θ) is
small enough (guaranteed in Proposition 4.3), the parameters of the student network will be close to
those of the teacher network, as the following proposition:

Proposition 4.4. There exists a threshold ε0 = poly(m−1, σmin) such that by letting λ ≤ ε0/m, if
ε = Rλ(θ)−R∗λ ≤ ε0, it holds that for every j ∈ [m], there exists kj ∈ [m] such that sgn(akj ) = a◦j
and

∥∥∣∣akj ∣∣wkj − w◦j∥∥ ≤ cσm/κ3m3.

The proof of this proposition can be seen in Appendix D. We utilize the technique in Zhou et al.
(2021), which give the same results to the cases when the activation is the absolute value function.
In this proposition, we compare the parameters of the teacher network with the normalized student
parameters. This normalization is needed because of the 1-homogeneity of the ReLU activation.
The inequality

∥∥∣∣akj ∣∣wkj − w◦j∥∥ ≤ cσm/κ
3m3 ensures the closeness of parameters in the sense of

the direction and the amplitude. Combining this with the equality sgn(akj ) = a◦j , we can conclude
the closeness and move to ensure the local convergence. Thanks to this closeness and local strong
convexity, we can ensure the convergence in phase II as follows:

Lemma 4.5. Let κ := σ1/σm and σ̃ := (
∏m
j=1 σj)/σ

m
m . Suppose that the condition is Proposi-

tion 4.4 holds. Then there exists absolute constants c1, c2, c3, c4, c5 such that under

n ≥ c1κ
10m9d

σm
log

(
κmd

σm

)
·
(
‖W ∗‖2F + v2

)
,

the output of the gradient descent with step-size η ≤ 1
c2κm2 satisfies

‖f̂ − f◦‖2L2(PX ) .
σ̃2σ−4

minm
5 log n

n
+ c4

(
1− c3η

σ̃κ2

)k
· σm
κ3m2

after k iterations with probability at least 1− c5d−10.

(3) Unified risk bound: By combining (1) and (2), we obtain a unified result as follows:

Theorem 4.6. There exists ε0 = poly(m−1, σmin) and constants C and C ′ > 0 such that for any
0 < b < 1, under n ≥ λσ−3

b exp
(
σ−1
b m2

)
where σb := bε0, let k(1) = Cλ−2β−1 exp

(
m2β

)
and

k(2) = k(1) + log
(
C ′nη(2)−2

)
, then the output of Algorithm 1 with λ = σbd

−1, β = Ω(σ−1
b d),

η(1) = O(λσ3
b exp

(
σ−1
b m2

)
) and η(2) = O(σminm

−2) satisfies

‖f̂ − f◦‖2L2(PX ) .
σ̃2σ−4

minm
5 log n

n

with probability at least 1− b− d−10, where σ̃ = (
∏m
j=1 σj)/σ

m
m .

The proof of this theorem also can be seen in Appendix D. This theorem implies that for fixed m,
the excess risk of the student networks is bounded by

EDn [‖f̂ − f◦‖
2

L2(PX )] . n−1.

As compared to the lower bound derived for linear estimators in Theorem 4.1, we get the faster rate
n−1 in terms of the sample size. Moreover, the dependence of the excess risk on the dimensionality
d does not appear explicitly. Therefore we can conclude that the student network less suffers from
the curse of dimensionality than linear estimators. As we pointed out in the previous subsection,
the convex hull argument causes the curse of dimensionality for linear estimators since they only
prepare a fixed basis. On the other hand, the student network can “find” the basis of the teacher
network via noisy gradient descent in phase I and eventually avoid the curse of dimensionality.
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phaseⅠ
(noisy gradient descent)

phaseⅡ
(vanilla gradient descent)

Figure 1: Convergence of the training loss and test loss.

Remark 4.7. Akiyama & Suzuki (2021) establishes the local convergence theory for the student
wider than the teacher. However, it cannot apply here since they only consider the teacher whose
parameters are orthogonal to each other. Suzuki & Akiyama (2021) also showed the benefit of
the neural network and showed the superiority of deep learning in a teacher-student setting where
the teacher has infinite width. They assume that the teacher has decaying importance; that is, the
teacher can be written as f◦(x) =

∑∞
j=1 a

◦
jσ(〈w◦j , x〉) where a◦j . j−a and w◦j . j−b (with an

exponent a, b > 0) for a bounded smooth activation σ. Our analysis does not assume the decay of
importance, and the activation function is the non-differential ReLU function. Moreover, Suzuki &
Akiyama (2021) considers a pure gradient Langevin dynamics instead of the two-stage algorithm,
which results in the exponential computational complexity in contrast to our analysis.

5 NUMERICAL EXPERIMENT

In this section, we conduct a numerical experiment to justify our theoretical results. We apply
Algorithm 1 to the settings d = m = 50. For the teacher network, we employ a◦j = 1 for 1 ≤ j ≤
25, a◦j = −1 for 26 ≤ j ≤ 50 and (w◦1 , . . . , w

◦
50) = I50 as its parameters. The parameters of the

student network are initialized by θ(0) ∼ N (0, Im(d+1)). We use the sample with n = 1000 as the
training data. Hyperparameters are set to η(1) = η(2) = 0.01, β = 100, λ = 0.01, k(1)

max = 1000

and k(2)
max = 2000. Figure 1 shows the experimental result. The orange line represents the training

loss without the regularization term. The blue line represents the test loss. Since we can compute
the generalization error analytically (see Appendix B), we utilize its value as the test loss.

We can see that in phase I, both the training and test losses decrease first and then fall flat. At
the beginning of phase II, we can observe that both the training and test losses decrease linearly.
This reflects the strong convexity around the parameters of the teacher network, as we stated in the
convergence guarantee of phase II. While the training loss keeps going up and down, the curve of
the test loss is relatively smooth. This difference is due to the smoothness of the generalization loss
(orRλ), which we use in the convergence analysis in phase I. The test loss does not keep decreasing
and converges to a constant. The existence of the sample noise causes this phenomenon: even if the
parameters of the student coincide with that of the teacher, its training loss will not be zero. Thus
we can say that the numerical experiment is consistent with our theoretical results.

6 CONCLUSION

In this paper, we focus on the nonparametric regression problem, in which a true function is given
by a two-layer neural network with the ReLU activation, and evaluate the excess risks of linear esti-
mators and neural networks trained by two-phase gradient descent. Our analysis revealed that while
any linear estimator suffers from the curse of dimensionality, deep learning can avoid it and out-
perform linear estimators, which include the neural tangent kernel approach, random feature model,
and other kernel methods. Essentially, the non-convexity of the model induces this difference.
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A PROOF OF THEOREM 4.1

First, we introduce the formal statement of the “convex hull argmunent” we stated in Section 4.1.
Proposition A.1 (Hayakawa & Suzuki (2020)). The minimax optimal rate of linear estimators on a
target function class F◦ is the same as that on the convex hull of F◦:

Rlin(F◦) = Rlin(conv(F◦)),

where conv(F◦) := {
∑N
j=1 λjfj | N ∈ N, fj ∈ F◦, λj ≥ 0,

∑N
j=1 λj = 1} and conv(·) is the

closure of conv(·) in L2(PX ).

For the proof, we use this convex hull argument and the minimax optimal rate analysis for linear
estimators developed by Zhang et al. (2002). They essentially showed the following statement in
their Theorem 1. Note that they consider the class of linear estimators on the Euclidean space, but
we can apply the same argument for the class of linear estimators on Sd−1.
Proposition A.2 (Theorem 1 of Zhang et al. (2002)). Let µ be uniform measure on Sd−1 satisfying
µ(Sd−1) = 1. Suppose that the space Ω has even partition A such that |A| = 2K for an integer
K ∈ N, each A ∈ A has measure α12−K ≤ µ(A) ≤ α22−K for constants α1, α2 > 0, and A is
indeed a partition of Ω, i.e., ∪A∈AA = Ω, A ∩ A′ = ∅ for A, A′ ∈ A and A 6= A′. Then, if K
is chosen as n−γ1 ≤ 2−K ≤ n−γ2 for constants γ1, γ2 > 0 that are independent of n, then there
exists an event E such that, for a constant C ′ > 0,

P (E) ≥ 1− o(1) and |{xi | xi ∈ A (i ∈ {1, . . . , n})}| ≤ C ′α2n2−K (∀A ∈ A).

Moreover, suppose that, for a class F◦ of functions on Ω, there exists ∆ > 0 that satisfies the
following conditions:

1. There exists F > 0 such that, for any A ∈ A, there exists g ∈ F◦ that satisfies g(x) ≥
1
2∆F for all x ∈ A,

2. There exists K ′ and C ′′ > 0 such that 1
n

∑n
i=1 g(xi)

2 ≤ C ′′∆22−K
′

for any g ∈ F◦ on
the event E .

