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Abstract

Phased releases are a common strategy in the technology industry for gradually
releasing new products or updates through a sequence of A/B tests in which the
number of treated units gradually grows until full deployment or deprecation.
Performing phased releases in a principled way requires selecting the proportion
of units assigned to the new release in a way that balances the risk of an adverse
effect with the need to iterate and learn from the experiment rapidly. In this paper,
we formalize this problem and propose an algorithm that automatically determines
the release percentage at each stage in the schedule, balancing the need to control
risk while maximizing ramp-up speed. Our framework models the challenge as a
constrained batched bandit problem that ensures that our pre-specified experimental
budget is not depleted with high probability. Our proposed algorithm leverages an
adaptive Bayesian approach in which the maximal number of units assigned to the
treatment is determined by the posterior distribution, ensuring that the probability
of depleting the remaining budget is low. Notably, our approach analytically solves
the ramp sizes by inverting probability bounds, eliminating the need for challenging
rare-event Monte Carlo simulation. It only requires computing means and variances
of outcome subsets, making it highly efficient and parallelizable.

1 Introduction

Phased release, also known as staged rollout, is a widely used strategy in the technology industry
that involves gradually releasing a new product or update to larger audiences over time [17, 30]. For
example, Apple’s App Store offers a phased release option where application updates are released
over a 7-day period on a fixed schedule [1]. Google Play Console provides a similar feature with more
flexibility in the release schedule [16]. Typically, the audiences are randomly selected at each stage
from the set of all customers, and so phased releases can be thought of as a sequence of A/B tests (or
randomized experiments) in which the proportion of units assigned to the treatment group changes
until either the product or update is fully launched or deprecated [26, 18, 3, 33, 6]. The process of
combining phased releases with A/B tests is often called controlled rollout or iterative experiments
and provides companies with an important mechanism to gather feedback on early product versions
[30, 20, 5].

The key advantage of phased release is its ability to mitigate risks associated with launching a new
product or update directly to all users. The potential impact of faulty features is limited by releasing
the update first to a small percentage of the users (i.e., the treatment group). However, this risk-averse
approach introduces an opportunity cost for slowly launching beneficial features, which quickly adds
up for companies that release thousands of features yearly [34]. Therefore, when designing a phased
release schedule, it is important to determine the release percentage (known as ramp schedule) at
each stage that balances the need to control risk while maximizing the speed of ramp-up. ‘ This
paper proposes an algorithm to address this challenge by automatically determining the release
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percentage for the next phase based on observations from previous stages. Specifically, we frame
the challenge as a budget-constrained batched bandit problem. For each batch, we aim to determine
the assignment probabilities of newly arrived users while keeping the probability of depleting a
pre-specified experimental budget, where the experiment’s cost is the cumulative treatment effect
that are not directly observed. Formally, we derive recursive relations that decompose the risk of
ruin (depleting the budget) of a phased release to the individual stages in the sense that the risk
of ruin of the entire experiment is controlled if stage-wise ruin probabilities are controlled. Our
algorithm is Bayesian in the sense that it learns from past observations by computing the posteriors
of a conjugate Gaussian model and uses these parameters to infer the remaining budget and other
cost-related quantities. However, the algorithm is robust to misspecifications and works well even
when underlying outcomes are far from Gaussian by law of large number and central limit theorem;
nevertheless, in Appendix E, we provide an extension to non-Gaussian outcomes. Finally, the next
stage’s assignment probabilities are derived from the posterior distribution and the stage-wise risk
tolerances. Notably, our approach solves ramp sizes analytically from inverting the ruin probability
upper bounds, avoiding challenging rare-event Monte-Carlo simulation for budget depletion events
and data imputation procedures for unobserved counterfactual outcomes.

1.1 Literature review

While many firms have guidelines on how to conduct a phased release process, these guidelines
are often ad-hoc and qualitative, making it difficult to create executable ramp schedules. The SQR
framework in [34] is the first attempt to address this problem by providing quantitative guidance. Our
work differs significantly from SQR. Our algorithm adopts a fully Bayesian approach, enabling us to
incorporate prior information on the risk of a feature in a probabilistic manner when initiating a ramp.
Additionally, unlike SQR, our approach introduces a “shared budget” over the entire phased release,
allowing the budget to be sequentially adjusted based on the observations from prior iterations.
Finally, our algorithm is robust to modifications made to the treatment during experiments and
different outcome models.

Our work is notably distinct from the risk-averse multiarmed bandit approaches considered in previous
research [19, 14, 35, 28, 23, 10, 8]. In these approaches, the agent considers the expected variability
in expected rewards to identify and avoid less predictable (and therefore risky) actions, without
considering a budget constraint. A related literature focuses on batched and Bayesian variants of these
methods in multi-stage clinical trials [4, 27, 21, 24, 2]. While this literature also aims to determine
treatment assignment for each stage of the experiment, it differs from our setting in two key aspects:
(i) the objective is to maximize treatment effect while balancing exploration of treatment arms, rather
than rapidly ramping up experiments, and (ii) to the best of our knowledge, no clinical trials paper has
addressed the imposition of a budget for potential adverse treatment effects. Hence, bandit approaches
developed for clinical trials cannot be directly applied to our setting. To illustrate the difference,
we present a numerical simulation of a Thompson sampling-based Bayesian bandit from [27] and
highlight that budget spent and the aggressiveness of the ramp-up schedule depends on model tuning
in a very unpredictable way, making the ramp-up schedule far from ideal. Another related literature
is budgeted multiarmed bandits [32, 31, 9, 29, 12]. However, most budgeted bandit algorithms are
developed for settings very different from ours and do not consider risk-of-ruin control or handle
unobserved costs. Therefore, these algorithms cannot be directly applied to our specific scenario.

Notation. Let N be the set of non-negative integers and N+ := N \ {0}. Let R,R+ denote the set
of real numbers and positive real numbers respectively. [N ] := 1, . . . ,N for N ∈ N+. σ(·) is the
generated σ-algebra. X ∈ F if random variable X is measurable to F . [X | F ] denotes a random
variable with distribution P(X ∈ · | F) for a random variable X and σ-algebra F .

2 Risk-of-ruin-constrained experiment and strategy overview

2.1 Risk-of-ruin-constrained experiment

Consider a scenario in which a single feature is released to a sequence of subpopulationsNt consisting
of Nt units at stages t = 1, ...,T , where T is not necessarily fixed. At each stage, we randomly assign
treatment to a group of units denoting the indexing set Tt, while the control group with indexing

2



set Ct. The size of the treatment group at stage t is |Tt| = mt and the size of the control group is
|Ct| = NT −mt.

Our paper adopts the Neyman-Rubin framework for causal inference [22, 25, 7], where the potential
outcome of each unit i ∈ Nt during experiment stage t under control and treatment are denoted
by Yi,t(0) ∈ R and Yi,t(1) ∈ R, respectively1. Appendix E provides the extension to multivariate
outcomes. The treatment assignment of unit i ∈ Nt at stage t is denoted by Wi,t. Since each unit
only receives a single treatment at each stage, we only observe Yi,t(Wi,t) during the experiment, not
the counterfactual Yi,t(1−Wi,t) (we are explicitly assuming that there is full compliance).

Let Ft = σ
(

(YTk,k(1))k∈[t], (YCk,k(0))k∈[t], (Wi,k)i∈N ,k∈[t]

)
be the σ-algebra generated by the

treatment assignment and the observed experiment outcome in the first t stages, with F0 representing
the trivial σ-algebra. In our setting, the experimenter aims to ramp up the experiment to the "max-
power stage" (50% of the population placed in treatment) as quickly as possible while avoiding
the risk of a large negative business impact (or cost). We define the cost of the experiment as the
treatment effect on the treated. See generalized cost in Appendix E.

Definition 2.1 (Experiment cost). The cost of the experiment from stage t ∈ [T ] is rt :=∑
i∈Tt Yi,t(1)− Yi,t(0), where rt = 0 if Tt = ∅. The cumulative cost is Rt :=

∑
k∈[t] rk.

