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a b s t r a c t

Deep clustering plays an important role in data analysis, and with the prevalence of graph data
nowadays, various deep clustering models on graph are constantly proposed. However, due to the lack
of more adequate clustering guidance, the discriminability of feature representation learned from these
models for the clustering task is limited. Therefore, for the purpose of enabling the output of these
models to be more cluster-oriented, we propose a Deep Clustering Optimization Method for Graph
Neural Networks (DCOM-GNN), which can be attached to the original model architecture conveniently.
For DCOM-GNN, it contains two components, one is the inter-cluster distance optimization module,
whose role is to further adjust the distance between clusters of the original model output rationally.
Another one is the intra-cluster distance optimization module, which aims to improve the cohesiveness
of the original model output. Comprehensive experiments show that the performance of various deep
clustering models on graph can be significantly improved after adding DCOM-GNN.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

As an important data analysis method, the purpose of cluster-
ng is to reveal the intrinsic nature of the samples and the rule
f interconnection. With the development of deep learning, deep
lustering [1–3] that can be considered as the combination of rep-
esentation learning and clustering objective has emerged. Com-
ared with traditional clustering algorithms (e.g., K-means [4]
nd spectral clustering [5]), deep clustering is significantly supe-
ior in handling large-scale, high-dimensional datasets. Initially,
he deep clustering models represented by autoencoder-based
nly take into account the data itself [6–8].
In recent years, massive amounts of data formed by the graph

ave been generated in various real-world fields, such as data
n social network [9,10], citation network [11,12], protein net-
ork [13,14], financial network [15]. For these graph data, there

s rich structural information in addition to the data itself, which
bviously is also quite important should not be neglected. Thus,
or the purpose of mining more valuable information from graph
ata, deep clustering models on graph [16–18] are gradually
ttracting the attention of researchers. These models take full
dvantage of graph neural networks (GNNs) (e.g., Graph Convo-
utional Networks [19], Graph Attention Networks [20], Graph
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Contrastive Learning [21]), and transform graph data into the
low-dimensional feature representation, while attempting to re-
tain the properties of these data in vector space as much as
possible. Subsequently, in cooperation with the respective clus-
tering objective function, the finally clustering-oriented feature
representation is obtained. For instance, a GCN-based cluster-
ing method is proposed in [22], which contains a stochastic
multi-clustering framework that can effectively improve the com-
putational efficiency. Peng et al. propose an attention-based deep
clustering model on graph [23], which consists of two modules to
implement feature fusion from layer-wise as well as scale-wise
respectively, considering both local and global information in the
process of clustering. In order to capture higher-order neighbor
information to further improve the clustering performance, an
adaptive graph convolution model (GCA) is proposed in [24],
which is trained with spectral clustering based on the acquisition
of the smooth feature representation.

However, even though some improvements have been
achieved for deep clustering models on graph, the discrimination
of the feature representation learned from these models for the
clustering task remains unsatisfactory, i.e., the cluster guidance
received by the model is still inadequate, which result in lim-
ited clustering performance of the model. Considering that the
clustering task pursues ‘‘internal denseness and external sparse-
ness’’, i.e., the distances between samples in the same cluster
(the intra-cluster distance) should be as close as possible, and
the distances between samples in different clusters (the inter-
cluster distance) should be as far away as possible within a

https://doi.org/10.1016/j.knosys.2023.110961
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easonable range according to the actual situation. In other words,
egardless of the viewpoints from which deep clustering models
mplement their guidance for the clustering task, there is one
ituation in which they are all consistent. Thus, if we enable
urther rationalization for the inter-cluster distance and reduction
or the intra-cluster distance of the feature representation learned
y original deep clustering models on graph, i.e., enhance the
trength of these models’ clustering-oriented guidance based
n their existing, then the goal of improving their clustering
erformance is potentially achievable.
Therefore, in this paper, we propose a Deep Clustering Op-

imization Method for Graph Neural Networks (DCOM-GNN),
hich can be conveniently attached to the architecture of existing
eep clustering models on graph and enable these models to
eceive more adequate clustering-oriented guidance. For DCOM-
NN, it consists of an inter-cluster distance optimization module
nd an intra-cluster distance optimization module. The purpose
f the first module is to adjust the inter-cluster distance of the
riginal model output more rationally, which assigns correspond-
ng weight coefficients to clusters according to the similarities
etween them. In this process, we consider the attribute and
he structural similarity to distinguish the degree of influence
etween different clusters. Next, with the aim of improving the
ohesiveness of the original model output, we design the second
odule, which imposes corresponding ‘‘gravitation’’ on each node

n the cluster based on the distance between nodes from the
entroid in the same cluster, so as to make the intra-cluster
istance more compact. Finally, benefiting from the DCOM-GNN
ntegration into the original model and playing a corrective role
n every epoch iteration during the training process, the model
nables learning more discriminative feature representation for
he clustering task compared with the previous one, while in or-
er to avoid the case that the clustering performance of the model
ecreases instead of increases due to over-correction caused by
COM-GNN, we also include the moderation of the original model
utput in the final output. Extensive experiments demonstrate
hat adding DCOM-GNN can improve the performance of various
eep clustering models on graph effectively.
Overall, our major contributions can be summarized as below:
(1) Considering that most existing deep clustering models on

raph with regard to clustering-oriented guidance are still inade-
uate, for the sake of enabling the feature representation learned
rom the original model more discriminative towards clustering
ask, we propose a Deep Clustering Optimization Method for
raph Neural Networks (DCOM-GNN).
(2) For DCOM-GNN, we first design an inter-cluster distance

ptimization module, which assigns corresponding weighting co-
fficients to clusters based on similarity at both the attribute and
tructure between them. In addition, we design another intra-
luster distance optimization module, so that the distance of
odes within the same cluster becomes more compact.
(3) We add DCOM-GNN to some representative deep cluster-

ng models on graph proposed in recent years, and the experi-
ental results show that DCOM-GNN improves the performance
f these models significantly, which demonstrates its effective-
ess.
The rest of this paper is organized as follows: In Section 2, we

ntroduce the work related to DCOM-GNN. Followed by Section 3,
e describe the two modules that constitute the DCOM-GNN in
etail. Then in Section 4, we show the performance after adding
COM-GNN to some representative deep clustering models on
raph and conduct relevant analysis. Finally, we conclude this
ork in Section 5.
2

