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Abstract001

Personalizing large language models (LLMs)002
is important for aligning outputs with diverse003
user preferences, yet existing methods struggle004
with flexibility and generalization. We propose005
CoPL (Collaborative Preference Learning), a006
graph-based collaborative filtering framework007
that models user-response relationships to en-008
hance preference estimation, particularly in009
sparse annotation settings. By integrating a010
mixture of LoRA experts, CoPL efficiently011
fine-tunes LLMs while dynamically balancing012
shared and user-specific preferences. Addi-013
tionally, an optimization-free adaptation strat-014
egy enables generalization to unseen users015
without fine-tuning. Experiments on TL;DR,016
UltraFeedback-P, and PersonalLLM datasets017
demonstrate that CoPL outperforms existing018
personalized reward models, effectively cap-019
turing both common and controversial prefer-020
ences, making it a scalable solution for person-021
alized LLM alignment.022

1 Introduction023

Large language models (LLMs) have rapidly ex-024

panded across diverse applications, from customer025

service and tutoring to creative content genera-026

tion (Shi et al., 2024; Molina et al., 2024; Venka-027

traman et al., 2024). As increasing numbers of028

users with varied backgrounds interact with LLMs,029

accounting for diverse preferences has become es-030

sential. Most reward models rely on the Bradley-031

Terry-Luce (BTL) framework (Bradley and Terry,032

1952), which learns preferences from pairwise com-033

parisons provided by human annotators. However,034

earlier studies largely assumed a single, uniform035

preference and neglected the diversity of user pref-036

erences (Siththaranjan et al., 2024; Li et al., 2024).037

This limitation has led to growing interest in per-038

sonalized reward models (Sorensen et al., 2024).039

There are two different approaches to utilizing040

the BTL framework for personalized reward mod-041

els. The first approach has explored combining042

multiple reward models, each trained for a specific 043

preference and later aggregated (Jang et al., 2023; 044

Oh et al., 2024). However, this approach relies on 045

pre-trained models for different preference types, 046

reducing flexibility. Another line of work intro- 047

duces user-specific latent variables into a single 048

BTL framework, learning personalized represen- 049

tations from user annotations (Chen et al., 2024a; 050

Poddar et al., 2024; Li et al., 2024). While this 051

method captures individual preferences, the latent 052

variable model does not explicitly account for rela- 053

tionships between users sharing similar responses. 054

As a result, it struggles to generalize in sparse an- 055

notation settings. 056

To address these limitations, we propose Collab- 057

orative Preference Learning (CoPL), which con- 058

structs a user-response bipartite preference graph 059

from pairwise annotations and uses a graph-based 060

collaborative filtering (GCF) framework for person- 061

alized reward modeling. Unlike approaches that 062

model each user separately, GCF on the graph struc- 063

ture allows preference signals to propagate across 064

users, enabling to exploit multi-hop relationships 065

among users and responses (Wang et al., 2019; He 066

et al., 2020). CoPL can capture diverse preferences 067

of users even in sparse annotation settings. 068

Based on the user embedding, we develop an 069

LLM-based reward model that can predict the pref- 070

erence score of a user given input text. We adopt 071

the mixture of LoRA experts (MoLE) (Chen et al., 072

2023, 2024c; Liu et al., 2024) that allows parameter 073

efficient fine-tuning while routing different users 074

to different paths based on the learned embedding. 075

Specifically, we develop a user preference-aware 076

gating function that dynamically selects the experts 077

in the forward pass, making the LLM predict a 078

personalized preference. 079

While the reward model can predict preferences 080

for users included in the training set, the model can- 081

not handle newly participated unseen users whose 082

embeddings are unknown. To estimate the prefer- 083
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ences of unseen users, we propose an optimization-084

free adaptation method. Given a few annotations085

from an unseen user, we exploit the existing graph086

to find users with similar preferences and aggregate087

their embeddings to represent the unseen user.088

Experimental results demonstrate that CoPL con-089

sistently outperforms existing personalized reward090

models in both seen and unseen users. Especially,091

CoPL generalizes to unseen users, maintaining092

high accuracy with only a few provided annota-093

tions. Embedding visualizations show that CoPL094

clusters users with similar preferences more closely095

than competing baselines. Further ablation stud-096

ies confirm that both GCF and MoLE contribute097

significantly to performance.098

2 Related Work099

Alignment has emerged as a crucial strategy for100

mitigating undesirable outcomes (Dai et al., 2023;101

Yang et al., 2024a). Previous research has of-102

ten focused on the average preference of annota-103

tors (Achiam et al., 2023), ignoring the diverse104

preferences. To address preference diversity, re-105

cent works (Jang et al., 2023; Oh et al., 2024; Yang106

et al., 2024b) view this problem as a soft cluster-107

ing problem, where user-specific preferences are108

treated as mixtures of predefined preference types.109

Although this approach effectively handles diverse110

preferences, it relies on specifying several prefer-111

ence types in advance.112

Another line of work introduces a user latent113

variable in the BTL framework (Poddar et al., 2024;114

Li et al., 2024; Chen et al., 2024a). The main chal-115

lenge lies in obtaining user representations. One116

approach is to treat each user embedding as learn-117

able parameters (Li et al., 2024; Chen et al., 2024a),118

and the other strategy is to train an encoder that119

infers embeddings from the set of annotated pairs120

provided by each user (Poddar et al., 2024).121

We also discuss preference learning with sparse122

interactions, closely related to our approach, in123

Appendix C.124

3 Problem Formulation125

We aim to develop a reward model that can cap-126

ture diverse user preferences from a limited set of127

preference annotations. Instead of directly defining128

a user’s preference, we collect pairwise compar-129

isons indicating which item a user prefers. Let130

U = {1, · · · , U} be a set of users and X be131

a space of LLM’s responses. To estimate the132

preferences of users, we first curate a survey set 133

S = {(qi, ai, bi)}Ri=1 consisting of predefined ques- 134

tions qi and two different responses ai, bi ∈ X 135

from LLMs. For each user u, we first randomly 136

sampleNu number of survey items and then collect 137

the preferences over the response pairs, resulting 138

in preference dataset Du. We use (a ≻ b) ∈ Du 139

to denote that user u prefers response a over the 140

response b. Given these pairwise preferences, we 141

aim to learn a numerical reward function 142

f(u, r) : U × X → R, (1) 143

where f(u, r) represents a scalar preference score
of response r for user u. The model is trained to
satisfy

f(u, a) > f(u, b)

for all u and preference pairs a ≻ b observed in the 144

data. 145

Following previous works (Li et al., 2024; Pod- 146

dar et al., 2024), we consider the Bradly-Terry- 147

Luce (BTL) choice model (Bradley and Terry, 148

1952) with maximum likelihood estimation to train 149

the reward function. The likelihood of user u 150

prefers item a over b can be defined using the BTL 151

model as 152

p(a ≻ b | u) =
exp

(
f(u, a)

)
exp

(
f(u, a)

)
+ exp

(
f(u, b)

) . 153

Conversely, if b was chosen over a, i.e., a ≺ b, the
likelihood is

p(b ≻ a | u) = 1− p(a ≻ b | u).