Throughout, rt < 0 corresponds to a negative business impact; our goal is to control the experiment
cost by setting a budget B < 0 and imposing the cost constraint RT > B. Since the outcomes are
stochastic, we require this cost constraint to be satisfied with probability at least 1 − δ for some
δ ∈ [0, 1) set before the experiment. Our goal is then to adaptively determine the size of the treatment
group based on the observed data while satisfying our risk constraint. We refer to such an experiment
as a risk-of-ruin-constrained (RRC) experiment.

Definition 2.2 (RRC experiment). Fix any B < 0, δ ∈ [0, 1). A (δ,B)-RRC experiment running for
T stages selects the size of Tt before t-th stage of the experiment such that P(RT > B) ≥ 1− δ.

2.2 Strategy overview

Our goal is to determine the number of users to assign to the treatment mt ∈ [0,Nt/2], such that∑T
i=1mt is maximized while ensuring that the experiment is (B, δ)-RRC.

Our strategy is to decompose the overall constraint (i.e., that the experiment is (B, δ)-RRC) into
a sequence of stage-wise adaptive constraints using Theorem 3.1, below. We then sequentially
maximize mt under the stage-wise constraint for the t-th stage. Under the Gaussian model, the
stage-wise constraints can be directly solved using a simple quadratic equation to obtain the maximum
mt.

Although our algorithm solves a relaxed version of the original optimization problem, our solution has
crucial practical implications. Theorem 3.1 decomposes the (B, δ)-RRC constraints in an adaptive
fashion, i.e., if the feature turns out to be safe, the stage-wise constraints will relax in response, and
the experiment will ramp up quickly.

3 Model and the algorithm

3.1 Decompose the risk of ruin

Our experimental design is based on the following theorem, which identifies a sequence of sufficient
conditions for a sequential experiment to be (δ,B)-RRC. We defer its proof to Appendix A.

Theorem 3.1. Fix B < 0 and δ ∈ [0, 1). For any stopping time T ≥ 1, let (bt)t∈[T ] be a budget

sequence, such that bt
(i)

≥ B,∀t ∈ [T ], and (∆t)t∈[T ] be a risk tolerance sequence, such that

1We are implicitly assuming that there is no interference between experimental units, that is, each unit’s
outcomes do not depend on any other unit’s assignments [11].
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∆t ∈ [0, 1),∀t ∈ [T ] and 1−
∏T
t=1 (1−∆t)

(ii)

≤ δ. Then, if (Tt)t∈[T ] is chosen such that for t = 1,

P
(
r1 ≤ b1

)
(iii)

≤ ∆1 (1)

and for any t = 2, ...,T , almost surely,{
Tt = ∅, if P (Rt−1 > B | Ft−1) = 0

P (Rt ≤ bt | Rt−1 > B,Ft−1)
(iv)

≤ ∆t, otherwise
(2)

then P (RT > B) ≥ 1− δ. This inequality is tight when (i)–(iv) are all equalities and rt ≤ 0,∀t ∈
[T ] almost surely. Furthermore, if we set Tt ← ∅, (1), (2) always hold.

Recall, B < 0 denotes the budget and δ ∈ [0, 1) is our risk tolerance that controls the risk of ruin
(i.e., the probability of exceeding the budget); both need to be fixed a priori. In general, smaller δ
leads to more conservative experimentation and slower releases. The sequence (bt)t≥1 “rations” the
budget: setting bt < B at stage t reserves B − bt budget for later stages, which may be beneficial
when the released feature is expected to undergo modifications during the experiment [20]. To
quickly scale the experiment, we can set bt = B,∀t. The sequence (∆t)t≥1 distributes the overall
tolerance δ to individual stages by δ = 1−

∏T
i−t (1−∆t) allowing us to customize the tolerance

for individual stages. If T is fixed a priori, we can uniformly distribute the tolerance by setting
∆t = 1− (1− δ)1/T ,∀t ∈ [T ].

Theorem 3.1 breaks the risk constraint P (RT ≤ B) ≤ δ into stage-wise constraints in the form of
(1),(2). The idea is to control current-stage cumulative experiment cost Rt given past observations
Ft and determine the treatment assignment based on posterior inference of the remaining budget. In
our setting, the goal is to maximize mt = |Tt| subject to (1),(2). Note that the first line in (2) stops
the experiment when the model estimates that the budget is exhausted, while the second line sets the
stage cost rt below the remaining budget bt −Rt−1 with high probability. We require assumptions
on the data-generating model to derive an explicit algorithm, which we present in the next sections.

Generally, the total number of stages T , stage-wise budget and tolerance (bt)t≥1, (∆t)t≥1 can be
determined dynamically during the process. That is, we can define ∆t and bt just before stage t as
long as

∏t
r=1 (1−∆t) ≤ 1− δ and bt ≥ B. If we plan to terminate the experiment after stage t, we

can define ∆t such that
∏t
r=1 (1−∆r) = 1− δ and bt ≥ B is attained in which case T = t. If is

also possible to have T = +∞ and
∏∞
t=1 (1−∆t) = 1− δ. For example, choosing ∆t = (γ?/t)

2

where γ? is the unique solution of sinc(γ?) = 1− δ on [0, 1] (cf. [13, Eq. (1)]) satisfy our condition.

Note that the decomposition scheme in Theorem 3.1 is formulated such that P (RT ≤ B) ≤ δ is
tight if inequalities (i)—(iv) are tight. Practically, this means that the ramp-up schedules obtained
through this approach are typically not overly conservative, unlike approaches that leverage a union-
bound for risk decomposition. Finally, Theorem 3.1 holds for a general definition of the cost
rt := rt

(
(Yi,t)i∈Nt

, Tt
)

such that rt = 0 if Tt = ∅, making it useful in other budgeted online
problems beyond our setting.

3.2 Gaussian outcome model

For this subsection, make the following model assumptions on the outcomes distribution; appendix E
provides the extension to general outcome models.
Definition 3.1 (Conjugate Gaussian outcomes). Let the unknown model parameters
µtrue (0),µtrue (1) ∈ R satisfy the prior µtrue (w) ∼ N

(
µ0(w),σ0(w)

2
)

for w = 0, 1 independently,

where µ0(0),µ0(1) ∈ R,σ0(0)
2
,σ0(1)

2 ∈ R+ are hyperparameters. The experiment outcome of
unit i at stage t are distributed independently and identically as(

Yi,t(0)
Yi,t(1)

)
iid∼ N

((
µtrue (0)
µtrue (1)

)
,

(
σ(0)

2
0

0 σ(1)
2

))
(3)

where σ(0)
2
,σ(1)

2 ∈ R+ are hyperparameters.
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The unknown parameters µtrue(0) and µtrue(1) represent the intrinsic quality of the feature before and
after the update, as measured by a specific metric. If µtrue(1) − µtrue(0) < 0, the feature update is
likely to have a negative business impact, i.e., Yi,t(1)− Yi,t(0) < 0.

To derive the posterior distribution we need the following statistics. For t = 1,w = 0, 1

SC0 (w) = sC0 (w) = ST0 (w) = sT0 (w) = M0(w) = 0

µp,t=1(w) = µ0(w), σp,t=1(w)2 = σ0(w)
2
.

(4)

and for t ≥ 2,w = 0, 1

sTt (w) :=
∑
i∈Tt

Yi,t(w), STt (w) :=
∑
r∈[t]

sTr (w), sCt (w) :=
∑
i∈Ct

Yi,t(w), SCt (w) :=
∑
r∈[t]

sCr (w)

(5a)

µp,t(w) :=
1

1
σ0(w)2

+ Mt−1(w)

σ(w)2

(
µ0(w)

σ0(w)
2 +

I(w = 0)SCt−1(w) + I(w = 1)STt−1(w)

σ(w)
2

)
(5b)

σp,t(w)2 =
(
σ0(w)

−2
+M

(w)
t−1σ(w)

−2
)−1

, (5c)

where M (1)
t :=

∑
r∈[t]mr and M (0)

t :=
∑
r∈[t]Nr −mr are the cumulative number of users in the

treatment and control groups up to stage t, respectively. In (5a), STt (w) and SCt (w) represent the
cumulative sum of outcomes for w = 0, 1 in the treatment and control groups up to stage t, while
sTt (w) and sCt (w) represent the sum of outcomes at stage t. In equation (5b), µp,t(w) represents
the posterior mean of µtrue (w), while in equation (5c), σp,t(w)2 represents the posterior variance of
µtrue (w), for w = 0, 1. When lacking prior information, we suggest using a non-informative priors
by setting µ0(0) = µ0(1) = 0 and σ0(0)

2
,σ0(1)

2 sufficiently large.