Then, there exists a constant F1 such that at least one of the following inequalities holds:

F 2

4F1C ′′
2K
′

n
≤ Rlin(F◦),

F 3

32
∆22−K ≤ Rlin(F◦),

for sufficiently large n.
Lemma A.3. Let 0 < ∆ ≤ 1/2 and let g : Sd−1 → R be a function defined by

g(x) =
1

d− 1

d∑
j=2

[
−σ(xj) +

1

2
σ(xj + 2∆ · x1) +

1

2
σ(xj − 2∆ · x1)

]
.

Then it holds that g(x) ≥ ∆/2 for x ∈ B∞∆ (e1) and g(x) = 0 for x /∈ B∞2∆(e1), where e1 :=
(1, 0, . . . , 0) ∈ Sd−1 and B∞r (e1) :=

{
x ∈ Sd−1 | ‖x− e1‖∞ ≤ r

}
for r > 0.

Proof. Let gj(x) = −σ(xj)+ 1
2σ(xj+2∆ ·x1)+ 1

2σ(xj−2∆ ·x1). First we suppose that x ∈ B∞∆ .
Then, we have x1 ≥ 1−∆ and |xj | ≤ ∆ for any j ∈ {2, . . . , d}. If 0 ≤ xj ≤ ∆, it holds that

gj(x) = −σ(xj) +
1

2
σ(xj + 2∆ · x1) +

1

2
σ(xj − 2∆ · x1) =

1

2
(2∆ · x1 − xj) ≥ ∆(1−∆) ≥ 1

2
∆.

Moreover, if −∆ ≤ xj ≤ 0, we get

gj(x) = −σ(xj) +
1

2
σ(xj + 2∆ · x1) +

1

2
σ(xj − 2∆ · x1) =

1

2
(xj + 2∆ · x1) ≥ ∆(1−∆) ≥ 1

2
∆.

Hence, we get the first assertion by g(x) = 1
d−1

∑d
j=2 gj(x) ≥ ∆

2 .
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Next we suppose x /∈ B∞2∆(e1). Then, it holds that xj ≥ 2∆ ≥ 2∆x1 for any j ∈ {2, . . . , d}. Hence
it holds that |xj/x1| ≥ 2∆, and we obtain that sgn(xj +2∆ ·x1) = sgn(xj) = sgn(xj−2∆ ·x1) ∈
{±1}. We can check gj(x) = 0 for each case, and hence it holds that g(x) = 0. Thus we get the
second assertion.

proof of Theorem 4.1. Let us consider the covering of Sd−1 by spherical caps, i.e., Br(x) ∩ Sd−1

for some x ∈ Sd−1 with radius r satisfying r ∈ (0, 1). It is known that there is a covering A with
|A| ∼ r−d (ignoring logarithm terms). Then, by letting r ∼ 2−K/d, there exists a covering A
satisfying |A| = 2K .

For each A ∈ A, we define a function gA by the same manner as in Lemma A.3, i.e., for A ∈ A
written by Br(xA) ∩ Sd−1 with xA ∈ Sd−1, we consider the orthogonal basis including xA and
define gA with regrading xA as e1. Define F◦A := {gA/2 | A ∈ A}. It is not difficult to check that
F◦A ∈ conv(F◦). Then by Proposition A.1, it holds that

Rlin(F◦) = Rlin(conv(F◦)) ≥ Rlin(F◦A),

where the inequality follows from F◦A ∈ conv(F◦). Hence, it suffices to give the lower bound
for the right hand side. Now, we apply Proposition A.2 with F◦ = F◦A and K = K ′. Applying
Lemma A.3 with ∆ = 2−K/d In the event E which we introduce in Proposition A.2, there exists a
constant C ′ such that |{xi | xi ∈ A (i ∈ {1, . . . , n})}| ≤ C ′α2n2−K for all A ∈ A. Therefore, we
obtain that

1

n

n∑
i=1

gA(xi)
2 .

1

n
n2−K ·∆2 = 2−K∆2

Therefore, Proposition A.2 gives Rlin(F◦A) & min{ 2K

n , 2
−(1+2/d)K}. By letting 2K ∼ nd/2(d+1),

we get the assertion.

B EXPLICIT FORM OF THE OBJECTIVE FUNCTION AND ITS GRADIENT

In this section, we derive the explicit form ofRλ(·) and its gradient, which we utilize in our analysis
(especially that of the convergence in phase I). First, for w, v ∈ Rd/{0}, we have that

Ex∼PX [σ(〈w, x〉)σ(〈v, x〉)] =
Ex̃∼N (0,Id)[σ(〈w, x〉)σ(〈v, x〉)]

Ex̃∼N (0,Id)[‖x̃‖
2
]

=
sinφ(w, v) + (π − φ(w, v)) cosφ(w, v)

2πd
‖w‖‖v‖, (2)

where φ(w, v) := arccos(〈w, v〉/‖w‖‖v‖). The second equality follows from Ex̃∼N (0,Id)[‖x̃‖
2
] =

d and

Ex̃∼N (0,Id)[σ(〈w, x〉)σ(〈v, x〉)] =
sinφ(w, v) + (π − φ(w, v)) cosφ(w, v)

2π
‖w‖‖v‖

(see Cho & Saul (2009) or Safran & Shamir (2018)). Moreover, the first equality follows from that
fact that for x̃ ∼ N (0, Id), r2 := ‖x̃‖2 and φ := x̃/‖x̃‖ are random variables that independently
follow the Chi-squared distribution and the uniform distribution on Sd−1 respectively, and therefore,

Ex̃∼N (0,Id)[σ(〈w, x〉)σ(〈v, x〉)] = Ex̃∼N (0,Id)

[
r2σ(〈w, φ〉)σ(〈v, φ〉)

]
= Ex∼PX [σ(〈w, x〉)σ(〈v, x〉)] · Ex̃∼N (0,Id)[‖x̃‖

2
].

By using Eq. (2), we get

Rλ(θ) =
1

2
Ex
[(
fa◦,W◦(x)− f(x; θ̄)

)2]
+ λ‖θ‖2

=
1

2
Ex
[
(fa◦,W◦(x))

2
]
−

m∑
i,j=1

āia
◦
jI(w̄i, w

◦
j ) +

1

2

m∑
i,j=1

āiājI(w̄i, w̄j) + λ‖θ‖2,
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where w̄ is the element-wise clipping of w ∈ Rd and

I(w, v) =
sinφ(w, v) + (π − φ(w, v)) cosφ(w, v)

2πd
‖w‖‖v‖.

Next, we move to derive the gradient of Rλ(·). Note that dr̄
dr = |r|/cosh2(r|r|/2R). Then, since

er + e−r ≥ 2 + |r| for r ∈ R, we have that cosh(r|r|/2R) ≥ 1 + r2/4R, and hence |dr̄dr | ≤
|r|

(1+r2/4R)2 ≤ min{|r|, 16R2|r|/r4} ≤ 4R. Moreover, through a straightforward calculation, we
can show that dr̄

dr is 1-Lipschitz (in other words, the mapping r 7→ r̄ is 1-smooth).

Using this, each component of the gradient ofRλ(·) can be written as follows:

∇ajRλ(θ) =

m∑
i=1

āiI(w̄i, w̄j) ·
dāj
daj
−

m∑
i=1

a◦i I(w◦i , w̄j) ·
dāj
daj

+ 2λaj (3)

∇wjRλ(θ) = −
m∑
i=1

āia
◦
jJ(w̄i, w

◦
j )� dw̄j

dwj
+

m∑
i=1

āiājJ(w̄i, w̄j)�
dw̄j
dwj

+ 2λwj , (4)

where � denotes the Hadamard product and

J(w, v) =
‖v‖‖w‖−1

sinφ(w, v)w + (π − φ(w, v))v

2πd
,

which is the gradient of I(w, v) with respect to w (see Brutzkus & Globerson (2017) or Safran &
Shamir (2018)).

C PROOF OF PROPOSITION 4.3

This section provides the convergence guarantee for phase I. Our objective is to give the proof of
Proposition 4.3. To this end, we first introduce the theory around the gradient Langevin dynamics
exploited in Vempala & Wibisono (2019).

C.1 A BRIEF NOTE ON THE GRADIENT LANGEVIN DYNAMICS

In their analysis, the following notion of the log-Sobolev inequality plays the essential role, which
defined as follows:
Definition C.1. A probability distribution with a density function q satisfies the log-Sobolev in-
equality (LSI) if there exists a constant α > 0 such that for all smooth function g, it holds that

Eq[g2 log g2]− Eq[g2] logEq[g2] ≤ 2

α
Eq[‖∇g‖2].

α is called a log-Sobolev constant.

It is known that the LSI is equivalent to the following inequality:

Hq(p) ≤
1

2α
Jq(p) (∀p ∈ P), (5)

where Hq(p) :=
∫
R p(θ) log p(θ)

q(θ) dx is the KL divergence, Jq(p) :=
∫
R p(θ)

∥∥∥∇ log p(θ)
q(θ)

∥∥∥2

dθ is the
relative Fisher information, and P is the set of all probability density functions.