Through the maximum likelihood estimation with 154

preference data for all users, one can learn the 155

reward function f to make the reward function 156

align with user preference. In the case of the 157

universal preference model, user u is ignored in 158

Eq. (1) (Chen et al., 2024b; Achiam et al., 2023; 159

Dai et al., 2023; Bai et al., 2022). In practice, the 160

user u is replaced by a user embedding (Poddar 161

et al., 2024; Li et al., 2024; Chen et al., 2024a). 162

4 Method 163

In this section, we describe our Collaborative Pref- 164

erence Learning (CoPL). Our approach consists 165

of three steps: learning user representations given 166

preference data, construction of personalized re- 167

ward models, and adaptation to unseen (new) users 168

at test time. Figure 1 illustrates the first two steps, 169

and Figure 2 the last step. 170
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Figure 1: An overview of CoPL. To learn user representations, the GCF model is trained on a user-response bipartite
graph. To build a personalized reward model, CoPL uses the learned representations to select a user-specific expert
from MoLE, enabling effective modeling of diverse preferences.

4.1 User Representation Learning171

Users who share similar preferences are likely to172

respond to similar responses. When the number of173

annotated responses is very small, it is unlikely to174

annotate the same responses between users. How-175

ever, if we exploit multi-hop relations between176

users and responses, we may estimate user pref-177

erence accurately. In fact, the exploitation of the178

relationship between users and items is the key idea179

behind graph-based collaborative filtering (GCF).180

The preference dataset for all users can be natu-181

rally converted into a bipartite graph, where each182

user and response is represented as a node, and an183

edge between a user and a response represents the184

user’s preference over the response, as illustrated in185

Fig. 1. The edge can have two different types: pos-186

itive or negative, indicating whether a user prefers187

the response or not.188

Given a bipartite graph, we design a message-189

passing algorithm to update user and response rep-190

resentations. Let eu ∈ Rd be an embedding vector191

of user u, and er ∈ Rd be an embedding vector192

of response r. Since there are two different edge193

types, we use different parameterizations for each194

type. Let N+
u be a set of positive edges and N−

u be195

a set of negative edges from user u. Similary, we196

can define N+
r and N−

r for response r. Given user197

and response embeddings at layer ℓ, the message198

passing computes a message from neighborhood199

responses to the user as200

m+
u =

∑
r∈N+

u

αu,r

(
W

(ℓ)
1 e(ℓ)r +W

(ℓ)
2 (e(ℓ)r ⊙ e(ℓ)u )

)
,201

m−
u =

∑
r∈N−

u

βu,r

(
W

(ℓ)
3 e(ℓ)r +W

(ℓ)
4 (e(ℓ)r ⊙ e(ℓ)u )

)
,202

m(ℓ)
u =W

(ℓ)
self e

(ℓ)
u + m+

u + m−
u , (2)203

where W (ℓ)
1 ,W

(ℓ)
2 ,W

(ℓ)
3 ,W

(ℓ)
4 ,W

(ℓ)
self ∈ Rd×d are 204

parameter matrices, ⊙ is element-wise multipli- 205

cation, and αu,r and βu,r are normalization fac- 206

tors, set to 1√
|N+

u ||N+
r |

and 1√
|N−

u ||N−
r |

, respec- 207

tively. Then, the user embedding is updated with 208

the aggregated message m(ℓ)
u : 209

e(ℓ+1)
u = ψ

(
m(ℓ)

u

)
, (3) 210

where ψ(·) is a non-linear activation. The response 211

embedding e(ℓ)r is updated with analogous process. 212

We randomly initialize the user and response em- 213

beddings at the first layer and then fine-tune the 214

embeddings through training. The update steps 215

for the response embeddings are provided in Ap- 216

pendix A. 217

After L propagation steps, user and response 218

embeddings accumulate information from their lo- 219

cal neighborhood. Given the final user embedding 220

e
(L)
u and response embedding e(L)r , we use the in- 221

ner product between the embeddings as a predicted 222

preference : 223

su,r =
(
e(L)u

)⊤(
e(L)r

)
. (4) 224

With the score function, the GNN is trained on 225

preference data Du for all users by minimizing the 226

following loss function: 227

LGCF(θ) := (5) 228∑
u∈U

∑
(a≻b)∈Du

− log σ (su,a − su,b) + λ∥θ∥22, 229

where σ(·) denotes a sigmoid function, λ is a reg- 230

ularization hyper-parameter and θ represents all 231

trainable parameters, including weights of the prop- 232

agation layers and initial embeddings of the users 233

e
(0)
u and responses e(0)r . 234
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4.2 Personalized Reward Model with User235