The model parameters σ(0)
2 and σ(1)

2 at stage t ≥ 2 can be estimated using unbiased and consistent
estimators. For w = 0, 1 let

σ(w)
2 ←

∑
r∈[t−1]

∑
i∈Cr

(
Yi,r(w)− 1

Mt−1(w)

(
I(w = 0)SCt−1(w) + I(w = 1)STt−1(w)

))2

Mt−1(w)− 1
.

(6)

For t = 1, some prior estimate can be used, either from a similar experiment or from a small-scale
pretrial run.

3.3 An algorithm for the sample size in an RRC experiment

We now derive an explicit algorithm from Theorem 3.1 that to outputs (mt)t≥1, the treatment group
size at stage t, such that, the experiment is (δ,B)-RRC. Recall that for an experiment to be (δ,B)-
RRC, it suffices that (1), (2) holds for each t ≥ 1. Under Definition 3.1, we have that (i) (Yi,t)i,t
are exchangeable random variables (ii) for any t ≥ 2, P(STt−1(0) < STt−1(1)−B|Ft−1) > 0 almost
surely for any choice of m[t−1]. Combining these observations, we get that (1), (2) hold if for each
t ≥ 1,

P
(
sTt (1)− STt (0) ≤ bt − STt−1(1)

∣∣∣∣STt−1(0) < STt−1(1)−B,Ft−1

)
≤ ∆t. (7)

Lemma 3.2 provides an upper bound of the left hand size of (7); the proof is in Appendix B.

Lemma 3.2 (Stochastic domination). Assume the outcomes (Yi,t(0),Yi,t(1))i,t are generated as in
Definition 3.1. For any ≥ 1, almost surely,

P
(
sTt (1)− STt (0) ≤ bt − STt−1(1)

∣∣∣∣STt−1(0) < STt−1(1)−B,Ft−1

)
≤ P

(
sTt (1)− STt (0) ≤ bt − STt−1(1)

∣∣∣∣Ft−1

)
.

(8)
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Using Lemma 3.2, for (1) and (2) to hold, it suffices to choose any mt ∈ N such that

P
(
sTt (1)− STt (0) ≤ bt − STt−1(1)

∣∣∣∣Ft−1

)
≤ ∆t (9)

and set mt = 0 if such mt does not exist. From posterior-predictive formulas for the conjugate Gaus-

sian model in Definition 3.1 (see (15e), (15f) in Appendix C), we have
[
sTt (1)− STt (0)

∣∣∣∣Ft−1

]
∼

N(µ̃t(mt), σ̃
2
t (mt)), where

µ̃t (m) := µp,t(1) ·m− µp,t(0) ·
(
m+M

(1)
t−1

)
(10a)

σ̃2
t (m) := m2 · σp,t(1)2 +m · σ(1)

2
+
(
m+M

(1)
t−1

)2

· σp,t(0)2 +
(
m+M

(1)
t−1

)
· σ(0)

2
. (10b)

Combining the above with (9) yields the following Lemma.
Lemma 3.3. Assume the outcomes (Yi,t(0),Yi,t(1))i,t are generated as in Definition 3.1. For each
t ≥ 1, the inequality (9) holds if and only if

bt − STt−1(1)− µ̃t (mt)

σ̃t (mt)
≤ qt := Φ−1(∆t) (11)

where Φ−1 denotes inverse CDF of the standard normal distribution.

Replace the inequality in (11) with equality and square both sides gives us the quadratic equation
At ·m2

t +Bt ·mt + Ct = 0 where

At := q2
t

(
σp,t(1)2 + σp,t(0)2

)
− (µp,t(1)− µp,t(0))

2

Bt := q2
t

(
σ(1)

2
+ σ(0)

2
+ 2σp,t(0)2M

(1)
t−1

)
+ 2

(
bt − STt−1(1) + µp,t(0)M

(1)
t−1

)
(µp,t(1)− µp,t(0))

Ct := q2
t σp,t(0)2

(
M

(1)
t−1

)2

+ q2
t σ(0)

2
M

(1)
t−1 −

(
bt − STt−1(1) + µp,t(0)M

(1)
t−1

)2

.

(12)

Algorithm 1 finds the floor transform of the solutions of this equation and chooses mt as the largest,
positive integer that satisfies (11). If such a solution cannot be found, then either we do not have
enough budget or the cost of the experiment is negligible (this accrues when µtrue(1)−µtrue(0)� 0),
and the inequality in (11) will be strict for any choice of mt. In the former case, Algorithm 1 sets
mt = 0; in the latter case, it sets mt = bNt/2c. Therefore, by construction, the sequence (mt)t≥1

output by Algorithm 1 guarantees that (1) and (2) hold, thereby defining a (δ,B)-RRC experiment.
Note that this approach directly solves for mt from the quadratic equation Atm2

t +Btmt + Ct = 0,
bypassing the challenging task of estimating tail probabilities for potential choices of mt through
Monte-Carlo methods. By Algorithm 1, we can also conduct posterior inference on treatment
effect after stage t using µp,t+1(w),σp,t+1(w),w = 0, 1 and estimate the remaining budget by
B −

∑t
r=1mr(µp,r+1(1)− µp,r+1(0)).

Theorem 3.2. Assume the outcomes (Yi,t(0),Yi,t(1))i,t are generated as in Definition 3.1. The
experiment by Algorithm 1 is (δ,B)-RRC.

Even though our algorithms is derived from the conjugate Gaussian model we have found that it
remains effective for broader outcome models. This is because the learning occurs essentially through
computation of the first and second moments of past outcomes as in (5), (6), and Algorithm 1 tends
to be successful so long as they are predictive of the outcome moments in future stages. The risk of
ruin control remains approximately valid due to the law of large numbers and standard central limit
theorem under specific conditions; see next section.

Finally, in Algorithm 1, the assumption is made that the population sizeNt for the next stage is known
to ensure that mt does not exceed bNt/2c. In practice, we recommend estimating Nt and using the
model output mt to calculate the assignment probability pt = mt/Nt, the allows the experimenter to
assign each incoming user to the treatment group with a probability of pt.

6



Algorithm 1 Output ramp size adaptively

Input: B < 0, δ ∈ [0, 1)

1: Initialize t← 1,
∏0
r=1 (1−∆r)← 1

2: while
∏t−1
r=1 (1−∆r) > 1− δ do

3: choose ∆t ∈
[
0, 1−δ∏t−1

r=1(1−∆r)
− 1
]

, bt ≥ B

4: estimate data variance σ(w)
2
,w = 0, 1 (if unknown) using (6)

5: compute µp,t(w),σ2
p,t(w),w = 0, 1 by (5b), (5c), (4) and qt,At,Bt,Ct by (11), (12)

6: if bt−S
T
t−1(1)−µ̃t(bNt/2c)√
σ̃2
t (bNt/2c)

≤ qt then mt ← bNt/2c

7: else if B2
t − 4AtCt < 0 then mt ← 0

8: else
9: Mt ←

{⌊
−Bt+

√
B2

t−4AtCt

2At

⌋
,

⌊
−Bt−

√
B2

t−4AtCt

2At

⌋}
10: Vt ←

{
m ∈Mt ∩

[
0, Nt

2

]
:
bt−STt−1(1)−µ̃t(m)

σ̃t(m) ≤ qt
}

11: if Vt 6= ∅ then
12: mt ← maxVt
13: else
14: mt ← 0
15: end if
16: end if
17: Output mt , conduct stage t-experiment and observe outcomes sTt (1), sCt (0)
18: compute Mt(0),Mt(1),STt (1),SCt (0) by (5)
19: update t← t+ 1
20: end while

3.4 Robustness to non-identically distributed and non-Gaussian outcomes

We now derive conditions for the validity of Algorithm 1 under the assumption that experiment
outcomes are independent.
Definition 3.4. The experiment outcomes (Yi,t(0),Yi,t(1)) are independent across different units i
and experiment stage t.