Now we consider the sampling from the probability distribution q over Rd. We assume that
− log q(·) : Rd → R is differentiable. One of the well-known and promising approaches is up-
dating the parameter θ(0) sampled from an initial distribution ρ0 as follows:

θ(k+1) = θ(k) − η∇(− log q)(θ(k)) +
√

2ηζ(k), (6)

where η > 0 is a constant and ζ(k) ∼ N (0, Id) is an independent standard Gaussian random
variable. Vempala & Wibisono (2019) shows that if the LSI holds and − log q has a smoothness,
the sufficient number of updates (6) actually achieves the sampling from q, in a sense that the KL
divergence between the distribution of θ(k) and q will be small.
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Theorem C.2 ((Vempala & Wibisono, 2019, Theorem 1)). Suppose that a probability measure with
a density function q satisfies the LSI and − log q is L-smooth. Then for any θ(0) ∼ p0 with Hq(p0),
the sequence (θ(k))∞k=0 with step-size 0 < η < α

4L2 satisfies

Hq(pt) ≤ exp(−αηk)Hq(p0) +
8ηdL2

α
.

Hence for any δ > 0, the output of the update (6) with step-size η ≤ α
4L2 min{1, δ4d} achieves

Hq(pt) < δ after k ≥ 1
αη log

2Hq(pt)
δ iterations.

C.2 PROOF OF LEMMA 4.2

The goal of this section is to prove Proposition 4.3, the convergence of gradient Langevin dynamics.
As we stated in Section 4.2, we consider the value of Rλ(·) instead of R̂λ(·), and ensure its value
will decrease enough. To this end, we first prove Lemma 4.2, which evaluates the difference between
∇Rλ(·) and ∇R̂λ(·).

proof of Lemma 4.2. The proof of Lemma 4.2 is basically based on that of Theorem 1 in Mei
et al. (2018a) and Lemma 5.3 in Zhang et al. (2019). For the notational simplicity we denote
m(d + 1) =: D. Let Nε be the ε-covering number of B

(
0,
√
DR

)
with respect to the `2-

distance. Let Θε =
{
θ1, . . . , θ̄N

}
be a corresponding ε-cover with |Θε| = N . It is known that

logN = D log
(

3
√
DR/ε

)
is sufficient to ensure the existence of such covering.

First we note that ∇Rλ(θ) − ∇R̂λ(θ) = 1
n

∑n
i=1∇`(yi, f(xi; θ̄)) − ∇E[`(y, f(x; θ̄))]. For each

θ ∈ Θ, let j(θ) ∈ arg min
j∈[N ]

∥∥θ̄ − θ̄j∥∥ and θ̂ := θ̄j(θ). For θ ∈ B
(

0,
√
DR

)
, we consider the

following decomposition:

1

n

n∑
i=1

∇`(yi, f(xi; θ̄))−∇E[`(y, f(x; θ̄))] =
1

n

n∑
i=1

[
∇`(yi, f(xi; θ̄))−∇`(yi, f(xi; θ̂))

]
+

(
1

n

n∑
i=1

∇`(yi, f(xi; θ̂))−∇E[`(y, f(x; θ̂))]

)
+
(
∇E[`(y, f(x; θ̂))]−∇E[`(y, f(x; θ̄))]

)
.

This gives that

∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̄))−∇E[`(y, f(x; θ̄))]

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

n

n∑
i=1

[
∇`(yi, f(xi; θ̄))−∇`(yi, f(xi; θ̂))

]∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̂))−∇E[`(y, f(x; θ̂))]

∥∥∥∥∥
+
∥∥∥∇E[`(y, f(x; θ̂))]−∇E[`(y, f(x; θ̄))]

∥∥∥,
16
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and hence it holds that

P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̄))−∇E[`(y, f(x; θ̄))]

∥∥∥∥∥ ≥ t


≤ P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 1

n

n∑
i=1

[
∇`(yi, f(xi; θ̄))−∇`(yi, f(xi; θ̂))

]∥∥∥∥∥ ≥ t

3


︸ ︷︷ ︸

(I)

+ P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̂))−∇E[`(y, f(x; θ̂))]

∥∥∥∥∥ ≥ t

3


︸ ︷︷ ︸

(II)

+ P

 sup
θ∈B(0,

√
DR)

∥∥∥∇E[`(y, f(x; θ̂))]−∇E[`(y, f(x; θ̄))]
∥∥∥ ≥ t

3


︸ ︷︷ ︸

(III)

for any t > 0. Then we evaluate the each term of the RHS.

Upper bound on (I): Since∇`(yi, f(xi; θ̄)) = 2
(
f(xi; θ̄)− yi

)
∇f(xi; θ̄), it holds that

∇`(yi, f(xi; θ̄))−∇`(yi, f(xi; θ̂))

= 2
(
f(xi; θ̄)− f(xi; θ̂)

)
∇f(xi; θ̄)− 2(f(xi; θ̂)− yi)(∇f(xi; θ̂)−∇f(xi; θ̄)).

Therefore, we have that

P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 1

n

n∑
i=1

[
∇`(yi, f(xi; θ̄))−∇`(yi, f(xi; θ̂))

]∥∥∥∥∥ ≥ t

3


≤ P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 2

n

n∑
i=1

[(
f(xi; θ̄)− f(xi; θ̂)

)
∇f(xi; θ̄)

]∥∥∥∥∥ ≥ t

6


+ P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 2

n

n∑
i=1

[
(f(xi; θ̂)− yi)(∇f(xi; θ̂)−∇f(xi; θ̄))

]∥∥∥∥∥ ≥ t

6

,
Since the mapping θ̂ 7→ f(x; θ̂) is 2R-Lipschitz and

∥∥∇f(x; θ̄)
∥∥ ≤ 2mR for any θ ∈ Θ, it holds

that the first term must be zero as long as t ≥ 4mR2ε. As for the second term, since |f(x; θ̄)− yi| ≤
mR2 + U + 1 for any xi, yi and θ ∈ Θ, it holds that

(I) = P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 2

n

n∑
i=1

[
(f(xi; θ̂)− yi)(∇f(xi; θ̂)−∇f(xi; θ̄))

]∥∥∥∥∥ ≥ t

6


≤ P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 2

n

n∑
i=1

[
∇f(xi; θ̂)−∇f(xi; θ̄)

]∥∥∥∥∥ ≥ t

6(mR2 + U + 1)

.
Hence, we move to evaluate sup

θ∈B(0,
√
DR)

∥∥∥ 2
n

∑n
i=1

[
∇f(xi; θ̂)−∇f(xi; θ̄)

]∥∥∥. To this end, we con-

sider the decomposition∥∥∥∥∥ 2

n

n∑
i=1

[
∇f(xi; θ̂)−∇f(xi; θ̄)

]∥∥∥∥∥
≤

m∑
j=1

(∥∥∥∥∥ 2

n

n∑
i=1

[
∇ajf(xi; θ̂)−∇ajf(xi; θ̄)

]∥∥∥∥∥+

∥∥∥∥∥ 2

n

n∑
i=1

[
∇wjf(xi; θ̂)−∇wjf(xi; θ̄)

]∥∥∥∥∥
)
,
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where

∇ajf(xi; θ̄) = σ(〈w̄j , xi〉)
dāj
daj

, ∇wjf(xi; θ̄) = āj1l{〈w̄j , xi〉 ≥ 0}xi �
dw̄j
dwj

.

This decomposition implies that

(I) ≤ P

max
j∈[m]

sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 2

n

n∑
i=1

[
∇ajf(xi; θ̂)−∇ajf(xi; θ̄)

]∥∥∥∥∥ ≥ t

12m(mR2 + U + 1)


+ P

max
j∈[m]

sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 2

n

n∑
i=1

[
∇wjf(xi; θ̂)−∇wjf(xi; θ̄)

]∥∥∥∥∥ ≥ t

12m(mR2 + U + 1)

.
For each term, it holds that∥∥∥∇ajf(xi; θ̂)−∇ajf(xi; θ̄)

∥∥∥ ≤ ∥∥∥∥(σ(〈w̄j , xi〉)− σ(〈ŵj , xi〉))
dāj
daj

∥∥∥∥+

∥∥∥∥σ(〈ŵj , xi〉)
(

dāj
daj
− dâj

daj

)∥∥∥∥
≤ ‖w̄j − ŵj‖

∣∣∣∣dājdaj

∣∣∣∣+

∣∣∣∣dājdaj
− dâj

daj

∣∣∣∣
≤ 4R‖w̄j − ŵj‖+ 2|āj − âj | ≤ 4Rε+ ε

and∥∥∥∇wjf(xi; θ̂)−∇wjf(xi; θ̄)
∥∥∥ ≤ ∥∥∥∥āj(1l{〈w̄j , xi〉 ≥ 0} − 1l{〈ŵj , xi〉 ≥ 0})xi �

dw̄j
dwj

∥∥∥∥
+

∥∥∥∥(āj − âj)1l{〈ŵj , xi〉 ≥ 0}xi �
dw̄j
dwj

∥∥∥∥
+

∥∥∥∥âj1l{〈w̄j , xi〉 ≥ 0}xi �
(

dw̄j
dwj

− dŵj
dwj

)∥∥∥∥
≤ R

∥∥∥∥(1l{〈w̄j , xi〉 ≥ 0} − 1l{〈ŵj , xi〉 ≥ 0})xi �
dw̄j
dwj

∥∥∥∥
+ 4R‖āj − âj‖+ 4R‖w̄j − ŵj‖

≤ R
∥∥∥∥(1l{〈w̄j , xi〉 ≥ 0} − 1l{〈ŵj , xi〉 ≥ 0})xi �

dw̄j
dwj

∥∥∥∥+ 8Rε.

