Under review as a conference paper at ICLR 2026

PROGRA: PROGRESS-AWARE REINFORCEMENT LEAR-
NING FOR MULTI-TURN FUNCTION CALLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved impressive success in single-turn
function calling, yet real-world applications such as travel planning or multi-
stage data analysis typically unfold across multi-turn conversations. In these
settings, LLMs must not only issue accurate function calls at each step but also
maintain progress awareness, the ability to summarize past interactions and plan
future actions to ensure coherent, long-horizon task execution. Existing ap-
proaches, however, either reduce multi-turn training to isolated single-turn sam-
ples, which neglects task-level planning, or employ end-to-end reinforcement
learning (RL) that struggles with redundancy and lacks explicit integration of
progress awareness. To overcome these limitations, we introduce PROGRA, a
framework that explicitly incorporates progress awareness into LLM training for
multi-turn function calling. PROGRA combines (i) a Progress Awareness Gen-
eration (PAG) pipeline, which automatically constructs datasets coupling con-
versation summaries with future task planning, and (ii) a Progress Awareness-
Guided Reinforcement Learning (PAG-RL) algorithm, which integrates progress
awareness into RL training to reduce contextual redundancy and improve align-
ment between local actions and global task completion. Empirical results on
two public benchmarks demonstrate that PROGRA significantly outperforms ex-
isting methods, highlighting the effectiveness of progress awareness in enabling
robust and efficient multi-turn function calling. Our code is made available at
https://anonymous.4open.science/r/Progra_ICLR26-57F0.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable progress in tool use, where function calls
to external APIs extend their reasoning and execution capabilities (Feng et al.,|2025; |Acikgoz et al.,
2025} |[Liu et al.| [2024). Despite advances in enabling reliable function calling in single-turn conver-
sations, real-world scenarios rarely conform to isolated interactions (Alkhouli et al., 2025} |Lu et al.,
2025). Instead, applications such as travel planning or enterprise workflows require multi-turn con-
versations, where the outcome of each turn directly influences subsequent turns, shaping not only
the immediate response but also the entire conversation trajectory (Liu et al., 2025). This interdepen-
dence across turns places higher demands on LLMs: they must not only produce accurate responses
or function calls at the current step but also maintain a precise, holistic progress awareness for task
execution throughout the conversation (Sanders et al.,[2022; Yin et al.| [2025). Specifically, progress
awareness encompasses both an accurate summary of the current interaction history, helping reduce
redundancy in long contexts and assisting LLMs in decision-making, as well as planning for future
task execution, allowing them to address the given task systematically(Rastogi et al.,|2020). Limited
capacity for progress awareness will cause LLMs to struggle with effectively managing long-horizon
dependencies in conversations, leading to behaviours like repeatedly invoking functions or omitting
parameters, becoming a bottleneck restricting improvements in multi-turn function calling.

Despite the significant impact of progress awareness, it is still overlooked in existing work on en-
hancing multi-turn function calling. Existing approaches to enhancing multi-turn function calling
mainly rely on fine-tuning LLM with carefully curated dataset (Prabhakar et al.l |2025b; [Yin et al.,
2025)). In practice, these approaches often reconstruct multi-turn conversation datasets into samples
consisting solely of single-turn function calls, training the model to improve its single-turn accuracy.
This paradigm not only lacks the diversity and dynamism of real-world scenarios but also, by de-

https://anonymous.4open.science/r/Progra_ICLR26-57F0

Under review as a conference paper at ICLR 2026

Multi-Turn Conversation Single-Turn Limitation Progress Overlook

g% "L need t0 apply for a visa My name is John Smith." | Isolated Training Tunn Tumnst | Tumnei Problem at Al not exposed until .

[create_user_session(name="John Smith")] — Success @ -~ “Timeline ™~ a B

"Great! Session created. Please provide your usemame.” Turn n+i Y % -

¥

= I — Turn n+1

%] SuEL Table content Verification failed
Turn n User: adimin123 Name is duplicate

Correct format

,_‘ Need to re-enter

Delayed Feedback!

Time is the key dimension in conversation.

e 1

[save_travel_info(dest="France", duration="2w")] — @)
Saved"Perfect. Let me submit your complete application...”

. Duration: 2 weeks. Purpose:

Input LLM Output
Query+Histor
(ST ¥ ool List

'
'
'
'
'
'
1
'
'
[save_user_data(userame="admin123")] — Saved @ ' -
locally"Username saved. Now let's get your travel details..." s @5—
' r —> —> e
' &
'
'
'
'
'

Figure 1: Limitations of single-turn training reside in overlooking progress in conversations

grading multi-turn task execution to single-turn question-answer predictions, neglects the awareness
of the overall task progress during training (Sanders et al., 2022). Each single-turn sample com-
pletely excludes future conversations when training, preventing the effective training of the LLM’s
task planning capabilities. Moreover, a focus on single-turn accuracy leads the LLMs to overlook
historical information that may not be immediately relevant to the current turn but could be refer-
enced in future conversations, resulting in a bottleneck in training the model’s ability to summarize
history effectively.

Another direction is to leverage end-to-end reinforcement learning to optimize long-horizon returns
in multi-turn settings (Singh et al.l 2025} |Chen et al.| [2025bj [Zhang et al.||2025). Recent RL-based
approaches have improved the performance of function callings by modeling them as sequential
decision-making. However, the end-to-end RL paradigm remains inefficient: as conversations grow,
the input becomes increasingly redundant, exacerbating decision-making and optimization. More-
over, existing methods still lack explicit integration of progress awareness in training, preventing
them from effectively aligning local actions with global task completion (Wang et al., 2025a)).

To address the challenges of overlooking progress awareness in multi-turn conversations, we pro-
pose PROGRA, which explicitly incorporates progress awareness into model training to enhance its
multi-turn function calling capabilities. Specifically, PROGRA consists of a Progress Awareness
Generation pipeline (PAG) and a Progress Awareness Guided Reinforcement Learning training
approach (PAG-RL). PAG automatically constructs a high-quality dataset that combines conversa-
tion history summaries with future task planning through a synthetic pipeline, thereby strengthen-
ing the ability of LLMs to generate progress awareness. Subsequently, PAG-RL explicitly applies
the refined progress awareness to guide end-to-end reinforcement learning, reducing contextual re-
dundancy during training and providing more efficient guidance for decision-making in dynamic
real-world environments. Overall, our contributions focus on three key aspects:

1. Progress Awareness Training. To the best of our knowledge, PROGRA is the first work
that identifies, formulates, and explicitly incorporates enhanced task progress awareness
into the training of LLMs for multi-turn function calling.

2. Progress Awareness Generation Pipeline. We designed a novel progress awareness gen-
eration pipeline for automatically providing high-quality datasets to improve the capability
of LLMs in progress awareness.

