
Proceedings of the International Conference on Statistics: Theory and Applications (ICSTA’24)
Barcelona, Spain – August 19 - 21, 2024
Paper No. XXX (The number assigned by the OpenConf System)
DOI: TBA

Physics-informed deep learning based on the finite difference method for
efficient and accurate numerical solution of partial differential equations

Jiaming Zhang1, David Dalton1, Hao Gao1, Dirk Husmeier 1
1School of Mathematics and Statistics, University of Glasgow

Glasgow G12 8SQ, UK
Emails: Jiaming.Zhang@glasgow.ac.uk; David.Dalton@glasgow.ac.uk

Hao.Gao@glasgow.ac.uk ;Dirk.Husmeier@glasgow.ac.uk

Abstract - In this paper, we present important advancements in the application of Physics-Informed Neural Networks (PINNs) for
solving complex partial differential equations (PDEs), which are pivotal in modelling phenomena across various scientific and engineering
disciplines. Our approach integrates fourth-order Runge-Kutta (RK4) methods into the loss functions of PINNs, to improve solution
accuracy in various benchmark problems such as the 1-D Korteweg–de Vries, 2-D Burgers’ and the Navier-Stokes equations. Furthermore,
we combine a modified Multi-layer Perceptron (MLP) architecture that noticeably improves the predictive accuracy of PINNs over automatic
differentiation (AD) based methods while incurring only a minimal increase in computational costs. Through numerical experiments,
our findings demonstrate that the proposed RK4-based loss function and modified MLP architecture offer substantial improvements over
AD-based methods, particularly in scenarios characterised by nonlinear and high-dimensional PDEs. This study not only bridges the
gap between conventional numerical simulations and deep learning approaches for solving PDEs but also opens new avenues for future
research in computational physics and engineering. Our contributions promise to enhance the robustness, efficiency, and applicability
of PINNs in tackling a broader range of complex physical problems, marking a significant step forward in the intersection of physical
sciences, machine learning and statistics.

Keywords: Physics-informed deep learning, Automatic differentiation, Finite difference method, Navier-Stokes equation

1. Introduction
Partial Differential Equations (PDEs) are foundational to mathematical modelling in many fields, including physics,

biology, economics and finance. These equations articulate the dynamics of systems across space and time, capturing
phenomena such as heat conduction, fluid motion, and material deformation, which are critical to numerous scientific and
engineering applications. For complex scenarios, PDEs tend to be analytically intractable, necessitating numerical solutions.
Over recent decades, a variety of numerical strategies have been developed and refined for solving PDEs, including the
finite difference (FDM), finite element, finite volume (FVM), and spectral element methods[1], each underpinned by robust
theoretical foundations – comprising error estimators and assurances of convergence and stability – and resulting in discretised
problems that are amenable to numerical solutions through either sparse linear systems or Newton’s method with reliable
convergence properties.

On the other hand, recent studies have explored the capacity of deep neural networks (DNNs) to solve PDEs[2]. DNNs are
able to fit high dimensional data to overcome the curse of dimensionality and fit data from functional spaces with constrained
regularity, such as shock and discontinues [3, 4]. Physics-Informed Neural Networks (PINNs) [5] extend the capabilities
of conventional DNNs by integrating underlying physical laws into the training process, thereby enabling the modelling of
systems with limited data. By harnessing physics-constrained loss functions, PINNs offer a novel and efficient approach to
tackling the computational challenges associated with PDEs, thus bridging the gap between traditional mathematical modelling
and contemporary computational methodologies. PINNs usually resolve PDEs by incorporating physics constraints directly
into the training loss function through Automatic Differentiation (AD) [5].

Previous work in this area has focused on using first-order global truncation error methods [6] by combining both AD
and FDM in the loss function, such as CAN-PINN [7] and finite volume PINN [8]. Recently, Revanth et al. [9] proposed a
sequential method to train the PINN to reduce further the memory needed in the experiment and Wang et al.[10] proposed a
modified multi-layer perception (mMLP) architecture that can increase the accuracy of the PINN with only minor increase in
the computational cost.