Definition 3.4 allows Yi,t(0) and Yi,t(1) to be dependent and/or discrete-valued (e.g., binary out-
comes). In addition, the outcome distribution (Yi,t(0),Yi,t(1)) can differ across i, t; for instance,
treatment effect may be non-stationary. The validity of Algorithm 1 under Definition 3.4 is now given
in Theorem 3.3; we defer the proof to Appendix D.
Theorem 3.3. Assume the outcomes (Yi,t(0),Yi,t(1))i,t satisfy Definition 3.4. The experiment by
Algorithm 1 is (δ,B)-RRC if, for each stage t ≥ 1 where mt 6= 0, the following conditions hold

P
(
sTt (1)− STt (0)− µ̆t

σ̆t
≤ zt | Ft−1

)
≤ Φ (zt) , zt ≤

µ̆t − µ̃t
σ̃t − σ̆t

, (13)

where

µ̆t := E
[
sTt (1)− STt (0) | Ft−1

]
, σ̆2

t := V
[
sTt (1)− STt (0) | Ft−1

]
, zt :=

bt − STt−1(1)− µ̃t
σ̃t

,

and µ̃t := µ̃t(mt), σ̃t := σ̃t(mt) are defined by (10a), (10b), and sTt (1),STt (0) are defined in (5).

We expect the first condition in (13) to hold as a consequence of central limit theorem for independent
but non-identical random variables. Suppose ∆t ≤ 0.5,∀t (i.e., zt ≤ 0). By law of large number for
independent but non-identical random variables, the second condition in (13) holds if (i) we have
chosen prior and model parameters conservatively such that

µ0(1)− µ0(0) ≤ 1

mt

∑
i∈T1

E (Yi,1(1)− Yi,1(0))

σ(0)
2

+ σ(1)
2

+mt ·
(
σ0(1)

2
+ σ0(0)

2
)
≥ 1

mt

∑
i∈Tt

V (Yi,t(1)− Yi,t(0))

7



and (ii) if the treatment effects increase or stay roughly constant throughout the experiments

1

mt

∑
i∈Tt

E (Yi,t(1)− Yi,t(0)) ≥ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(1)− Yi,t(0)]

and our variance estimates σ(0)
2
,σ(1)

2 are accurate or conservative in the sense that

σ(0)
2 ≥ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

V [Yi,t(0)] , σ(0)
2

+ σ(1)
2 ≥ 1

mt

∑
i∈Tt

V (Yi,t(1)− Yi,t(0)) .

In summary, under Definition 3.4, the validity of Algorithm 1 depends on the accuracy and conser-
vatism of the model’s estimates based on past stages for the true treatment effect and volatility in the
next stage. The algorithm’s effectiveness may be compromised when there is a sudden decrease in
treatment effect or a surge in outcome volatility in the next stage; see discussion in Appendix D.

4 Numerical and empirical experiments

Simulated ramp schedule We now examine the following three experimental scenarios, for each
(Yi,t(1),Yi,t(0))i,t are iid sampled from (3) with variance σ(1)

2
= σ(0)

2
= 10 and means given

below:

i) PTE: Positive treatment effect, with µtrue(0) = 0, µtrue(1) = 1;
ii) NTE: Negative treatment effect, with µtrue(0) = 1 and µtrue(1) = 0;

iii) PNTE: Negative to positive treatment effect, with µtrue(1)(t) = min (−2 + 0.5(t− 1), 2).

For each scenario, we set T = 10 with Nt = 500, ∀t and we choose non-informative prior µ0(w) =

0,σ0(w)
2

= 100,w = 0, 1. We assume model variance is known; however, using (6) to estimate the
variance gives similar results. We repeat each scenario 500 times. Figure 1 (a)—(c) show median, 25%
and 75% quantile of the simulated ramp schedules (mt)t∈[T ] and (g),(h) show the budget surpluses∑
r∈[t]

∑
i∈Tr (Yi,t(1)− Yi,t(0))−B produced given different choices of B, δ, (bt)t∈[T ], (∆)t∈[T ].

Across the various scenarios, our model gives a reasonable ramp schedule. Large B, δ typically leads
to more treated units and faster ramp-up. For the NPTE scenario, inadequate budget and low ruin
tolerance can result in a failure to ramp up to 50% (mt = 250). We also found that reserving the
budget for later stages by decreasing bt or ∆t in the initial stages leads to a faster ramp-up because
more budget is available to support a swift increase when the treatment effect turns positive. This
suggests that the experimenter may want to consider reserving some budget for later stages if the
treatment effect µp,t(1)− µp,t(0) has not stabilized.

For PNTE scenario, we compare our method to a Thompson-sampling bandit with tuning parameters
c and prior µ0(1) = −2,µ0(0) = 0,σ0(0)

2
= σ0(1)

2
= 0.05 (see [27] and Appendix G for details).

The prior is chosen so that the bandit can initialize conservatively depending on c. It can be seen
in Figure 1 (e),(i) that the ramp schedule generated is rather sub-optimal and does not respect the
budget. It also follows a rigid pattern where with small c, the ramp-up initializes too aggressively,
and for large c, the ramp-up proceeds too conservatively. These results demonstrate that our approach
significantly outperforms the main existing alternative.

Semi-real LinkedIn ramp schedule comparison Appendix F gives group-level statistics from a
6-stage phased release run at LinkedIn. Due to privacy constraints, the individual-level data is not
available and is simulated from (4) using stage-wise µtrue (w),σ(w)

2
,w = 0, 1 (both unobserved).

The ramp-up schedules for different tuning parameters are shown in Figure 1,(d). It is noteworthy that
the ramp-up schedule employed by LinkedIn’s data scientists, which was chosen without considering
a specific budget, is roughly consistent with the budget-rationing schedule denoted as "ration-budget
Linkedin" in the caption. Our results suggest that deducing the budget and risk tolerance associated
with an experiment retroactively using our method is possible. We also run the experiment using
Thompson sampling Bayesian bandit with the same prior as for NPTE above. In Figure 1(f), we
again observe the rigidity issue: with small c, the ramp-up initializes too aggressively, and for large c,
the ramp-up proceeds too conservatively.
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(a) Ramp Schedule, PTE (b) Ramp Schedule, NTE (c) Ramp Schedule, NPTE

(d) Ramp schedule, LinkedIn (e) Ramp Schedule, NPTE, TOM (f) Ramp schedule, LinkedIn, TOM

(g) Budget surplus, NTE (h) Budget surplus, NPTE (i) Budget surplus, NPTE, TOM

(j) nor:1.22%/5% (k) corr:1.52%/5% (l) bern:1.30%/5% (m) fat:1.24%/5 % (n) dec:18.28%/5%

Figure 1: Line plots (a)—(i) show the median, 25%, 75% quantiles of either the treatment group
sizes or the budget surplus for the 500 simulations of the different experiment setups (PTE, NTE,
NPTE, LinkedIn) using our model and Thompson-sampling Bayesian bandit. Under the legends
“(B, δ)”, we set bt = B, ∆t = 1 − (1 − δ)1/T ,∀t. We also use (i) “ration budget” to denote
(B, δ) = (−500, 0.01), bt = −400,∀t ≤ 5, bt = −500,∀t > 5 and ∆t = 1 − (1 − δ)1/T ,∀t; (ii)
“ration tolerance” to denote (B, δ) = (−500, 0.01), bt = −500,∀t and ∆t = 0.0001,∀t ≤ 5, ∆t =
0.0019,∀t > 5 (iii) “actual LinkedIn” to denote the actual ramp up schedule used by LinkedIn data
scientists (iv) “ration-budget Linkedin” to denote (B, δ) = (−1500, 0.01), bt = −400, t ≥ 4, bt =
−1500, t > 4, ∆t = 1− (1− δ)1/T . Particularly, (e), (f), (i) are results using Thompson-sampling
Bayesian bandit with different values of tuning parameter c, denoted by “TOM” in sub-caption,
for experiment NPTE, LinkedIn. We set B = −500 to produce (h), although the model is not
budget-aware. Histograms (j)—(n) show distribution of the budget used over 5000 simulations. The
red dashed line marks the budget available B = −500. “x% / 5%” in the sub-captions denotes that
the actual risk of ruin is x% and the ruin tolerance is δ = 5%.
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Budget-spent distribution To explore how our algorithms controls the risk of ruin and budget
spending, we simulate following experiments for 5,000 times and plot distribution of the budget spent∑
r∈[t]