2. Related work

2.1. Traditional deep clustering models

The initial deep clustering models ignore the rich structural
information between the data, and focus only on extracting the
features of the data itself. For instance, Deep Embedded Cluster-
ing (DEC) as a classical deep clustering model is proposed in [25],
which determines sample belonging clusters by the Student’s t-
distribution [26] and an auxiliary distribution. Guo et al. argue
that DEC ignores the preservation of data attributes, which may
lead to the corruption of the vector space. Thus, they propose a
method called deep convolutional embedded clustering in [27].
Similarly, considering that DEC also cannot ensure the preserva-
tion of the local structure, a method to improve local structure
preservation is proposed in [28], which achieves the preservation
of data structure features by fusing the clustering loss and loss
in the autoencoder. In addition, following the inspiration of DEC,
there are some other methods [29–31] that have been proposed.

2.2. Deep clustering models on graph

In recent years, motivated by the impressive achievements
of many GNNs-based methods in encoding the graph structure,
some deep clustering models on graph have been proposed. Com-
pared with the previous models, they can integrate structural
information into the process of deep clustering.

Most of such models are dedicated to learning more valuable
feature representation, and consider clustering as one of the
downstream tasks. The initial work of deep clustering on graphs
and their models are relatively simple, but they do not take into
account the multiple views and different degrees of influence
among node neighbors, so the various information implied in
the feature representation they learn is relatively insufficient. For
instance, Variational Graph Auto-Encoders (VGAE) [32] migrates
Variational Auto-Encoders to the graph, and utilizes GCN as an
encoder to integrate graph structure information into the fea-
ture representation learning process. Hu et al. [33] propose a
deep graph clustering method in social networks, which discovers
clusters by considering node correlations and integrating the
content interaction of nodes into the graph learning process. A
more powerful encoding mechanism is able to improve the graph
representation learning ability of the model, thus compared with
the model in [32], the method in [34] can learn better feature
representation due to the presence of adversarial processes. Sim-
ilarly, the model in EGAE [35] utilizes a multilayer GCN to learn
the feature representation of nodes, which is achieved on the
basis of obtaining the similarity between the nodes by comput-
ing their inner product. Furthermore, some researchers attempt
to mine more potential structural information that makes the
learned feature representation more enrichment, and some mod-
els are proposed based on this. As a representative of them,
MAGCN [36] leverages GCN to reconstruct feature representa-
tion and common relationship graphs. Meanwhile, a multi-view
attribute graph attention mechanism is designed in MAGCN to
reduce noise, thus more informative feature representation can
be learned from MAGCN. A GAT-based method for hierarchical
clustering is proposed in [37], and the loss function of it in-
cludes both the overall loss of the entire hierarchy as well as the
hierarchical information. He et al. [38] design the AGC module
to adjust the graph structure and data features, and integrate
AGC and AE with attention weights for heterogeneous features
to learn more complex fused features. Peng et al. [39] propose
a deep attention-guided graph clustering model with dual self-
supervision, and the feature representation learned from it has
multi-scale information from different layers. Recently, the deep
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lustering model on dynamic graph has also been proposed [40],
hich is closely related to the progress achieved in the work
ssociated with dynamic graph representation learning [41,42].
ompared with static graph, dynamic graph contain richer in-
ormation (e.g., the record of timestamps), but in general their
odels tend to have higher time and space complexity. Consid-
ring that the work of deep clustering on dynamic graph is in
he initial stage and there are many commonalities between it
nd the work on deep clustering on static graph, here we still
ocus on the latter. Boosting the graph learning representation
apability of the model certainly contributes to the improvement
f clustering performance, there is also a benefit to providing
etter guidance for clustering task in the process of model learn-
ng feature representation. Inspired by [25], Xie et al. propose an
bjective function that is dependent on probability distributions
n [43], which is different from the common clustering objective
unction represented by K-means and provides a better cluster
ssignment guidance for learned feature representation. On this
asis, Xu et al. design a clustering objective function containing
luster-specificity distribution constraint in [44].
Nevertheless, even though the performance of these deep

lustering models on graph has been partially improved, their
ccess to guidance specific to the clustering task in the process
f training is still inadequate, which makes the discrimination
f feature representation they obtain for the clustering task re-
ain unsatisfactory, and thus limit the potential of these models.
onsidering that the purpose pursued by the clustering task, the
erformance of these models may be further improved when we
ake the division between clusters more rational as well as more
ompact the intra-cluster distance of the original model output.
nspired by this, we intend to propose an optimization method
or deep clustering models on graph. We expect our method to
e like mixup [45], which is a data augmentation method for

the image classification task in the field of computer vision that
enhances the linear representation between training samples, and
improves the classification accuracy of any such model.

3. Methodology

In this section, we introduce the construction of DCOM-GNN
in detail. For a more intuitive description of DCOM-GNN, we
show the relationship of the original deep clustering model on
graph and the architecture after adding DCOM-GNN in Fig. 1.
As we can see, in every epoch iteration, our DCOM-GNN can be
understood as a ‘‘plug-and-play correction patch’’ to adjust the
inter-cluster distance of the original model output in the last kth
layer rationally, while making the intra-cluster distance of output
more compact under the modulation of the original model output.
Meanwhile, the architecture of DCOM-GNN is shown in Fig. 2,
which consists of an inter-cluster distance optimization module
and an intra-cluster distance optimization module.