Representations236

Based on the learned user embeddings e(L)u , we237

build a reward model that can accommodate the238

preferences of diverse users. We use an LLM-based239

reward function:240

fϕ(eu, r) : Rd ×X → R (6)241

where f is an LLM parameterized by ϕ taking user242

embedding eu and the response r as inputs and243

predicts preference score. Unlike the response, the244

user embedding is not used as an input token. In-245

stead, it is used in the gating mechanism described246

below. To learn the reward model, we can employ247

the BTL model, resulting in the maximum likeli-248

hood objective:249

LRM(ϕ) =
∑
u

∑
(a≻b)∈Du

log pϕ(a ≻ b | eu) (7)250

However, naively optimizing this objective starting251

from a pretrained LLM requires fine-tuning billions252

of parameters. Moreover, different preferences of253

users result in conflicting descent directions of the254

model parameters, resembling a multi-task learning255

scenario.256

Mixture of LoRA experts for personalized re-257

ward function. For an efficient parameter update258

while minimizing the negative effect of diverse259

preferences, we adopt the mixture of LoRA experts260

(MoLE) (Hu et al., 2021; Liu et al., 2024) into our261

framework. MoLE is proposed to maximize the262

benefit of the mixture of experts (MoE) while main-263

taining efficient parameter updates. With MoLE,264

the model parameter matrix W is decomposed into265

pretrained and frozen W0 and trainable ∆W , i.e.,266

W =W0 +∆W . ∆W is further decomposed into267

a shared LoRA expert As ∈ Rdout×n, Bs ∈ Rn×din ,268

which is used across all users, and M individual269

LoRA experts {Ai, Bi}Mi=1 with the same dimen-270

sionality of the shared expert. Formally, this can271

be written as272

∆Wu = AsBs +

M∑
i=1

wiAiBi, (8)273

where wi ∈ [0, 1] denotes the importance of expert274

i.275

To adopt the different preferences of users,276

we define a user-dependent gating mechanism to277

model the importance parameter wi. For each user278

𝑢∗ annotation: 𝑎 ≻ 𝑏 , 𝑒 ≻ 𝑓
Alignment logit 𝜸𝒖,𝒖∗ (Eq.11)

𝛾𝑢1,𝑢∗ = log 0.8 + log 0.7

𝛾𝑢2,𝑢∗ = (log 0.7 + log 0.7)

𝛾𝑢3,𝑢∗ = (log 0.1 + log 0.7)

𝒆𝑢∗ = 0.5𝒆𝑢1 + 0.4𝒆𝑢2 + 0.1𝒆𝑢3
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Figure 2: Illustration of unseen user adaptation. Blue
nodes are users who have similar preferences to u∗, and
red nodes are users who have dissimilar preferences.

u, a gating function g : Rd → RM maps e(L)u to 279

expert-selection logits: 280

z = g
(
e(L)u

)
. (9) 281

We convert these logits z into gating weight wi by 282

selecting the top one expert from the logits: 283

wi =


exp(zi/τ)∑M

j=1 exp(zj/τ)
if i = argmaxi zi

0 otherwise,
(10) 284

where τ is a temperature parameter. In practice, 285

one can use top-k experts, but we could not find a 286

significant difference in our experiments. For com- 287

putational efficiency, we keep the top one expert. 288

4.3 Optimization-free User Adaptation 289

While we can predict a preference score of un- 290

seen responses for a known user, the reward model 291

trained in Section 4.2 cannot be used to predict the 292

preference of users who have not been observed 293

during training. To estimate the embeddings of un- 294

seen users, we propose an optimization-free adap- 295

tation approach. 296

Let u∗ be an unseen user who annotates a small 297

set of response pairs. Under the assumption that 298

users who have similar responses have similar pref- 299

erences, we can estimate the embedding of an un- 300

seen user by taking an embedding of users with 301

similar tastes. For example, if both user u∗ and u 302

share positive preference over the same response r, 303

then we can use the embedding of u to approximate 304

that of u∗. Based on this intuition, we propose the 305

following optimization-free adaptation strategy for 306

unseen user embedding: 307

e
(L)
u∗ =

∑
u∈N+

u∗ (k)

wu,u∗e(L)u , (11) 308
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where N+
u∗(k) is a set of k-hop neighborhood1

of user u∗ connected by only positive edges, and
wu,u∗ is a normalized alignment score between u
and u∗. The normalized alignment score wu,u∗ is
defined as

wu,u∗ =
exp(γu,u∗/κ)∑

ũ∈N+
u∗ (k)

exp(γũ,u∗/κ)
,

where

γu,u∗ =
∑

(a≻b)∈Du∗

log σ(su,a − su,b),

where su,i is an inner product between user and309

response embeddings, κ is a temperature parame-310

ter, and γu,u∗ is an alignment score between user311

u and u∗. Intuitively, γu,u∗ measures how well the312

predicted preference of user u aligns with the anno-313

tated preference provided by user u∗. If the prefer-314

ences of both users align well, γu,u∗ is large. Con-315

sequently, their embeddings become similar to each316

other. By collecting embeddings of well-aligned317

neighborhood users, we can obtain embeddings of318

user u∗ without having further optimization.319

5 Experiments320

In this section, we empirically verify the perfor-321

mance of CoPL across various scenarios.322

5.1 Experimental Settings323

Datasets. We employ three datasets, including324

TL;DR (Stiennon et al., 2020; Chen et al., 2024a),325

UltraFeedback-P (UF-P) (Poddar et al., 2024), and326

PersonalLLM (Zollo et al., 2024), that explicitly327

capture diverse user preferences rather than assum-328

ing a single dominant preference. We briefly de-329

scribe the key characteristics of these datasets be-330

low.331

Following prior work (Chen et al., 2024a; Li332

et al., 2024), we define two user groups in the333

TL;DR dataset: one group prefers short summaries,334

and the other favors long summaries. We create335

two environments with the UF-P dataset: UF-P-2,336

dividing users into two groups based on their pref-337

erence, and UF-P-4, dividing users into four groups.338

In PersonalLLM (Zollo et al., 2024), user prefer-339

ences are modeled as a mixture of four preference340

dimensions where weight vectors are drawn from341

a Dirichlet distribution with α = 0.1. Additional342

details on their construction and properties can be343

found in Appendix D.1.344

1k must be an even number to aggregate only the user
embeddings.

Dataset TL;DR UF-P-2 UF-P-4 PersonalLLM

Size of survey set 19,824 25,993 25,993 14,435
# of preference groups 2 2 4 ∞
# of annotations per user 8 8 16 16
# of users per group 5,000 5,000 2,500 -

Table 1: Statistics of the datasets. We report the average
number of annotations per user. All users have different
preferences in PersonalLLM.