In the present study, we will evaluate the loss function of the PINN by approximating temporal and spatial derivatives

XXX-1

with FDM instead of AD. In particular, the fourth-order Runge-Kutta (RK4) method is used in temporal discretisation. We
will demonstrate that this RK4-based PINN can predict more accurate results than conventional AD methods over a range of
classical PDEs, including 1-D Korteweg–de Vries, 2-D Burger, and the Navier-Stokes equations.

2. Methodology
2.1. Physics-informed neural networks

Consider a system of PDEs that models a physical system in an open, bounded and connected domain Ω ⊂ R𝑛 for a time
interval [0, 𝑇]:

N𝑡 [u(x, 𝑡)] + N𝑥 [u(x, 𝑡)] = 0, x ∈ Ω, 𝑡 ∈ [0, 𝑇], (1)
u(x, 0) = u0(x), x ∈ Ω, (2)
B[u(x, 𝑡)] = 𝑔(𝒙, 𝑡), x ∈ 𝜕Ω, , 𝑡 ∈ [0, 𝑇], (3)

where we have denoted this 𝑛−dimensional PDE system by the temporal derivative N𝑡 [·] and the general nonlinear differential
operator N𝑥 [·] that can encompass a wide range of nonlinear spatial derivative terms. The primary unknown u(x, 𝑡) is the
solution of the PDE system. The initial state of the system at time 𝑡 = 0 is defined by u0(x), and B[·] is a boundary operator
that enforces the desired boundary condition 𝑔(x, 𝑡) at the domain boundary 𝜕Ω, i.e. Dirichlet, Neumann, Robin, or periodic
boundary conditions. The operator B[·] can take the form of either an identity operator or a differential operator.

The idea of the physics-informed neural network (PINN)[5] is approximating u(x, 𝑡) with a multi-layer perceptron (MLP)
û𝜽 (x, 𝑡), where 𝜽 denotes the network parameters (i.e. weights and biases). Then the PINN can be trained by minimising the
following loss function:

L(𝜽) = Lres + Lbc + Lic, (4)

where

Lres =
1

𝑁res

𝑁res∑︁
𝑖=1

��N𝑡 [û𝜽 (x
𝑖
res, 𝑡

𝑖
res)] + N𝑥 [û𝜽 (x

𝑖
res, 𝑡

𝑖
res)]

��2 (5)

Lbc =
1
𝑁𝑏

𝑁bc∑︁
𝑖=1

��û𝜽 (x𝑖bc, 𝑡
𝑖
bc) − 𝑔(x𝑖bc, 𝑡

𝑖
bc))

��2 , (6)

Lic =
1
𝑁0

𝑁ic∑︁
𝑖=1

��û𝜽 (x𝑖ic, 0) − u0(x𝑖ic))
��2 , (7)

where {x𝑖ic}
𝑁ic
𝑖=1 denotes the initial condition data, {(x𝑖

𝑏
, 𝑡𝑖

𝑏
)}𝑁bc

𝑖=1 denotes the boundary condition data, and {(x𝑖res, 𝑡
𝑖
res)}

𝑁res
𝑖=1 are

a set of collocation points in a given mesh inside the domain Ω to minimise the PDE residual. The term Lres imposes
penalties when the differential equation is not fulfilled at the collocation points. Furthermore, Lbc and Lic respectively
ensure compliance with boundary conditions and initial conditions, thereby maintaining the physical integrity of the solution
across the domain. The minimisation of L(𝜽) typically leverages stochastic gradient descent, allowing for the sampling of
an extensive number of training points. The positions of {x𝑖ic}

𝑁ic
𝑖=1, {(x𝑖

𝑏
, 𝑡𝑖

𝑏
)}𝑁bc

𝑖=1 , and {(x𝑖res, 𝑡
𝑖
res)}

𝑁res
𝑖=1 are randomised in each

iteration of the gradient descent, enhancing the robustness of the learning process. Thus the loss function L(𝜽) is minimised as
much as possible, ideally approaching zero. This strategy ensures that the neural network accurately represents the underlying
physical phenomena by satisfying the differential equations and adhering to the specified initial and boundary conditions.