∑
i∈Tr (Yi,t(1)− Yi,t(0)) in Figure 1 (j)—(n): (i)norm: (Yi,t(1),Yi,t(0))i,t are sampled

iid from (3) with µtrue (0) = 0,µtrue (1) = 1,σ(0)
2

= σ(1)
2

= 10; (ii) corr: same as norm
except that for each i, t, Yi,t(1) is correlated with Yi,t(0) with correlation coefficient 0.8 (iii) bern:

Yi,t(0)
iid∼ 6.4Bern(p = 0.5786) and Yi,t(1)

iid∼ 6.4Bern(p = 0.4224); (iv) fat: Yi,t(0)
iid∼ 1+

√
5t4,

and Yi,t(1)
iid∼
√

5t4
2 (v) dec: same as norm except µtrue (1)(t) = −(t − 1). Note that (iii),

(iv) is configured so that E[Yi,t(1) − Yi,t(0)] = 1,V (Yi,t(0)) = V (Yi,t(1)) = 10. For all the
above experiments, we run T = 10 stages with Nt = 500, ∀t and we use non-informative prior
µ0(w) = 0,σ0(w)

2
= 100,w = 0, 1.

As shown in Figure 1 (j)—(m) the model successfully controls risk of ruin for (i)—(iv). The actual
ruin risk is at a reasonable level (∼ 1.2%) compared to the ruin tolerance given (5%). Note that the
actual ruin risk are close for different outcome distribution. This is a consequence of central limit
theorem and law of large numbers as discussed in Section 3.4. The model fails to control risk of ruin
for (v) as expected since the treatment effect keeps decreasing and the model assigns treatment based
on past stages which leads to higher-than-expected costs (cf. Section 3.4).

2Where t4 is a Student-t distribution with 4 degrees of freedom.
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A Decompose risk-of-ruin to individual stages

Proof of Theorem 3.1. The last claim is trivial: it is easy to verify that (1) and (2) hold if we let
Tt = ∅ for all t ∈ [T ]. Now we prove the first and the second claim. The case for T = 1 is trivial.
We assume T ≥ 2. For any t = 2, . . . ,T , we have that

P (Rt ≤ B) = E[P (Rt ≤ B | Ft−1)]

= E
[
P (Rt ≤ B,Rt−1 ≤ B | Ft−1) + P (Rt ≤ B,Rt−1 > B | Ft−1)

]
(a)

≤ P (Rt−1 ≤ B) + E [P (Rt ≤ B,Rt−1 > B | Ft−1)]

= P (Rt−1 ≤ B) + E
[
I (P (Rt−1 > B | Ft−1) > 0)

× P (Rt ≤ B | Rt−1 > B,Ft−1)P (Rt−1 > B | Ft−1)

+ I (P (Rt−1 > B | Ft−1) = 0)P (Rt ≤ B,Rt−1 > B | Ft−1)

]
(b)
= P (Rt−1 ≤ B) + E

[
I (P(Rt−1 > B | Ft−1 > 0))

× P (Rt ≤ B | Rt−1 > B,Ft−1)P (Rt−1 > B | Ft−1)

]
(c)

≤ P (Rt−1 ≤ B) + ∆tE
[
I (P (Rt−1 > B | Ft−1) > 0)P (Rt−1 > B | Ft−1)

]
= P (Rt−1 ≤ B) + ∆tP (Rt−1 > B)

where (b) used that P (Rt−1 > B | Ft−1) = 0 ⇒ Tt = ∅ and that rt((Yi,t)i∈Nt
, ∅) = 0, which

implies that almost surely
I (P (Rt−1 > B | Ft−1) = 0) · P (Rt ≤ B,Rt−1 > B | Ft−1)

= I (P (Rt−1 > B | Ft−1) = 0)P
(
Rt−1 + rt

(
(Yi,t)i∈N , ∅

)
≤ B,Rt−1 > B | Ft−1

)
= I (P (Rt−1 > B | Ft−1) = 0) · P (Rt−1 ≤ B,Rt−1 > B | Ft−1)

= 0

and (c) used that bt ≥ B, which implies that almost surely
P (Rt ≤ B | Rt−1 > B,Ft) ≤ P (Rt ≤ bt | Rt−1 > B,Ft) ≤ ∆t.

Rearranging this, we obtain a recurrence relation: for any t = 2, ...,T ,
P (Rt > B) ≥ (1−∆t) · P (Rt−1 > B) . (14)

Using the recurrence relation repeatedly for all t ∈ [T ], we obtain

P (RT > B) ≥
T∏
i=2

(1−∆t) · P (R1 > b1) ≥
T∏
t=1

(1−∆t)

=⇒ P (RT ≤ B) ≤ 1−
T∏
t=1

(1−∆t) ≤ δ

as required. To prove the second claim, observe that equality is attained in all of the above inequalities
if equality is attained in (14), (i), (ii) and (iii), and that equality is attained in (14) if equality is
attained in (a) and (c). Finally, note that equality in (a) is attained if rt ≤ 0,∀t ∈ [T ] and equality in
(c) is attained if equality is attained in (i) and (iv).

B Stochastic domination

Lemma B.1 (Stochastic domination under truncation). For any two independent real random variable
X,Z and real number a, t ∈ R such that P(X < a) > 0, we have that

P(X + Z ≥ t | X < a) ≤ P(X + Z ≥ t).
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Proof of Lemma B.1 . Assume that P(X ≥ a) > 0, or else the proof is trivial. We first claim that
P(X + Z ≥ t | X < a) ≤ P(X + Z ≥ t | X ≥ a). Note that this holds if and only if

P(X ≥ t− Z,X < a)

P(X < a)
≤ P(X ≥ t− Z,X ≥ a)

P(X ≥ a)
.

The above holds since its lhs and rhs satisfies
P(X ≥ t− Z,X < a)

P(X < a)
=

P(X ≥ t− Z,X < a, a ≥ t− Z)

P(X < a)
≤ P(a ≥ t− Z)

P(X ≥ t− Z,X ≥ a)

P(X ≥ a)
=

P(X ≥ t− Z,X ≥ a, a < t− Z)

P(X ≥ a)
+ P(a ≥ t− Z)

It then follows from law of total probability that
P(X + Z ≥ t) = P(X + Z ≥ t | X < a)P(X < a) + P(X + Z ≥ t | X ≥ a)P(X ≥ a)

≥ P(X + Z ≥ t | X < a)P(X < a) + P(X + Z ≥ t | X < a)P(X ≥ a)

= P(X + Z ≥ t | X < a)

as required.

Proof of Lemma 3.2. If M (1)
t−1 = 0, (8) holds with equality since STt−1(0) < STt−1(1) − B ⇐⇒

B < 0. So, assumeM (1)
t−1 > 0 from now on. By (15f) and the conditional distributions of multivariate

Gaussian, we have[
sTt (0)

∣∣∣∣STt−1(0),Ft−1

]
=

[
µ2 + V21V

−1
11 (STt−1(0)− µ1) + (V22 − V21V

−1
11 V12)1/2Z

∣∣∣∣STt−1(0),Ft−1

]
where Z ∼ N(0, 1) is independent of STt−1(0) conditioned on Ft−1 and µ,V are defined in (15f).
Here, we used that V11 > 0 since σp,t(0)2,σ(0)

2
> 0 by Definition 3.1, and M (1)

t−1 6= 0. Using the
above and that STt (0) = sTt (0) + STt−1(0), we have[

STt (0)

∣∣∣∣STt−1(0),Ft−1

]
=

[
(V21V

−1
11 + 1)STt−1(0) + µ2 − V21V

−1
11 µ1

+ (V22 − V21V
−1
11 V12)1/2Z

∣∣∣∣STt−1(0),Ft−1

]
.