The first term can be bounded by∥∥∥∥(1l{〈w̄j , xi〉 ≥ 0} − 1l{〈ŵj , xi〉 ≥ 0})xi �
dw̄j
dwj

∥∥∥∥ ≤ ‖(1l{〈w̄j , xi〉 ≥ 0} − 1l{〈ŵj , xi〉 ≥ 0})xi‖ · ‖ŵj‖

≤ 1l{|〈ŵj , xi〉| ≤ ε} · ‖ŵj‖,

where the last inequality follows from |〈w̄j , xi〉 − 〈ŵj , xi〉| ≤ ‖w̄j − ŵj‖ · ‖xi‖ ≤ ε. Therefore,
we obtain that

(I) ≤ P

max
j∈[m]

sup
θ∈B(0,

√
DR)

#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε} · ‖ŵj‖
n

≥ t

24mR(mR2 + U + 1)


= P

(
max

θ̂∈Θε,j∈[m]

#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε} · ‖ŵj‖
n

≥ t

24mR(mR2 + U + 1)

)
as long as t

24mR(mR2+U+1) ≥ max{4Rε, ε, 8Rε} = 8Rε. We have that

P

(
#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε} · ‖ŵj‖

n
≥ t

24mR(mR2 + U + 1)

)
= P

(
#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε}

n
≥ t

24mR(mR2 + U + 1)‖ŵj‖

)
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when ŵj 6= 0. If ŵj = 0, the LHS must be zero as long as t > 0. Lemma 12 in Cai et al. (2013)
shows that for each j and i, the angle between ŵj and xi is distributed with density function

h(φ) =
1√
π

Γ
(
d
2

)
Γ
(
d−1

2

) · (sinφ)d−2 : φ ∈ [0, π].

Since
∣∣π

2 − φ
∣∣ ≤ ∆ implies |cosφ| =

∣∣sin(π2 − φ)∣∣ ≤ ∆ for any ∆ > 0 and h(φ) ≤ 1√
π

Γ( d2 )
Γ( d−1

2 )
for

any φ ∈ [0, π], it holds that

P(|〈ŵj , xi〉| ≤ ε) ≤ P

(∣∣∣π
2
− φij

∣∣∣ ≤ ε

‖ŵj‖

)
≤ 2ε

‖ŵj‖
1√
π

Γ
(
d
2

)
Γ
(
d−1

2

) ≤ 2
√
dε√

π‖ŵj‖
,

where φij is the angle between ŵj and xi. Therefore, #{i ∈ [n] | |〈ŵj , xi〉| ≤ ε} follows the
Binomial distributionB(n, p) with p ≤ 2

√
dε√

π‖ŵj‖
. Since a random variables that follows the Binomial

distribution is bounded and especially sub-Gaussian Wainwright (2019), it holds that

P

(
#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε}

n
≥ s+

2
√
dε√

π‖ŵj‖

)
≤ P

(
#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε}

n
≥ s+ p

)
≤ exp

(
−2ns2

)
.

for an arbitrarily s > 0. By taking uniform bound, we obtain that

P

(
max

θ̂∈Θε,j∈[m]

#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε}
n

≥ s+
2
√
dε√

π‖ŵj‖

)
≤ N exp

(
−2ns2

)
Hence, as long as ε ≤

√
π

96mR(mR2+U+1)2
√
d
t (verified later in this proof), by letting s =

t
48mR(mR2+U+1)‖ŵj‖ , we obtain that

P

(
max

θ̂∈Θε,j∈[m]

#{i ∈ [n] | |〈ŵj , xi〉| ≤ ε}
n

≥ s+
dε√
π‖ŵj‖

)

≤ mN exp

(
−2n

(
t

24mR(mR2 + U + 1)‖ŵj‖

)2
)

≤ mN exp

(
− 2n

dR2

(
t

24mR(mR2 + U + 1)

)2
)
,

where the last inequality follows from ‖ŵj‖2 ≤ dR2. As a result, the term (I) can be bounded by

(I) ≤ mN exp

(
− 2n

dR2

(
t

24mR(mR2 + U + 1)

)2
)
.

Upper bound on (II): First, we observe that the term (II) is equivalent to

P

(
max
j∈[N ]

∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̄j))−∇E[`(y, f(x; θ̄j))]

∥∥∥∥∥ ≥ t

3

)
.

For each j ∈ [N ], a straightforward calculation gives that ‖∇`(yi, f(xi; θj))‖ ≤ 2R(mR2 + 1),
and hence the vector∇`(yi, f(xi; θj)) is sub-Gaussian with a parameter R(mR2 + 1), i.e., it holds
that

P

(∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̄j))−∇E[`(y, f(x; θ̄j))]

∥∥∥∥∥ ≥ t

3

)
≤ 2e−

nt2

18G2

with G = R(mR2 + 1) for arbitrary t > 0. By taking uniform bound, we obtain

P

(
max
j∈[N ]

∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̄j))−∇E[`(y, f(x; θ̄j))]

∥∥∥∥∥ ≥ t

3

)
≤ 2Ne−

t2

18G2 .
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Upper bound on (III): The goal is obtaining (III) = 0 for a sufficiently small ε. Particularly, we
assume that ε < 1 here. To this end, we aim to show∥∥∥∇E[`(y, f(x; θ̂))]−∇E[`(y, f(x; θ̄))]

∥∥∥ ≤ cL′ε1/2 (7)

with a constant c > 0 and L = O(m2R3). First we consider the case where the absolute value of
the each component in θ̄ is bounded by 1/2. By Lemma C.5, it holds that∥∥∥∇E[`(y, f(x; θ̂))]−∇E[`(y, f(x; θ̄))]

∥∥∥ ≤ L′‖θ − θj(θ)‖ = L′ ·
(
‖θ − θj(θ)‖

2
) 1

2

for any θ ∈ Θ with L′ = O(m2R3). Moreover, a straightforward calculation shows that a mapping
r 7→ 2R tanh−1(r/R) (the inverse mapping of r 7→ R tanh(r/2R)) is 8-Lipschitz in [0, 1/2], we
have ‖θ − θj(θ)‖

2 ≤ 8‖θ̄ − θ̂‖ ≤ 8ε.　 Therefore, we obtain that∥∥∥∇E[`(y, f(x; θ̂))]−∇E[`(y, f(x; θ̄))]
∥∥∥ ≤ L′(8ε)1/2,

i.e., Eq. (7) with c = 8. Assume that there is a component of θ whose absolute value is greater
than 1/2. First, suppose that a component of w̄j is greater than 1/2 for j ∈ [m]. We consider the
decomposition∥∥∥∇wjE[`(y, f(x; θ̂))]−∇wjE[`(y, f(x; θ̄))]

∥∥∥
≤
∥∥∥∇ŵjE[`(y, f(x; θ̂))]−∇w̄jE[`(y, f(x; θ̄))]

∥∥∥ · ∥∥∥∥dŵj
dwj

∥∥∥∥+
∥∥∇w̄jE[`(y, f(x; θ̄))]

∥∥ · ∥∥∥∥dŵj
dwj

− dw̄j
dwj

∥∥∥∥.
Since ‖w̄j‖ > 1/2, we can check that the mapping ŵj 7→ E[`(y, f(x; θ̄))] is L′′ smooth
with L′′ = O(mR2d−1/2) according to its Hessian (see Safran & Shamir (2018)). Since∥∥∥dŵj

dwj

∥∥∥ ≤ 4
√
dR, the first term is at most O(mR3) · ε. Since

∥∥E[`(y, f(x; θ̄))]
∥∥ ≤ 2R(mR2 +

1) and r 7→ r̄ is 1-smooth, the second term is at most O(mR3) · ε. Hence we get that∥∥∥∇wjE[`(y, f(x; θ̂))]−∇wjE[`(y, f(x; θ̄))]
∥∥∥ ≤ O(mR3) · ε. In the case |aj | > 1/2 for j ∈ [m],

the same bound also holds with
∥∥∥∇ajE[`(y, f(x; θ̂))]−∇ajE[`(y, f(x; θ̄))]

∥∥∥. By using these
bound instead of Lemma E.5 and ε < 1, we obtain the same bound Eq. (7) in this case. Eq. (7)
implies (III) = 0 as long as t

3 ≥ cL
′ε1/2, which gives the assertion.