Traditionally, we can compute the partial derivatives of the predicted solution û𝜽 (x, 𝑡) in (5) by using neural network’s
automatic differentiation (AD) feature - grad function that takes a function and returns a new function which computes the
gradient of the original function, such as JAX [11], which is further equipped with an XLA feature that can increase the
computation speed for linear algebra. However, the AD-based PINN, named AD-PINN here, does not preserve the structure
of the PDEs, which may affect accuracy and lead to unnecessarily high computational cost [7]. Even more, [12] showed

XXX-2

that AD-PINN’s convergent rate is slow compared to numerical methods. An alternative approach is to embed numerical
differential operators, i.e. finite difference, in PINN to evaluate the partial derivatives in (5) instead of AD [13, 7]. In this
study, we will compare the performance of PINNs using AD and numerical differential operators.

To use the finite difference method (FDM) to approximate PDEs in PINNs when computing the residual loss Lres(𝜽), we
will need to discretise 𝑢 in space and in time. Specifically, we use the forward finite difference to discretise first-order spatial
derivatives and the central finite difference method for other higher-order spatial derivatives. For temporal derivatives, we
use the Euler and the forth-order Runge–Kutta (RK) methods to discretise them. Both Euler and RK methods are numerical
integration methods used to approximate the next iteration of the solution in a PDE system.

The numerical schemes for those derivative terms in the PDE loss Lres(𝜽) for a scalar-based PDE system in one dimension
are listed below.

• Euler method: 𝑢(𝑥, 𝑡 + Δ𝑡) = 𝑢(𝑥, 𝑡) − Δ𝑡N𝑥 [𝑢(𝑥, 𝑡)]

• RK4 method: 𝑢(𝑥, 𝑡+Δ𝑡) = 𝑢(𝑥, 𝑡)+Δ𝑡
6 (𝑘1+2𝑘2+2𝑘3+𝑘4), where 𝑘1 = −N𝑥 [𝑢(𝑥, 𝑡)], 𝑘2 = −N𝑥

[
𝑢

(
𝑥, 𝑡 + Δ𝑡

2

)
+ Δ𝑡 𝑘1

2

]
, 𝑘3 =

−N𝑥

[
𝑢

(
𝑥, 𝑡 + Δ𝑡

2

)
+ Δ𝑡 𝑘2

2

]
, 𝑘4 = −N𝑥 [𝑢(𝑥, 𝑡 + Δ𝑡) + Δ𝑡𝑘3]

• 1𝑟𝑑 order forward finite difference: 𝑢𝑥 =
𝑢(𝑥+Δ𝑥,𝑡)−𝑢(𝑥,𝑡)

Δ𝑥

• 2𝑟𝑑 order central finite difference: 𝑢𝑥𝑥 =
𝑢(𝑥−Δ𝑥,𝑡)−2𝑢(𝑥,𝑡)+𝑢(𝑥+Δ𝑥,𝑡)

Δ𝑥2

• 3𝑟𝑑 order central finite difference: 𝑢𝑥𝑥𝑥 =
𝑢(𝑥+2Δ𝑥,𝑡)−2𝑢(𝑥+Δ𝑥,𝑡)+2𝑢(𝑥−Δ𝑥,𝑡)−𝑢(𝑥−2Δ𝑥,𝑡)

2Δ𝑥3

2.2. Multi-layer perceptron
Wang et all. [10, 14] have proposed a novel architecture, referred to as modified MLP (mMLP), which was found to

outperform conventional MLPs in various PINN benchmark studies by a factor of 50-100x in the predictive accuracy, subject
to only a slight increase in the computational cost and memory requirements. In mMLP, the inputs X are embedded into a
high-dimensional feature space via two encoders U and V, then a point-wise multiplication operation is used to update hidden
layers. The architecture of mMLP can be described as following,