3. Progress Awareness Guided RL. We designed a progress awareness guided reinforce-
ment learning algorithm, which enhances the model’s training performance by explicitly
incorporating progress awareness into end-to-end RL training, outperforming existing im-
provement strategies on two public benchmarks.

2 RELATED WORK

2.1 FuNcTION CALLING

Recent studies on the function-calling capabilities of large language models have increasingly tran-
sitioned from focusing on single-tfurn invocations (Liu et al., [2024) to exploring multi-turn sce-
narios (Chen et al., 2025a)). While ToolLLM (Qin et al.l 2023) constructs a large-scale dataset of
massive real-world APIs. APIGen-MT (Prabhakar et al., 2025a) further develops a two-phase agen-
tic pipeline that synthesizes verifiable multi-turn trajectories from blueprint tasks. These methods

Under review as a conference paper at ICLR 2026

address the data bottleneck for training, yet they remain essentially data-driven, lacking explicit
modeling of global task progress. Another direction of enhancing the function calling ability is at
prompt-engineering level, including reasoning—acting interleaving (Yao et al.l 2023b), structured
branching (Yao et al.| 2023a)), and self-reflection (Shinn et al. [2023) improve local robustness and
error correction. However, these approaches emphasize local reasoning persistence rather than an
explicit, evolving progress progress that connects intermediate calls with final task completion. In
contrast, PROGRA aligns function call accuracy with overall task execution by explicitly incorporat-
ing progress awareness into model training.

2.2 MULTI-TURN REINFORCEMENT LEARNING

With the rapid development of reinforcement learning, several works introduce RL for multi-turn
interaction. ARTIST (Singh et al.| 2025) integrates outcome-based RL with dynamic tool routing,
while RLFactory (Chai et al.| [2025) offers a modular post-training pipeline for multi-turn orches-
tration. More recently, turn-level credit assignment (Zeng et al., [2025) and conversation-level pref-
erence optimization (Shi et al.| [2024) explicitly frame multi-turn tool use as a sequential decision
process, addressing delayed reward signals. On the algorithmic side, Group Relative Policy Op-
timization (GRPO) (Shao et al., [2024a) eliminates the critic through within-group normalization,
enabling more stable and efficient updates. Many recent multi-turn RL studies have adopted GRPO
to stabilize training in sparse-reward regimes (Mroueh et al., 2025). Despite these advances, exist-
ing RL agents rarely maintain an explicit task progress awareness. Without such awareness, agents
often repeat calls, or omit critical steps in long-horizon workflows. Our approach differs by intro-
ducing progress aware guidance into the multi-turn RL, thereby reducing context redundancy and
aligning local action choices with global task execution.

3 METHODOLOGY

In this section, we will provide a detailed introduction to PROGRA, which consists of two phases. In
the first phase, PROGRA synthesizes a high-quality awareness dataset through a Progress Awareness
Generation pipeline, namely PAG, and warmming up the trainable model and preliminarily enhance
its progress awareness capabilities. The second phase applies a Progress Awareness Guided RL
algorithm,namely PAG-RL, using progress awareness during the rollout to guide decision-making
and improving the overall performance.

3.1 PROBLEM FORMULATION AND NOTATION

We cast multi-turn function calling as a Markov Decision Process (MDP):

M = (S,A,PE,T,’Y,pO,H),
where S is the space of conversation prefixes (states), .4 is the textual action space (function invo-
cations or user-facing messages), Pg is the transition kernel in environment F, r is the step reward,

v € (0, 1] is the discount factor, pg is the initial state distribution, and H is the horizon. A trainable
LLM 7y acts as the stochastic policy.

We index the conversation by turns ¢ € {1,..., K} (delimited by user queries ();) and intra-turn
steps j € {1,...,T;}. The state at (¢, j) is the entire dialogue prefix
C msgyyi—1 i
Sig = {(Qns {(Ake, Or0) } o1, AT b, U (Qi {(Aie, 05.0) 21, (1)

where A, ; € Ais either a structured function call with arguments or a terminal user-facing message
AT that ends turn 7. O; ; is the observation returned by E after applying action A; ;. In step j, the
policy will sample an action and receives feedbacks from the E':

Aij~mo(- | Sij), (Oig,rig) ~ Pe(-]Sij, Aij),
and the conversation appends (Am-, 0;, j) to form S; ;1. A trajectory T concatenates turns until
solving K user queries (or reach H steps incompletely):

K T
o msg K »
T ={(Qi {(Ai;,0i i)} 1L, AT))L, R(1) = ZZV“ D g, (2)

i=1 j=1
where t(3, j) is the global step index. The learning objective is to maximize E,,,[R(7)].

Under review as a conference paper at ICLR 2026

Multi-Turn _ Trajectory Segmentation _ _Awareness Generation _

:_ Conversation ! | x | | '; I_ Warm-Up “l
| | | Meta Info R | 3 | | |
| Qo |»| History |»I History) | I Phaset |
e . ! ey || oatset |
| o Future o - P2 | |
R i X = S Sl | g
! o — ! — Model-Aware Verification — ‘ — . Diversity-Preserving - | LLM !
| | Augmentation | |
;.Y | :

|

|

| =

| k\ _k\ Policy with
holistic progress

| glaé] gl] awareness

|

Figure 2: Overview of PAG. By summarizing history and planning future in Step 2, PAG generates
progress awareness for each conversation turn and constructs a high-quality awareness dataset.

|
|
|
s e |
= o
|

3.2 PHASE 1: PROGRESS AWARENESS GENERATION

Progress Awareness Generation (PAG) is designed to automatically synthesize a high-quality
progress awareness dataset and equip the policy before RL. It contains (i) trajectory segmentation,
(ii) awareness generation, (iii) model-aware verification, (iv) diversity-preserving augmentation, and
(v) model warm-up.

Trajectory Segmentation. Given a multi-turn dataset D containing trajectories formatted as in
Eq. (), we segment each trajectory 7 at each assistant response and only those where the assistant’s
response is a function call will be retained. Each segmentation becomes an instance:

7_/ — (l-nfometa7 Chis’ q, afc’ Cfut)’
where info™ contains tool descriptions/schema and the scenario description, c"/c™ are the con-
versation contexts before/after the current step, g is the current user query, and a® is the ground-truth
function call for this stepﬂ

Awareness Generation. Given these segmented instance, an off-the-shelf generator LL Mg, is
employed to generate a compact textual awareness document S® for each 7'

S® = LLMgen(7'; prompt),

where the prompt elicits three components: (i) a concise history summary capturing user intent,
function calling history, and important arguments; (ii) a short future plan, including anticipated
function sequence and decision points; (iii) minimal rationale that links history to plan. We denote
the raw corpus as D™V = {S*}.

