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Abstract

Large Language Models (LLMs) employ multi-turn interaction as a fundamental
paradigm for completing complex tasks. However, their performance often de-
grades in extended interactions, as they are typically trained on static, single-turn
data, which hinders their ability to adapt to real-time user feedback. To address
this limitation, we first propose a new paradigm: Test-Time Policy Adaptation for
Multi-Turn Interactions (T2PAM), which utilizes user feedback from the ongoing
interaction as a reward signal to estimate a latent optimal policy aligned with user
preferences, then updates a small subset of parameters to steer the model toward
this policy, ultimately enabling efficient in-conversation self-correction. We then
introduce Optimum-Referenced One-Step Adaptation (ROSA), a lightweight algo-
rithm that operationalizes T2PAM. ROSA guides the model parameters toward a
theoretical optimal policy in a single, efficient update step, avoiding costly iterative
gradient-based optimization and minimizing computational overhead. We provide
a rigorous theoretical analysis guaranteeing that the policy of ROSA converges
to the preference of user as the number of interactions increases. Extensive ex-
periments on challenging benchmark demonstrate that ROSA achieves significant
improvements in both task effectiveness and efficiency.

1 Introduction

Multi-turn conversation is the predominant interaction paradigm between human and Large Language
Models (LLMs) [1, 2]. This conversational modality is essential for real-world applications [3], as it
enables users to progressively refine initially underspecified intentions into concrete objectives [4,
5], engaging the model in a collaborative problem-solving process [6]. However, a fundamental
mismatch exists between this prevalent use case and existing LLM alignment methodologies [7,
8]. Prevailing alignment methods, Supervised Fine-Tuning (SFT) [9, 10, 11] and Reinforcement
Learning from Human Feedback (RLHF) [12, 13], predominantly rely on single-turn data for both
training [14] and evaluation [15]. This paradigm misalignment not only limits the potential of the
model in complex interactions [16, 17], but also creates a significant gap between its benchmark
performance and its practical utility [18, 19]. Consequently, while the combination of SFT for
imparting extensive knowledge [20, 21] and RLHF for aligning with human preferences [22, 23]
endows models with strong single-turn capabilities [24], these models often exhibit a pronounced
degradation in performance during multi-turn interactions [25]. In fact, previous work has highlighted
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Figure 1: An illustration of the Test-Time Policy Adaptation for Multi-Turn Interactions (T2PAM)
paradigm. Different from static inference where the policy of model remains fixed (θ0, Turn 0), this
paradigm treats conversational feedback as an active signal that guides real-time parameter updates
(e.g., from θ0 to θ1). This iterative process of in-conversation self-correction allows the policy to
progressively evolve and align with the preference of user (θn) throughout the interaction.

that such models often perform poorly in multi-turn scenarios, resulting in diminished capabilities
and increased instability [7]. While multi-turn training strategies have been explored [26, 27, 28],
they are frequently hindered by the prohibitive costs of collecting high-quality data and training on
long context sequences [1].

To address these challenges, we propose a new paradigm: Test-Time Policy Adaptation for Multi-
Turn Interactions(T2PAM), shifting the existing static training paradigm to a flexible test-time
adaption paradigm. Specifically, this paradigm requires using a model trained in a single-turn
interaction to perform effective and efficient online policy adaptation during multi-turn reasoning.
This paradigm utilizes conversational user feedback as a reward signal to refine its policy and align
its behavior with the underlying intent of user, as illustrated in Figure 1. Importantly, this adaptation
process must be computationally lightweight, so as to remain imperceptible to the user without
incurring unaffordable inference latency or GPU memory overhead. Under this new paradigm, a
model should be able to dynamically instantiate a user-specific policy for each conversational context,
thereby enhancing the effectiveness and reliability of the multi-turn interaction.

Unfortunately, existing methodologies [29] are fundamentally misaligned with the requirements of
T2PAM. Specifically, (1) Prompt Engineering [30, 6, 18] as a form of in-context learning, which ad-
justs the policy of model via contextual prompts, often fails to achieve effective preference alignment
within a few interaction turns. (2) Retrieval-Augmented Generation (RAG) [31, 32], adapting the
model output by lengthening the context, usually increases inference overhead significantly. Besides,
its performance is determined by the quality and relevance of the external database. (3) Model Editing
(ME) [33, 34] is able to address the context length issue of RAG by internalizing knowledge as fact
tuples through direct parameter updates. However, this representation is structurally unsuitable for
encoding fine-grained user preferences. (4) Finally, existing test-time methods [35, 36, 37, 38] are
primarily designed for single-turn tasks and often rely on extensive inference-time sampling. This
process introduces significant computational costs and latency. Detailed related work is provided in
the Appendix A.

To bridge this gap, we introduce Optimum-Referenced One-Step Adaptation (ROSA), a lightweight
online adaptation algorithm that operationalizes our proposed paradigm T2PAM. The core principle
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Figure 2: LLM accuracy after 10 rounds of interaction with humans. Although LLM accuracy shows
a continuous and gradual improvement, this prompt-based correction process is inefficient.

of ROSA is to leverage user feedback to analytically compute an estimate of the optimal policy and
then steer the model towards this target in a single, efficient update step. This approach avoids costly
iterative optimization, enabling principled in-conversation self-correction with minimal computational
overhead. Our main contributions are summarized as follows:

• We demonstrate that current LLMs underperform in multi-turn interactions and propose
T2PAM paradigm to address this issue (Section 2).

• We propose ROSA, the first practical algorithm to implement this paradigm, which updates
model parameters and align user preferences quickly during multi-turn interactions (Section
3).

• We establish a solid theory for ROSA, ensuring that its gap with user preferences narrows
as the number of interaction turns increases (Section 4).

• We conduct extensive experiments on multiple challenging datasets. Our results show that
ROSA outperforms baseline methods in both effectiveness and efficiency (Section 5).

2 The T2PAM Paradigm
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Figure 3: Number of newly solved problems
per turn on the MATH dataset.

The performance of LLMs often degrades in multi-
turn interactions, because their alignment on static,
single-turn datasets creates a paradigm mismatch
that hinders their ability to adapt to user feedback or
correct initial errors [7]. To show this inefficiency,
we empirically evaluated several LLMs on reason-
ing tasks. We first plot the cumulative accuracy over
10 conversational turns where human-like prompts
were provided after each incorrect attempt. The
results in Figure 2 show that while multi-turn inter-
action gradually improves accuracy, the process ex-
hibits sharply diminishing returns. To diagnose this,
Figure 3 plots the number of newly solved problems
at each conversational turn on the MATH dataset. The
data reveal that the vast majority of problems are
solved on the first attempt, with very few successful
corrections in subsequent turns. This demonstrates that current models treat user interactions as
passive context rather than as active signals for policy correction, highlighting a critical gap in their
ability to perform efficient test-time adaptation.