Combining (I)–(III): Combining these bounds, we get that

P

 sup
θ∈B(0,

√
DR)

∥∥∥∥∥ 1

n

n∑
i=1

∇`(yi, f(xi; θ̄))−∇E[`(y, f(x; θ̄))]

∥∥∥∥∥ ≥ t


≤ mN exp

(
− 2n

dR2

(
t

24mR(mR2 + U + 1)

)2
)

+ 2Ne−
t2

18G2 + 0

= exp

(
D log

3
√
DR

ε

)

·

[
m exp

(
− 2n

dR2

(
t

24mR(mR2 + U + 1)

)2
)

+ 2 exp

(
− nt2

18R2(mR2 + U + 1)2

)]
as long as t ≥ C0 max{mR2ε,mR(mR2 + U)ε, L′ε1/2} holds with a constant C0 > 0. By letting
t = C1L

′ε1/2 and ε = C2
d log δ
nm2 with constants C1 > 0 and C2 > 0 , we obtain the conclusion.

C.3 PROOF OF THE CONVERGENCE IN PHASE I

Based on the results so far, we move to the proof of Proposition 4.3. The proof is conducted in two-
step. First, we evaluate the “distance” between the π∞ and the distribution of θ(k). Moreover, it is
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ensured that the function valueRλ(θ), where θ is sampled from π∞, will be small for a sufficiently
large β. Combining these two facts, we can guarantee that the function value Rλ(θ(k)) also will be
small, which concludes Proposition 4.3. The following proposition ensures the convergence of the
marginal distribution of θ(k) to the invariant measure π∞:

Proposition C.3. Suppose that the probability measure π∞ satisfies the LSI with a constant α and
Rλ(·) is L-smooth with L > 1. Let q be a density function of π∞ (i.e., q(θ) ∝ exp(−βRλ(θ))) with
β > 2. For any θ(0) ∼ ρ0 with Hq(ρ0) < +∞, the sequence (θ(k))∞k=0 with step-size 0 < η(1) <
α

4βL2 satisfies

Hq(ρk) ≤ exp

(
−αη

(1)

β
k

)
Hq(ρ0) +

16βη(1)DL2

α
+

32βV 2
grad

3α
,

where D := m(d+ 1), ρk is the density function of the marginal distribution of θ(k), and Vgrad is a
constant introduced in Lemma 4.2. In particular, for any δ > 0, the output of phase I with step-size

η(1) ≤ δα
32βL2D achieves Hq(ρk) < δ +

32βV 2
grad

3α after k ≥ β
αη(1) log

2Hq(ρ0)
δ iterations.

As we stated in Section 4.2, our result extends the existing one Vempala & Wibisono (2019) in the
sense that it gives the convergence for the non-differential objective function R̂λ(·). Indeed, this

difference appears in the last term,
32βV 2

grad

3α . Since V 2
grad . n−1 by Lemma 4.2, we can ensure

that this error diverges to zero as the sample size n increases. To apply this result to ensure the
convergence of the phase I, we just need to check that the invariant measure π∞ satisfies the LSI
andRλ is smooth, and we clarify them as follows:

Lemma C.4 (log-Sobolev inequality). The invariant measure π∞ satisfies the LSI with a constant
α = 2βλ exp

(
−8βm2R4

)
.

Lemma C.5 (smoothness). Rλ(·) is L-smooth, i.e., for any θ , θ ′ ∈ Θ,
∥∥∇Rλ(θ)−∇Rλ(θ ′)

∥∥ ≤
L
∥∥θ − θ ′∥∥ holds with L = O(m2R3 + λ).

The proof of these lemmas can be seen in Appendix E.

Remark C.6. In Lemma C.4, the LSI constant α depends exponentially on m, which results in the
exponential dependency of phase I convergence on m. This is caused by the fact that the sup-norm
of the student network depends on m (see the proof of Lemma C.4). Therefore, we can indeed
remove this dependency by considering the following settings: (1) utilizing the mean field network
(multiplying 1/m to the output of the student), (2) wjs are directed to different directions to some
extent, and hence the sup-norm can be bounded.

To ensure Proposition C.3, we first show the following lemma, which evaluates the each step of the
gradient Langevin dynamics.

Lemma C.7. Suppose that π∞ satisfies the LSI with a constant α and Rλ(·) is L-smooth with
L > 1, and β > 2. Then for any θ(0) ∼ ρ0 with Hq(ρ0) < +∞, if 0 < η < α

4βL2 ,it holds that

Hq(ρk+1) ≤ e−αη/βHq(ρk) + 12η2DL2 + 8ηV 2
grad,

where ρk is the density function of the marginal distribution of θ(k) and Vgrad is the constant defined
in Lemma 4.2.

Proof. The proof of Lemma C.7 is basically based on that of Lemma 3 in Vempala & Wibisono
(2019). For notational simplicity suppose k = 0 and let θ0 = θ(0). The one step of the gradient
Langevin dynamics

θ(1) = θ(0) − η∇R̂λ
(
θ(0)
)

+

√
2η

β
ζ(0)

can be seen as an output at time ηβ−1 of the following SDE:

dθt = −β∇R̂λ(θ0)dt+
√

2dBt,
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where {Bt}t≥0 is the standard Brownian motion in Θ (= R(d+1)×m). As Vempala & Wibisono
(2019), it holds that

∂ρt|0(θt|θ0)

∂t
= ∇ ·

(
ρt|0(θt|θ0)β∇R̂λ(θ0)

)
+ ∆ρt|0(θt|θ0),

and therefore,
d

dt
Hq(ρt) = −Jq(ρt) + β · Eρ0t

[〈
∇Rλ(θt)−∇R̂λ(θ0),∇ log

ρt(θt)

q(θt)

〉]
,

where ρt|0(·|θ0) the conditional density, and ρt0 is the density of the joint distribution of θ0 and θt.

Then we evaluate the second term. The inner product in this term can be bounded by〈
∇Rλ(θt)−∇R̂λ(θ0),∇ log

ρt(θt)

q(θt)

〉
≤
∥∥∥∇Rλ(θt)−∇R̂λ(θ0)

∥∥∥2

+
1

4

∥∥∥∥∇ log
ρt(θt)

q(θt)

∥∥∥∥2

≤ 2
∥∥∥∇Rλ(θt)−∇Rλ(θ0)

∥∥∥2

+ 2
∥∥∥∇Rλ(θ0)−∇R̂λ(θ0)

∥∥∥2

+
1

4

∥∥∥∥∇ log
ρt(θt)

q(θt)

∥∥∥∥2

.

In the above bound, we use 〈a, b〉 ≤ a2 + b2/4 for a, b ∈ RD in the first inequality and ‖a− b‖2 ≤
2‖a‖2 + 2‖b‖2 for a, b ∈ RD in the second inequality. Therefore, by using Lemma 4.2, we get that

Eρ0t

[〈
∇Rλ(θt)−∇Rλ(θ0),∇ log

ρt(θt)

q(θt)

〉]
≤ 2V 2

grad + 2Eρ0t

[∥∥∥∇Rλ(θt)−∇Rλ(θ0)
∥∥∥2
]

+
1

4
Eρ0t

[∥∥∥∥∇ log
ρt(θt)

q(θ)

∥∥∥∥2
]

= 2V 2
grad + 2Eρ0t

[∥∥∥∇Rλ(θt)−∇Rλ(θ0)
∥∥∥2
]

+
1

4
Jq(ρt).

Then the second term is bounded by

Eρ0t

[∥∥∥∇Rλ(θt)−∇Rλ(θ0)
∥∥∥2
]
≤ L2Eρ0t

[
‖θt − θ0‖2

]
= L2Eρ0t

[∥∥∥∥−t∇R̂λ(θ0) +

√
2t

β
ζ(0)

∥∥∥∥2
]

= t2L2Eρ0t

[∥∥∥∇Rλ(θ0) + (∇R̂λ(θ0)−∇Rλ(θ0))
∥∥∥2
]

+ L2Eρ0t

[∥∥∥∥√2t

β
ζ(0)

∥∥∥∥2
]

≤ 2t2L2
(
Eρ0t

[
‖∇Rλ(θ0)‖2

]
+ V 2

grad

)
+ L2 2t

β
D

≤ 1

β

(
4t2L4

α
Hq(ρ0) + 2t2L3D

)
+ 2η2L2V 2

grad + tL2D.