We divide 10, 000 users evenly into the prede- 345

fined number of preference groups. For all datasets, 346

we curate two different versions, denoted as ALL 347

and AVG, representing two different annotation 348

sampling strategies. For TL;DR/UF-P-2 (ALL), 349

each user provides exactly 8 annotations, while 350

for TL;DR/UF-P-2 (AVG), each user’s annotation 351

count is uniformly sampled from 1 to 15, aver- 352

aging to 8. Similarly, in UF-P-4/PersonalLLM 353

(ALL), each user provides exactly 16 annotations, 354

and in UF-P-4/PersonalLLM (AVG), the count is 355

uniformly sampled from 1 to 31, averaging to 16. 356

Table 1 summarizes the key statistics. 357

Baselines. We evaluate six baselines to bench- 358

mark. First, we use a uniform preference model 359

(Uniform) trained on all annotations via BTL. Ad- 360

ditionally, we consider four personalized reward 361

models: I2E, I2Eproxy (Li et al., 2024), VPL (Pod- 362

dar et al., 2024), and PAL (Chen et al., 2024a). 363

Finally, we include an Oracle, which has access to 364

user group information and all annotations in the 365

survey set, and trains a separate reward function 366

in Eq. (1) for each preference group. Note that we 367

do not have the Oracle for PersonalizedLLM since 368

the users are not categorized into a fixed number of 369

preference groups. The details of each model are 370

provided in Appendix B. 371

Training and evaluation details. For reward 372

function training, we utilize two LLM back- 373

bones: gemma-2b-it and gemma-7b-it (Team 374

et al., 2024). Our model uses one shared LoRA, 375

eight LoRA experts, each with a rank of eight, and 376

a two-layer MLP for the gating function. The other 377

baselines, e.g., Uniform, I2E, VPL, PAL, and Ora- 378

cle, use a LoRA rank of 64. Other training details, 379

such as hyper-parameters and model architecture, 380

are provided in Appendix D.2. All experiments, 381

including additional analysis, are repeated three 382

times with different seeds. 383

We report reward model accuracy on unseen test 384

pairs that are not in the survey set. We evaluate 385

performance for both seen and unseen users. For 386
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TL;DR UF-P-2 UF-P-4 PersonalLLM

ALL AVG ALL AVG ALL AVG ALL AVG

Se
en

Oracle 73.06±0.23 73.06±0.23 64.53±0.14 64.53±0.14 61.52±0.13 61.52±0.13 N/A N/A

Uniform 49.62±0.09 49.62±0.09 61.82±0.16 61.82±0.16 56.15±0.22 56.15±0.22 62.91±0.07 62.91±0.07

I2E 49.93±0.23 49.74±0.06 61.48±0.18 61.49±0.70 57.21±0.37 57.44±0.37 65.74±0.04 65.77±0.05

I2Eproxy 49.80±0.16 49.54±0.13 61.43±0.56 61.33±0.61 56.78±0.14 57.14±0.31 65.66±0.11 65.77±0.05

VPL 49.52±0.14 49.44±0.21 61.11±0.16 61.86±0.84 56.04±1.71 56.77±0.38 70.84±0.18 67.95±0.21

PAL 50.12±0.13 50.15±0.15 59.95±0.04 61.53±0.22 56.95±0.13 57.37±0.14 66.25±0.35 66.29±0.06

CoPL 96.58±0.09 96.19±0.02 63.81±0.16 63.45±0.38 62.57±0.38 62.08±0.27 74.85±0.17 74.37±0.03

U
ns

ee
n

Oracle 72.55±1.79 72.55±1.79 64.66±1.10 64.66±1.10 61.33±0.35 61.33±0.35 N/A N/A

Uniform 50.11±0.36 50.11±0.36 62.82±0.59 62.82±0.59 55.65±0.61 55.65±0.61 62.97±0.07 62.97±0.07

I2E 49.85±0.38 49.16±0.82 61.67±0.82 59.52±0.51 56.42±0.41 56.75±0.68 65.79±0.18 66.11±0.24

I2Eproxy 49.75±0.94 49.12±0.57 62.30±0.54 61.70±0.63 56.00±1.15 56.50±0.34 65.49±0.10 65.79±0.04

VPL 49.40±0.88 49.31±0.57 60.83±0.40 62.62±0.49 54.03±1.54 56.13±0.57 71.31±0.58 68.55±0.47

PAL 49.48±0.86 49.64±0.55 59.83±0.69 61.71±0.31 57.07±0.22 57.13±0.33 65.94±0.11 66.40±0.03

CoPL 96.71±0.25 96.21±0.14 63.92±0.54 63.26±0.51 61.62±0.10 61.97±0.35 75.69±0.22 75.49±0.03

Table 2: Accuracy of reward models on unseen annotated pairs. The results report performance on Seen users
encountered during training and on Unseen users. Bold represents the best result, except for Oracle. These results
are based on gemma-2b-it. Additional results using gemma-7b-it are represented in Table A2.

(a) VPL (b) CoPL

Figure 3: T-SNE visualization of seen user embeddings
in UF-P-4 (AVG) with gemma-2b-it. Points are colored
by their preference group. Our method clusters users in
the same group more effectively. T-SNE visualizations
of other baselines are provided in Fig. A2.

seen user experiments, each user is assigned 10 test387

pairs, and accuracy is calculated over all seen users.388

We fix the number of unseen users at 100, evenly389

distributed across preference groups. To adapt the390

reward model for each unseen user, we provide 8391

annotations in TL;DR/UF-P-2 (ALL/AVG) and 16392

annotations in UF-P-4/PersonalLLM (ALL/AVG),393

followed by evaluation on 50 test pairs per unseen394

user. CoPL uses 2-hop neighbors for unseen user395

adaptation.396

5.2 Results397

Table 2 presents accuracy for both seen and un-398

seen users. CoPL consistently outperforms other399

baselines, except for Oracle, in both seen user and400

unseen user experiments. Notably, CoPL surpasses401

the performance of Oracle on TL;DR and UF-P-4,402

demonstrating the advantage of multi-task learn-403

12 4 8 16 32
Number of Annotations

60

65
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ra
cy

2-hop
4-hop

(a) UF-P-2 (AVG)

12 4 8 16 32
Number of Annotations

55

60

65
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cu

ra
cy

2-hop
4-hop

(b) UF-P-4 (AVG)

Figure 4: Accuracy of unseen user adaptation as the
number of provided annotation sets increases, evaluated
on UF-P-2/4 (AVG) with gemma-2b-it. 2-hop and 4-
hop indicates 2-hop and 4-hop adaptation, respectively.

ing. In the PersonalLLM, CoPL remains robust 404

across the ALL and AVG, whereas VPL suffers 405

from performance degradation in a more realistic 406

AVG setting. These findings are consistent with 407

Ju et al. (2024), which theoretically shows that 408

message-passing can help users with limited inter- 409

actions in collaborative filtering. In unseen user 410

experiments, CoPL achieves accuracy comparable 411

to the seen user setting, indicating the effectiveness 412

of our unseen user adaptation. 413

Fig. 3 illustrates the learned user embeddings for 414

UF-P-4 (AVG), selected as the most challenging en- 415

vironment among those with distinct groups. The 416

figure shows that GNN-based representation learn- 417

ing successfully captures preference similarities, 418

despite the limited annotations per user. 419
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Oracle Uniform I2E I2Eproxy VPL PAL CoPL