U = 𝜎(XW1 + b1), V = 𝜎(XW2 + b2) (8)

H(1) = 𝜎(XW𝑧,1 + b𝑧,1) (9)

Z(𝑘) = 𝜎(H(𝑘)W𝑧,𝑘 + b𝑧,𝑘), 𝑘 = 1, . . . , 𝐿 (10)

H(𝑘+1) = (1 − Z(𝑘)) ⊙ U + Z(𝑘) ⊙ V, 𝑘 = 1, . . . , 𝐿 (11)

û𝜽 (𝑥) = H(𝐿+1)W + b (12)

where W and b denote the weights and biases, respectively, ⊙ denotes point-wise multiplication, 𝜎 : R𝑀 → R𝑀 denotes a
nonlinear activation function, and 𝐿 is the number of hidden layers. All the parameters of mMLP can be denoted as

𝜽 = {W1, b1,W2, b2, (W𝑧,𝑙 , b𝑧,𝑙)𝐿𝑙=1,W, b}. (13)

3. Results
In this section, we will demonstrate the predictive accuracy of the proposed RK4-based derivative approximation (RK4-

PINN) when evaluating the PDE loss function in PINNs against the Euler method (Euler-PINN) and the AD method (AD-
PINN). Our evaluation includes rigorous numerical tests on solving quintessential equations like the 1-D Korteweg–De Vries
(KdV), 2-D Burgers, and 2-D incompressible Navier-Stokes. Notably, while these benchmark problems are readily addressable
using classical numerical methods, they have posed significant challenges to PINNs since their resurgence in the work of
Raissi et al [5]. Our discussion will highlight the improvements and advancements made possible by integrating RK4 into the
loss function of PINNs, underscoring its potential to overcome previously observed limitations.

XXX-3

In all the experiments, we will utilise the mMLP architecture outlined in Section 2.2, employing a hyperbolic tangent
activation function. Moreover, all the networks are initialised with the Glorot normal scheme [15] and trained with the
Adam optimiser [16], a stochastic gradient descent method. We set the learning rate 0.001 with an exponential decay with a
decay rate of 0.9 every 5000 training iterations, and no additional regularisation techniques are employed. Following [17, 9],
we further incorporate time-marching techniques to alleviate optimisation challenges. Specifically, the temporal domain of
interest, [0, 𝑇], will be divided into successive sub-domains such as [0,Δ𝑡], [Δ𝑡, 2Δ𝑡], ..., [𝑇 − Δ𝑡, 𝑇]. We then sequentially
train neural networks to approximate the solution within each sub-domain, using the predictions from the previously trained
network as the initial conditions for the subsequent sub-domain. This methodology allows the resulting PINNs to generate
accurate predictions for any given query point across the temporal domain. All hyper-parameter settings and computational
costs are list in Table 1, and the 𝐿2 norm errors from trained PINNs are summarised in Table 2. All experiments were run on
the same machines that are equipped with one Intel(R) Xeon(R) Gold 6238R CPU and 2 NVIDIA RTX A6000 graphics cards.

Table 1: Network architectures and computational cost reported timings for each benchmark employed in this work.

Case Methods # Time windows # Hidden layers # Neurons 𝑁𝑡 𝑁𝑥 # Iterations Training rate (iter/sec)

KdV
RK4 5 5 32 201 512 5 × 105 102.58
Euler 5 5 32 201 512 5 × 105 105.46
AD 5 5 32 201 512 5 × 105 99.26

2-D Burgers
RK4 10 6 32 32 101 5 × 105 10.13
Euler 10 6 32 32 101 5 × 105 11.06
AD 10 6 32 32 101 5 × 105 9.64

Navier-Stoke
RK4 10 6 64 32 256 5 × 105 9.32
Euler 10 6 64 32 256 5 × 105 9.98
AD 10 6 64 32 256 5 × 105 8.95

Table 2: 𝐿2 error for each benchmark employed in this work. The two right-most columns show the percentage improvement
of RK4-PINN over each of the other two methods, respectively.