In the last inequality, we use Lemma 10 in Vempala & Wibisono (2019) and β > 2. Thus we obtain
d

dt
Hq(ρt) ≤ −

3

4
Jq(ρt) +

8βt2L4

α
Hq(ρ0) + 4βt2L3D + 2βtL2D + (2βη2L2 + 2)V 2

grad

≤ −3α

2
Hq(ρt) +

8βt2L4

α
Hq(ρ0) + 6βtL2D + 4βV 2

grad

since the LSI (Eq. (5)) holds and tL ≤ ηL ≤ 1. Multiplying both sides by e3αt/2 and integrating
them from t = 0 to t = ηβ−1, we get

e3αη/2βHq(ρη)−Hq(ρ0) ≤ 2(e3αη/2β − 1)

3α

(
4βη2L4

α
Hq(ρ0) + 6βηDL2 + 4βV 2

grad

)
≤ 2η

(
8η2L4

α
Hq(ρ0) + 6ηDL2 + 4V 2

grad

)
,
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where we use the inequality ea ≤ 1 + 2a for a ∈ [0, 1] and 3αη/2β ≤ 1 (derived from the
assumption of η). Rearranging this inequality, we have

Hq(ρη) ≤ e−3αη/2β

(
1 +

16η3L4

α

)
Hq(ρ0) + e−3αη/2β

(
12η2DL2 + 8V 2

gradη
)

≤ e−αη/βHq(ρ0) + 12η2DL2 + 8ηV 2
grad,

where the last inequality follows from 1 + 16η3L4

α ≤ 1 + αη
16β2 ≤ 1 + αη

2β ≤ eαη/2β . By replacing
ρ0 by ρk and ρη by ρk+1, we get the conclusion.

proof of Proposition C.3. By Lemma C.7, it holds that

Hq(ρk) ≤ e−αηk/βHq(ρ0) +
(
12η2DL2 + 8ηV 2

grad

) k∑
k′=1

e−αηk
′/β

≤ e−αηk/βHq(ρ0) +
12η2DL2 + 8ηV 2

grad

1− e−αη/β
≤ e−αηk/βHq(ρ0) +

16βηDL2

α
+

32βV 2
grad

3α
,

where, the last inequality follows from L > 1 (derived from Lemma C.5) and 1 − e−c ≥ 3
4c for

c ∈ [0, 1
4 ] and αη

β < 1
4L2 <

1
4 . Thus we get the assertion.

proof of Proposition 4.3. By the Otto-Villani theorem, it holds thatW2(ρk, q)
2 ≤ 2

αHq(ρk). There-
fore, Proposition C.3 implies that after k ≥ β

αη log
2Hq(ρ0)

δ iteration, it holds that

W2(ρk, q) ≤

√√√√ 2

α

(
δ +

32βV 2
grad

3α

)
Then we obtain that

E[Rλ(θ(k))]−R∗λ ≤
(
E[Rλ(θ(k))]− Eπ∞ [Rλ(θ)]

)
+ (Eπ∞ [Rλ(θ)]−R∗λ)

≤ C(λ+m)

√√√√ 2

α

(
δ +

32βV 2
grad

3α

)
+
D

2β
log

(
eL

M

(
bβ

D
+ 1

))
,

where we use Lemma E.1 and Lemma E.2 for the inequality. By specifying α, L, M and b by
applying Lemma C.4, Lemma C.5, and Lemma E.3, we get the conslusion.

D PROOF OF THEOREM 4.6

The objective of this section is to prove Theorem 4.6. First, by the noisy gradient descent, the
objective value decreases enough, and we can ensure that for each node of the teacher network,
there exists a node of the student network that is “close” to each other. Then we can prove the local
convergence property based on the strong convexity around the parameters of the teacher network.

The proof of the local convergence relies on that of Zhang et al. (2019). They consider the setting
where the parameters of the second layer are all positive, i.e., aj = a◦j = 1 for all j ∈ [m] and
provide the following proposition:
Proposition D.1 (Theorem 4.2 of Zhang et al. (2019)). Let f◦ : x 7→

∑m
j=1 σ(〈w◦j , x〉) be a teacher

network with parameters W ◦ = (w◦1 w
◦
2 · · · w◦m) ∈ Rd×m, κ = σ1/σm is the condition number

of W ◦, and σ = (
∏m
j=1 σj)/σ

m
m . Assume the inputs (xi)

n
i=1 are sampled from N (0, Id), and the

outputs (yi)
n
i=1 are generated from the teacher network. Suppose that the initial estimator W (0)

satisfies ‖W (0) −W ◦‖F ≤ cσm/κ
3m2, where c > 0 is a small enough absolute constant. Then

there exists absolute constants c1, c2, c3, c4, and c5 such that under

n ≥ c1κ
10m9d

σm
log

(
κmd

σm

)
·
(
‖W ∗‖2F + v2

)
,
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the output of the gradient descent with step-size η ≤ 1
c2κm2 satisfies

‖W (k) −W ◦‖2F ≤
(

1− c3η

σκ2

)k
‖W (0) −W ◦‖2F +

c4σ
2κ4m5d log n

n
·
(
‖W ◦‖2F + v2

)
with probability at least 1− c5d−10.

Their proof can also be applied to the setting in this paper, i.e., aj , a◦j ∈ {±1} holds, and if a teacher
node j and a student node kj are close to each other, it holds that a◦j = akj . In Proposition 4.3, if it
holds that E[Rλ(θ(k))]−R∗λ ≤ bε0, we obtain that

Rλ(θ(k))−R∗λ ≤ ε0 (8)
with probability at least 1− b, by using the Markov inequality. In the rest of this section, we assume
that (8) is satisfied. In this case, if Proposition 4.4 is ensured, we can apply Proposition D.1 and
Theorem 4.6 is proved. We give its proof in the rest of this section.

proof of Proposition 4.4. Let θ◦ = ((a◦1, w
◦
1), . . . , (a◦m, w

◦
m)). Then by Rλ(θ) − Rλ(θ◦) ≤

Rλ(θ)−R∗λ ≤ ε0, it holds that

1

2
Ex
[
(fa◦,W◦(x)− f(x; θ))

2
]

+ λ
m∑
j=1

(
|aj |2 + ‖wj‖2

)
≤ λ

m∑
j=1

(
|a◦j |2 +

∥∥w◦j∥∥2
)

+ ε0,

and therefore,

1

2
Ex
[
(fa◦,W◦(x)− f(x; θ))

2
]
≤ ε0
m

m∑
j=1

(
|a◦j |2 +

∥∥w◦j∥∥2
)

+ ε0

≤ ε0
m

m∑
j=1

(
1 + ‖W ◦‖2F

)
+ ε0 ≤ 3ε0, (9)

where we use |a◦j |2 = 1 for all j ∈ [m] and
∑m
j=1

∥∥w◦j∥∥2
= ‖W ◦‖2F ≤ m‖W ◦‖22 ≤ m. Then we

move to evaluate the LHS. Since σ(u) = u+|u|
2 for u ∈ R, it holds that

f(x; θ) =

m∑
j=1

ajσ(〈wj , x〉) =
1

2

m∑
j=1

aj(|〈wj , x〉|+ 〈wj , x〉),

fa◦,W◦(x) =

m∑
j=1

ajσ(〈wj , x〉) =
1

2

m∑
j=1

a◦j
(∣∣〈w◦j , x〉∣∣+ 〈w◦j , x〉

)
Hence we have that

1

2
Ex
[
(fa◦,W◦(x)− f(x; θ))

2
]

=
1

8
Ex


 m∑
j=1

a◦j
(∣∣〈w◦j , x〉∣∣+ 〈w◦j , x〉

)
−

m∑
j=1

aj(|〈wj , x〉|+ 〈wj , x〉)

2


=
1

8
Ex


 m∑
j=1

a◦j
∣∣〈w◦j , x〉∣∣− m∑

j=1

aj |〈wj , x〉|

2
+

1

8
Ex

〈 m∑
j=1

a◦jw
◦
j −

m∑
j=1

ajwj , x

〉2
,

where the last equality follows from Ex [|〈w1, x〉|〈w2, x〉] = 0 for all w1, w2 ∈ Rd, which follows
from the fact that the distribution PX is symmetric. Then Eq. (9) gives that

Ex


 m∑
j=1

a◦j
∣∣〈w◦j , x〉∣∣− m∑

j=1

aj |〈wj , x〉|

2
 ≤ 24ε0, (10)

Ex

〈 m∑
j=1

a◦jw
◦
j −

m∑
j=1

ajwj , x

〉2
 ≤ 24ε0. (11)
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The analysis based on Eq. (10), the error analysis of student networks with the absolute value
activation, is conducted in Zhou et al. (2021). Here we import Lemma D.2 from their tech-
nique. They focus on the setting where a◦j = 1 for all j ∈ [m], but we can apply it here.
Then we get that for every j ∈ [m], there exists kj ∈ [m] and a constant C > 0 such that
arccos

(
|〈w◦j , wk〉|/

∥∥w◦j∥∥‖wk‖) ≤ Cmσ−5/3
min ε1/3 and

∥∥∣∣akj ∣∣wkj − w◦j∥∥ ≤ poly(m,σ−1
min)ε3/8.

We simply denote kj by j. Since Zhou et al. (2021) uses the absolute value for the activation, it
may hold that arccos

(
〈w◦j , wj〉/

∥∥w◦j∥∥‖wj‖) > π/2 (i.e., w◦j and wk have “opposite” directions).
From now on, we omit such cases by Eq. (11). Let a = (a1, . . . , am) = (a◦1, . . . , a

◦
m) and W∆ =

(w◦1 −w1, . . . , w
◦
m −wm). And we denote the angle between w◦j and wj by φj . Then, Eq. (11) can

be rewritten as

Ex∼PX
[
(aTW∆x)2

]
≤ 24ε0.