Since V21V
−1
11 + 1 > 0 in the above, using also that bt − STt−1(1),STt−1(1) − B ∈ Ft−1 and that

sTt (1) is independent of STt−1(0),STt (0), (8) follows from Lemma B.1.

C Derivation of the decision rule

Proof of these facts follows from standard Bayesian analysis (see e.g. [15])
Lemma C.1 (Posterior distributions). We have for w = 0, 1, t ∈ [T ]

µp,t(1) := E
[
µtrue(1)

∣∣∣∣Ft−1

]
=

1

1
σ0(1)2

+
M

(1)
t−1

σ(0)2

(
µ0(1)

σ0(1)
2 +

STt−1(1)

σ(1)
2

)
(15a)

µp,t(0) := E
[
µtrue(0)

∣∣∣∣Ft−1

]
=

1

1
σ0(0)2

+
M

(0)
t−1

σ(0)2

(
µ0(0)

σ0(0)
2 +

SCt−1(0)

σ(0)
2

)
(15b)

σp,t(w)2 := V
[
µtrue(w)

∣∣∣∣Ft−1

]
=

(
1

σ0(w)
2 +

Mt−1(w)

σ(w)
2

)−1

(15c)[
µtrue(w)

∣∣∣∣Ft−1

]
∼ N

(
µp,t(w), σp,t(w)2

)
(15d)[

sTt (1)

∣∣∣∣Ft−1

]
∼ N

(
µp,t(1) ·mt, m

2
t · σp,t(1)2 +mt · σ(0)

2
)

(15e)[(
STt−1(0)
sTt (0)

)∣∣∣∣Ft−1

]
∼ N (µ,V ) (15f)
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where

µ :=

(
µp,t(0) ·M (1)

t−1
µp,t(0) ·mt

)
,

V :=

(
(M

(1)
t−1)2σp,t(0)2 +M

(1)
t−1σ(0)

2
M

(1)
t−1mtσp,t(0)2

M
(1)
t−1mtσp,t(0)2 m2

tσp,t(0)2 +mtσ(0)
2

)
.

D Robustness to non-identically distributed and non-Gaussian outcomes

Proof of Theorem 3.3. To show the experiment by Algorithm 1 is (δ,B)-RRC under Definition 3.4,
it suffices to show that (1), (2) hold for each t ≥ 1. Since (1), (2) hold for each t ≥ 1 if mt = 0, we
only need to show that for each t ≥ 1, if mt 6= 0, almost surely

P
(
STt (1)− STt (0) > B | Ft

)
> 0 (16a)

P
(
STt (1)− STt (0) ≤ bt | Ft−1,STt−1(1)− STt−1(0) > B

)
≤ ∆t. (16b)

Note that for each t ≥ 1, if mt 6= 0,

P
(
STt (1)− STt (0) ≤ bt | Ft−1

)
= P

(
sTt (1)− STt (0)− µ̃t

σ̃t
≤ zt | Ft−1

)
(a)

≤ P
(
sTt (1)− STt (0)− µ̆t

σ̆t
≤ zt | Ft−1

)
(b)

≤ Φ (zt)
(c)

≤ ∆t

where we used first inequality in (13) in (a), second inequality in (13) in (b), and (11) in (c).

We now show (16a) by induction. For t = 1, if m1 6= 0, Algorithm 1 ensures that

E
(
P
(
sT1 (1)− sT1 (0) ≤ b1 | F1

))
= P

(
sT1 (1)− sT1 (0) ≤ b1

)
≤ ∆1 < 1

by construction, which implies that

P
(
ST1 (1)− ST1 (0) > B | F1

)
≥ P

(
sT1 (1)− sT1 (0) > b1 | F1

)
> 0

almost surely. If m1 = 0, then P
(
ST1 (1)− ST1 (0) > B | F1

)
= 1 since B < 0. This proves the

base case. For the inductive case, if mt 6= 0, Algorithm 1 ensures that
E
(
P
(
STt (1)− STt (0) ≤ bt | Ft

)
| Ft−1

)
= P

(
STt (1)− STt (0) ≤ bt | Ft−1

)
≤ ∆t < 1

by construction, which implies that

P
(
STt (1)− STt (0) > B | Ft

)
≥ P

(
STt (1)− STt (0) > bt | Ft

)
> 0

almost surely. If mt = 0, we have that

P
(
STt (1)− STt (0) > B | Ft

)
= P

(
STt−1(1)− STt−1(0) > B | Ft−1

)
> 0

from inductive hypothesis. This shows (16a).

To show (16b), note that under Definition 3.4,[
sTt (1)− STt (0) | Ft−1,STt−1(0) < STt−1(1)−B

]
d
= sTt (1)− sTt (0)−

[
STt−1(0) | Ft−1,STt−1(0) < STt−1(1)−B

]
On the rhs, sTt (1)− sTt (0) is independent of[

STt−1(0) | Ft−1,STt−1(0) < STt−1(1)−B
]

and that STt−1(1)−B ∈ Ft−1. It follows from these, (16a) and Lemma B.1 that

P
(
sTt (1)− sTt (0)− STt−1(0) ≤ bt

∣∣∣∣Ft−1,STt−1(0) < STt−1(1)−B
)

≤ P
(
sTt (1)− STt (0) ≤ bt | Ft−1

)
Therefore, for each t ≥ 1, if mt 6= 0,

P
(
STt (1)− STt (0) ≤ bt | Ft−1,STt−1(1)− STt−1(0) > B

)
≤ ∆t

as required. This concludes the proof.

15



When are (13) satisfied Fix any t ≥ 1 where mt 6= 0. Note that[
sTt (1)− STt (0) | Ft−1

]
=
∑
i∈Tt

(Yi,t(1)− Yi,t(0))−
∑

r∈[t−1]

∑
i∈Tr

[Yi,r(0) | Yi,r(1)]

The summands on the rhs are independent random variables under Definition 3.4. We thus expect
that when mt or Mt−1 are sufficiently large,[

sTt (1)− STt (0) | Ft−1

]
− E

[
sTt (1)− STt (0) | Ft−1

]√
V
[
sTt (1)− STt (0) | Ft−1

] ≈ N(0, 1)

by central limit theorem under mild moment-growth conditions (e.g. Lyapunov’s conditions). We
thus expect that first condition in (13) holds when mt or M (1)

t−1 are sufficiently large for each t ≥ 1.

We now focus on the second condition in (13). Suppose that ∆t ≤ 0.5, which implies zt ≤ 0 by (11).
Note that we can write

µ̆t =
∑
i∈Tt

E (Yi,t(1)− Yi,t(0))−
∑

r∈[t−1]

∑
i∈Tr

E [Yi,t(0) | Yi,t(1)]

σ̆2
t =

∑
r∈[t−1]

V (Yi,t(1)− Yi,t(0)) +
∑
i∈Tr

V [Yi,t(0) | σ (Yi,t(1))]

and

µ̃t = mt (µp,t(1)− µp,t(0))− µp,t(0)M
(1)
t−1

σ̃2
t = mt ·

(
σ(1)

2
+ σ(0)

2
)

+M
(1)
t−1 · σ(0)

2
+m2

t · σp,t(1)2 +
(
mt +M

(1)
t−1

)2

· σp,t(0)2.

For t = 1,
µ̆t =

∑
i∈Tt

E (Yi,t(1)− Yi,t(0)) , σ̆2
t =

∑
i∈Tt

V (Yi,t(1)− Yi,t(0))

and
µ̃t = mt (µ0(1)− µ0(0)) ,

σ̃2
t = mt ·

(
σ(0)

2
+ σ(1)

2
)

+m2
t ·
(
σ0(1)

2
+ σ0(0)

2
)

.