Model-Aware Verification. Although LLM,, is typically a highly capable LLM, the quality of
the generated awareness still requires validation. At this stage, based on the principle that an ideal
progress awareness should contain the necessary information to reconstruct the answer, we in-
troduce a Model-Aware Verification operation. In this stage, a frozen copy of the target policy is
employed as LL M. It attempts to recover the function call solely from S in the absence of the
original conversation:

@' = LLMer(S®, info™"),

Subsequently, a normalized equivalence predicate Eq(-, -) checks schema-level equality (argument
order invariance, whitespace-insensitive strings, commutative sets/lists):

Eq(a", o) = I[schema_equal(a', a')],

only instances with Eq = 1 are retained, yielding D' = {S¢ € D™V | Eq(a', a) = 1}.

"Details of D construction are provided in the Appendix

Under review as a conference paper at ICLR 2026

Act.l Act.2 Act.3 Reward
Policy o——bo
Query Model Akl __ A _.

EAwar'eness: ! Function Call E
Te . =~~~ "ottt Group

Comp.
Trajectory- :

level Y | ! S eee —> -

Figure 3: Overview of PAG-RL. By incorporating progress awareness, the policy model generates
multi-step action trajectories in response to a query.

Diversity-Preserving Augmentation. To mitigate lexical overfitting and improve robustness, an
augmenter L LM, is applied to perform semantic-level transformations over each verified S with
a randomly sampled operation type € {paraphrase, schema-perturb, word-mask}:

S = LLM,ug(S%; type),

yielding D*¢ = {S5°}. Specifically, the instructions for each augmentation operation are as fol-
lows: (1) paraphrase: paraphrasing user intents to introduce lexical and syntactic variation; (2)
schema-perturb: modifying function names and parameter values within permissible ranges to sim-
ulate realistic perturbations; (3) word-mask:applying random masking to function-related word to
enhance robustness to incomplete or noisy inputs.

Consequently, a high-quality dataset containing strong progress awareness D¢ is obtained.

Model Warm-Up. To facilitate high-quality progress awareness generation during the next phase,
we employ the aforementioned D¢ for model warming up. In order to enhance the familiarity with
function call structure, a lightweight cold-start dataset D is additionally curated, extracted from
the original training set D and adhering well-formed function-call exemplars (no awareness text).
The final SFT dataset is given by Dt = Daue U D,

For awareness instances, the input is (info™", ", q) and the label is S, with the SFT loss as:

L(0) = — Z log me (S | info™", &, q) — Z log mg(a™® | info™", ¢ q).
(.’ga)e’Daug (-,af“)ED“

As a result of this stage, my is obtained with a learned ability to summarize history and outline a
plan for future, namely aforementioned progress awareness.

3.3 PHASE 2: PROGRESS AWARENESS-GUIDED RL

After strengthening the LLM’s progress awareness via the PAG stage, we introduce Progress Aware-
ness Guided RL (PAG-RL), which explicitly incorporates progress awareness into end-to-end rein-
forcement learning, with the goal of improving the model’s effectiveness in realistic scenarios. This
section will be organized with an awareness-guided rollout and a composite reward, and optimiza-
tion procedure.

3.3.1 AWARENESS-GUIDED ROLLOUT

Following the formulation in Sec. [3.1} the state .S; ; includes all prior interactions, including the
user query @;, the sequence of all past actions { A<}, and corresponding observations {O<;} in
rollout. At each intra-turn step (4, j), instead of conditioning on the entire raw prefix, 7y first emits
a compact progress awareness as:

St~ mor (- | info™*, Qi, {(A<j—1,0<j-1)}), 3)

Under review as a conference paper at ICLR 2026

Algorithm 1 Progress-Awareness-Guided RL (one training iteration)

Inputs: warmed-up policy 7y, env E, group size G
1: Initialize mg < 7o/

2: for e {1,...,L} do

3: Sample trajectory 7¢ with S¢; ~ (- | context), A; ; ~ (- | Sf';)

4: end for '

50 Ay w for=1,...,L > advantages
6: Update my via GRPO ObjeCthC with advantages {Ag} > progress-aware optimization

Conditioned on qu, 5> Tor then generates the action A; ;11 in a chain-of-thought (CoT) style:

. meta
Ai7j+1 ~ 71'9/(- | info™, Q;, ng), 4)
= <think> atlhzn_tl </think> <answer> agcj_H </answer>, 5)
where textual action A; ;; includes intermediate reasoning agh‘J"jfl and the function call af® Cip1- Af-

ter ai_’ ;1 executed in E, (O;j,7; ;) will be returned and the rollout proceeds. The rollout will
terminate either upon all queries completed or reaching the maximum number of interactions, ob-
taining a trajectory 7, after which the reward R(7) of the trajectory is computed as defined by the
corresponding Equ.

3.3.2 REWARD DESIGN

Each action in rollout will receive a composite reward including textual structural validity, function
schema correctness, task success, and execution efficiency, which can be formulated as:

7i,5 = Ot [[TEMPLATE(A; ;)] +Ctschema I[SCHEMA(A; ;)] +aacc]I[SUCCESS(S =S5 J+1)] —AI[A; ; # 0], 6)

fmt r-schema pacc rpen

with am, Qschema, Qace, A > 0. TEMPLATE enforces the output tags in Equ. [4f SCHEMA validates
function name, argument values and types; SUCCESS checks if overall task is completed. If the
executed function call satisfies the current user query and drives the environment into the correct
target internal state, a positive reward is granted as r*°. rP°" regulate the overall length of the rollout
trajectory, encouraging the policy to complete tasks efficiently during training.

3.3.3 OPTIMIZATION PROCEDURE

After obtaining multi-turn trajectories through rollout and computing the corresponding trajectory-
level rewards based on the composite reward function, the Group Relative Policy Optimization
(GRPO (Shao et al.||2024b))), a critic-free variant of PPO, is applied to optimize the policy.

Given a batch of L trajectories {7}, rolled out by 7o4, we compute the scalar return R(7,) and
normalize it within the batch:

AK:M7 pr =1 R(m), of = Z pr)’
0

OR

Following GRPO, the same normalized advantage Ay is evenly assigned to all tokens in 7, in an
concated textual action representation:

thmk

AC"" =<sum>S;;</sum><think>a;’ </thlnk><answer>a ;</answer>, @)

Let 7, be the t-th token and 7y < its prefix (which includes <sum> S¢, <think>, and
<answer> regions). The objective is

L [7¢l
Jarpo(0) = - lzmin<”(”’(“|”’<t)fi o clip[72,1~ 1+ |4) B KL || o]

Wold(Tz,(t) | TZ.,<t)
®)

where the optional KL term regularizes the policy towards the SFT reference gy to prevent reward
hacking; € and P are hyperparameters.