To address this gap, we propose a new paradigm: test-time policy adaptation for multi-turn in-
teractions (T2PAM). As summarized in Table 1, T2PAM resolves a trade-off faced by traditional
approaches. While prompt-based lacks real-time adaptability and multi-turn training is costly and
results in a static policy, T2PAM synthesizes the benefits of both. It operates during inference with
zero training cost but, through online parameter modification, achieves high, policy-level adaptability
that is more direct than prompting and more flexible than offline training. Notably, this paradigm
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shifts model alignment from a static, offline training stage to a dynamic, online inference process.
More specifically, it requires methods that can update the policy of model in real-time by directly
leveraging the rich feedback signals from a live conversation. We formally define T2PAM as below:

Paradigm: Test-Time Policy Adaptation for Multi-Turn Interactions (T2PAM)

Let a inference-time multi-turn interaction be a sequence of interactions indexed by
turn k ∈ {1, . . . }. At the beginning of turn k, the language model is defined by a policy
πθk−1

with parameters θk−1. The paradigm proceeds as follows:
1. Generation: The model generates a response yk ∼ πθk−1

(·|x) given the conver-
sational context x.

2. Feedback: The subsequent interaction of user provides feedback, which is
mapped to a scalar reward rk indicating task success (i.e., rk = +1) or fail-
ure (i.e., rk = −1).

3. Adaptation: If the task succeeds (i.e., rk = +1), the multi-turn interaction is
finished. Otherwise, an effective and efficient online adaptation function A
updates the model parameters at inference time based on this failure feedback
(i.e., rk = −1) such that the model is more likely to succeed in the next turn:

θk = A(θk−1, rk,yk;x) = θk−1 +∆θk .

Table 1: Conceptual comparison of paradigms for improving multi-turn LLM performance.

Feature Prompt-based Methods Multi-turn Data Training T2PAM (Ours)
Intervention Timing During inference During training During inference
Operating Mode Reactive Proactive (at training) Proactive (at inference)
Training Cost Zero (uses single-turn model) High Zero (uses single-turn model)
Inference Cost Low (long context) Near-zero Low (preference alignment)
Parameter Modification No Yes (offline) Yes (online)
Real-time Adaptability Low (context-dependent) Low (static policy) High (policy-level)

3 Optimum-Referenced One-Step Adaptation (ROSA)

To solve the paradigm we proposed above, we develop the Optimum-Referenced One-Step Adapta-
tion (ROSA) approach (Algorithm 1), which enables effective and efficient online adaptation of a
language model policy in direct response to real-time user feedback during multi-turn interactions.
The core principle is to guide the model parameters towards a theoretical optimum in a single,
efficient update step, avoiding iterative gradient-based optimization. This approach first defines the
Reinforcement Learning from Human Feedback (RLHF) objective (Section 3.1) to maximize reward
with KL regularization. It then leverages a closed-form analytical solution to directly identify the
optimal policy (Section 3.2), applying exponential re-weighting to observed responses for practical
one-step updates. Finally, parameter updates are efficiently computed via linearized optimization
using the Conjugate Gradient algorithm (Section 3.3).

3.1 The RLHF Objective for Turn-Wise Adaptation

We propose to solve the T2PAM paradigm above using Reinforcement Learning from Human Feed-
back (RLHF) techniques [12]. In this approach, we learn from a reward signal r(x,y) that reflects
human preference given the context x and the response y. Specifically, we model this feedback as a
binary signal where r(x,y) ∈ {−1,+1} corresponds to negative and positive feedback, respectively.
The objective is to find an updated policy πθ that maximizes the expected reward while penalizing
significant divergence from the policy of the previous turn πθk−1

for stable and controlled updates.
The deviation is measured by the Kullback-Leibler (KL) divergence. This leads to the following
turn-wise optimization objective for turn k:

max
πθ

Ey∼πθ(·|x) [r(x,y)]− βDKL
(
πθ(·|x) ∥πθk−1

(·|x)
)

(1)

where β > 0 is a coefficient that controls the strength of the KL regularization.
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3.2 From Theoretical Optimum to a Practical One-Step Update

While the objective presented in (1) is conventionally optimized using iterative gradient-based
methods [39, 40], such approaches are often characterized by their computational intensity and slow
convergence, rendering them impractical for real-time online adaptation scenarios. Our methodology
circumvents this inefficiency by leveraging a critical insight: this specific optimization problem
admits a well-established closed-form analytical solution [22]. Rather than relying on incremental
approximations, we can directly ascertain the optimal policy. This foundational result is formalized
in Theorem 1 (proof in Appendix B.1).

Theorem 1 (Closed-Form Optimal Policy). Let Zk(x) =
∑

y′∈Y πθk−1
(y′|x) exp

(
1
β r(x,y

′)
)

be the partition function over the entire response space Y , the policy π∗
θk

that maximizes the
turn-wise RLHF objective in (1) is given by:

π∗
θk
(y|x) = 1

Zk(x)
πθk−1

(y|x) exp
(
1

β
r(x,y)

)
. (2)

Theorem 1 demonstrates that the optimal policy is a re-weighted version of the reference policy,
where the probability of a given response is exponentially modulated by its associated reward. In
practical applications, feedback is typically received for only a single generated response, yk, often
corresponding to a negative reward (rk = −1) for an incorrect output. This constraint necessitates
the construction of an update target utilizing solely the observed data point (x,yk, rk). We achieve
this by applying the exponential re-weighting derived from the optimal policy in (2) exclusively to
the observed response, thereby yielding a practical target value (derivation in Appendix B.2):

π̃∗
θk
(y|x) =


1

Zk(x)
πθk−1

(y|x) exp
(

1
β rk

)
, if y = yk,

1
Zk(x)

πθk−1
(y|x), if y ̸= yk .