Common 71.86±0.14 74.52±0.45 73.94±0.21 74.15±1.53 72.73±1.00 70.82±0.17 71.23±1.63

Controversial 57.68±0.27 49.86±0.30 49.61±0.05 49.86±0.06 50.26±0.44 49.79±0.12 56.89±1.56

Total 64.53±0.14 61.82±0.16 61.48.±0.18 61.59±0.79 61.11±0.32 59.95±0.04 63.81±0.15

Table 3: Accuracy of reward models on UF-P-2 (ALL) with gemma-2b-it, broken down by pair type. Common
refers to pairs for which the two preference groups provide the same preference label, Controversial refers to pairs
labeled differently by the two groups, and Total encompasses all pairs. These categories reflect how diverse user
preferences affect the performance of reward models. Bold represents the best result, except with Oracle.

5.3 Analysis420

Analysis of performance in UF-P-2. In Table 2,421

all models appear capable of representing diverse422

preferences, surprisingly including the uniform423

models in UF-P-2 (ALL/AVG). To investigate fur-424

ther, we divide the test pairs of UF-P-2 into com-425

mon and controversial categories, where common426

pairs have identical annotations from both prefer-427

ence groups, and controversial pairs differ. Focus-428

ing on the seen user results in UF-P-2 (ALL) with429

gemma-2b-it from Table 2, we break down the430

accuracy in Table 3. The results indicate that base-431

lines, except Oracle, struggle with controversial432

pairs, suggesting a tendency to capture only the433

common preference across all users. By contrast,434

our method achieves comparable performance to435

Oracle on controversial pairs while preserving high436

accuracy on common pairs.437

Effect of the number of annotations in unseen438

user adaptation. Fig. 4 shows accuracy as the439

number of provided annotations increases in UF-P-440

2 (AVG) and UF-P-4 (AVG). We observe that addi-441

tional annotations lead to more accurate preference442

predictions for unseen users in general. However,443

in practice, even eight annotations are sufficient, en-444

abling accurate inference of each user’s preference.445

We also compare two-hop and four-hop adaptations,446

but there is no significant difference.447

Ablation study of CoPL. Table 4 presents an448

ablation study of CoPL, focusing on GNN-derived449

user embeddings and the MoLE architecture. When450

GNN embeddings are removed, user representa-451

tions become learnable parameters. Without MoLE,452

user embeddings are projected into the token space453

and passed as an additional token to the reward454

model. The results indicate that components of455

CoPL are effective. Specifically, GNN-based em-456

beddings are a crucial component of CoPL, and the457

MoLE architecture further enhances accuracy. No-458

tably, CoPL uses fewer activated parameters than459
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rt
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Figure 5: Expert allocation at layers 2 and 3 in UF-
P-4-ALL with gemma-2b-it. Colors indicate prefer-
ence groups. Users with similar preference groups are
mapped to the same expert.

UF-P-2 (ALL) UF-P-4 (ALL)

CoPL 63.81±0.16 62.57±0.38

w/o GNN embedding 62.09±0.38 56.75±0.30

w/o MoLE (n = 64) 62.69±0.86 62.28±0.33

w/o MoLE (n = 16) 62.43±0.69 62.13±0.12

Table 4: Ablation study of CoPL in UF-P-2/4 (ALL)
with gemma-2b-it. w/o GNN embedding replaces user
embeddings from GNN with learnable user embeddings.
w/o MoLE removes the MoLE and projects user embed-
dings into the token space. The symbol n denotes the
LoRA rank.

w/o MoLE (n = 64). 460

Fig. 5 depicts expert allocation across layers two 461

and three, where the user-conditioned gating mech- 462

anism partitions users differently at each layer. We 463

can observe that users with the same preferences 464

tend to be routed to the same expert. 465

We provide the ablation study of the number of 466

experts in Appendix E. 467

Ablation study of unseen user adaptation. We 468

conduct an ablation study to evaluate the effective- 469

ness of the unseen user adaptation strategy, com- 470

paring it to two baselines, Naive Avg and User Opt. 471

Naive Avg assigns each unseen user embedding as 472

the unweighted average of 2-hop seen user embed- 473

dings. User Opt replaces e(L)u with a parameterized 474
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UF-P-4 (ALL) UF-P-4 (AVG)

CoPL 61.62±0.10 61.97±0.35

Naive Avg. 59.91±0.59 59.39±0.50

User Opt. 59.24±0.71 59.45±0.72

Table 5: Accuracy of unseen-user adaptation in UF-P-4
(ALL/AVG) with gemma-2b-it. Naive Avg. computes
the unseen user’s embedding as the unweighted average
of 2-hop neighbors, while CoPL applies a weighted
average. User Opt. represents an optimization-based
approach that learns a parameterized user embedding
by maximizing the likelihood of the given annotations.
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Figure 6: Accuracy of reward models on UF-P-2 and
UF-P-4 (ALL) with gemma-2b-it with varying number
of seen users. The number of annotations per user re-
mains constant except in the case with “×2,” where we
double the per-user annotations only for 5, 000 users,
making the total number of annotations 10, 000.

embedding learned by minimizing Equation (5) on475

the provided annotations. Table 5 reports results476

in UF-P-4-ALL/AVG with gemma-2b-it, show-477

ing that CoPL outperforms both alternatives while478

achieving better computational efficiency than the479

optimization-based User Opt.480

Fig. A3 illustrates that naive averaging places481

unseen users away from identical preference group482

users, whereas our method clusters them more483

closely with users who share the same preferences.484

Ablation study of the number of users. We con-485

duct an ablation study of CoPL by varying the num-486

ber of users and report the performance in Fig. 6.487

The performance of the model is consistent except488

for the case where there are only 5, 000 users in489

the training set. The performance with 5,000 users490

becomes comparable when we double the number491

of annotations (2×), indicating the need for a suf-492

ficient amount of annotations to capture diverse493

preferences.494

Training reward models with GNN. Table 6495

reports GNN accuracy on seen users and responses496

for test pairs excluded from the training dataset.497

The results demonstrate that GNN can accurately498

UF-P-2 UF-P-4

ALL AVG ALL AVG

84.84±0.83 84.32±0.09 90.01±0.35 87.74±0.19

Table 6: Test accuracy of the GNN. We evaluate the
model using the same users from training but with an-
notation pairs that are not reflected in the graph.