Let x̃ ∼ N (0, Id), since r2 := ‖x̃‖2 and φ := x̃/‖x̃‖ are random variables that independently follow
the Chi-squared distribution and the uniform distribution on Sd−1 respectively. Hence it holds that

Ex∼PX
[
(aTW∆x)2

]
=

Ex̃∼N (0,Id)

[
(aTW∆x̃)2

]
Ex̃∼N (0,Id)‖x̃‖

2 =
Er∼N (0,‖〈a,W∆〉‖2)

[
r2
]

d
=
‖〈a,W∆〉‖2

d
≤ 24ε0.

This implies ‖〈a,W∆〉‖2 ≤ 24ε0d. Since w◦j −wj = (1− 〈w◦j , wj〉)w◦j + (〈w◦j , wj〉w◦j −wj) and∥∥〈w◦j , wj〉w◦j − wj∥∥ = sinφj , we have that

〈a,W∆〉 =
(

(1− 〈w◦1 , w1〉)a1, . . . , (1− 〈w◦m, wm〉)am
)T
W ◦

+

(
〈a,W∆〉 −

(
(1− 〈w◦1 , w1〉)a1, . . . , (1− 〈w◦m, wm〉)am

)T
W ◦
)

=
(

(1− 〈w◦1 , w1〉)a1, . . . , (1− 〈w◦m, wm〉)am
)T
W ◦

+
〈
a,
(
〈w◦1 , w1〉w◦1 − w1, . . . , 〈w◦m, wm〉w◦m − wm

)〉
and the second term is at most O(m3/2σ

−5/3
min ε1/3). As for the first term, it holds that it is at least

σmin

∑m
j=1(1−〈w◦j , wj〉)2. Hence, by letting ε = o(d−1m−3/2σ8

min), it must hold that 〈w◦j , wj〉 >
0, which gives the assertion.

Lemma D.2 (Lemma 9 and Lemma 10 in Zhou et al. (2021)). Assume that x ∼ N (0, Id) and
f◦ : x 7→

∑m
j=1 |〈w◦j , x〉| is a teacher network with parameters w◦1 , . . . , w

◦
m ∈ Rd satisfying

min
j1,j2

arccos
(
〈w◦j1 , w

◦
j2
〉/
∥∥w◦j1∥∥∥∥w◦j2∥∥) ≥ ∆ for ∆ > 0 and 0 < wmin ≤

∥∥w◦j∥∥ ≤ wmax for all j ∈

[m]. Then there exists a threshold ε0 = poly(∆,m−1, w−1
max.wmin) such that if a student network

f̂ : x 7→
∑m
j=1 |〈wj , x〉| satisfies Ex[(f◦−f̂)2] ≤ ε ≤ ε0, it holds that for every j ∈ [m], there exists

kj ∈ [m] and a constant C > 0 such that arccos
(
|〈w◦j , wk〉|/

∥∥w◦j∥∥‖wk‖) ≤ Cmwmaxw
−5/3
min ε1/3

and
∥∥∣∣akj ∣∣wkj − w◦j∥∥ ≤ poly(m,∆−1, wmax)ε3/8.

E AUXILIARY LEMMAS

E.1 EVALUATION OF THE INVARIANT MEASURE

This subsection provides lemmas about the evaluation of the function value sampled from the in-
variant measure β. These are utilized in the proof of Proposition 4.3 (see Appendix C). First, we
introduce two results from Raginsky et al. (2017), and then we prove the dissipativity, which is
imposed as an assumption in these results.
Lemma E.1 (Proposition 11 in Raginsky et al. (2017)). Suppose that f : Θ → R satisfies the
following conditions:

• f is L-smooth.
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• f is (M, b)-dissipative, i.e., it holds that 〈θ,∇f(θ)〉 ≥M‖θ‖2 − b for any θ ∈ Θ.

Then, for any β ≥ 2/M , it holds that

Eθ∼π∞ [f(θ)]−min
θ∈Θ

f(θ) ≤ d

2β
log

(
eL

M

(
bβ

d
+ 1

))
Lemma E.2 (Lemma 2 and Lemma 6 in Raginsky et al. (2017)). Let µ1, µ2 be two probability
measures on Θ with finite second moments, and let f : Θ → R be a (M, b)-dissipative function
satisfying ‖∇f(0)‖ ≤ B for B ≥ 0. Then, it holds that∣∣∣∣∫

Θ

gdµ1 −
∫

Θ

gdµ2

∣∣∣∣ ≤ (Mσ +B)W2(µ1, µ2),

where σ2 := max{
∫

Θ
‖θ‖2dµ1,

∫
Θ
‖θ‖2dµ2}.

Lemma E.3 (dissipativity). Rλ(·) is (M, b)-dissipative with M = 2λ and b = 8m2R3.

Proof. By a straightforward calculation, we have that

〈θ,∇Rλ(θ)〉 =

m∑
j=1

aj∇ajRλ(θ) +

m∑
j=1

〈wj ,∇wjRλ(θ)〉

=

m∑
j=1

aj

[
m∑
i=1

āiI(w̄i, w̄j) ·
dāj
daj
−

m∑
i=1

a◦i I(w◦i , w̄j) ·
dāj
daj

+ 2λaj

]

+

m∑
j=1

〈
wj ,−

m∑
i=1

āia
◦
jJ(w̄i, w

◦
j )� dw̄j

dwj
+

m∑
i=1

āiājJ(w̄i, w̄j)�
dw̄j
dwj

+ 2λwj

〉

= 2λ‖θ‖2 +

m∑
j=1

aj

[
m∑
i=1

āiI(w̄i, w̄j) ·
dāj
daj
−

m∑
i=1

a◦i I(w◦i , w̄j) ·
dāj
daj

]

+

m∑
j=1

〈
wj ,−

m∑
i=1

āia
◦
jJ(w̄i, w

◦
j )� dw̄j

dwj
+

m∑
i=1

āiājJ(w̄i, w̄j)�
dw̄j
dwj

〉
.

As for the second term and the third term, since |I(w, v)| ≤ ‖w‖‖v‖/2d and ‖J(w, v)‖ ≤ ‖v‖/2d
for any w, v ∈ Rd, we have that∣∣∣∣∣∣

m∑
j=1

aj

[
m∑
i=1

āiI(w̄i, w̄j) ·
dāj
daj
−

m∑
i=1

a◦i I(w◦i , w̄j) ·
dāj
daj

]∣∣∣∣∣∣
≤

m∑
j=1

∣∣∣∣∣aj dāj
daj

[
m∑
i=1

āiI(w̄i, w̄j)−
m∑
i=1

a◦i I(w◦i , w̄j)

]∣∣∣∣∣ ≤ 4m2R3,

and∣∣∣∣∣∣
m∑
j=1

〈
wj ,−

m∑
i=1

āia
◦
jJ(w̄i, w

◦
j )� dw̄j

dwj
+

m∑
i=1

āiājJ(w̄i, w̄j)�
dw̄j
dwj

〉∣∣∣∣∣∣
≤

m∑
j=1

∣∣∣∣∣
〈
wj ,−

m∑
i=1

āia
◦
jJ(w̄i, w

◦
j )� dw̄j

dwj
+

m∑
i=1

āiājJ(w̄i, w̄j)�
dw̄j
dwj

〉∣∣∣∣∣ ≤ 4m2R3.

Combining these inequality, we get that

〈θ,∇Rλ(θ)〉 ≥ 2λ‖θ‖2 − 8m2R3,

which gives the conclusion.

26



Published as a conference paper at ICLR 2023

E.2 PROOF OF LEMMA C.4

In this subsection, we give a proof to Lemma C.4, the LSI for the invariant measure π∞. The key
notion is that Rλ can be decomposed to the bounded term (L2-distance) and the strongly convex
term (regularization term). Combining this fact with the following lemma, we can ensure the LSI.
Lemma E.4 (Holley & Stroock (1987); Nitanda et al. (2021b)). Let a probability measure on Θ
with a density function q satisfy the LSI with a constant α. For a function f : Θ → R that satisfies
|f(θ)| ≤ B for any θ ∈ Θ, a probability measure defined by

Q(θ)dθ :=
exp(f(θ))q(θ)

Eq[exp(f(θ))q(θ)]
dθ

satisfies the LSI with a constant α exp(−4B).

proof of Lemma C.4. First, we note that

exp(−βRλ(θ))dθ = exp
(
−βλ‖θ‖2

)
· exp

(
−β

2
Ex
[(
fa◦,W◦(x)− f(x; θ̄)

)2])
dθ.