(3)

where Zk(x) = 1 −
(
1− exp

(
1
β rk

))
πθk−1

(yk|x). This formulation provides a direct learning
signal for a one-step parameter update. For an incorrect response with reward rk = −1, the target
probability is scaled down relative to the current policy, effectively instructing the model to diminish
the likelihood of generating that specific erroneous output in the future. This approach transforms an
otherwise intractable global optimization problem into a targeted, sample-wise correction, forming
the fundamental basis for our efficient adaptation mechanism.

3.3 Efficient Parameter Update via Linearized Optimization

With a practical target policy π̃∗
θk

established, the subsequent step involves computing the parameter
update ∆θk that adjusts the current policy πθk−1

towards this target. This is accomplished through
linearized optimization. This linearization is chosen for its computational ease and efficiency, allowing
for rapid online adaptation without the prohibitive costs of higher-order optimization methods, as
demonstrated in our efficiency analysis in Section D.3. Initially, the policy function is approximated
using a first-order Taylor expansion around the current parameters θk−1:

πθk−1+∆θk(yk|x) ≈ πθk−1
(yk|x) +∇θπθk−1

(yk|x)⊤∆θk . (4)

Our objective is to determine ∆θk such that the updated policy πθk−1+∆θk closely matches our target
π̃∗
θk

. For the single data point (x,yk), this yields a linear system of equations:

Jk∆θk ≈ π̃∗
θk
(yk|x)− πθk−1

(yk|x) . (5)

where Jk = ∇θπθk−1
(yk|x)⊤ represents the Jacobian of the policy output with respect to the model

parameters. To obtain a stable, least-squares solution for ∆θk, we solve the following equations:

(J⊤
k Jk)∆θk = J⊤

k

(
π̃∗
θk
(yk|x)− πθk−1

(yk|x)
)
. (6)

Explicitly forming the Hessian-approximating matrix J⊤
k Jk is computationally prohibitive for models

with a large number of parameters. As a consequence, we employ the Conjugate Gradient (CG)
algorithm [41], an iterative solver that efficiently determines the solution to (6) without materializing
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Algorithm 1 Optimum-Referenced One-Step Adaptation (ROSA)
1: Input: Initial model parameters θ0, hyperparameter β.
2: k ← 1
3: while true do
4: // Step 1: Generate response and receive feedback
5: Generate response yk ∼ πθk−1

(·|x).
6: Receive reward rk based on user feedback.
7: if rk = +1 then
8: Terminate // Stop immediately on success signal
9: end if

10: // Step 2: Construct the practical online target (Section 3.2)
11: Compute target value π̃∗

θk
(yk|x) = 1

Zk(x)
πθk−1

(yk|x) exp
(

1
β rk

)
.

12: // Step 3: Compute parameter update via linearized optimization (Section 3.3)
13: Define residual dk = π̃∗

θk
− πθk−1

.
14: Solve (J⊤

k Jk)∆θk = J⊤
k dk for ∆θk using Conjugate Gradient method.

15: // Step 4: Update model parameters
16: Update parameters: θk ← θk−1 +∆θk.
17: end while

this matrix. This is critical for memory efficiency, as it avoids storing the full Hessian-like matrix,
making our approach incur less GPU memory overhead, as shown in Appendix D.3. The CG
algorithm only requires the computation of the matrix-vector product (J⊤

k Jk)p for an arbitrary vector
p. This computation is performed in a matrix-free manner by efficiently chaining two operations
using automatic differentiation: a Jacobian-vector product (JVP) to compute Jkp, followed by a
vector-Jacobian product (VJP) to compute J⊤

k (Jkp).

Once the optimal ∆θk is computed via CG method, the model parameters are updated in one step:

θk ← θk−1 +∆θk . (7)

This entire procedure, encompassing feedback reception and parameter update computation, consti-
tutes one complete cycle of ROSA, as comprehensively detailed in Algorithm 1.

4 Theoretical Results

Having established the mechanics of ROSA, we now provide its theoretical underpinnings. This
section demonstrates that our ROSA is not merely an effective heuristic but a principled algorithm
with formal guarantees. Our analysis unfolds in three stages: we first prove that each corrective step
is guaranteed to be productive (Section 4.1), then show that these gains accumulate over time to
ensure convergence (Section 4.2), and finally, provide a unified bound that accounts for the practical
approximation errors inherent in our efficient update step (Section 4.3).

Of note, a central aspect of our theoretical analysis revolves around the Kullback-Leibler (KL) diver-
gence, specifically DKL(π

∗
user∥π̃∗

θk
). This metric quantifies the dissimilarity between the underlying

user optimal policy π∗
user (representing the true preferences from the user and the ideal way to solve

the task) and our adapted policy π̃∗
θk

. Minimizing this divergence is crucial because it directly implies
that the generated responses from a model are becoming increasingly aligned with what the user
desires and expects. When the model policy closely mirrors the user optimal policy, it is inherently
more likely to produce correct and satisfactory outputs, thereby increasing the probability of task
success and reducing the number of interaction turns required to achieve user intent.

4.1 Monotonic Error Reduction

Our first key result establishes that the adaptation mechanism in ROSA is provably productive. Each
time the model receives corrective feedback, the resulting update is guaranteed to reduce the KL
divergence between the underlying user policy and our estimated target policy, as formally shown in
Theorem 2 (proof in Appendix B.3).

6



Theorem 2 (Monotonic Error Reduction). Let π∗
user be the underlying user policy and π̃∗

θk
be

the practical target policy in (3) after receiving feedback rk on response yk at turn k. Suppose
πθk = π̃∗

θk
by applying exact policy update in ROSA, the change in KL divergence from the

previous turn is bounded as follows:

DKL(π
∗
user∥π̃∗

θk
)−DKL(π

∗
user∥π̃∗

θk−1
) ≤ − 1

β
π∗

user(yk|x) . (8)

Remark. This theorem provides a powerful guarantee for the reliability of ROSA. The most
inspiring insight is that every piece of corrective feedback is guaranteed to be productive, confirming
that learning from failure is a mathematically valid mechanism in our framework. The magnitude of
this reduction is also highly informative. The term 1

β works as a learning rate; a smaller β yields a
more aggressive update, theoretically explaining the faster initial gains seen in our ablation study.
Besides, the π∗

user(yk|x) term reveals that the most impactful learning signals come from correcting
plausible mistakes (high π∗

user with r = −1) instead of nonsensical ones. Finally, this result provides
strong theoretical justification for the one-step adaptation design in ROSA. As a single update is
provably beneficial, the algorithm effectively avoids the complexity and potential instability of
iterative optimization within a single turn.