UF-P-2 (ALL) UF-P-4 (ALL)

CoPL 63.81±0.16 62.57±0.38

Pseudo label 62.77±0.70 62.26±0.27

Oracle 64.53±0.14 61.52±0.13

User-specific 58.09±1.73 55.30±3.30

Table 7: Accuracy of reward model trained by using a
pre-trained GNN in UF-P-2/4 (ALL) with gemma-2b-it.
The "pseudo-label" trains a reward model on all seen
user–response pairs, with annotations provided by GNN-
predicted labels. The "user-specific" refers to a BTL
model trained with pseudo-labels for each user. Only 10
users per group are sampled due to computational cost.

predict labels for unannotated pairs with sparse 499

annotations. We provide the additional ablation 500

study of message-passing in Appendix E. 501

Table 7 examines the impact of training with 502

GNN-based pseudo labels, allowing the model to 503

leverage additional preference data. Although the 504

pseudo-labeled pairs increase the dataset size, per- 505

formance is slightly worse than using only user- 506

provided annotations, suggesting that noise de- 507

grades model accuracy. 508

To investigate the effect of noise further, a user- 509

specific reward model is trained on pseudo labels 510

for a random sample of 10 users per group. The 511

results are considerably worse than the Oracle, indi- 512

cating that noisy labels introduce training instabil- 513

ity. This observation aligns with Wang et al. (2024), 514

which notes that noisy preference labels can lead to 515

training instability and performance degradation. 516

6 Conclusion 517

In this work, we introduced CoPL, a novel ap- 518

proach for personalizing LLMs through graph- 519

based collaborative filtering and MoLE. Unlike ex- 520

isting methods that treat user preferences indepen- 521

dently or require predefined clusters, our approach 522

leverages multi-hop user-response relationships to 523

improve preference estimation, even in sparse anno- 524

tation settings. By integrating user-specific embed- 525

dings into the reward modeling process with MoLE, 526

CoPL effectively predicts an individual preference. 527
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Limitations528

This work demonstrates how GCF-based user em-529

beddings enable personalization in sparse settings,530

but we do not extensively explore other GNN archi-531

tectures that could further reduce sample complex-532

ity. Additionally, although CoPL employs a gating533

mechanism for user-specific expert allocation, we534

did not apply load-balancing loss, which induces535

more even activation among experts. As a result,536

some experts remain inactive in Fig. 5. Future work537

may investigate different GNN designs and incor-538

porate load-balancing techniques to fully leverage539

the potential of GNN and MoLE, respectively.540

The oracle model may appear underwhelming,541

likely because our smaller backbone LLM strug-542

gles to capture subtle stylistic differences between543

responses. Larger-scale models (over 30B param-544

eters) could better handle these nuances; however,545

constraints in our current setup prevent such exper-546

iments, and we defer them to future work.547
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Appendix733

A Message Passing for Response734

Embeddings735

Given user and response embeddings at layer ℓ, a736

message from neighborhood users to the response737

as738

m+
r =

∑
u∈N+

r

αu,r

(
Ŵ

(ℓ)
1 e(ℓ)u + Ŵ

(ℓ)
2 (e(ℓ)u ⊙ e(ℓ)r )

)
,739

m−
r =

∑
u∈N−

r

βu,r

(
Ŵ

(ℓ)
3 e(ℓ)u + Ŵ

(ℓ)
4 (e(ℓ)u ⊙ e(ℓ)r )

)
,740

m(ℓ)
r = Ŵ

(ℓ)
self e

(ℓ)
r + m+

r + m−
r , (12)741

where Ŵ (ℓ)
1 , Ŵ

(ℓ)
2 , Ŵ

(ℓ)
3 , Ŵ

(ℓ)
4 , Ŵ

(ℓ)
self ∈ Rd×d are742

parameter matrices, ⊙ is element-wise multiplica-743

tion, and αu,r and βu,r are normalization factors,744

set to 1√
|N+

u |·|N+
r |

and 1√
|N−

u |·|N−
r |

, respectively.745

Then, the response embedding is updated with746

the aggregated message m(ℓ)
r :747

e(ℓ+1)
r = ψ

(
m(ℓ)

r

)
, (13)748

where ψ(·) is a non-linear activation.749

B Method Baselines750

Uniform. The uniform model is a standard ap-751

proach for pairwise preference comparisons. We752

train the uniform model with all annotation pairs,753

which will capture the common preference.754

Oracle. For an oracle model of our setting, we755

train the model with the true group membership756

of all users. A separate uniform model is trained757

for each group by aggregating annotations from the758

users in that group.759

I2E (Li et al., 2024). I2E is a framework that760

uses DPO to personalize LLM. However, it can be761

easily extended to reward modeling. I2E trains a762

model that maps the user index into a learnable763

embedding. It appends each user embedding as764

an additional input token to the LLM, providing765

user-specific signals for reward prediction.766

I2Eproxy (Li et al., 2024). A variant of I2E that767

introduces N proxy embeddings. A weighted com-768

bination of these proxies forms the final user em-769

bedding, which is passed to the LLM for reward770

prediction. In our experiments, we use N = 10.771

VPL (Poddar et al., 2024). Variational Prefer- 772

ence Learning (VPL) encodes user-specific annota- 773

tions into user embeddings. The user embeddings 774

are then combined with sentence representations 775

via an MLP to predict reward scores. To capture 776

the user preferences effectively, VPL uses a varia- 777

tional approach that maps the user annotations into 778

a prior distribution. 779

PAL (Chen et al., 2024a). Pluralistic Alignment 780

(PAL) applies an ideal-point model, where the dis- 781

tance between the user and the response determines 782

the reward. The ideal point of the user is repre- 783

sented by N proxies, set to N = 10 in this work. 784

Among variants of PAL, we use PAL-A with logis- 785

tic loss. 786

C Related Works 787

Personalized alignment. With the growth of gen- 788

erative models, alignment has emerged as a crucial 789

strategy for mitigating undesirable outcomes, such 790

as biased or harmful outputs, and ensuring that the 791

model works with human preference (Dai et al., 792

2023; Yang et al., 2024a). Alignment methods of- 793

ten rely on reward models. They typically build 794

on the BTL framework, which relies on pairwise 795

comparisons from various annotators. However, 796

previous research has often focused on the aver- 797

age preference of annotators (Achiam et al., 2023), 798

ignoring the diverse preferences. 799

To address preference diversity, recent 800

works (Jang et al., 2023; Oh et al., 2024; Yang 801

et al., 2024b) view this problem as a soft clustering 802

problem, where user-specific preferences are 803

treated as mixtures of predefined preference 804

types. Although this approach effectively handles 805

diverse preferences, it relies on specifying several 806

preference types in advance. 807

Another line of work introduces user latent vari- 808

able in the BTL framework (Poddar et al., 2024; 809

Li et al., 2024; Chen et al., 2024a). Although ex- 810

tending the BTL framework with latent user vari- 811

ables can address diverse preferences, the main 812

challenge lies in obtaining user representations. 813

One approach is to treat each user embedding as 814

learnable parameters, (Li et al., 2024; Chen et al., 815

2024a), and the other strategy is to train an encoder 816

that infers embeddings from the small set of an- 817

notated pairs provided by each user (Poddar et al., 818

2024). 819
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Preference learning with sparse interactions.820