Since the function θ 7→ βλ‖θ‖2 is 2βλ-strongly convex, a measure with density exp
(
−βλ‖θ‖2

)
dθ

satisfies the LSI with a constant βλ Bakry & Émery (1985). Moreover, by a straightforward calcu-
lation shows that β2Ex

[(
fa◦,W◦(x)− f(x; θ̄)

)2] ≤ 2βm2R4, Lemma E.4 implies that π∞ satisfies

the LSI with a constant 2βλ exp
(
−8βm2R4

)
, which gives the conclusion.

E.3 PROOF OF LEMMA C.5

In this subsection we write L(θ) := 1
2Ex

[(
fa◦,W◦(x)− f(x; θ̄)

)2]
, i.e.,Rλ(θ) := L(θ) + λ‖θ‖2.

Since θ 7→ λ‖θ‖2 is 2λ-smooth, it is sufficient to show that L(·) is L′-smooth with L′ = O(m2R3)
for proving Lemma C.5. To this end, let θ , θ ′ ∈ Θ. We consider the decomposition

∥∥∇L(θ)−∇L(θ ′)
∥∥ =

√√√√ m∑
j=1

(∣∣∇ajL(θ)−∇ajL(θ ′)
∣∣2 +

∥∥∇wjL(θ)−∇wjL(θ ′)
∥∥2
)

≤
m∑
j=1

(∣∣∇ajL(θ)−∇ajL(θ ′)
∣∣+
∥∥∇wjL(θ)−∇wjL(θ ′)

∥∥),
where

∇ajL(θ)−∇ajL(θ ′) =

m∑
i=1

(
āiI(w̄i, w̄j) ·

dāj
daj
− ā′iI(w̄′i, w̄

′
j) ·

dā′j
daj

)

−
m∑
i=1

(
a◦i I(w◦i , w̄j) ·

dāj
daj
− a◦i I(w◦i , w̄

′
j) ·

dā′j
daj

)
,

∇wjL(θ)−∇wjL(θ ′) = −
m∑
i=1

(
āia
◦
jJ(w̄i, w

◦
j )� dw̄j

dwj
− ā′ia◦jJ(w̄′i, w

◦
j )�

dw̄′j
dwj

)

+
1

2

m∑
i=1

(
āiājJ(w̄i, w̄j)�

dw̄j
dwj

− ā′iā′jJ(w̄′i, w̄
′
j)�

dw̄′j
dwj

)
.

(see Eq. (3) and Eq. (4)). The following lemma gives an upper bound for each term.
Lemma E.5. For any θ , θ ′ ∈ Θ and j ∈ [m], it holds that∣∣∇ajL(θ)−∇ajL(θ ′)

∣∣ ≤ m(5R3

2
+

2
√
dR

d

)(∣∣aj − a′j∣∣+
∥∥wj − w′j∥∥)+ 2R3

m∑
i=1

‖w̄i − w̄′i‖

∥∥∇wjL(θ)−∇wjL(θ ′)
∥∥ ≤ m(2R

d
+ 2R3

)(∣∣aj − a′j∣∣+
∥∥wj − w′j∥∥)+ 2R3

m∑
i=1

(|ai − a′i|+ ‖wi − w′i‖).
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Proof. The proof is based on the straightforward calculation. As for the first inequality, for every
i ∈ [m], it holds that∣∣∣∣āiI(w̄i, w̄j) ·

dāj
daj
− ā′iI(w̄′i, w̄

′
j) ·

dā′j
daj

∣∣∣∣
≤
∣∣∣∣(āiI(w̄i, w̄j)− ā′iI(w̄i, w̄j)) ·

dāj
daj

∣∣∣∣+

∣∣∣∣(ā′iI(w̄i, w̄j)− ā′iI(w̄i, w̄
′
j)
)
· dāj

daj

∣∣∣∣
+

∣∣∣∣(ā′iI(w̄i, w̄
′
j)− ā′iI(w̄′i, w̄

′
j)
)
· dāj

daj

∣∣∣∣+

∣∣∣∣ā′iI(w̄′i, w̄
′
j) ·
(

dāj
daj
−

dā′j
daj

)∣∣∣∣
≤ |āj − ā′j |

‖w̄i‖‖w̄j‖
2d

· 4R+
∥∥w̄j − w̄′j∥∥dR2

2d
4R+ ‖w̄i − w̄′i‖

dR2

2d
4R+R

‖w̄i‖‖w̄j‖
2d

· |āj − âj |

≤ 5R3

2

(∣∣aj − a′j∣∣+
∥∥wj − w′j∥∥)+ 2R3‖w̄i − w̄′i‖,

and ∣∣∣∣a◦i I(w◦i , w̄j) ·
dāj
daj
− a◦i I(w◦i , w̄

′
j) ·

dā′j
daj

∣∣∣∣
≤
∣∣∣∣(a◦i I(w◦i , w̄j)− a◦i I(w◦i , w̄

′
j)
)
· dāj

daj

∣∣∣∣+

∣∣∣∣a◦i I(w◦i , w̄
′
j) ·
(

dāj
daj
−

dā′j
daj

)∣∣∣∣
≤ 1

2d

∥∥wj − w′j∥∥4R+

√
dR

2d
|āj − âj | ≤

2
√
dR

d

(∣∣aj − a′j∣∣+
∥∥wj − w′j∥∥),

where we use
∥∥w◦j∥∥ ≤ ‖W o‖ ≤ 1 for any j ∈ [m]. Then the triangle inequality gives the first

assertion. As for the second inequality, for every i ∈ [m], it holds that∥∥∥∥āiājJ(w̄i, w̄j)�
dw̄j
dwj

− ā′iā′jJ(w̄′i, w̄
′
j)�

dw̄′j
dwj

∥∥∥∥
≤
∥∥∥∥(āiājJ(w̄i, w̄j)− ā′iā′jJ(w̄i, w̄j)

)
� dw̄j

dwj

∥∥∥∥+

∥∥∥∥(ā′iā′jJ(w̄i, w̄j)− ā′iā′jJ(w̄i, w̄
′
j)
)
� dw̄j

dwj

∥∥∥∥
+

∥∥∥∥(ā′iā′jJ(w̄i, w̄
′
j)− ā′iā′jJ(w̄′i, w̄

′
j)
)
� dw̄j

dwj

∥∥∥∥+

∥∥∥∥ā′iā′jJ(w̄′i, w̄
′
j)�

(
dw̄j
dwj

−
dw̄′j
dwj

)∥∥∥∥
≤ R

∣∣aj − a′j∣∣√dR2d
· 4
√
dR+R|ai − a′i|

√
dR

2d
· 4
√
dR+R2

√
d

2d
·
∥∥wj − w′j∥∥ · 4√dR

+R2

√
d

2d
· ‖wi − w′i‖ · 4

√
dR+ 2R2

√
dR

2d
·
∥∥wj − w′j∥∥

≤ 2R3
(∣∣aj − a′j∣∣+

∥∥wj − w′j∥∥)+ 2R3(|ai − a′i|+ ‖wi − w′i‖).

and∥∥∥∥āia◦jJ(w̄i, w
◦
j )� dw̄j

dwj
− ā′ia◦jJ(w̄′i, w

◦
j )�

dw̄′j
dwj

∥∥∥∥
≤
∥∥∥∥(āia◦jJ(w̄i, w

◦
j )− ā′ia◦jJ(w̄i, w

◦
j )
)
� dw̄j

dwj

∥∥∥∥+

∥∥∥∥(ā′ia◦jJ(w̄i, w
◦
j )− ā′ia◦jJ(w̄′i, w

◦
j )
)
� dw̄j

dwj

∥∥∥∥
+

∥∥∥∥ā′ia◦jJ(w̄′i, w
◦
j )�

(
dw̄j
dwj

−
dw̄′j
dwj

)∥∥∥∥
≤ 1

2d

∣∣aj − a′j∣∣4R+R
1

2d
·
∥∥wj − w′j∥∥+

R

2d
·
∥∥wj − w′j∥∥ =

2R

d

(∣∣aj − a′j∣∣+
∥∥wj − w′j∥∥)

Again by using the triangle inequality, we obtain the conclusion.
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proof of Lemma C.5. By using Lemma E.5,∥∥∇L(θ)−∇L(θ ′)
∥∥

≤
m∑
j=1

(∣∣∇ajL(θ)−∇ajL(θ ′)
∣∣+
∥∥∇wjL(θ)−∇wjL(θ ′)

∥∥)
≤ m

[
5R3

2
+

2
√
dR

d
+ 2R3 +

2R

d
+

1

2
· 2R3 + 2R3

]
m∑
j=1

(∣∣aj − a′j∣∣+
∥∥wj − w′j∥∥)

≤ m

[
5R3

2
+

2
√
dR

d
+ 2R3 +

2R

d
+

1

2
· 2R3 + 2R3

]
√

2m
∥∥θ − θ ′∥∥ = L′

∥∥θ − θ ′∥∥
holds with L′ = O(m2R3). Combining this with the fact that the mapping θ 7→ λ‖θ‖2 is 2λ-smooth
and the triangle inequality, we obtain thatRλ(·) is L-smooth with L = O(m2R3 + λ), which gives
the conclusion.
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