So, second condition in (13) holds for t = 1 if we have chosen prior and model parameters such that

µ0(1)− µ0(0) ≤ 1

mt

∑
i∈T1

E (Yi,1(1)− Yi,1(0))

σ(0)
2

+ σ(1)
2

+mt ·
(
σ0(1)

2
+ σ0(0)

2
)
≥ 1

mt

∑
i∈Tt

V (Yi,t(1)− Yi,t(0))

This corresponds to that we choose prior and model parameters conservatively in the sense that we
do not overestimate treatment effect or underestimate its variability. Now fix any t ≥ 2. From the law
of large number, we expect that for M (1)

t−1 sufficiently large

µp,t(0) ≈ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(0)]

1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(0) | Yi,t(1)] ≈ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(0)]

µp,t(1)− µp,t(0) ≈ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(1)− Yi,t(0)]

1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

V [Yi,t(0) | Yi,t(1)] ≈ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

EV [Yi,t(0) | Yi,t(1)]

≤ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

V [Yi,t(0)]
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So if the treatment effects increase or stay roughly constant throughout the experiments

1

mt

∑
i∈Tt

E (Yi,t(1)− Yi,t(0)) ≥ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

E [Yi,t(1)− Yi,t(0)]

and our variance estimates σ(0)
2
,σ(1)

2 are accurate or conservative in the sense that

σ(0)
2 ≥ 1

M
(1)
t−1

∑
r∈[t−1]

∑
i∈Tr

V [Yi,t(0)] , σ(0)
2

+ σ(1)
2 ≥ 1

mt

∑
i∈Tt

V (Yi,t(1)− Yi,t(0))

the second condition in (13) holds for each t ≥ 2 and the experiment produced by Algorithm 1 is
(δ,B)-RRC.

E Algorithm for general Bayesian models and costs

The following outcome model is a generalization of Definition 3.1. Here, experiment outcomes are
allowed to be multivariate with each coordinate corresponds a different business metric.

Definition E.1 (General Bayesian model). Fix p, q ≥ 1. The model parameter θtrue ∈ Rq is generated
from certain prior π0. The experiment outcome of unit i at stage t are distributed independently and
identically as (

Yi,t(0),Yi,t(0)

)
iid∼ p(θtrue)

where Yi,t(0),Yi,t(0) ∈ Rq and p(θtrue) is a probability distribution on Rp×p.

The following is a generalization of Definition 2.1. It allows for general experiment cost beyond
treatment effect. The cost of treating unit i is now hit = ht(Yi,t(1),Yi,t(0)) for some function
ht : Rp×p 7→ R chosen by the user. For instance, ht can be chosen to compute the worst treatment
effect across multiple business metrics.

Definition E.2 (General experiment cost). For each t ≥ 1, let the experiment cost from stage-t and
treated unit i be hit = ht(Yi,t(1),Yi,t(0)) where ht : Rp×p 7→ R is any user-chosen function. Then
define rt :=

∑
i∈Tt hi,t. We let rt = 0 if Tt = ∅. Define the cumulative experiment cost up to stage

t as Rt :=
∑
k∈[t] rk.

We now move to derive an explicit algorithm Algorithm 1 from Theorem 3.1 that output (mt)t≥1

such that the experiment is (δ,B)-RRC. Compared to Algorithm 1, the algorithm developed in this
section will require Monte-Carlo simulations and generally gives more conservative ramp schedule.

We first review the Cantelli’s inequality, which is an improved version of the well-known Chebyshev’s
inequality for one-sided tail bounds.

Lemma E.3 (Cantelli’s inequality). For any λ ≥ 0, and real-valued random variable X with finite
variance,

P(X − E(X) ≥ λ) ≤ 1

1 + λ2/V(X)

Given that (i) P (Rt−1 ≥ B | Ft−1) > 0 and that (ii) E [Rt | Rt−1 ≥ B,Ft−1] ≥ bt, a direct
application of Cantelli’s inequality shows that

P (Rt ≤ bt | Rt−1 > B,Ft−1)

= P
(
E [Rt | Rt−1 > B,Ft−1]−Rt ≥ E [Rt | Rt−1 > B,Ft−1]− bt

∣∣∣∣Rt−1 > B,Ft−1

)

≤

(
1 +

(E [Rt | Rt−1 > B,Ft−1]− bt)2

V (Rt | Rt−1 > B,Ft−1)

)−1

where F0 denotes trivial σ-algebra.
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Our strategy to construct an algorithm that selects ramp size mt such that (1), (2) hold is as follows:
we first verify that condition (i) holds; if not, setmt = 0 and otherwise findmt such that the following
two inequalities hold

E [Rt | Rt−1 ≥ B,Ft−1] ≥ bt (17a)
1

1 + (E[Rt|Rt−1>B,Ft−1]−bt)2
V(Rt|Rt−1>B,Ft−1)

≤ ∆t (17b)

To accomplish this, note that by exchangeability of the outcomes under Definition E.1,

E [Rt | Rt−1 ≥ B,Ft−1] = E [rt | Rt−1 ≥ B,Ft−1] + E [Rt−1 | Rt−1 ≥ B,Ft−1]

= mtE [hi=1,t | Rt−1 ≥ B,Ft−1] + E [Rt−1 | Rt−1 ≥ B,Ft−1]
(18)

and

V (Rt | Rt−1 ≥ B,Ft−1) = V (rt | Rt−1 ≥ B,Ft−1) + V (Rt−1 | Rt−1 ≥ B,Ft−1)

+ Cov (rt,Rt−1 | Rt−1 ≥ B,Ft−1)

= mtV (hi=1,t | Rt−1 ≥ B,Ft−1)

+mt (mt − 1) Cov (hi=1,t,hi=2,t | Rt−1 ≥ B,Ft−1)

+ V (Rt−1 | Rt−1 ≥ B,Ft−1) + Cov (rt,Rt−1 | Rt−1 ≥ B,Ft−1)
(19)

We thus require a Monte-Carlo procedure to output estimates ϕ̂t(0), . . . , ϕ̂
(6)
t for the following

posterior quantities on the rhs of (18), (19)

P (Rt−1 ≥ B | Ft−1)← ϕ̂t(0)

E (hi=1,t | Rt−1 ≥ B,Ft−1)← ϕ̂t(1)

E (Rt−1 | Rt−1 ≥ B,Ft−1)← ϕ̂
(2)
t

V (hi=1,t | Rt−1 ≥ B,Ft−1)← ϕ̂
(3)
t

Cov (hi=1,t,hi=2,t | Rt−1 ≥ B,Ft−1)← ϕ̂
(4)
t

V [Rt−1 | Rt−1 ≥ B,Ft−1]← ϕ̂
(5)
t

Cov (hi=1,t,Rt−1 | Rt−1 ≥ B,Ft−1)← ϕ̂
(6)
t

where hi=1,t,hi=2,t denote costs from treating two units i = 1, 2 at stage t. Recall that under (...), the
outcome of the units are exchangeable. So i = 1, 2 simply refers to any two distinct units. These quan-
tities will be used to construct estimates of E [Rt | Rt−1 > B,Ft−1] and V (Rt | Rt−1 > B,Ft−1)
as functions of mt chosen.