3.1. Preliminaries

For each graph dataset, the nodes in it have a clear real
meaning, so if we only focus on increasing the distance between
clusters while ignoring the actual relationship between clusters
in the process of inter-cluster distance optimization, it results
in a decrease in the performance of deep clustering models on
graph instead of an increase. Hence, we argue that to achieve our
purpose, deep clustering must be based on rationality, which can
be reflected by the similarity between clusters, i.e., the degree to
which a cluster is influenced by other clusters should depend on
the similarity between them.

In order to calculate the similarity, we need to acquire the

feature representation and neighbor information of the cluster.

3

Fig. 1. The illustration of the relationship between the original deep clustering
model on graph and DCOM-GNN. F (1) and F (k) are the feature representation
learned from the 1th layer and the last kth layer of the original model,
respectively. F̃ (k) is the new feature representation learned from the last kth
layer after adding DCOM-GNN.

Assume that the original model output feature representation in
the last kth layer of the deep clustering model on graph is F (k)

∈

RN×D(k)
(N and D(k) represent the number of nodes and dimension

of the kth layer, respectively). Then we take F (k) as input, and
assign nodes into clusters softly by a sofatmax function [19]. This
process is shown by the first arrow in Fig. 2 and the formula for
the cluster assignment matrix F̂ (k) is presented as follows:

F̂ (k)
= softmax

(
F (k)L(k)

)
(1)

where L(k) ∈ RD(k)
×M denotes a linear operation applied to the kth

layer, which aims to change the dimensionality of F (k) to M (M
denotes the number of clusters). The elements in F̂ (k) represent
the probability that the nodes belong to each cluster.

3.2. Inter-cluster distance optimization module

For F̂ (k), where F̂ (k)
[:, i] ∈ RN×1 represents the probabilities

that all nodes belong to the ith cluster, which can also be in-
terpreted as the feature representation of the ith cluster [46].
Similarly, F̂ (k)

[j, :] ∈ R1×M denotes the feature representation of
the jth node, from which we can also identify the probability that
the node belongs to each cluster.

Until then, we have to discuss the two situations faced by the
clustering task, i.e., non-overlapping and overlapping clustering
task, and the difference between the two is whether each node
belongs to only one cluster. When faced with the first type of task
(i.e., each node belongs to only one cluster), we first adopt an op-
eration max-0 to process F̂ (k), and this process can be represented
formally as follows:

F̂ (k)
max−0[j, :] = max−0

(
F̂ (k)

[j, :]
)

, j ∈ [1, . . . ,N] (2)

where the function of max−0
(
F̂ (k)

[j, :]
)

is to retain the maxi-

mum value in F̂ (k)
[j, :] and set all other values to 0.

Furthermore, if we are faced with an overlapping clustering
task, a soft processing scheme is adopted, and we process F̂ (k) in
the following manner:

F̂ (k)
top −0[j, :] = top−0

(
F̂ (k)

[j, :], δ
)

, j ∈ [1, . . . ,N] (3)

where δ is a hyperparameter, and the function of top-0(
F̂ (k)

[j, :], δ
)
is to change all except the top δ values in F̂ (k)

[j, :] to
0.

Subsequently, according to F̂ (k)
max−0 or F̂ (k)

top−0, we can judge
which clusters the model divides each node into and which nodes
are contained in each cluster.

It is worth noting that in addition to the traditional similarity

at the attribute level, we argue that the similarity between two
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Fig. 2. The red lines indicate that in the inter-cluster distance optimization phase, updating the feature representation of each cluster requires the participation from
ll clusters with different weight coefficients (as shown in Eq. (7)).
w

lusters also depends on the degree of connectivity between node
airs. Taking the citation network as an example, where nodes
epresent articles, connected node pairs indicate the existence of
citation relationship between them and the cluster is divided
ased on whether the article belongs to the same research field.
bviously, it is inconceivable that there is no citation between
wo close research fields. Meanwhile, it is found that more cita-
ion relationships exist between the two research fields meaning
hat they are more similar. Thus, to ensure the rationality of
he inter-cluster distance adjustment, we also need to concen-
rate on the connected node pairs between two clusters besides
he similarity between two clusters in vector space as a metric,
nd consider both the attribute and the structure perspective
omprehensively.
Based on this idea, we propose the concept of adjacency confi-

ence, which not only can reflect the connection situation of node
airs between clusters, but also plays the role of reducing the
ossible negative impact caused by the uncertainty of the model
n the process of dividing the clusters. The formula for adjacency
onfidence degree

(
F̂ (k)
max-0 ∨ F̂ (k)

top-0 , A
)
ij
is expressed as follows:

deg ree
(
F̂ (k)
max−0 ∨ F̂ (k)

top-0 , A
)
ij

=

∑
Eab

(
F̂ (k)
select [a, :] + F̂ (k)

select [b, :]
)
(4)

where the type of F̂ (k)
select depends on the clustering task faced

with overlapping or non-overlapping, the former being F̂ (k)
top−0 and

he latter being F̂ (k)
max−0. A is a known adjacency matrix, and we can

obtain neighbor information of clusters by it and the location of
the non-zero values in F̂ (k)

top−0 or F̂ (k)
max−0. Eab denotes a set of node

pairs connecting the ith cluster with the jth cluster.
Notably, the manner we design to obtain adjacency confi-

dence degree
(
F̂ (k)
max-0 ∨ F̂ (k)

top-0 , A
)
ij
is implicit in distinguishing

the importance of these node pairs based on the magnitude of
the predicted probability value, and this idea of resorting to
probability is common in deep clustering [47]. In brief, if there are
connected node pairs between the ith cluster and the jth cluster,
then the adjacency confidence degree

(
F̂ (k)
max-0 ∨ F̂ (k)

top-0 , A
)
ij
is the

sum of the values in F̂ (k)
max−0 or F̂

(k)
top−0 for all the node pairs involved

(e.g., assume that there is only one node pair between two clus-
ters, then we sum the values in F̂ (k)

max−0 or F̂ (k)
top−0 corresponding to
each of these two nodes), otherwise it is 0.