4.2 Cumulative Convergence Guarantee

While Theorem 2 guarantees improvement at each step, our second theorem extends this result to
the entire multi-turn interaction, providing a bound on the cumulative error and ensuring long-term
convergence in our Theorem 3 (proof in Appendix B.4).

Theorem 3 (Cumulative Error Bound). Suppose πθk = π̃∗
θk

by applying exact policy update in
ROSA, after K turns of interaction, the KL divergence between the underlying user policy π∗

user
and the practical target policy π̃∗

θK
in (3) is bounded as follows:

DKL(π
∗
user∥π̃∗

θK ) ≤ DKL(π
∗
user∥πθ0)−

1

β

K∑
k=1

π∗
user(yk|x) . (9)

Remark. This theorem formalizes the core value proposition of multi-turn interaction within the
ROSA framework. First, the benefits of adaptation accumulate over time. The summation term grows
with each turn of feedback, progressively tightening the upper bound on the error. This formally
demonstrates that the more a user interacts with the model, the closer the model policy will align
with their true intent. Second, this result provides a clear path to convergence. As the number of turns
K increases, the cumulative subtracted term grows, forcing the error to decrease and ensuring the
adaptation process is on a trajectory guaranteed to converge toward the optimal policy of user.

4.3 Unified Error Bound for the Adapted Policy

The previous theorems guarantee our target policy improves. However, the final policy, πθk , is subject
to the approximation error from the first-order Taylor expansion used for our efficient update. The
following unified theorem combines the guaranteed improvement from feedback with the accumulated
linearization error to provide a comprehensive bound on the true performance of ROSA (proof in
Appendix B.5).

Theorem 4 (Unified Convergence Bound). Assume log πθ is Lipschitz-smooth with constant L.
After K turns of interaction in ROSA, the divergence of the final adapted policy πθK from the
underlying user policy π∗

user is bounded by:

DKL(π
∗
user∥πθK ) ≤ DKL(π

∗
user∥πθ0)︸ ︷︷ ︸

Initial Error

− 1

β

K∑
k=1

π∗
user(yk|x)︸ ︷︷ ︸

Improvement

+
L

2

K∑
k=1

∥∆θk∥22︸ ︷︷ ︸
Approx. Error

. (10)
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Figure 4: ROSA significantly boosts the rate of accuracy improvement in multi-turn interactions.
These charts compare baseline models, RL described in Appendix D.4.1, and ROSA on different
datasets. In contrast to the slow improvement shown in Figure 2, ROSA not only achieves a higher
absolute accuracy but also accelerates the learning process, as evidenced by the steeper slopes of the
solid lines. This highlights efficiency of ROSA in online error correction.

Remark. This unified bound rigorously quantifies the inherent trade-off in online policy adaptation.
Each turn reduces the KL divergence from the underlying user optimal policy by a reward-driven term
1
βπ

∗
user(yk|x), while incurring an approximation error L

2 ∥∆θk∥22 due to linearization. Convergence
requires the net progress per turn to remain positive. This balance is affected by two factors. Firstly,
the approximation error is controlled because πθk−1

(yk|x) is typically small in practice, limiting
the magnitude of ∆θk according to (3). This ensures the improvement from a potentially large
π∗

user(yk|x) can effectively outweigh the approximation cost. Secondly, the regularization coefficient
β modulates this trade-off: a smaller β accelerates learning but risks amplifying approximation
error, while a larger β stabilizes updates at the cost of slower progress. This interplay explains the
two-phase behavior observed in practice: rapid initial corrections followed by stable, fine-grained
refinements, as detailed in Appendix D.4.2. The theorem therefore serves as both a robust theoretical
guarantee and a practical design guide for balancing adaptation speed and stability.

5 Empirical Results

We conduct extensive experiments to validate the effectiveness and efficiency of our proposed
ROSA framework in dynamic, multi-turn settings. In this section, we present our two primary
findings: we first demonstrate the state-of-the-art performance of ROSA across a diverse range of
tasks (Section 5.1), and then we analyze its effectiveness in online error correction (Section 5.2). A
comprehensive description of our experimental setup, including the datasets, baselines, evaluation
metrics, and reward models, is deferred to Appendix C. Furthermore, in-depth ablation studies
analyzing our optimization strategy and the hyperparameter β are provided in Appendix D.4.

5.1 Effectiveness and Generalizability Across Task Domains

To validate the generalization ability and flexibility of ROSA, we first evaluated its performance
across four different domains: mathematical reasoning, general reasoning, code generation, and
multilingual reasoning. Detailed information about the datasets is provided in Appendix C.1. The
results are shown in Table 2, and for more data sets and model results, see Appendix D.1. From the
results, we draw several key conclusions. First, ROSA consistently outperforms the baseline method
(standard multi-turn interaction) across all benchmark datasets and with different LLM models,
demonstrating its broad applicability and effectiveness. Second, ROSA is highly flexible. It
performs well regardless of whether the LM Head or Hidden States are updated (see Appendix C.5
for details on parameter updates), indicating its adaptability to different parameter update strategies.
Furthermore, the also results highlight the impact of feedback granularity. The dense model-based
reward, which provides fine-grained feedback on the reasoning process, consistently yields the best
or near-best performance across almost all settings. This demonstrates that ROSA can effectively
leverage detailed preference information to achieve superior alignment. On the contrary, we note
that even with the sparser, rule-based reward, ROSA still delivers substantial improvements. This
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Table 2: Main results of ROSA across diverse task domains, reporting accuracy (%). We compare
the Baseline (standard multi-turn interaction) with several variants of ROSA. The notation ‘(+A+B)‘
indicates the update location (A: “LM" for LM Head, “HS" for Hidden States) and the reward
model type (B: “R" for rule-based, “M" for model-based). The values in red denote the absolute
improvement over the baseline. Further details on parameter updates and reward models are provided
in Appendix C.5 and C.4, respectively.