Preference learning with sparse interactions is a821

well-studied challenge in recommendation systems,822

where each user typically interacts with only a823

small fraction of the available items. Despite these824

limited interactions, the system should infer the825

preference of each user and recommend additional826

items accordingly (He and Chua, 2017; Chen et al.,827

2020; Li et al., 2022; Lin et al., 2022). Collabo-828

rative filtering (CF) is a widely adopted solution829

that assumes users with similar interaction histories830

will exhibit similar preferences.831

Graph-based CF (GCF) (Wang et al., 2019; He832

et al., 2020) has been considered one of the most833

advanced algorithms for a recommendation system.834

GCF leverages graph neural networks (GNNs) to835

capture preference through the connectivity among836

users and items. Many GCFs are developed based837

on an implicit feedback assumption (Rendle et al.,838

2012), where an edge between a user and an item839

reveals a preferable relation. Whereas in our set-840

ting, users provide explicit feedback given a pair841

of responses, making direct application of GCF842

unsuitable.843

D Experimental Details844

In this section, we provide a detailed explanation845

of dataset construction and hyper-parameters.846

D.1 Datasets847

TL;DR. The TL;DR dataset (Stiennon et al.,848

2020) contains Reddit posts alongside concise sum-849

maries and annotator IDs. Prior works (Li et al.,850

2022; Chen et al., 2024a) employ a modified ver-851

sion of this dataset by defining two simulated pref-852

erence groups: one group favors shorter summaries,853

while the other prefers longer ones. The two groups854

provide different annotations for each summary855

pair. To focus on the most active annotators, they856

retain only the ten users with the highest number857

of annotations. We adopt the resulting set of an-858

notation pairs from these ten users as our survey859

set.860

Ultrafeedback-P. Poddar et al. (2024) proposes861

the Ultrafeedback-P (UF-P) benchmark for person-862

alized reward modeling, based on the Ultrafeed-863

back (UF) dataset (Cui et al., 2023), which provides864

response pairs rated on four attributes: helpfulness,865

honesty, instruction following, and truthfulness. In866

UF-P, each attribute corresponds to a distinct pref-867

erence. For instance, a user belonging to the help-868

fulness group annotates pairs, solely considering 869

the helpfulness score. 870

UF-P-2 employs only two attributes and re- 871

moves pairs that both user groups label identically, 872

focusing on controversial cases where preferences 873

differ. In UF-P-4, all four attributes are retained 874

as preference dimensions, which allows for par- 875

tial agreement among groups and hence increases 876

complexity. Although Poddar et al. (2024) also 877

excludes pairs fully agreed upon by all users, the 878

remaining set is larger and exhibits more variety 879

than UF-P-2. 880

In Poddar et al. (2024), each user is given a small 881

context sample from a limited set of unannotated 882

pairs to infer the user’s preference. In contrast, we 883

leverage every available pair in the dataset to infer 884

each user’s preferences. For our dataset construc- 885

tion, we use UF-P-4 dataset. 886

PersonalLLM. PersonalLLM (Zollo et al., 2024) 887

is built with 10,402 open-ended prompts that were 888

sampled from a larger pool of 37,919 conversa- 889

tional questions drawn from public RLHF and 890

preference benchmarks such as Anthropic HH- 891

RLHF (Bai et al., 2022), NVIDIA HelpSteer (Wang 892

et al., 2023), and RewardBench (Lambert et al., 893

2024). For each prompt, they used eight frontier 894

chat models to generate a diverse response set that 895

minimizes obvious quality gaps while covering la- 896

tent preference dimensions. The resulting (prompt, 897

response1, response2, ..., response8) tuples are split 898

into 9,402 training and 1,000 test items. 899

Each response is evaluated by ten strong open- 900

source reward models with heterogeneous align- 901

ment objectives. These reward models assign scalar 902

scores capturing distinct value dimensions for every 903

response. Storing the full 10×8 matrix of scores per 904

prompt provides a dense, model-agnostic prefer- 905

ence signal that later steps can recombine to reflect 906

arbitrary preferences. To simulate a large user base, 907

they treat the preference of a user as a weighted en- 908

semble over the ten reward models. The weight is 909

sampled from a Dirichlet distribution, where vary- 910

ing the concentration parameter controls preference 911

diversity. 912

We use α = 0.1 for Dirichlet distribution. 913

Due to computational constraints, we simplify the 914

dataset by selecting three responses per prompt 915

and considering only four reward dimensions. Fol- 916

lowing Poddar et al. (2024), we remove non- 917

controversial response pairs—those in which one 918

response is strictly ranked below the other across 919
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all preference dimensions—to ensure the hetero-920