4

So far, we can acquire the weighting coefficient wij between
the ith cluster and the jth cluster, the relevant formula is ex-
pressed as follows:

wij =

deg ree
(
F̂ (k)
max-0 ∨ F̂ (k)

top-0 , A
)
ij
w̃ij∑

p∈M deg ree
(
F̂ (k)
max-0 ∨ F̂ (k)

top-0 , A
)
ip

w̃ip

(5)

˜ ij =

sim
(
F̂ (k)

[:, i], F̂ (k)
[:, j]

)
∑

p∈M sim
(
F̂ (k)[:, i], F̂ (k)[:, p]

) (6)

where sim
(
F̂ (k)

[:, i], F̂ (k)
[:, j]

)
is the cosine similarity between the

feature representation of the ith cluster and the jth cluster, and
the larger the value means that the two are more similar.

Finally, the feature representation of the ith cluster after pro-
cessing by our designed inter-cluster distance optimization mod-
ule can be expressed as follows:

F∗(k)
[:, i] =

M∑
j=1,j̸=i

wijF̂ (k)
[:, j] + F̂ (k)

[:, i] (7)

3.3. Intra-cluster distance optimization module

After optimizing the inter-cluster distance for the output of
the original deep clustering model on graph, then we concentrate
on the intra-cluster distance, trying to make it more compact to
further improve the clustering performance.

To achieve this goal, we expect all nodes in the same cluster to
move towards one place according to some rule. Intuitively, this
place requires the ability to reflect the centrality of a cluster. In-
spired by K-means [4], we argue that the centroid of each cluster
is a suitable choice. Thus, we average the feature representation
of the nodes contained in the cluster for each dimension, and
treat it as the centroid representation xc (for ease of expression,
here we denote the feature representation of node by x). For
nodes that belong to the same cluster, we first regard xc as the
anchor node, then adjust the position of these nodes by mea-
suring the current distance between their feature representation
and xc . Furthermore, due to the fact that the position of each
node in the cluster is different, the ‘‘gravitation’’ they receive from
the centroid should be distinct in the process of optimizing the
intra-cluster distance, which are supposed to be proportional to
the distance between the two, i.e., the farther the distance, the
stronger the influence of the centroid on the node should be. In
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his way, the nodes belonging to the same cluster gather closer to
he corresponding centroid. Meanwhile, for different clusters the
umber of nodes they contain varies, in general the cluster with
smaller number of nodes should occupy a smaller area than

he cluster with a larger number of nodes, which means that the
egree of influence of the centroid on the nodes is also affected
y the number of nodes.
Thus, the intra-cluster distance optimization module is rel-

vant not only to the distance between the centroid and the
odes, but also to the number of nodes contained in the cluster.
fter processing by this module, the feature representation of the
th node xi in the cluster is updated to x̂i, and this process is
xpressed as follows:

î =
∥xi − xc∥2∑p
j=1

xj − xc

2

xi +

[
1 −

∥xi − xc∥2∑p
j=1

xj − xc

2

]
xc

= xc +
∥xi − xc∥2∑p
j=1

xj − xc

2

(xi − xc)

(8)

where ∥xi − xc∥2 represents the distance between the ith node
and the corresponding centroid. p is the number of nodes con-
tained in the cluster, and the denominator part in Eq. (8) implies
that the ‘‘gravitation’’ of the centroid on the nodes is also related
to the number of nodes contained in the cluster.

Take the ith cluster as an example, when the feature repre-
sentation of nodes in it is processed as above, we obtain the new
feature representation of the ith cluster F̃∗(k)

[:, i].

3.4. Final output and algorithm

After the processing of the two modules mentioned above, the
final output for the deep clustering model on graph after adding
DCOM-GNN is expressed as follows:

F̃ (k)
= F (k)

+ λ

[
Concat

(
F̃∗(k)

[:, 1] · · · F̃∗(k)
[:,M]

)
L̄(k)

]
(9)

here L̄(k) ∈ RM×D(k)
denotes a linear operation to recover the di-

ensionality of the feature representation after DCOM-GNN. λ is
a hyperparameter, which is responsible for tuning the correction
strength provided by the DCOM-GNN, and its range is 0 to 1.

In particular, since DCOM-GNN is a series of operations per-
formed on the basis of the original model output, it does not act
on the model from a global perspective as the objective function
does, so if the final output depends only on the optimized result
of DCOM-GNN, there is a possibility of corrupting the vector space
due to over-correction, which will have a negative impact on
the clustering performance of the model. Thus, to avoid over-
correction, we resort to the original model output F (k) in Eq. (9),
which can play a moderating role by providing a constraint to
the DCOM-GNN to maintain the stability of the vector space.
In other words, the purpose of adding DCOM-GNN to the deep
clustering model on graph is to cooperate with the original model
output and correct it to some extent, so as to achieve the goal
of optimizing the model clustering performance, rather than to
replace the original model output completely.

After the DCOM-GNN correction, the new output F̃ (k) contains
not only the features extracted from the original deep clustering
models on graph, but also a ‘‘correction plugin’’ to adjust the
inter-cluster distance of the original model output rationally,
while enabling the intra-cluster distance to be more compact.
Ideally, F̃ (k) can adapt the clustering task better than F (k) learned
from the original deep clustering model on graph. The pseu-
docodes of constructing DCOM-GNN are presented in Algorithm
1.