Under review as a conference paper at ICLR 2026

Table 1: Performance of PROGRA and other methods across different benchmarks and LLMs.
Within each group, the bolded values denote the best performance, while the underlined values
indicate the second-best performance. Overall denotes the average score across different categories.

BFCL 7-Bench
Overall Base Miss P Overall Airline Retail

Baseline Base Model 8.25 9.50 7.00 16.60 8.00 25.20
Prompting Reasoning 9.25 12.00 6.50 18.00 10.00 26.00
Qwen2.5-7B Training SFT 9.25 11.50 7.00 21.30 20.00 22.61
RL-based MT-GRPO 9.17 11.17 7.17 19.00 11.33 26.67
RL-based PROGRA 10.33 13.00 7.67 2391 20.00 27.83

Baseline =~ Base Model 60.50 66.50 54.50 2545 24.00 26.90
Prompting Reasoning 61.25 67.50 55.00 22.85 26.00 21.70
XxLAM-2-3B Training SFT 61.00 67.00 55.00 2330 24.00 22.61
RL-based MT-GRPO 60.83 66.67 55.00 2635 24.00 28.70
RL-based PROGRA 6142 67.67 5517 3152 30.00 33.04

Baseline ~ Base Model 69.25 7475 63.75 46.70 3520 58.20
Prompting Reasoning 67.67 72.83 61.83 50.10 42.00 58.20
XxLAM-2-8B Training SFT 69.50 75.00 64.00 46.57 34.00 59.13
RL-based MT-GRPO 6942 74.67 64.17 4952 3933 59.71
RL-based PROGRA 70.08 75.67 64.50 51.85 38.00 65.70

Model Category Method

4 EXPERIMENTS

4.1 RESEARCH QUESTIONS
To rigorously evaluate the effectiveness of PROGRA, we propose the following research questions:

RQ1: Does PROGRA consistently outperform alternative training strategies across diverse data-
sets and backbone LL.Ms?

RQ2: What is the relative contribution of each stage and component of PROGRA to the overall
performance gains (ablation study)?

RQ3: To what extent can models trained with progress-awareness data demonstrate enhanced
capability in progress-guided decision-making?

RQ4: How well does PROGRA perform in real multi-turn conversation scenarios (case study)?

4.2 EXPERIMENT SETUP

Benchmark & Evaluation. We evaluate the performance of PROGRA on two widely used
multi-turn function calling benchmarks: BFCL-V3 Multi-Turn (BFCL) (Patil et al., 2024) and 7-
Bench (Yao et al.| [2024). For BFCL, we adopt two subsets: Base and Miss Parameters (Miss. P),
which respectively provide a standard and an augmented evaluation setting. We follow the bench-
mark’s official metric, Executable Function Accuracy. For 7-Bench, we evaluate on the airline and
retail scenarios. GPT-4o0 is used as the user simulator. Each evaluation sample is tested across 3
trials and averaged results reported.

Backbone LLMs & Baseline. We adopt Qwen2.5-7B-Instruct (Team, 2024), xlam2-3B and
xlam2-8B (Prabhakar et al., |2025a) as backbone LLMs. These models span different sizes and
architectures while exhibiting strong performance in function calling. We compare PROGRA against
representative inference and training strategies designed to improve multi-turn function calling: (1)
Reasoning: Enhances function call accuracy by prompting the model to generate chain-of-thought
(CoT) reasoning. (2) SFT: Trains the model via supervised fine-tuning on multi-turn conversation
data. (3) MT-GRPO: Vanilla multi-turn GRPO algorithm, following the RAGEN (Wang et al.,
2025b) framework, which computes trajectory-level token advantages and applies the same reward
setting as PROGRA.

Under review as a conference paper at ICLR 2026

Table 2: Ablation study showing incremental improvements from each component. ‘A Avg.’” indi-
cates the improvement over the base model after averaging the overall. ‘w/o’ means excluding this
phase from training. ‘PAG+MT-GRPO’ indicates replacing PAG-RL with vanilla multi-turn GRPO.

Model Method BFCL 7-Bench A Avg,
Overall Base Miss P. Overall Airline Retail
Base Model 8.25 9.50 7.00 16.60 8.00 25.20 -
MT-GRPO 9.17 11.17 7.17 19.00 11.33 2667 13.3%
Qwen2.5-7B w/o PAG-RL 9.00 11.50 6.50 15.61 6.00 2522 -1.0%
’ w/o PAG 9.25 11.00 7.50 19.00 18.00 20.00 13.6%
PAG + MT-GRPO 9.00 10.75 7.25 20.48 14.00 2695 18.6%
PROGRA 10.33 13.00 7.67 2391 20.00 27.83 37.7%
Base Model 60.50 66.50 54.50 25.45 24.00 26.90 -
MT-GRPO 60.83 66.67 55.00 26.35 24.00 28.70 1.4%
LAM-2-3B w/o PAG-RL 60.50 66.50 54.50 25.91 24.00 27.83 0.5%
w/o PAG 61.00 66.83 55.17 26.04 26.00 26.09 1.3%
PAG + MT-GRPO 60.92 66.83 55.00 28.53 28.66 28.40 4.1%
PROGRA 6142 67.67 55.17 31.52 30.00 33.04 8.1%
Base Model 69.25 74.75 63.75 46.70 3520 58.20 -
MT-GRPO 69.42 74.67 64.17 49.52 3933 59.71 2.6 %
XLAM-2-8B w/o PAG-RL 67.33 73.00 61.67 50.70 44.00 57.39 1.8%
w/o PAG 69.00 7450 63.50 50.44 40.00 60.87 3.0%
PAG + MT-GRPO 67.50 73.00 62.00 46.84 3777 5590 -1.4%
PROGRA 70.08 75.67 64.50 51.85 38.00 65.70 5.1%

Training Details. Training data is constructed following benchmark-specific pipelines. For BFCL,
we generate 200 samples using the APIGEN-MT synthesis pipeline. Detailed implementation and
prompts are provided in Appendix For 7-Bench, we randomly sample 200 instances from the
publicly available APIGEN-MT-5K dataset (Prabhakar et al.| [2025c]).