Mathematical Reasoning General Reasoning Multilingual Reasoning Code Gen.
Model Method MATH MATH-500 MMLU-R SuperGPQA MT-AIME24 MT-MATH100 HumanEval

Qwen2.5-0.5B
-Instruct

Baseline 13.40 12.20 7.27 1.90 3.48 15.40 31.09
ROSA (+LM + R) 30.40 (+17.00) 28.00 (+15.80) 9.07 (+1.80) 5.63 (+3.73) 3.67 (+0.19) 22.80 (+7.40) 37.19 (+6.10)
ROSA (+HS + R) 25.40 (+12.00) 25.00 (+12.80) 11.00 (+3.73) 5.00 (+3.10) 4.90 (+1.42) 20.90 (+5.50) 37.27 (+6.18)
ROSA (+LM + M) 27.00 (+13.60) 28.40 (+16.20) 13.72 (+6.45) 6.57 (+4.67) 6.13 (+2.65) 25.20 (+9.80) 39.37 (+8.28)

Qwen3-0.6B

Baseline 25.00 26.00 18.60 4.20 4.80 31.30 41.46
ROSA (+LM + R) 50.20 (+25.20) 51.60 (+25.60) 33.40 (+14.80) 9.13 (+4.93) 7.58 (+2.78) 56.60 (+25.30) 45.73 (+4.27)
ROSA (+HS + R) 50.80 (+25.80) 50.60 (+24.60) 36.00 (+17.40) 9.70 (+5.50) 7.90 (+3.10) 51.90 (+20.60) 47.27 (+5.81)
ROSA (+LM + M) 52.20 (+27.20) 54.60 (+28.60) 40.68 (+22.08) 15.73 (+11.53) 9.43 (+4.63) 59.40 (+28.10) 49.37 (+7.91)

Qwen2.5-7B
-Instruct

Baseline 47.00 49.40 45.36 19.31 19.24 60.34 57.92
ROSA (+LM + R) 63.40 (+16.40) 62.40 (+13.00) 62.17 (+16.81) 37.26 (+17.95) 27.14 (+7.90) 73.16 (+12.82) 63.41 (+5.49)
ROSA (+HS + R) 64.40 (+17.40) 63.40 (+14.00) 67.31 (+21.95) 36.27 (+16.96) 26.75 (+7.51) 72.27 (+11.93) 64.24 (+6.32)
ROSA (+LM + M) 65.20 (+18.20) 65.60 (+16.20) 68.47 (+23.11) 40.67 (+21.36) 30.21 (+10.97) 75.13 (+14.79) 67.36 (+9.44)

Qwen3-8B

Baseline 55.80 58.80 51.35 27.61 30.37 74.74 78.04
ROSA (+LM + R) 65.80 (+10.00) 72.80 (+14.00) 67.27 (+15.92) 36.11 (+8.50) 40.16 (+9.79) 85.16 (+10.42) 81.71 (+3.67)
ROSA (+HS + R) 65.80 (+10.00) 66.20 (+7.40) 68.37 (+17.02) 37.73 (+10.12) 42.27 (+11.90) 86.93 (+12.19) 82.37 (+4.33)
ROSA (+LM + M) 67.40 (+11.60) 68.40 (+9.60) 70.36 (+19.01) 40.34 (+12.73) 43.93 (+13.56) 88.37 (+13.63) 83.65 (+5.61)

DeepSeek-R1
-Distill-Llama-8B

Baseline 5.20 7.20 30.46 10.37 4.73 17.35 25.00
ROSA (+LM + R) 7.80 (+2.60) 18.40 (+11.20) 41.14 (+10.68) 20.49 (+10.12) 6.13 (+1.40) 21.17 (+3.82) 39.03 (+14.03)
ROSA (+HS + R) 8.40 (+3.20) 18.20 (+11.00) 42.18 (+11.72) 21.34 (+10.97) 7.27 (+2.54) 23.85 (+6.50) 38.37 (+13.37)
ROSA (+LM + M) 8.60 (+3.40) 20.80 (+13.60) 45.79 (+15.33) 24.97 (+14.60) 8.19 (+3.46) 24.67 (+7.32) 39.26 (+14.26)

Table 3: Comparison of Correction Uplift (%) on mathematical reasoning datasets.

Model Method MATH AIME25 MATH-500 HumanEval

Qwen2.5-0.5B-Instruct Baseline 6.88 0.00 6.79 14.39
ROSA 25.48 (+18.60) 6.67 (+6.67) 24.05 (+17.26) 26.09 (+11.70)

Qwen3-0.6B Baseline 17.40 3.57 17.78 19.33
ROSA 48.87 (+31.47) 16.67 (+13.10) 51.31 (+33.53) 31.01 (+11.68)

Qwen2.5-7B-Instruct Baseline 12.54 3.57 13.65 28.57
ROSA 41.53 (+28.99) 20.69 (+17.12) 36.91 (+23.26) 40.00 (+11.43)

Qwen3-8B Baseline 23.00 7.41 24.54 47.83
ROSA 40.42 (+17.42) 27.59 (+20.18) 52.94 (+28.40) 62.50 (+14.67)

DeepSeek-R1-Distill
-Llama-8B

Baseline 4.05 3.57 6.45 15.49
ROSA 6.30 (+2.25) 13.79 (+10.22) 17.41 (+10.96) 31.97 (+16.48)

observation is consistent with our theoretical analysis in Theorem 2, which guarantees convergence
even with simpler feedback signals. In addition, ROSA performance can reach or even outperform
the multi turn training method (Appendix D.2).

Finally, we analyze the computational overhead of ROSA. Our results demonstrate that the method
achieves its performance gains without a significant increase in inference latency or GPU memory
consumption, enabling user-imperceptible policy optimization. The detailed inference time and
memory usage metrics are provided in Appendix D.3. This efficiency is crucial, confirming that
ROSA is a practical approach for enhancing multi-turn capabilities without additional overhead.

5.2 Effectiveness in Online Error Correction

A core claim of our work is that ROSA enhances not just final accuracy, but the capacity of model
for in-conversation self-correction. To quantify this, we propose the Correction Uplift metric, which
measures the percentage of initially incorrect problems that are successfully solved in subsequent
turns (see Appendix C.3 for details). The results in Table 3 show that ROSA dramatically improves
this metric across all benchmarks, confirming its strong self-correction capability. This is further
corroborated by the learning dynamics shown in our figures. In Figure 4, the accuracy curve for
ROSA (solid line) exhibits a much steeper slope than the baselines, indicating a significantly faster
rate of learning and correction. Figure 5 provides a more granular view: while the baseline model
(green) shows sharply diminishing returns after the first turn, ROSA (purple) sustains a high rate of
problem-solving in all subsequent rounds. This empirical result aligns with our theoretical analysis
(Theorem 3), which establishes that ROSA learns from failures, enabling it to progressively align
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Figure 5: Comparison of newly solved problems per round on MATH datasets.

with user preferences. This capability is particularly impactful for small-scale LLM, substantially
boosting their multi-turn reasoning performance. A detailed case study is provided in Appendix E.