As shown in Fig. 2, the input F (k)
∈ RN×D(k)

is the feature
representation learned from the original deep clustering model
5

Algorithm 1 A Deep Clustering Optimization Method for Graph
Neural Networks
Input: The number of nodes N, the number of clusters M,

the adjacency matrix A, the original model output
in the last k-th layer F (k)

Output: The new output in the last k-th layer F̃ (k) after
adding DCOM-GNN

1: Transform F (k)
∈ RN×D(k)

into F̂ (k)
∈ RN×M via Eq.(1)

2: if face a non-overlapping clustering task then
3: Process F̂ (k) via Eq.(2) to obtain F̂ (k)

max-0
4: Obtain the neighbor information and adjacency

confidence via F̂ (k)
max-0 , A and Eq.(4)

5: end if
6: if face an overlapping clustering task then
7: Process F̂ (k) via Eq.(3) to obtain F̂ (k)

top-0
8: Obtain the neighbor information and adjacency

confidence via F̂ (k)
top-0 , A and Eq.(4)

9: end if
10: Calculate the weighting coefficients between clusters via

Eqs.(5) and (6) based on the acquired neighbor information
and adjacency confidence

11: Update the feature representation of the i-th cluster to F∗(k)
[:

, i] via Eq.(7)
12: Update the node feature representation within the i-th cluster

via Eq.(8) and obtain F̃∗(k)
[:, i]

13: Calculate the final feature representation F̃ (k) via Eq.(9)
14: return F̃ (k)

on graph. Then F̂ (k)
∈ RN×M is obtained from F (k) through a linear

operation and softmax operation. The feature representation F̂ (k)
[:

, i] ∈ RN×1 of the ith cluster is updated to F∗(k)
[:, i] ∈ RN×1 after

processing by inter-cluster distance optimization module. After-
wards, the feature representation of each node in the ith cluster
is modified by the intra-cluster distance optimization module,
and thus F∗(k)

[:, i] is updated to F̃∗(k)
[:, i] ∈ RN×1. Finally, the

feature representation of each cluster is concatenated, followed
by a linear operation, then multiplied by a hyperparameter λ and
added with F (k) to obtain F̃ (k)

∈ RN×D(k)
.

4. Experiments

In this section, we first introduce the datasets and metrics, fol-
lowed by introducing referenced models used in the experiment.
After that, we show the results of different experiments with
discussion (here we use DCOMinter to denote the optimization
method that only includes an inter-cluster distance optimization
module, DCOMintra to denote the optimization method that only
includes intra-cluster distance optimization module, and DCOM-
GNN to denote the optimization method that includes both an
inter-cluster distance optimization module and an intra-cluster
distance optimization module).

4.1. Datasets

To ensure fairness, our experiments are completely based
on the original deep clustering model on graph, and we use
all the original papers’ code from their github pages for each
model. Meanwhile, due to the different datasets adopted by each
author in the original papers, and taking into account the differ-
ences between the tasks these models are proficient in handling
(e.g., models designed for the non-overlapping clustering task fail
to handle the overlapping clustering task well). Thus, here we
show the performance of the corresponding models before and
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Table 1
The statistics of the datasets.
Dataset #Nodes #Features #Classes

Facebook348 224 21 14
Facebook1684 786 15 17
Facebook1912 747 29 46
Engineering 14927 4800 16
ACM 3025 1870 3
DBLP 4058 334 4
IMDB 3550 1007 3
Citeseer 3327 3703 6
Cora 2708 1433 7
Pubmed 19717 500 3

after adding DCOM-GNN according to the type of clustering task,
and this also enables it to recognize the differences that exist
between these models (see Table 1).

For these datasets, nodes have a special meaning, and an edge
etween two nodes represents the existence of the relationship
etween them. The utilized datasets are described as follows:
Facebook. The original Facebook dataset is a social network

ataset with more than one million node users, but for the
urpose of protecting user privacy, the Facebook dataset as a
ublic dataset is a small dataset divided by pre-processing on the
riginal dataset. It includes Facebook348, Facebook414, etc., with
he number of nodes ranging from 61 to 786, and the raw feature
imensions ranging from 6 to 21. These Facebook datasets are all
or the overlapping clustering task.

Engineering. It is a co-authorship dataset for the overlapping
lustering task. The node features in it are derived from the
eywords of the papers by each author, and its raw feature
imension is 4800.
DBLP. DBLP as a classical citation dataset is applicable in

any fields of graph research, which encompasses a total of
our research directions in the field of computer research. The
aw feature of each node in this dataset is a 2000-dimensional
ag-of-words representation.
IMDB. It is a movie review dataset containing 3550 movie

eviews, with node categories including action movies, come-
ies, and dramas. Among them, the node features can reflect
he attitude of the reviewer towards the movie, and the raw
eature of each node in this dataset is a 2000-dimensional bag-
f-words representation are represented as a 1007-dimensional
ag-of-words representation.
Citeseer. This dataset is a citation dataset, which contains

327 articles in six research areas of machine learning, recording
itation or cited information between papers. The raw feature
f each node in this dataset is a 3703-dimensional bag-of-words
epresentation.

ACM. It is a citation dataset, which contains a total of 3025
rticles in three categories, the raw feature of each node in this
ataset is an 1870-dimensional bag-of-words representation.

.2. Referenced models and metrics

In order to enhance the persuasiveness and reflect the ef-
ectiveness of our proposed method, the reference models we
mploy are deep clustering models on graph that have been
ublished in influential international conferences or journals in
ecent years, including AAAI, KDD, and WWW, etc.

NOCD [48]. The Neural Overlapping Community Detection
NOCD) is a model designed for the task of overlapping commu-
ity detection that learns the affiliation matrix of the graph by the
CN model, and it uses maximum likelihood estimation to make
he graph generated as similar as possible to the real graph, so as
o obtain the cluster to which each node belongs.
6

SSGCAE [49]. To address the shortcomings of existing over-
apping community detection methods in terms of combining
ink information with attribute information, a Semi-supervised
verlapping Community Detection Model with Graph Convolu-
ional Autoencoder (SSGCAE) is proposed, which not only pro-
ides training in an end-to-end manner, but also integrates the
rior information during this process.
HDMI [50]. High-order Deep Multiplex Infomax (HDMI) as an

mprovement of DEEP GRAPH INFOMAX (DGI) [21]. Compared
ith DGI, HDMI considers not only the external mutual informa-
ion but also the internal mutual information, and HDMI designs
novel attention mechanism for nodes connected by multiple
dges with different relationships in the network.
DMGI [51]. Consider a network in which nodes are connected

y multiple types of relations. Unsupervised Attributed Multi-
lex Network Embedding (DMGI) is proposed to minimize the
ivergence between node embeddings of a specific relation type,
ntegrating node embeddings of multiple graphs jointly in a sys-
ematic way.