AD-PINN Euler-PINN RK4 -PINN RK4-PINN vs AD-PINN RK4-PINN vs Euler-PINN
KdV 𝑢 91.7e-04 33.2e-04 6.47e-04 92.9% 80.5%

2-D Burgers
𝑢 9.62e-02 7.39e-02 4.03e-02 58.1% 45.5%
𝑣 10.2e-02 6.39e-02 3.57e-02 65% 44.1%

Navier-Stoke
𝑢 9.77e-02 6.73e-02 3.90e-02 60.1% 42.1%
𝑣 9.31e-02 6.39e-02 3.61e-02 61.2% 43.5%
𝑤 10.3-02 9.41e-02 6.12e-02 40.6% 35%

3.1. Korteweg–de Vries equation
We use Korteweg–de Vries (KdV) equation as our first example. This is designed to showcase the adeptness of our

proposed methodology in managing partial differential equations that entail higher-order derivatives. The KdV equation
describes the evolution of long one-dimensional waves in many physical settings. It characterises the propagation of long,
unidirectional waves in various contexts, notable among which are shallow-water waves under the influence of gentle nonlinear
restoring forces, the propagation of long internal waves in an ocean with stratified density, ion-acoustic waves within a plasma,

XXX-4

Fig. 1: 1-D KdV equation: Left: Comparison of the predicted and reference solutions corresponding to the three temporal
snapshots at 𝑡 = 0, 0.5, 1.0. Right: Predicted velocity versus the corresponding reference solution at 𝑡 = 1

and acoustic waves propagating through a crystal lattice [5]. The KdV equation with periodic boundary conditions is given by

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 0.0025

𝜕3𝑢

𝜕𝑥3 = 0, 𝑡 ∈ [0, 1], 𝑥 ∈ [−1, 1] (14)

and the initial condition is 𝑢(𝑥, 0) = cos(𝜋𝑥).
Our objective is to learn the corresponding solution up to a time 𝑡 = 1. A comprehensive visual evaluation of the predicted

solution is detailed in Figure 1. Specifically, we offer a side-by-side comparison of the reference obtained from [5] and the
predicted solutions at 𝑡 = 0, 0.5, 1.0. The comparison reveals that the predictions from AD-PINN and RK4-PINN methods
are in good agreement with the reference solutions. However, we obverse that in the left panel of Figure 1 at 𝑡 = 1, the solution
from AD-PINN deviates from the reference solution near the turning points, but not in RK4-PINN. RK4-PINN achieves the
least 𝐿2 error of 6.47e-4 compared to AD-PINN and Euler-PINN, which are 9.17e-3 and 3.32e-3, respectively.

3.2. 2-D Burgers’ equation
To further study RK4 method, we now use the 2-D Burgers’ equation as the second example due to its widespread

application in various branches of applied mathematics, including but not limited to fluid mechanics, nonlinear acoustics, gas
dynamics, and traffic flow [18]. Burgers’ equation can be deduced from Navier-Stokes equations by eliminating the pressure
gradient component. When dealing with minimal viscosity parameters, Burgers’ equation may result in the development of
shocks, which poses significant challenges for resolution through conventional numerical techniques. The Burgers’ equation
with two spatial dimensions is given by

𝜕u
𝜕𝑡

+ u · ∇u = 𝜈Δu, 𝑡 ∈ [0, 1], 𝑥 ∈ [0, 1], 𝑦 ∈ [0, 1], (15)

where u = (𝑢, 𝑣) is the flow velocity field, 𝜈 = 0.01/𝜋, ∇ := (𝜕
𝜕𝑥
, 𝜕
𝜕𝑦
) is the gradient operator, and Δ := (𝜕2

𝜕𝑥2 ,
𝜕2

𝜕𝑦2) is the
Laplace operator. The initial condition is 𝑢(𝑥, 𝑦, 0) = sin(2𝜋𝑥) sin(2𝜋𝑦), 𝑣(𝑥, 𝑦, 0) = sin(𝜋𝑥) sin(𝜋𝑦) with Dirichlet boundary
condition that 𝑢 and 𝑣 on the boundaries are equal to 0.