6 Conclusions and Limitations

In this work, we address the degradation of LLM performance in multi-turn dialogues by proposing
a new paradigm T2PAM, and its first practical implementation ROSA. ROSA enables efficient,
in-conversation self-correction by updating model parameters online using real-time feedback. While
our theoretical and experimental results validate ROSA, we acknowledge limitation that ROSA
effectiveness is less effective on tasks that are heavily dependent on the model pre-trained knowledge.
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A Related Work

Research on improving the multi-turn capabilities of LLMs has largely proceeded along three main
fronts: in-context learning, fine-tuning with multi-turn data, and reinforcement learning.

In-Context Learning and Prompting Strategies. A prominent line of work enhances multi-turn
performance without modifying model parameters by leveraging the context window to guide the
model’s reasoning [42, 43]. For instance, ChatCoT [6] models the chain-of-thought process as a
multi-turn interaction to improve reasoning. Similarly, Reflexion [18] refines model behavior by
converting environmental feedback into textual summaries, which are appended to the context for
subsequent turns. MathChat [19] extends this by introducing a user agent that can execute tools and
inject the resulting feedback into the conversation. While effective, these methods are fundamentally
limited by the model’s intrinsic ability to interpret the provided context, and their performance is
highly sensitive to the prompt design, which may even degrade performance in complex multi-turn
scenarios if not perfectly aligned with the task.

Fine-Tuning with Multi-Turn Data. Another approach involves fine-tuning the model on datasets
specifically designed to capture multi-turn dynamics [25, 44]. For instance, WildChat [26] leverages
live user feedback to automatically construct a preference dataset for subsequent fine-tuning. Address-
ing challenges within this domain, Codesteer [45] identifies a “gradient cancellation" issue, where
gradients from early turns can interfere with those from later, more informative ones, and mitigates
this by up-weighting the loss from the final turns of the interaction. However, a key limitation
of such offline SFT approaches is their potential insufficiency in cultivating robust self-correcting
behavior [1, 2]. This challenge often stems from a distribution mismatch between the errors present in
the training data and those produced by the model at inference time, as well as the risk of "behavioral
collapse," where the model overfits to a narrow set of correction patterns.

Reinforcement Learning Approaches. Several methods employ reinforcement learning (RL)
to teach models to self-improve over multiple rounds [46, 47]. For instance, RISE [27] utilizes
multi-round offline RL with reward supervision, applying a majority vote over candidate outputs at
inference time. SCoRe [48] adopts a two-stage process, first teaching the model to self-correct and
then maximizing this capability via RL. Other works have explored multi-round group preference
optimization by decomposing conversations into single-turn problems [49, 50]. While these RL-
based strategies can cultivate sophisticated, self-correcting behaviors, they often face significant
challenges, including high computational costs and training instability, particularly when applied to
long, multi-turn dialogue contexts.

While existing methods have advanced multi-turn capabilities, they present a fundamental trade-off.
Offline approaches, such as fine-tuning and reinforcement learning, incur prohibitive computational
costs associated with training on long contexts. Conversely, online in-context methods, while
lightweight, are often inefficient at correcting a model’s flawed intrinsic policy. Inspired by recent
advances in test-time optimization [51, 36, 28], our work charts a new course. We introduce a
novel paradigm, T2PAM, that enables efficient, online policy modification during inference. This
approach achieves the benefits of direct policy correction without the high cost of offline training and
with greater flexibility than pure prompting strategies. We then present ROSA as the first practical
algorithm to realize this paradigm.

B Proofs

B.1 Proof of Theorem 1

Proof. The policy π∗
θk

that maximizes the turn-wise RLHF objective is found by reformulating the
objective as a minimization problem. We begin with the objective from Equation 1 and combine
terms inside the expectation:

J(πθ) = max
πθ

Ey∼πθ(·|x) [r(x,y)]− βDKL
(
πθ(·|x) ∥πθk−1

(·|x)
)

(11)

= max
πθ

Ey∼πθ(·|x)

[
r(x,y)− β log

(
πθ(y|x)

πθk−1
(y|x)

)]
(12)
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Maximizing the above is equivalent to minimizing the negative of the term inside the expectation:

L(πθ) = min
πθ

Ey∼πθ(·|x)

[
β log

(
πθ(y|x)

πθk−1
(y|x)

)
− r(x,y)

]
(13)

= min
πθ

Ey∼πθ(·|x)

[
log

(
πθ(y|x)

πθk−1
(y|x) exp( 1β r(x,y))

)]
(14)

We can recognize the denominator as being proportional to the optimal policy. Let us define the
optimal policy π∗

θk
by normalizing this term with the partition function Zk(x):

π∗
θk
(y|x) ≜ 1

Zk(x)
πθk−1

(y|x) exp
(
1

β
r(x,y)

)
(15)

Substituting this definition back into the objective function:

L(πθ) = min
πθ

Ey∼πθ(·|x)

[
log

(
πθ(y|x)

π∗
θk
(y|x) · Zk(x)

)]
(16)

= min
πθ

(
Ey∼πθ(·|x)

[
log

(
πθ(y|x)
π∗
θk
(y|x)

)]
− Ex[logZk(x)]

)
(17)

= min
πθ

Ey∼πθ(·|x)

[
log

(
πθ(y|x)
π∗
θk
(y|x)

)]
(18)

Since the partition function Zk(x) and its logarithm do not depend on the parameters of the policy
πθ being optimized, minimizing L(πθ) is equivalent to minimizing the KL divergence between πθ

and the target optimal policy π∗
θk

:

min
πθ

[
DKL(πθ(·|x)∥π∗

θk
(·|x))

]
(19)

The minimum value of the KL divergence is 0, which is achieved if and only if the two distributions
are identical, i.e., πθ = π∗

θk
:

πθ(y|x) = π∗
θk
(y|x) = 1

Zk(x)
πθk−1

(y|x) exp
(
1

β
r(x,y)

)
. (20)

This completes the proof.

B.2 Derivation of Equation 3

Definition 1 (Single-Sample Feedback Constraint). In practical applications, feedback is typically
received for only a single generated response, yk. We model this by constraining the general reward
function r(x,y) as follows:

r(x,y) = rk · I(y = yk) =

{
rk, if y = yk

0, if y ̸= yk
(21)

Derivation of the Practical Target from the Theoretical Optimum. Our goal is to derive the practical,
single-sample update target (Equation 3) and its corresponding partition function from the general
theoretical optimal policy (Equation 2) under the Single-Sample Feedback Constraint (Definition 1).