We now outline a procedure to construct ϕ̂t(0), . . . , ϕ̂
(6)
t . Firstly, suppose that we can obtain K

samples from the posterior distribution[
(Yi,r(0))i∈Tr,r∈[t−1] ,Yi=1,t(0),Yi=1,t(1),Yi=2,t(0),Yi=2,t(1)

∣∣∣∣Ft−1

]
, (20)

from certain MCMC algorithms. The specific details of the MCMC algorithm will depend on the
Bayesian model used, but generating posterior-predictive samples while imputing unobserved data,
as required in (20), is a common objective of such algorithms (see e.g. [15, Chapter 18]). Let us
denote the K samples as(

Y
{k}
i,r (0)

)
i∈Tr,r∈[t−1]

,
(
Y
{k}
i,t (0)

)
,Y
{k}
i=1,t(1),Y

{k}
i=2,t(0),Y

{k}
i=2,t(1), k = 1, . . . ,K (21)

These will give us K samples from [hi=1,t,hi=2,t,Rt−1 | Ft−1] as follows:(
ĥ
{k}
i=1,t, ĥ

{k}
i=2,t, R̂

{k}
t−1

)
=

(
ht

(
Y
{k}
i=1,t(1)− Y {k}i=1,t(0)

)
,ht

(
Y
{k}
i=2,t(1)− Y {k}i=2,t(0)

)
,

t−1∑
r=1

∑
i∈Tr

hr

(
Y
{k}
i,r (1)− Y {k}i,r (0)

))
, k = 1, . . . ,K
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Then we can estimate P (Rt−1 ≥ B | Ft−1) by

P (Rt−1 ≥ B | Ft−1)← ϕ̂t(0) =
1

K

K∑
k=1

I
(
R̂
{k}
t−1 ≥ B

)
Let

Lt :=
{
k ∈ [K] : R̂

{k}
t−1 ≥ B

}
⊂ [K]

which denotes the subset of the K Monte-Calor samples for which the budgets are not depleted.

If ϕ̂t(0) = 0 ⇐⇒ Lt = ∅, we can simply out mt = 0 since this corresponds to the case that
the condition (i) does not hold, i.e. P (Rt ≤ bt | Rt−1 > B,Ft−1) ≈ 0. Otherwise, we continue to
construct ϕ̂t(1), . . . , ϕ̂

(6)
t as follows:

E (hi=1,t | Rt−1 ≥ B,Ft−1)← ϕ̂t(1) =
1

|Lt|
∑
k∈Lt

ĥ
{k}
i=1,t

E (Rt−1 | Rt−1 ≥ B,Ft−1)← ϕ̂
(2)
t =

1

|Lt|
∑
k∈Lt

R̂
{k}
t−1

V (hi=1,t | Rt−1 ≥ B,Ft−1)← ϕ̂
(3)
t =

1

|Lt|
∑
k∈Lt

(
ĥ
kk}
i=1,t

)2

− (ϕ̂t(1))
2

Cov (hi=1,t,hi=2,t | Rt−1 ≥ B,Ft−1)

← ϕ̂
(4)
t =

1

|Lt|
∑
k∈Lt

ĥ
{k}
i=1,tĥ

{k}
i=2,t − ϕ̂t(1)

(
1

|Lt|
∑
k∈Lt

ĥ
{k}
i=2,t

)

V [Rt−1 | Rt−1 ≥ B,Ft−1]← ϕ̂
(5)
t =

1

|Lt|
∑
k∈Lt

(
R̂
{k}
t−1

)2

−
(
ϕ̂

(2)
t

)2

Cov (hi=1,t,Rt−1 | Rt−1 ≥ B,Ft−1)← ϕ̂
(6)
t =

1

|Lt|
∑
k∈Lt

ĥ
{k}
i=1,tĥ

{k}
i=2,t − ϕ̂t(1)ϕ̂

(2)
t

(22)

From (18), (19) and the Monte-Carlo estimates above, we then have estimators for
E [Rt | Rt−1 ≥ B,Ft−1] ,V [Rt | Rt−1 ≥ B,Ft−1] in terms of ϕ̂t(1), . . . , ϕ̂

(6)
t as follows

E [Rt | Rt−1 ≥ B,Ft−1]← mt · ϕ̂t(1) + ϕ̂
(2)
t

V [Rt | Rt−1 ≥ B,Ft−1]←
(
mt · ϕ̂(3)

t +mt (mt − 1) · ϕ̂(4)
t

)
+ ϕ̂

(5)
t +mt · ϕ̂(6)

t

The two inequalities in (17) then become

mt · ϕ̂t(1) + ϕ̂
(2)
t ≥ bt (23a)

1

1 +

(
mt·ϕ̂t(1)+ϕ̂

(2)
t −bt

)2(
mt·ϕ̂(3)

t +mt(mt−1)·ϕ̂(4)
t

)
+ϕ̂

(5)
t +mt·ϕ̂(6)

t

≤ ∆t (23b)

respectively. Assume that ∆t > 0 or else set mt = 0 directly. Observe that (23b) can be written as,
with qt := ∆−1

t − 1,
Atm

2
t +Btmt + Ct ≥ 0

where
At := (ϕ̂t(1))

2 − qtϕ̂(4)
t

Bt := 2ϕ̂t(1)
(
ϕ̂

(2)
t − bt

)
− qtϕ̂(3)

t + qtϕ̂
(4)
t − qtϕ̂

(6)
t

Ct :=
(
ϕ̂

(2)
t − bt

)2

− qtϕ̂(5)
t

(24)

Then one can choose mt to be the largest, positive integer in the range defined by

mt · ϕ̂t(1) + ϕ̂
(2)
t ≥ bt, Atm

2
t +Btmt + Ct ≥ 0
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If the range does not contain any positive integer, we set mt = 0. Note that the range can be
easily identified after solving the quadratic equation Atm2

t + Btmt + Ct = 0. Algorithm 2 gives
the algorithm that outputs ramp sizes adaptively. Note that by construction, it gives a (δ,B)-RRC
experiments if the Monte-Carlo estimators are sufficiently accurate.

Algorithm 2 Output ramp size adaptively

Input: B < 0, δ ∈ [0, 1)

1: Initialize t← 1,
∏0
r=1 (1−∆r)← 1

2: while
∏t−1
r=1 (1−∆r) > 1− δ do

3: choose ∆t ∈
[
0, 1−δ∏t−1

r=1(1−∆r)
− 1
]

, bt ≥ B
4: run MCMC to obtain posterior samples in (21) and computes ϕ̂t(0)
5: if ϕ̂t(0)← 0 then mt ← 0
6: else
7: compute ϕ̂t(1), . . . , ϕ̂

(6)
t using (22) and then At,Bt,Ct by (24)

8: find Vt ←
{
m ∈ N+ ∩ [0,Nt/2] : m · ϕ̂t(1) + ϕ̂

(2)
t ≥ bt,Atm2 +Btm+ Ct ≥ 0

}
9: if Vt 6= ∅ then

10: mt ← maxVt
11: else
12: mt ← 0
13: end if
14: end if
15: Output mt and then conduct stage t-experiment and observe the outcomes
16: update t← t+ 1
17: end while

We have conducted preliminary simulations of the proposed procedure for a multivariate Gaussian
outcome model with Gaussian-inverse-Wishart prior, and observed satisfactory results. However,
we defer presenting numerical results until future work when a more systematic investigation of
Monte-Carlo based procedures can be conducted.

F Linkedin experiment data

In Table 1 below, µtrue (w),σ(w)
2
,w = 0, 1 are sample statistics from the actual LinkedIn experiment.

Nt are incoming population size reduced by 104 factor for tractability on a personal computer.

Stages t 1 2 3 4 5 6

µtrue(0) 0.3648 0.3780 0.3752 0.2317 0.4009 0.3930
µtrue(1) 0.3659 0.3788 0.3754 0.2317 0.4010 0.3941
σ(0)

2 2.0993 2.2769 2.0909 1.1165 2.2705 2.3982
σ(1)

2 2.0923 2.2248 2.0135 1.0526 2.2476 2.4430
Nt 10,756 10,460 10,598 7,580 10,550 10,688

Table 1: Linkedin experiment data

G Thompson-sampling based Bayesian bandit

This algorithm is developed in [27, Section 4] for clinical trials. The algorithm assigns a user i at
stage t ≥ 1 to treatment with probability

P (i ∈ Tt) =
P (µtrue (1) > µtrue (0) | Ft−1)

c

P (µtrue (1) > µtrue (0) | Ft−1)
c

+ P (µtrue (1) ≤ µtrue (0) | Ft−1)
c
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for tuning parameter c > 0. Under Definition 3.1, by (15d), we have that

P (µtrue (1) > µtrue (0) | Ft−1) = Φ

(
µp,t(1)− µp,t(0)√
σp,t(0)2 + σp,t(1)2

)
.
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