To obtain the reference solution of the 2-D Burgers’ equation, we have employed numerical techniques for differentiation
and integration to approximate the solution of the 2-D Burgers’ equation. Specifically, we laid out a grid consisting of 101
uniformly spaced nodes in each spatial direction, both 𝑥 and 𝑦. To estimate the spatial derivatives required by the governing
equations, we utilised a sixth-order compact finite difference scheme, known for its high accuracy in capturing spatial

XXX-5

variations. For temporal integration, we implemented a fourth-order Runge-Kutta scheme, acknowledged for its stability and
precision. The integration process was carried out with a finely selected time step of 10−5, ensuring the detailed resolution of
the solution’s evolution over time.

Fig. 2: 2-D Burgers’ equation: Predicted velocity versus the corresponding reference solution at 𝑡 = 1

Figure 2 presents the velocity field at 𝑡 = 1 for both RK4 and AD methods. We can see that all latent variables of interest
are in good agreement with their corresponding reference solutions for the RK4 method, yielding an error of 4.03e-02 and
3.57e-02 for 𝑢 and 𝑣 respectively. For the Euler and AD method, the results are displayed in Table 2. We can see that the RK4
method has increased computational speed by 5% over the AD method, and improved accuracy in terms of the 𝐿2 error by
63%.

3.3. Navier–Stokes equation
To underscore the capability of our proposed method in addressing chaotic dynamical systems, we turn our attention to

a classical two-dimensional decaying turbulence example in a square domain with periodic boundary conditions, which is

XXX-6

modelled by the incompressible Navier-Stokes equations using the velocity-vorticity formulation [19], that is

𝜕𝑤

𝜕𝑡
+ u · ∇𝑤 =

1
Re

Δ𝑤, 𝑡 ∈ [0, 1], 𝑥 ∈ [0, 2𝜋], 𝑦 ∈ [0, 2𝜋], (16)

∇ · u = 0, (17)
𝑤(0, 𝑥, 𝑦) = 𝑤0(𝑥, 𝑦), (18)

where u = (𝑢, 𝑣) is the flow velocity field, 𝑤 = ∇ × u is the vorticity and Re is the Reynolds number with Re = 100.
Figure 3 presents the predicted vorticity field at 𝑡 = 1 using RK4-PINN and AD-PINN, along with the reference solution

obtained from [19]. We can see that all latent variables of interest are in good agreement with the reference solution, yielding
an error of 6.12e-2 for RK4-PINN and 10.3e-2 for AD-PINN. A 41% error reduction is achieved in RK4-PINN compared
to AD-PINN. Similar results can be found for 𝑢 and 𝑣, not shown due to the page limit. Errors in predicted 𝑢, 𝑣 and 𝑤

using AD-PINN, Euler-PINN and RK4-PINN are summarised in Table 2. These results highlight the effectiveness of the
proposed RK4 method, successfully enabling the PINNs model to accurately capture such complicated turbulent flow without
any training data.

Fig. 3: Navier-Stokes equation: Predicted vorticity versus the corresponding reference solution at 𝑡 = 1.

4. Conclusion
This paper has explored the forefront of enhancing PINNs through the integration of fourth-order RK4 methods into

their loss functions using a modified Multi-layer Perceptron architecture proposed by Wang et al.[10]. We have demonstrated
improved accuracy and computational efficiency of this new PINN approach across a series of benchmark partial differential
equations, such as the Korteweg–de Vries, 2-D Burgers’ equations and the Navier-Stokes equation. This study underscores
the viability of PINNs by combining numerically approximated derivatives in capturing the nuances of physical phenomena,
making strides toward a future where machine learning and computational science are seamlessly integrated. Through rigorous
testing, we have validated the utility of our proposed methodologies and laid a foundation for their application to an even
broader array of complex problems in the future.