1. Derivation of the Practical Target Policy π̃∗
θk
. We substitute the constrained reward from

Assumption 1 into the general policy formula from Equation 2. This naturally yields a piecewise
expression:

• For the observed response where y = yk, the reward is rk, yielding:

π̃∗
θk
(y|x) = 1

Zk(x)
πθk−1

(y|x) exp
(

1
β rk

)
(22)
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• For all other responses where y ̸= yk, the reward is 0, yielding:

π̃∗
θk
(y|x) = 1

Zk(x)
πθk−1

(y|x) exp(0) = 1

Zk(x)
πθk−1

(y|x) (23)

Combining these two results gives the piecewise form in Equation 3.

2. Derivation of the Practical Partition Function Zk(x). Next, we apply the same constrained
reward to the general partition function definition by splitting the sum over the entire response space
Y:

Zk(x) =
∑
y′∈Y

πθk−1
(y′|x) exp

(
1

β
rk · I(y′ = yk)

)

= πθk−1
(yk|x) exp

(
1

β
rk

)
+
∑

y′ ̸=yk

πθk−1
(y′|x) exp (0)

= πθk−1
(yk|x) exp

(
1

β
rk

)
+
(
1− πθk−1

(yk|x)
)

= 1−
(
1− exp

(
1

β
rk

))
πθk−1

(yk|x)

This confirms the expression for the practical partition function used in Equation 3.

B.3 Proof of Theorem 2

Proof. We analyze the one-step change in error, DKL(π
∗
user∥π∗

θk
)−DKL(π

∗
user∥π∗

θk−1
).

DKL(π
∗
user∥π∗

θk
)−DKL(π

∗
user∥π∗

θk−1
) (24)

=

[∑
y

π∗
user(y) log

(
π∗

user(y)

π∗
θk
(y)

)]
−

[∑
y

π∗
user(y) log

(
π∗

user(y)

π∗
θk−1

(y)

)]
(25)

=
∑
y

π∗
user(y)

[
log

(
π∗

user(y)

π∗
θk
(y)

)
− log

(
π∗

user(y)

π∗
θk−1

)]
(26)

=
∑
y

π∗
user(y) log

 π∗
user(y)

π∗
θk

(y)

π∗
user(y)

π∗
θk−1

(y)

 (27)

=
∑
y

π∗
user(y) log

(
π∗

user(y)

π∗
θk
(y)
·
π∗
θk−1

(y)

π∗
user(y)

)
(28)

=
∑
y

π∗
user(y) log

(
π∗
θk−1

(y)

π∗
θk
(y)

)
(29)

log(
π∗
k−1(y)

π∗
k(y)

) can be simplified. We start from the definition provided in Equation 3 and ignored the
policy update error πθk−1

(y|x) = π∗
θk−1

(y|x) and π̃∗
θk
(y|x) = π∗

θk
(y|x):

π∗
θk
(y|x) = 1

Zk(x)
π∗
θk−1

(y|x) exp
(

rk
β · I(y = yk)

)
(30)

π∗
θk
(y)

π∗
θk−1

(y)
=

1

Zk(x)
exp

(
rk
β
· I(y = yk)

)
(31)

π∗
θk−1

(y)

π∗
θk
(y)

=
Zk(x)

exp
(

rk
β · I(y = yk)

) (32)
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π∗
θk−1

(y)

π∗
θk
(y)

= Zk(x) exp

(
−rk

β
· I(y = yk)

)
(33)

Now, we take the natural logarithm of both sides of Equation 33:

log

(
π∗
θk−1

(y)

π∗
θk
(y)

)
= log

(
Zk(x) exp

(
−rk

β
· I(y = yk)

))
= log(Zk(x))−

rk
β
I(y = yk) (34)

Substituting Equation 34 in:
DKL(π

∗
user∥π∗

θk
)−DKL(π

∗
user∥π∗

θk−1
) (35)

=
∑
y

π∗
user(y)

[
log(Zk(x))−

rk
β
I(y = yk)

]
(36)

=
∑
y

π∗
user(y) log(Zk(x))−

∑
y

π∗
user(y)

rk
β
I(y = yk) (37)

= log(Zk(x))

(∑
y

π∗
user(y)

)
− rk

β

(∑
y

π∗
user(y)I(y = yk)

)
(38)

= log(Zk(x)) · 1−
rk
β
π∗

user(yk|x) (39)

= log(Zk(x))−
rk
β
π∗

user(yk|x) (40)

(41)

Given that the normalization constant Zk(x) ≤ 1, it follows that log(Zk(x)) ≤ 0. Furthermore, as
the sample yk is drawn from the user’s target distribution π∗

user, the reward is rk = 1. Applying these
conditions to Equation 41, we obtain the final inequality:

DKL(π
∗
user∥π∗

θk
)−DKL(π

∗
user∥π∗

θk−1
) (42)

≤ 0− 1

β
π∗

user(yk|x)

= − 1

β
π∗

user(yk|x). (43)

Since π∗
user(yk|x) ≥ 0 and β > 0, the one-step change in KL divergence is less than or equal to zero.

This completes the proof.

B.4 Proof of Theorem 3

Proof of Theorem 3. We want to bound the final estimation error after K turns, DKL(π
∗
user∥π̃∗

θK
). We

can express this final error as the initial error at turn 0 plus the sum of all one-step changes in error
from turn 1 to K:

DKL(π
∗
user∥π̃∗

θK ) = DKL(π
∗
user∥πθ0) +

K∑
k=1

(
DKL(π

∗
user∥π̃∗

θk
)−DKL(π

∗
user∥π̃∗

θk−1
)
)

(44)

where we define π̃∗
θ0

= πθ0 as the initial policy.

From Theorem 2, we have an upper bound for each one-step change in error:

DKL(π
∗
user∥π̃∗

θk
)−DKL(π

∗
user∥π̃∗

θk−1
) ≤ − 1

β
π∗

user(yk|x) (45)

We can apply this inequality to the summation term. By summing the upper bounds for each step
from k = 1 to K, we get an upper bound for the total change:

K∑
k=1

(
DKL(π

∗
user∥π̃∗

θk
)−DKL(π

∗
user∥π̃∗

θk−1
)
)
≤

K∑
k=1

(
− 1

β
π∗

user(yk|x)
)

(46)
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Substituting this bounded sum back into our expression for the final error, we arrive at the desired
result:

DKL(π
∗
user∥π̃∗

θK ) ≤ DKL(π
∗
user∥πθ0)−

1

β

K∑
k=1

π∗
user(yk|x) (47)

This completes the proof.