For reinforcement learning, we implement PROGRA using RAGEN, a public framework for multi-
turn LLM agent training. Benchmark-provided finite-state machines serve as £ in Sec. GRPO
is adopted as the optimization method. We set the batch size to 8, GRPO group size to 8 and each
sample is allowed up to 10 actions. Additional training details are reported in Appendix [A.5]

4.3 EFFECTIVENESS OF PROGRA ACROSS DATASETS AND BACKBONE LLMSs (RQ1)

We evaluate PROGRA against existing training strategies on three backbone LLMs across two bench-
marks as Table[T} revealing the following key observations: 1) PROGRA consistently outperforms all
baselines (e.g., SFT, MT-GRPO) across benchmarks and LLMs. 2) On BFCL, PROGRA improves
performance by up to 25.21% on Qwen2.5-7B-Instruct; on 7-Bench, it achieves a 44.05% gain on
the same backbone. 3) On xXLAM-2 models, PROGRA yields further improvements, with gains of
23.85% on xLAM-2-3B and 11.02% on xLAM-2-8B on 7-Bench. Overall, these results demonstrate
that PROGRA consistently enhances performance across diverse datasets and model architectures,
underscoring its robustness and generalization capability in multi-turn function calling.

4.4 CONTRIBUTION OF INDIVIDUAL COMPONENTS (RQ2)

To examine the contribution of each stage and component of PROGRA, we conduct detailed ablation
studies on BFCL and 7-Bench with three backbone LLMs. The results are summarized in Table 2]

Overall Effectiveness. Across all models and benchmarks, complete PROGRA consistently out-
performs, highlighting the essential role of integrating progress-awareness training with RL.

Impact of Removing Components. Table 2]shows that excluding either PAG or PAG-RL consis-
tently lowers both BFCL and 7-Bench scores across model scales. The drop is more pronounced
when removing PAG-RL, underscoring that RL contributes the largest share of the improvement,
while PAG alone also provides steady gains. Replacing PAG-RL with vanilla multi-turn GRPO
yields only partial benefits, confirming the necessity of our tailored reinforcement stage.

Comparison with MT-GRPO. Using only PAG-RL does not surpass the performance of the
vanilla MT-GRPO. However, when comparing PAG + MT-GRPO against the full PROGRA, we ob-

Under review as a conference paper at ICLR 2026

serve that the progress awareness introduced by PAG substantially enhances the LLM’s capabilities.
Moreover, continuing with PAG-RL leads to even greater improvements. For example, on 7-Bench
with xLAM-2-8B, replacing PAG-RL with MT-GRPO results in a 10.69% performance drop.

4.5 CAPABILITY OF PROGRESS-AWARENESS GUIDANCE (RQ3)

To validate the impact on the improvement of .

.. . Performance Comparison on Tau-Bench val
progress awareness after each training phase in Qwen2.5-7B Model
PROGRA, we conducted experiments on the re- 20.55
served 7-Bench validation set using Qwen2.5-7B- o piondard Performance

. .) 20.05
Instruct after different phases. In this experiment, 20
Qwen2.5-7B-Instruct was tested in three forms: un-
trained, Phase-1 trained, and Phase-1+2 trained,
generating conversation awareness at each stage
(Base Aw., Phase-1 Aw., Phase-2 Aw.). Each variant
also served as a verifier to assess awareness quality.
”Aw.” refers to the awareness generator and ”Act.”
to the action verifier, while ”Base/Phase-1/Phase-2”
indicates the model’s training stage (untrained, post-
Phase-1, and post-Phase-2). The results show that,
with the same Base Act. model, progressive training 16 gase Aw+ Phase 1 Aw+ Phase 1 Aw-+ Phase 2 Aw+ Phase 2 Awt
Base Act. Base Act. Phase 1 Act. Base Act. Phase 2 Act.

improves progress awareness quality, highlighting Methods

how each stage in PROGRA enhances the model’s Figure 4: Awareness capability across phases
summarization and planning abilities.

18.56
18.32

18
17.57

Tau-Bench val Score

4.6 PRACTICAL CASE STUDY: MULTI-TURN CONVERSATION PERFORMANCE (RQ4)

To assess the practical effectiveness of PROGRA, we began with an airline booking scenario in -
Bench. User Request: “Hi! I'd like to make some changes to my upcoming trip from New York
to Chicago... I want to upgrade to economy class, add 3 checked bags, and change the passenger
name to myself, Omar Rossi.” Steps marked with PA are explicitly guided by progress awareness.

Direct Inference (Baseline) PROGRA (Ours)

Process: Process:

* Assumes details without verification 1. Protocoling: request user ID & reservation ID PA

 Skips user/booking checks 2. Factual retrieval:

* Pure direct reasoning get_user_details, get_reservation_details

3. Progress-aware reasoning (summary + plan) PA

~

. Early stop: inform no change needed PA

In this trajectory, the PROGRA-trained model proactively summarized the dialogue, capturing both
the user request and earlier context (e.g., flight numbers, passenger details) to support accurate
modifications. In contrast, the untrained model failed to summarize and relied only on the current
step’s flight number, leading to repetitive function calls.

Building on this case study, we further evaluate the two Table 3: Quantitative comparison.
methods on 50 7-Bench dialogues. As summarized in Ta-
ble [3] PROGRA consistently achieves higher accuracy with
fewer steps compared to Direct inference, confirming its ef- Direct 0.26 27.08 High
fectiveness in multi-turn conversation scenarios. PROGRA 0.40 23.30 Low

Method Acc. Avg. Steps Risk

5 CONCLUSION

In this paper, we propose PROGRA, a novel training framework that introduces task progress aware-
ness into the multi-turn function calling. We first identify the performance bottleneck of multi-turn
function calling as the LLM’s lack of overall task progress awareness. Based on this, we design
a two-phase training process. In Phase 1, an automated data synthesis process is used to enhance
the LLM’s task awareness. In Phase 2, progress awareness is integrated into end-to-end multi-turn
reinforcement learning, significantly improving the LLM’s performance in multi-turn function call-
ing. The performance improvements achieved exceed those of existing training strategies across two
public datasets and three backbone LLM:s.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have thoroughly assessed the potential societal and ethical implications of our work, including
the risk of misuse, unfair bias, and broader negative impacts. We affirm that this research adheres to
the ethical standards set forth by the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure transparency and reproducibility of our research, we provide all necessary details to en-
able independent replication of our results. We provide our core codes in an anonymized repos-
itory https://anonymous.4open.science/r/Progra_ICLR26-57F0. All hyperpa-
rameters, configurations, and training procedures are reported in the main text or in Appendix [A.5]

REFERENCES

Emre Can Acikgoz, Jeremiah Greer, Akul Datta, Ze Yang, William Zeng, Oussama Elachgar, Em-
manouil Koukoumidis, Dilek Hakkani-Tiir, and Gokhan Tur. Can a single model master both
multi-turn conversations and tool use? coalm: A unified conversational agentic language model,
2025. URL https://arxiv.org/abs/2502.08820.