Our future work will focus on the estimation of the PDE parameters and their posterior uncertainty quantification from
limited observed data. Repeated adaption of PDE parameters as part of an iterative optimisation or sampling routine would
be computationally onerous when performed with established numerical techniques like finite element methods, and we will
quantify by how much that can be improved with the novel physics-informed machine learning methods presented in the
present work.

XXX-7

Acknowledgements
This work has been supported by China Scholarship Council (CSC) and a fee waiver from the University of Glasgow, by the

Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, grant reference number EP/T017899/1,
and by the British Heart Foundation ((PG/22/10930).

References
[1] K. W. Morton and D. F. Mayers, Numerical solution of partial differential equations: an introduction. Cambridge

university press, 2005.
[2] W. E and B. Yu, “The deep ritz method: A deep learning-based numerical algorithm for solving variational problems,”

2017.
[3] F. Bach, “Breaking the curse of dimensionality with convex neural networks,” Journal of Machine Learning Research,

vol. 18, no. 19, pp. 1–53, 2017.
[4] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial differential equations using deep learning,” Proceedings

of the National Academy of Sciences, vol. 115, no. 34, pp. 8505–8510, 2018.
[5] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics,
vol. 378, pp. 686–707, 2019.

[6] Z. Xiang, W. Peng, W. Zhou, and W. Yao, “Hybrid finite difference with the physics-informed neural network for solving
pde in complex geometries,” arXiv preprint arXiv:2202.07926, 2022.

[7] P.-H. Chiu, J. C. Wong, C. Ooi, M. H. Dao, and Y.-S. Ong, “Can-pinn: A fast physics-informed neural network based
on coupled-automatic–numerical differentiation method,” Computer Methods in Applied Mechanics and Engineering,
vol. 395, p. 114909, May 2022.

[8] T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. V. Butz, and W. Nowak, “Finite volume neural network: Modeling
subsurface contaminant transport,” 2021.

[9] R. Mattey and S. Ghosh, “A novel sequential method to train physics informed neural networks for allen cahn and cahn
hilliard equations,” Computer Methods in Applied Mechanics and Engineering, vol. 390, p. 114474, 2022.

[10] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient pathologies in physics-informed neural
networks,” 2020.

[11] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018.

[12] Z. Fang, “A high-efficient hybrid physics-informed neural networks based on convolutional neural network,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5514–5526, 2022.

[13] K. L. Lim, R. Dutta, and M. Rotaru, “Physics informed neural network using finite difference method,” in 2022 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pp. 1828–1833, IEEE, 2022.

[14] S. Wang, H. Wang, and P. Perdikaris, “On the eigenvector bias of fourier feature networks: From regression to solving
multi-scale pdes with physics-informed neural networks,” Computer Methods in Applied Mechanics and Engineering,
vol. 384, p. 113938, 2021.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256, JMLR Workshop and
Conference Proceedings, 2010.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[17] C. L. Wight and J. Zhao, “Solving allen-cahn and cahn-hilliard equations using the adaptive physics informed neural

networks,” arXiv preprint arXiv:2007.04542, 2020.
[18] C. Basdevant, M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani, R. Peyret, P. Orlandi, and A. Patera, “Spectral and

finite difference solutions of the burgers equation,” Computers Fluids, vol. 14, no. 1, pp. 23–41, 1986.
[19] S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality is all you need for training physics-informed neural

networks,” arXiv preprint arXiv:2203.07404, 2022.

XXX-8

	Introduction
	Methodology
	Physics-informed neural networks
	Multi-layer perceptron

	Results
	Korteweg–de Vries equation
	2-D Burgers' equation
	Navier–Stokes equation

	Conclusion