geneity.921

D.2 Hyper-parameters922

We describe the training details of GNN, a reward923

model, and unseen user adaptation, such as model924

architecture and hyper-parameters.925

GNN. The model consists of four message-926

passing layers, each with user and response embed-927

dings of dimension 512. We use Leaky ReLU as928

a non-linear activation function to update user and929

response embeddings. Training proceeds for 300930

epochs using the AdamW optimizer (Loshchilov,931

2017) with a learning rate of 1× 10−4 and a cosine932

scheduler with warmup ratio 0.1. The batch size933

is 1024, and all experiments are conducted on an934

RTX 4090 GPU.935

Reward models. CoPL comprises an LLM back-936

bone and a MoLE adapter. We use gemma-2b-it937

or gemma-7b-it as the LLM backbone. MoLE in-938

cludes one shared expert and eight LoRA experts939

with a rank of eight. A two-layer MLP with a hid-940

den dimension of 256 and ReLU activation serves941

as the gating mechanism, with a temperature set to942

1.943

We train the reward models using the AdamW944

optimizer with a learning rate of 5 × 10−5 and a945

cosine scheduler with warmup ratio 0.03. Four946

GPUs, such as RTX6000ADA, L40S, and A100-947

PCIE-40GB, are employed with a batch size of948

32 per GPU for gemma-2b-it and 16 per GPU for949

gemma-7b-it.950

Baseline models use LoRA with rank 64. They951

also trained with an AdamW optimizer and a cosine952

scheduler with a warmup ratio 0.03. We search the953

learning rate from [1×10−4, 5×10−5, 1×10−5, 5×954

10−6].955

User adaptation. We use a two-hop seen user956

and 0.07 as temperature for unseen user adapta-957

tion of CoPL. For I2E, each learnable user repre-958

sentation is mapped into each user. For I2Eproxy959

and PAL, user representations are determined by960

N = 10 proxies. Adapting to an unseen user re-961

quires parameter optimization for unseen users, typ-962

ically through several gradient steps. To optimize963

the parameters for unseen users, 50 gradient steps964

are applied during adaptation.965
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Figure A1: Ablation study on the number of experts in
UF-P-2 and UF-P-4 (ALL) with gemma-2b-it.

CoPL 84.84±0.83

w/o N.E. 72.94±0.61

w/o Act. & Trans. 80.61±0.32

w/o Act. & Trans. & T.E. 72.15±1.02

Table A1: Test accuracy of GNN in UF-P-2-ALL. “N.E.”
denotes the negative edges. “Act.” denotes the non-
linear activation. “Trans.” denotes the feature transfor-
mation matrix.

E Additional Experimental Results 966

Ablation study of the number of users. Fig. A1 967

shows that CoPL performs robustly across differ- 968

ent expert counts. This indicates that a moderate 969

number of experts is generally sufficient to capture 970

diverse user preferences. 971

Ablation study of message-passing. Inspired by 972

the previous work (He et al., 2020) in recommenda- 973

tion systems, we first omit the non-linear activation 974

and feature transformation matrix used in Eq. (2), 975

and also investigate the effectiveness of negative 976

edges. As shown in Table A1, incorporating nega- 977

tive edges consistently improves accuracy. Notably, 978

our proposed message-passing achieves the highest 979

accuracy, highlighting both the effectiveness of our 980

message-passing operation and the advantage of 981

modeling negative edges. 982

13



TL;DR UF-P-2 UF-P-4 PersonalLLM

ALL AVG ALL AVG ALL AVG ALL AVG

Se
en

Oracle 77.21±0.28 77.21±0.28 66.80±0.17 66.80±0.17 62.17±0.09 62.17±0.09 N/A N/A

Uniform 49.39±0.52 49.39±0.52 61.96±0.07 61.96±0.07 56.80±0.12 56.80±0.12 63.64±0.30 63.64±0.30

I2E 49.40±0.77 49.66±0.31 62.10±0.28 61.43±0.23 57.90±0.21 58.50±0.09 66.40±0.38 65.86±0.12

I2Eproxy 49.50±0.73 49.95±0.34 62.03±0.30 62.27±0.09 57.54±0.16 58.12±0.14 66.58±0.35 65.70±0.02

VPL 49.14±0.72 49.17±0.67 62.39±0.10 62.59±0.24 58.87±0.25 57.55±1.00 70.55±0.16 66.18±0.01

PAL 49.57±0.09 49.75±0.27 62.59±0.06 62.47±0.13 57.17±0.22 56.27±0.13 66.46±0.49 65.43±0.43

CoPL 97.85±0.07 97.88±0.01 63.90±0.07 63.48±0.13 62.90±0.05 61.93±0.02 74.87±0.19 74.76±0.01

U
ns

ee
n

Oracle 77.54±0.49 77.54±0.49 67.43±0.65 67.43±0.65 62.01±0.04 62.01±0.04 N/A N/A

Uniform 49.03±0.76 49.03±0.76 62.23±0.06 62.23±0.06 57.02±0.27 57.02±0.27 63.30±0.08 63.30±0.08

I2E 49.64±0.98 49.56±0.49 62.62±0.95 61.88±0.21 57.62±0.92 58.12±0.98 65.75±0.38 65.74±0.37

I2Eproxy 49.68±1.35 49.19±1.06 61.99±0.33 62.84±0.40 57.69±0.70 57.73±0.32 66.47±0.08 66.13±0.33

VPL 49.07±0.65 48.92±0.72 62.69±0.99 63.67±0.12 58.49±1.22 56.85±0.84 69.93±0.33 65.72±0.42

PAL 49.71±0.44 49.68±0.34 63.08±0.73 62.52±0.58 57.15±0.48 56.44±0.67 66.57±0.08 65.92±0.25

CoPL 97.95±0.15 98.19±0.06 64.08±0.71 64.38±1.00 62.77±1.32 62.08±0.64 74.84±0.18 75.64±0.05

Table A2: Accuracy of reward models on unseen annotated pairs. The results report performance on Seen users
encountered during training and on Unseen users, which consist of 100 new users evenly distributed across
preference groups. Unseen users provide 8 annotations under TL;DR/UF-P-2 (ALL/AVG) and 16 annotations under
UF-P-4/PersonalLLM (ALL/AVG). Bold represents the best result, except for Oracle. N/A indicates that training
reward models for each group is infeasible for PersonalLLM, as this dataset does not clearly partition users into
discrete groups. All experiments run on three seeds. These results are based on gemma-7b-it.

(a) I2E (b) I2Eproxy (c) VPL (d) PAL (e) CoPL

Figure A2: T-SNE visualization of seen user embeddings in UF-P-4 (AVG) with gemma-2b-it. Points are colored
by their preference group. Our method clusters users in the same group more effectively, whereas other baselines
fail to cluster users by their preference groups in the user embedding space.

(a) Naive Avg. (b) User Opt. (c) CoPL

Figure A3: T-SNE visualization of seen and unseen user embeddings in UF-P-4-AVG. Naive Avg. computes unseen
user embeddings as the unweighted mean of 2-hop neighbor embeddings. User Opt. represents an optimization-
based approach that learns a parameterized user embedding by maximizing the likelihood of the given annotations.
Colors indicate preference groups, and points with black edges represent unseen users. Unseen users adapted by our
method align with their respective preference groups.
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