Tamer Alkhouli, Katerina Margatina, James Gung, Raphael Shu, Claudia Zaghi, Monica Sunkara,
and Yi Zhang. Confetti: Conversational function-calling evaluation through turn-level interac-
tions, 2025. URL https://arxiv.org/abs/2506.01859.

Jiajun Chai, Guojun Yin, Zekun Xu, Chuhuai Yue, Yi Jia, Siyu Xia, Xiaohan Wang, Jiwen Jiang,
Xiaoguang Li, Chengqi Dong, Hang He, and Wei Lin. Rlfactory: A plug-and-play reinforcement
learning post-training framework for llm multi-turn tool-use, 2025. URL https://arxiv.
org/abs/2509.06980.

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang,
Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms via composi-
tional instruction tuning, 2025a. URL https://arxiv.org/abs/2410.12952,

Mingyang Chen, Linzhuang Sun, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen
Wang, Jeff Z. Pan, Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen.
Research: Learning to reason with search for llms via reinforcement learning, 2025b. URL
https://arxiv.org/abs/2503.19470.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in 1lms,
2025. URL https://arxiv.org/abs/2504.11536.

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context lan-
guage modeling. arXiv preprint arXiv:2503.17407, 2025.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang. Toolsandbox: A state-
ful, conversational, interactive evaluation benchmark for llm tool use capabilities, 2025. URL
https://arxiv.org/abs/2408.04682.

Youssef Mroueh, Nicolas Dupuis, Brian Belgodere, Apoorva Nitsure, Mattia Rigotti, Kristjan Gree-

newald, Jiri Navratil, Jerret Ross, and Jesus Rios. Revisiting group relative policy optimization:
Insights into on-policy and off-policy training. arXiv preprint arXiv:2505.22257, 2025.

10

https://anonymous.4open.science/r/Progra_ICLR26-57F0
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2506.01859
https://arxiv.org/abs/2509.06980
https://arxiv.org/abs/2509.06980
https://arxiv.org/abs/2410.12952
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2408.04682

Under review as a conference paper at ICLR 2026

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic

evaluation of large language models. In Advances in Neural Information Processing Systems,
2024.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan Wang,
Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data generation
via simulated agent-human interplay. CoRR, abs/2504.03601, April 2025a. URL https://
doi.org/10.48550/arXiv.2504.03601.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhi-
wei Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan
Wang, Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data
generation via simulated agent-human interplay, 2025b. URL https://arxiv.org/abs/
2504.03601L

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, et al. Apigen-mt: Agentic pipeline for multi-turn data generation
via simulated agent-human interplay. arXiv preprint arXiv:2504.03601, 2025c.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards
scalable multi-domain conversational agents: The schema-guided dialogue dataset, 2020. URL
https://arxiv.org/abs/1909.05855.

Abraham Sanders, Tomek Strzalkowski, Mei Si, Albert Chang, Deepanshu Dey, Jonas Braasch, and
Dakuo Wang. Towards a progression-aware autonomous dialogue agent, 2022. URL https:
//arxiv.orqg/abs/2205.03692.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct multi-turn preference
optimization for language agents. arXiv preprint arXiv:2406.14868, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 8634-8652. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1b44b878bb782e6954cd888628510e90-Paper—Conference.pdf.

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
integration for 1lms via reinforcement learning, 2025. URL https://arxiv.org/abs/
2505.01441.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gqwen2.5/.

Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, and Wenjie Li. Spa-rl: Reinforcing llm
agents via stepwise progress attribution. arXiv preprint arXiv:2505.20732, 2025a.

11

https://doi.org/10.48550/arXiv.2504.03601
https://doi.org/10.48550/arXiv.2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/1909.05855
https://arxiv.org/abs/2205.03692
https://arxiv.org/abs/2205.03692
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://arxiv.org/abs/2505.01441
https://arxiv.org/abs/2505.01441
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Under review as a conference paper at ICLR 2026

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Fan Yin, Zifeng Wang, I-Hung Hsu, Jun Yan, Ke Jiang, Yanfei Chen, Jindong Gu, Long T. Le,
Kai-Wei Chang, Chen-Yu Lee, Hamid Palangi, and Tomas Pfister. Magnet: Multi-turn tool-use
data synthesis and distillation via graph translation, 2025. URL https://arxiv.org/abs/
2503.07826.

Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong. Re-
inforcing multi-turn reasoning in llm agents via turn-level credit assignment. arXiv preprint
arXiv:2505.11821, 2025.

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
Zhiding Yu, and Guilin Liu. Nemotron-research-tool-nl: Exploring tool-using language models
with reinforced reasoning, 2025. URL https://arxiv.org/abs/2505.00024/

12

https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2503.07826
https://arxiv.org/abs/2503.07826
https://arxiv.org/abs/2505.00024

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LIMITATIONS AND FUTURE WORK

In this work, we propose PROGRA, a training paradigm that incorporates progress awareness into
enhancing multi-turn function calling capability of LLM, achieving superior performance over other
training strategies on two public benchmarks. Despite its promising results, the idea of PROGRA
has not yet been validated with other reinforcement learning algorithms, and during rollout training,
PROGRA incurs additional time costs by requiring one more inference per action compared to vanilla
multi-turn reinforcement learning. In future work, we plan to extend the application of PROGRA to
different reinforcement learning algorithms, and to address its extra computational overhead, we
will explore lightweight awareness generation modules to reduce the cost.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used an LLM exclusively for grammar, wording, and stylistic refinement of the manuscript. The
LLM did not generate scientific claims, perform analyses, design experiments, select or interpret
results, or introduce new references. Following any language suggestions, we conducted extensive
manual review and cross-checking to prevent hallucinations or factual inaccuracies. All substantive
content and conclusions are authored and verified by the authors; any remaining errors are our own.

A.3 DATA SYNTHESIS

We provides a detailed account of the data synthesis methodology employed in this study. The
process is adapted from the apigen-mt framework (Prabhakar et al., |2025b), which comprises a
two-phase approach: (1) task configuration and groundtruth generation, and (2) human-agent-
environment interaction trajectory collection. In the initial phase, an objective, its corresponding
function call, and the resulting output are generated for each data instance. This generation is guided
by provided APIs, a set of predefined rules, and a specified domain. Subsequently, each generated
instance undergoes a rigorous verification protocol that assesses its syntactic formatting and oper-
ational executability. A majority voting mechanism, arbitrated by an LLM, is then employed to
ascertain the correctness of the data. Should an instance fail these verification checks or the ma-
jority vote, the model will analyze the failure cases, formulate a corrective strategy, and reiterate
the generation-verification cycle until the data successfully meets all validation criteria. Following
successful validation in the first phase, the synthesized data is deployed into a simulated human-
agent-environment to produce an interaction trajectory via rollout. This resultant trajectory is then
compared against the groundtruth trajectory established in the initial phase. Only those instances
where the two trajectories exhibit exact correspondence are retained for the final synthetic dataset.