SDCN [52]. To introduce structural information between data,
tructural Deep Clustering Network (SDCN) computes a K-nearest
eighbor graph based on the original data before initializing the
odel first, and uses it as the input to the GCN module. The entire
odel consists of roughly three parts: a deep neural network
odule, a graph convolution module, and a dual self-supervised
odule.
AGE [53]. Adaptive graph encoding method Adaptive Graph

ncoder (AGE) is a novel framework for attribute graph embed-
ing. It contains two advantages. One is AGE is the first proposal
o use Laplace smoothing top-0 to mitigate the high-frequency
oise signal from node features, the other is AGE uses an adaptive
ncoder to iteratively enhance the top-0ed features to better
ccomplish node embeddings.
DAEGC [47]. Deep Attentional Embedded Graph Clustering

DAEGC) extracts graph structure and attribute information in
he encoding part utilizing a multi-layer encoder based on an
ttention mechanism. In the decoding part, DAEGC designs a self-
raining module, which guides the model to learn the feature
epresentation for the clustering task by selecting some clustering
oft labels with high confidence.
DFCN-RSP [54]. As a Deep Fusion Clustering Network with Re-

iable Structure Preservation (DFCN-RSP) aided by a random walk
echanism as well as a transformer-based graph autoencoder,

t can capture more precise connection relations on the graph.
n this basis, a dynamic cross-modality fusion strategy is also
ncluded in the model to obtain superior feature representation.

AGCC [55]. Since the presence of noise may cause the graph
tructure to turn unreliable, a model called Adaptive Graph Con-
olutional Clustering Network (AGCC) is proposed for this pur-
ose. For AGCC, it can adjust the graph structure and node rep-
esentation layer-by-layer with back-propagation to mitigate the
egative effects due to inaccurate graph structure.
To be more convincing, we employ the most commonly clus-

ering metric Normalized Mutual Information (NMI) [56], which
s also one of the metrics in all the deep clustering models on
raph experiments mentioned above. For NMI, a larger value
mplies a better clustering result.

We conducted our experiments on a machine with an NVIDIA
esla V100 GPU (32 GB memory), 20-core Intel Xeon CPU (2.20
Hz), and 192 GB of RAM for each experiment.

.3. Clustering results analysis

Tables 2 and 3 show the results of various models for the
verlapping and non-overlapping clustering task in the original
nd with the addition of DCOM-GNN, respectively. Meanwhile, to
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Table 2
Clustering results on models for the overlapping clustering task with DCOMinter &DCOMintra & DCOM-GNN added (The bold numbers
represent the best results).
Model Dataset

Facebook348 Facebook1684 Facebook1912 Engineering

NOCD 36.4 26.1 35.6 39.1
NOCD+DCOMinter 43.0 31.4 38.2 42.4
NOCD+DCOMintra 41.2 29.3 36.8 40.9
NOCD+DCOM-GNN 43.7 32.3 38.8 43.6
SSGCAE 37.5 36.0 31.3 43.2
SSGCAE+DCOMinter 39.9 38.1 34.7 44.9
SSGCAE+DCOMintra 39.6 37.5 34.5 45.8
SSGCAE+DCOM-GNN 42.0 38.5 37.3 47.4
Table 3
Clustering results on models for the non-overlapping clustering task with
DCOMinter &DCOMintra & DCOM-GNN added (The bold numbers represent the
est results).
Model Dataset

IMDB ACM DBLP Citeseer Cora Pubmed

HDMI 16.3 62.3 56.8 38.1 54.7 29.4
HDMI+DCOMinter 18.8 63.9 58.4 38.3 56.5 30.6
HDMI+DCOMintra 18.1 62.8 57.5 39.4 55.2 29.8
HDMI+DCOM-GNN 19.4 65.0 60.4 40.4 57.0 31.2
DMGI 19.6 70.2 55.4 37.9 55.1 28.8
DMGI+DCOMinter 22.3 72.2 57.2 39.0 55.9 30.2
DMGI+DCOMintra 21.9 71.3 55.9 38.4 55.5 30.0
DMGI+DCOM-GNN 23.5 73.8 59.0 39.6 57.3 32.1
SDCN 18.7 68.3 39.5 38.7 58.5 29.6
SDCN+DCOMinter 22.4 69.1 41.9 39.9 59.1 32.0
SDCN+DCOMintra 20.4 68.5 40.6 39.7 59.9 29.8
SDCN+DCOM-GNN 23.3 70.9 42.6 40.5 60.2 32.3
AGE 20.9 73.0 55.8 44.5 60.6 31.6
AGE+DCOMinter 23.6 74.5 58.2 46.3 61.3 33.5
AGE+DCOMintra 21.4 74.5 57.6 45.2 61.1 32.8
AGE+DCOM-GNN 23.8 74.9 58.7 48.0 62.9 34.3
DAEGC 17.7 65.4 55.7 39.7 52.8 26.6
DAEGC+DCOMinter 18.5 68.9 57.4 41.4 53.1 28.7
DAEGC+DCOMintra 19.2 66.3 56.8 41.3 54.8 28.4
DAEGC+DCOM-GNN 19.9 70.1 57.6 42.1 55.6 30.9
DFCN-RSP 21.5 74.1 51.2 46.3 61.9 32.9
DFCN+DCOMinter 22.4 74.6 53.1 48.3 63.6 33.9
DFCN+DCOMintra 21.9 74.7 52.8 46.5 62.3 33.6
DFCN+DCOM-GNN 22.7 74.9 53.3 48.8 63.7 35.0
AGCC 21.1 75.5 46.3 45.7 61.6 33.5
AGCC+DCOMinter 23.9 76.0 47.2 46.8 62.3 34.8
AGCC+DCOMintra 22.2 75.6 46.9 46.4 61.8 33.7
AGCC+DCOM-GNN 24.2 76.3 48.6 47.2 62.4 35.5

verify the effectiveness of the inter-cluster distance optimization
module and the intra-cluster distance optimization module we
proposed, we also add DCOMinter and DCOMintra individually to
each model as two ablation experiments.