The data synthesis pipeline in this study is adapted from the apigen-mt framework, with significant
modifications to four core stages: initial configuration generation, query generation, action genera-
tion, and correctness verification. The following sections detail these customized processes.

Initial Config Generation: The process commences with the generation of an initial_config, which
serves as the foundational state for each dialogue trajectory. To ensure contextual relevance, this
stage is seeded with data from a predefined JSON dataset. Specifically, a subset of data entries is first
filtered based on a specified involved_class criterion. From this filtered subset, a random selection of
existing initial_config instances is sampled. These sampled configurations act as reference templates
or exemplars. A generative model then synthesizes a new, distinct initial_config that adheres to the
structural and schematic patterns of the references. This targeted sampling strategy ensures that
the generated initial states are not only well-formed but also thematically aligned with the desired
domain, thereby enhancing the relevance of the subsequent dialogue synthesis.

Query Generation: The dialogue synthesis process begins each interaction cycle with a query gen-
eration step. In this phase, the system leverages the complete preceding context—comprising the
initial_config and the historical dialogue trajectory—as input. Conditioned on this context, a large
language model (LLM) is invoked via a single API call to produce a new query. The design of this
step ensures that each generated query is a logical and progressive continuation of the interaction.
Queries are formulated to be explicit requests for environmental modification that depend on the out-

13

Under review as a conference paper at ICLR 2026

comes of prior turns, thus establishing a coherent and causally linked chain of reasoning throughout
the dialogue.

Action Generation: Following each query generation turn, the pipeline proceeds to synthesize a
corresponding action. In this phase, the query formulated in the immediately preceding turn is
supplied to an LLM prompted specifically for action synthesis. To mitigate generation errors and
enhance the reliability of the output, a distributed majority voting mechanism is employed. This
is implemented by triggering multiple, parallelized API calls to the LLM to produce a set of can-
didate actions. These candidates are then subjected to a consensus protocol, where votes for each
unique candidate are aggregated. The action that surpasses a predefined frequency threshold is se-
lected as the definitive result. A critical constraint is that all generated actions must conform to a
strict, machine-parsable format, such as a list of function calls (e.g., [func_namel(argl=valuel,...),
func_name?2(...)]). If no candidate action achieves the required consensus threshold, the generation
process for the current trajectory is aborted to prevent the inclusion of low-confidence or ambiguous
data.

Correctness Verification: The data verification process is a rigorous, automated pipeline designed
to ensure the functional and semantic correctness of multi-turn Al agent trajectories. For each tra-
jectory, a hermetic execution environment is instantiated from an initial configuration to guarantee
reproducible validation. The pipeline then employs a two-tiered verification protocol for each turn:
first, it deterministically checks if an agent’s action causes an observable state transition in the en-
vironment. If no change is detected (a common result for read-only operations), a secondary check
uses a majority-voting consensus from a Large Language Model (LLM) to adjudicate the action’s
semantic validity based on the user’s query. Crucially, the process adheres to a strict sequential pol-
icy, terminating immediately upon the first failed turn to ensure that only fully coherent and causally
valid interaction sequences are retained in the final dataset.

This data synthesis methodology offers several distinct advantages that collectively enhance the
quality, relevance, and reliability of the generated dataset. By seeding the process with domain-
specific exemplars, the pipeline ensures that all synthesized trajectories are thematically relevant
and contextually grounded from their inception. The iterative, context-aware generation of queries
and actions promotes the creation of coherent, multi-turn dialogues that exhibit logical and causal
consistency. Furthermore, the integration of a consensus-based validation mechanism for action
generation significantly improves the accuracy and reliability of the output by filtering out erroneous
or low-confidence predictions. Crucially, the final execution-based verification stage provides a
rigorous guarantee of functional fidelity, ensuring that every data point corresponds to a verifiable
and correct interaction within the target environment. This multi-layered approach to generation and
validation yields a high-quality dataset that is not only syntactically sound and semantically coherent
but also empirically validated for functional correctness.

A.4 PROMPTS

The prompts we use when synthesizing data include the prompt for the -Initial Config Genera-
tion(Fig. [3)), Task Generation(Fig.[6), Action Generation(Fig. 7).

Initial Config Generation Prompt

You are an environment generator. Your task is as follows: you will be provided with several
examples of environment initial configurations, along with some notes. Based on these,
generate **ONE** new environment initial configuration. The content is entirely up to you,
but the overall format should be inspired by the examples (not an exact copy). Your output
must be a valid, directly parseable JSON string. You **MUST NOT** include any extra
text, explanations, or JSON hints outside of the JSON itself. You only need to output ONE
new configuration.

Figure 5: Initial Config Generation Prompt.

14

Under review as a conference paper at ICLR 2026

Task Generation Prompt

You are a helpful assistant, which will generate a trajectory containing Queries and Actions.
You will be provided with a basic description of an existing scenario and an introduction to
the tools available in that scenario.

Your task is to output a reasonable and clear query based on the result of the previous mes-
sage. If the previous message represents an action or the initialization of a trajectory (no
previous message), you must output a Query that can be solved by calling the tools within
the environment. Your output query must involve a change to the environment state (e.g.,
adding or moving files, modifying content and so on).

There are some important notes you should follow.

1. The query should be progressive, where each query depends on the successful answer of
the previous one, forming a realistic problem-solving process.

2. The query should not be too complex, it is better to cost 2-4 function calls to complete the
query.

3. Please ensure that the Query you output is very clear and explicit, and that it allows only
one possible solution.

4. Your query should involve a change to the environment state, try not only to display
information.

Here is the initial config: {initial config}

Figure 6: Task Generation Prompt.

Action Generation Prompt

You are a helpful assistant, which will generate a trajectory containing Queries and Actions.
You will be provided with a basic description of an existing scenario and an introduction to
the tools available in that scenario.

Your task is to output a correct function call output based on the result of the previous mes-
sage and query. Your output should include some function calls that strictly follow the re-
quired format. The functions you call must come from the provided tool descriptions. The
function call should be the following format:
[func_namel(arg_namel=valuel,arg_name2=value2...),
func_name2(arg_namel=valuel,arg_name2=value2...)...]

Figure 7: Action Generation Prompt.

Here are the prompts we used in Progra for generating progress awareness in PAG (Fig. [8), and
Optimization in RAG-RL (Fig.[9)

Progress Awareness Generation Prompt

You are a help assistant responsible for summarizing important information based on the his-
tory of the conversation and providing a plan for invoking the correct function calls. Care-
fully analyze the current multi-turn conversation and generate a detailed summary (and help-
ful plan). **Do not directly output any function calls**, just output your summary in text
format.

In your summary, ensure the following points are clearly addressed:

1. **User’s Needs and Intent**: Please analyze the provided historical information and
accurately identify the user’s needs and goals. Summarize the content in a brief and clear
manner to ensure that any subsequent work can fully understand the user’s requirements and
objectives based on your summary.

2. **Extracted Parameters**: Please list all relevant parameters mentioned or clarified in
the conversation, ensuring complete understanding. Only include parameters that have been
explicitly confirmed, and avoid making assumptions or guessing values for information that
has not been clearly stated. If the historical information provided lacks any parameters nec-
essary to meet the user’s needs, confirm and point them out.

Under review as a conference paper at ICLR 2026

3. **Function Call History**: Carefully review previous function calls made, including
whether they were successful or failed, and identify any potential issues. Ensure you clearly
summarize the results of previous function calls without making assumptions about the con-
text or next steps.

4. **Environment State Awareness**: Review and summarize the entire conversation so
far, paying special attention to previous function calls and their results. In each turn of his-
tory, the environment sequentially executes the functions output in last turns. If a function
fails, the subsequent ones won’t be executed, but the successful ones will affect the environ-
ment state. In the current turn, you must reason the current environment state based on the
executed functions and their results in last turns. You need to fully understand the current
environmental state in order to make the correct choices. If you cannot understand it, you
cannot make unreasonable assumptions about the state.

5. **Future Planning**: Based on the current and prior conversation, propose a clear action
plan. Avoid speculation; instead, provide a plan that logically follows from the facts at hand.
Do not directly output any function calls; instead output your plan in text format.

6. **Relevant Important Context**: Include any other context from the conversation that
could aid in ensuring the next function call is accurate and appropriate. This can include non-
explicit user preferences, hints from previous statements, or details that, while not directly
related to the goal, may still influence the next action.

Ensure that your summary is detailed and comprehensive, clarifying any ambiguities and
accurately reflecting the history of the conversation to allow the next response or action to be
as accurate and informed as possible.

Here is the history of prior conversations and current user query.

**History of Conversation®*

{current_history_str}

Current User Query

{query}
Please make a summary based on the above conversation and system prompt.

Figure 8: Progress Awareness Generation Prompt.

Optimization Prompt

You are an expert in invoking functions. You will be given a summary of a dialogue between
a user and an Al assistant, as well as a set of available functions. Based on the summary and
the questions posed by the user, you must select and call functions to achieve the user’s goal.
You must return the response in the following format:

(summary)

Summarise the dialogue so far for subsequent reasoning

(/summary)

(think)

Express your thought process. In this section, you should carefully consider the question’s
intent, your reasoning for selecting the appropriate function to call, and how you plan to fill
in the function’s parameters and arguments. Reflect on the user’s needs to ensure the correct
choice is made.

(/think)

(answer)

Output function call in the following format:
[func_namel(arg_namel=valuel,arg_name2=value2...),
func_name2(arg_namel=valuel,arg_name2=value2...)...]

(/answer)

- You MUST NOT include any text other than the (summary), (think) and (answer) sec-
tions. Follow the provided format strictly. - **You MUST call only the functions pro-
vided in the document**. The function names and parameters *func_namel’, *func_name?2’
and ’params_namel’ shown in the (answer)(/answer) section are placeholders used only to
demonstrate the required output format. They are not actual function names to be called.
Please select and use only from the real functions provided as possible. - When filling in the

16

Under review as a conference paper at ICLR 2026

parameters in the function call, replace params_valuel and params_value2 with the correct
values as per the document. Ensure the parameters are properly named and formatted. - If
additional parameters are needed to call the function correctly, output ”’I need more informa-
tion.” in the (answer)(/answer) section with a text format rather than a list-style answer. -
Please strictly adhere to the list of functions provided to complete the task. These functionns
may be similar to common commands you are familiar with (such as cd, touch, etc.), but you
are strictly prohibited from using any functions that are not on the provided list to complete
the task. - If you find that none of the functions in the provided list can directly accomplish
the task, you must not attempt to use other available functions in a roundabout way to force
the completion of the task. In that case, simply output the following in the (answer)(/answer)
tags: there are no appropriate functions. - In each round, the environment sequentially exe-
cutes the functions output by you in last turns. If a function fails, the subsequent ones won’t
be executed, but the successful ones will affect the environment state. In the next round, you
must infer the current environment state based on the executed functions and their results in
last turns, ensuring that failed calls are not executed again.

Figure 9: Optimization Prompt in PAG-RL

A.5 TRAINING DETAILS

During the PAG data synthesis phase, we use GPT-40 as both LLMgc,, and LLM,,, . For each
data entry, we allow a maximum of 4 iterations, and employ 5 reviewers in APIGen-MT (Prabhakar
et al.,[2025a)) to assess the executability and correctness of the generated data.

During the warm-up stage in PAG, we employed supervised fine-tuning (SFT) using the LoRA
(Low-Rank Adaptation) approach. We conducted hyperparameter searches over the following
ranges: the LoRA rank was varied from 8 to 16; the learning rate ranged from le-7 to le-6; the
batch size was set between 8 and 16; and the LoRA « (alpha) parameter was searched within the
range of 8 to 64. A held-out validation set was used to evaluate whether the large language model
(LLM) had been successfully trained during this warm-up phase.

In the reinforcement learning stage, we adopted the GRPO algorithm to optimize the policy. A KL-
divergence penalty with a coefficient of 5 = 0.001 was used. The training was performed with a
batch size of 8 and 8 rollout trajectories per batch. The maximum sequence length was limited to
16,384 tokens, and the temperature for the rollout generation was set to 1. Each training experiment
was limited at 200 iterations, with a maximum of 10 actions per rollout. We continued to use the
LoRA-based training strategy during this phase. Hyperparameter tuning was conducted over the
following ranges: LoRA rank between 8 and 16, LoORA « between 32 and 64, and learning rate from
le-9 to le-5.

17

	Introduction
	Related Work
	Function Calling
	Multi-Turn Reinforcement Learning

	Methodology
	Problem Formulation and Notation
	Phase 1: Progress Awareness Generation
	Phase 2: Progress Awareness-Guided RL
	Awareness-Guided Rollout
	Reward Design
	Optimization Procedure

	Experiments
	Research Questions
	Experiment Setup
	Effectiveness of Progra across Datasets and Backbone LLMs (RQ1)
	Contribution of Individual Components (RQ2)
	Capability of Progress-Awareness Guidance (RQ3)
	Practical Case Study: Multi-Turn Conversation Performance (RQ4)

	Conclusion
	Appendix
	Limitations and Future Work
	The Use of Large Language Models (LLMs)
	Data synthesis
	Prompts
	Training Details