From Tables 2 and 3, we have the following observations:
The clustering performance for all models is improved by

adding DCOM-GNN, which demonstrates the deep clustering
model on graph benefits from adding DCOM-GNN. Specifically,
these models learn better clustering feature representation after
adding DCOM-GNN compared with their original case, and this is
attributed to the capacity of DCOM-GNN to enhance the strength
of the clustering-oriented guidance they receive.

The clustering performance after adding DCOMinter and
DCOMintra individually is improved compared with the origi-
nal model, which demonstrates the effectiveness of each of the
two for optimizing the clustering performance of the model.
Meanwhile, it confirms the model can be better adapted to the
clustering task compared with the original model after adding
these two modules.
7

Regardless of the model dealing with the overlapping cluster-
ing or non-overlapping clustering task, the clustering optimiza-
tion effect of DCOMinter is better than that of DCOMintra in the
majority of cases, which indicates that perhaps for most deep
clustering models on graph, they more prone to improve the
cohesiveness of clustering results while the effect of adjustment
for inter-cluster distance is relatively limited.

For the original deep clustering models dealing with the over-
lapping clustering task, their performance varies for different
datasets (e.g., NOCD is inferior to SSGCAE on Facebook1684, but
outperforms SSGCAE on Facebook1912). The same phenomenon
exists for the original deep clustering models dealing with the
non-overlapping clustering task (e.g., DFCN is inferior to AGCC on
ACM, but outperforms AGCC on DBLP)

Both for models dealing with the overlapping clustering task
and non-overlapping clustering task, the optimization effect of
adding DCOM-GNN depends on themselves. We argue that this is
due to the unique structure of each model, and hence the benefits
provided by DCOM-GNN differ for them.

4.4. Hyperparameters analysis

As described in Eq. (9), λ is a critical hyperparameter used
to balance the output of the original model and the output after
adding DCOM-GNN. Therefore, we tend to explore the optimiza-
tion effect of DCOM-GNN with λ = {0, 0.2, 0.4, 0.6, 0.8, 1.0} on
various deep clustering models on graph (taking three datasets
as an example), and it also is considered as the hyperparameter
selection process of our experiment.

According to Fig. 3, we can see that when the value of λ is
0, the clustering performance of the model is inferior compared
with the case when λ is other non-zero values, which confirms
again that DCOM-GNN indeed contributes to the performance
improvement of the deep clustering models on graph. Meanwhile,
for these non-zero λ values, the difference in their corresponding
clustering performance is not significant, we argue that this is due
to the presence of the original model output F (k) in Eq. (9) acts
as a moderator, which restricts the impact of DCOM-GNN on the
model to a manageable range and avoiding over-correction.

In addition to λ, the presence of a hyperparameter δ in Eq. (3)
is also a key hyperparameter. Thus, here we explore the effect of
different values of δ on the optimization effect of the overlapping
clustering task. Specifically, we select δ = {1, 3, 5} as the values
and take NOCD as an example for the experiment on the three
overlapping clustering datasets (i.e., Fackbook348, Fackbook1684
and Fackbook1912).

The results in Fig. 4 illustrate that for the overlapping clus-
tering task, the choice of δ value has a certain impact on the
final optimization effect. When the value of δ is 1, it is equivalent
to treating the task as a non-overlapping clustering task, so the
improvement in performance for the original model is lower
compared with the other two values. Meanwhile, we suggest that
a relatively large value of δ can be chosen first within a reasonable
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Fig. 3. Clustering results with different λ in DCOM-GNN for different deep clustering models on graph.
Fig. 4. Clustering results after adding DCOM-GNN with different δ on NOCD for the overlapping clustering task.
ange. The reason for this is that the adjacency confidence is
btained based on the predicted probability that nodes belong to
ach cluster in the original model. Theoretically, these probabil-
ties differ significantly from each other, so even if the overlap
egree of the dataset is not that high, the clusters with lower
redicted affiliation probabilities have a limited impact on the
inal weighting coefficient.

.5. Extended experiments

M-sensitivity Analysis: Furthermore, the number of clusters
is also important parameter for the clustering task. Although

or deep clustering models on graph, the number of clusters into
hich the dataset has been divided is usually taken as the prior
nowledge directly (we do the same thing in other experiments).
n order to explore the effect of M on the results to further
alidate the effectiveness of DCOM-GNN under different settings
f the original model, we take various values of M = {2, 4, 6, 8}

for six original deep clustering models on graph and each of
8

them after adding DCOM-GNN, and conduct an experimental
investigation.

From the results in Fig. 5, it can be observed that different
Ms have a significant influence on the performance while DCOM-
GNN improves the effect of the original deep clustering model
on graph for any value of M. Thus, the results demonstrate again
the superiority of DCOM-GNN in optimizing the clustering perfor-
mance of these models and the fact that the optimization effect
of DCOM-GNN varies depending on both the original model and
dataset.

Training process analysis: To further validate the capability
of DCOM-GNN in optimizing deep clustering models on graph, we
treat AGE as the original model and compare its performance on
different training epochs before and after the addition of DCOM-
GNN. Meanwhile, we also show here the clustering performance
when the final output is determined by DCOM-GNN only, i.e., the
original output F (k) and hyperparameter λ are not included in
Eq. (9) (denoted by DCOM_X), as an indication that the final
output should be moderated by the original output.
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Fig. 5. Clustering results with different M on the original model and after adding DCOM-GNN.
Fig. 6. Clustering results on Citeseer, Cora, and Pumbed dataset respectively with different training epochs for the original AGE model and after adding DCOM-GNN.
We can observe from the results in Fig. 6 that the entire train-
ng process of the model benefits from the addition of DCOM-
NN, while not hindering the convergence of the model, which
lso means that DCOM-GNN does not overly aggravate the com-
utational burden of the model. In addition, according to the
esults of DCOM_X, we can find that when the final output is
etermined only by the output of DCOM-GNN, the clustering per-
ormance of the model is degraded, which suggests that DCOM-
NN indeed leads to over-correction, and reflects the necessity of
he presence of the original output that plays a moderating role
n Eq. (9).

Boundary Nodes Analysis: Boundary nodes refer to the nodes
in a cluster that are relatively far from the centroid, and the
reason we discuss these nodes specifically is that intuitively these
nodes may imply that the original deep clustering model on graph
has difficulty in dividing them, i.e., these nodes belong to that
cluster with less confidence. Thus, especially when these nodes
are processed by the intra-cluster distance optimization module
may have a negative impact on the clustering performance of
the model, which can be considered as a further exploration of
over-correction.

We take SDCN as the original deep clustering model on graph,
and first process its original clustering results on the three
9

Table 4
Clustering results (in NMI%) after adding DCOM-GNN on SDCN with different
fixed ratios.
Ratio Dataset

Citeseer ACM DBLP

0% 40.5 70.9 42.6
10% 40.1 69.8 42.3
20% 39.9 69.4 42.0
30% 39.7 69.3 41.8

datasets Citeseer, ACM, and DBLP. Specifically, we set a ratio
to fix some nodes so that these nodes are not affected by the
intra-cluster distance optimization module after the DCOM-GNN
is added, keeping their distance to the centroid in their respec-
tive clusters constant. It is noted that to reflect the concept of
boundary nodes, the selection of these fixed nodes is determined
by their distance from the centroid, i.e., we fix a certain ratio of
nodes in each cluster that is farthest from the centroid. We show
in Table 4 the clustering results after adding DCOM-GNN on SDCN
with different fixed ratios.

According to Table 4, we can observe that the optimization
effectiveness of DCOM-GNN for the model gradually decreases
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Table 5
The time difference for deep clustering models on graph before and after the adding DCOM-GNN.

Model

NOCD HDMI DMGI SDCN AGE DAEGC
+DCOM-GNN +DCOM-GNN +DCOM-GNN +DCOM-GNN +DCOM-GNN +DCOM-GNN

Dataset Facebook348 DBLP DBLP DBLP Cora Cora
Time difference (in s) 0.02 0.09 0.10 0.09 0.07 0.06
Fig. 7. Visualization results on Cora dataset. (a), (b), (c), (d), and (e) represent the raw feature representation, the feature representation learned from the original
DAEGC model, after adding only the inter-cluster distance optimization module, after adding only the intra-cluster distance optimization module, after adding
DCOM-GNN, respectively.
g

as the fixed ratio increases. We argue that the reason for this
is first since our DCOM-GNN can enhance the strength of the
clustering-oriented guidance received by the model, so fixing
some nodes in the process is equivalent to limiting the poten-
tial of the DCOM-GNN to optimize the original model output
less strongly. Secondly, we have confirmed in the previous ex-
periment that the original model output can effectively avoid
over-correction, so it is not necessary to perform special oper-
ations for some nodes, which will instead prevent these nodes
from benefiting from DCOM-GNN.

Time Cost Analysis: As an optimization method, DCOM-GNN
equires attachment to a deep clustering model on graph to
ork, so the training time cost of the model before and after
he addition of DCOM-GNN is also a concern. Thus, we perform
elevant experiments based on six models and show the results
n Table 4. Notably, considering that each model has a different
rchitectural complexity and their default number of training
terations is not the same, it is clearly unfair to compare their
otal training time before and after adding DCOM-GNN. Hence,
he value we present in Table 5 is the difference in time between
ach training epoch before and after adding DCOM-GNN for these
odels on the corresponding dataset.
As we can observe in Table 5, adding DCOM-GNN does not

ignificantly increase the training time cost of the model, which
s attributed to we implementation of DCOM-GNN in the pytorch
ramework employing matrix operations and a set of default func-
ions, and this has an extremely limited impact on the efficiency
f pytorch computing. Moreover, this confirms that the increase
n time cost after adding DCOM-GNN is mainly related to the
roperties of the dataset itself.
Visualization Analysis: To display the superiority of our pro-

posed DCOM-GNN for improving the performance of the deep
clustering model on graph, we conduct a visualization experi-
ment with the Cora dataset and the DAEGC-based deep clustering
model as an example, which shows the discrimination of the
feature representation learned from the different cases for the
clustering task.

According to the visualization results in Fig. 7, we can draw
some interesting observations. First, both the inter-cluster opti-
mization module and the intra-cluster optimization module in-
deed contribute to the original deep clustering model to
obtain the higher quality feature representation for the clustering
10
task. Second, when adding two optimization modules individu-
ally, both of them optimize another distance to some extent. Fi-
nally, compared with adding the inter-cluster distance optimiza-
tion module or intra-cluster distance optimization module sepa-
rately, adding DCOM-GNN can provide more adequate clustering-
oriented guidance to the original deep clustering model, so its
learned feature representation is more discriminative for the
clustering task.

5. Conclusion

In this paper, considering that the feature representation
learned from most existing deep clustering models on graph is
not sufficiently discriminative for the clustering task, resulting in
models that only yield sub-optimal clustering results. Therefore,
we propose a Deep Clustering Optimization Method for Graph
Neural Networks (DCOM-GNN) to enable these models to learn
better feature representation for the clustering task. As a ‘‘plug-
and-play correction patch’’ that can be easily attached to the
original model, DCOM-GNN serves not only to adjust the inter-
cluster distance of the original model output rationally, but also
to make its intra-cluster distance more compact through an
inter-cluster distance optimization module and an intra-cluster
distance optimization module. Experiments demonstrate that the
addition of DCOM-GNN can significantly improve the perfor-
mance of various deep clustering models on graph. In future
work, we will further explore combining DCOM-GNN with more
deep clustering models on graph, as a way to further validate
the effectiveness of DCOM-GNN for improving the clustering
performance of such models. Meanwhile, we will also endeavor
to reduce the dependence of the final output from DCOM-GNN
on the original model output.
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