B.5 Proof of Theorem 4

Assumption 1 (Lipschitz-Smooth Log-Policy). We assume the log-policy function log πθ is Lipschitz-
smooth with constant L. This implies that the KL divergence between policies generated by two
different parameter sets is bounded:

DKL(πθ∥πθ′) ≤ L

2
∥θ − θ′∥22

Proof. Our goal is to bound the final error after K turns, DKL(π
∗
user∥πθK ). We begin by expressing

this final error as the initial error plus the sum of all one-step changes:

DKL(π
∗
user∥πθK ) = DKL(π

∗
user∥πθ0) +

K∑
k=1

(
DKL(π

∗
user∥πθk)−DKL(π

∗
user∥πθk−1

)
)

The one-step change at turn k can be decomposed by introducing our practical target policy, π̃∗
θk

, as
an intermediate term:

DKL(π
∗
user∥πθk)−DKL(π

∗
user∥πθk−1

) = DKL(π
∗
user∥π̃∗

θk
)−DKL(π

∗
user∥πθk−1

)︸ ︷︷ ︸
Term A: Improvement from feedback

+DKL(π
∗
user∥πθk)−DKL(π

∗
user∥π̃∗

θk
)︸ ︷︷ ︸

Term B: Error from inexact update

We now bound these two terms separately.

Bounding Term A (Improvement): From Theorem 2, we have a direct upper bound for the first
term, which represents the guaranteed error reduction from applying the user feedback to form the
new target:

DKL(π
∗
user∥π̃∗

θk
)−DKL(π

∗
user∥πθk−1

) ≤ − 1

β
π∗

user(yk|x)

Bounding Term B (Approximation Error): The second term represents the error introduced
because our updated policy πθk is not exactly equal to the practical target π̃∗

θk
due to the linearization

in our parameter update step. We can bound this term using the smoothness assumption. A key
property of KL divergence is that DKL(P∥Q)−DKL(P∥R) is related to DKL(R∥Q). Specifically,
the error introduced by our inexact update πθk ≈ π̃∗

θk
can be bounded by the KL divergence between

them, which in turn is bounded by the squared norm of the parameter update step under Assumption 1:

DKL(π
∗
user∥πθk)−DKL(π

∗
user∥π̃∗

θk
) ≤ DKL(π̃

∗
θk
∥πθk) ≤

L

2
∥∆θk∥22

This is a standard result from analyzing the convergence of mirror descent, where our update is an
instance.

Combining the Bounds: We can now sum the bounds for Term A and Term B over all K turns:
K∑

k=1

(
DKL(π

∗
user∥πθk)−DKL(π

∗
user∥πθk−1

)
)

≤
K∑

k=1

(
− 1

β
π∗

user(yk|x) +
L

2
∥∆θk∥22

)

= − 1

β

K∑
k=1

π∗
user(yk|x) +

L

2

K∑
k=1

∥∆θk∥22
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Substituting this summed bound back into our initial expression for the final error, we arrive at the
unified convergence bound:

DKL(π
∗
user∥πθK ) ≤ DKL(π

∗
user∥πθ0)−

1

β

K∑
k=1

π∗
user(yk|x) +

L

2

K∑
k=1

∥∆θk∥22

This completes the proof.

C Experimental setting

We conduct a comprehensive evaluation of ROSA across a diverse set of tasks and models to validate
its generalizability, effectiveness, and efficiency.

C.1 Datasets.

To demonstrate the broad applicability of ROSA, we select challenging benchmarks spanning four
distinct problem-solving domains. A summary of these datasets is provided in Table 4, followed by
detailed descriptions.

Table 4: Overview of the datasets used for evaluation. "N/A" indicates that the dataset is primarily
for evaluation and does not have a standard, predefined training set.

Domain Dataset Name Training Size Test Size

Mathematical Reasoning
MATH 7,500 5,000
AIME25 N/A 30
MATH-500 N/A 500

General Reasoning
GPQA-diamond N/A 198
MMLU-Redux N/A 3,000
SuperGPQA 26,500 N/A

Code Generation HumanEval N/A 164

Multilingual Reasoning MCLM N/A 156

Mathematical Reasoning. This domain focuses on complex, multi-step mathematical problem-
solving. We use three standard benchmarks. MATH [52] is a dataset of 12,500 challenging competition
mathematics problems from high school level, covering topics like algebra, geometry, and calculus.
AIME25 [53] is a curated set of 25 highly difficult problems from the American Invitational Math-
ematics Examination (AIME), designed to test advanced reasoning capabilities. MATH-500 [54]
is a well-known evaluation subset of the MATH test set, consisting of 500 problems often used for
efficient model assessment.

General Reasoning. To evaluate reasoning on a broad range of topics, we use three expert-level
question-answering datasets. GPQA-diamond [55] is a challenging set of graduate-level, Google-
proof questions written by domain experts, where the "diamond" subset represents the highest-quality
questions. MMLU-Redux [56] is a revised and cleaned version of the Massive Multitask Language
Understanding benchmark, which covers 57 diverse subjects from elementary mathematics to US
history and law. SuperGPQA [57] significantly expands upon GPQA, containing nearly 5,000
expert-validated questions across 285 graduate-level disciplines.

Code Generation. We test the ability of models to generate functionally correct code from natural
language descriptions using HumanEval [58]. This dataset consists of 164 hand-written program-
ming problems with function signatures, docstrings, and unit tests to verify the correctness of the
generated code.

Multilingual Reasoning. To assess reasoning capabilities across different languages, we use
the MCLM [59] benchmark. This dataset was created by translating challenging English reasoning
benchmarks into multiple languages. Our evaluation focuses on its subsets, including multilingual
versions of IMO, AIME, and MATH problems (M-IMO, MT-AIME24, and MT-MATH100).
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Dataset Usage in Experiments. Our primary evaluation of effectiveness of ROSA is conducted on
official, held-out test sets to simulate real-world performance. For experiments where a dedicated
test set is not available, or for ablation studies, we utilize the corresponding training or development
sets for analysis. This ensures a comprehensive assessment of ROSA capabilities across different
conditions while maintaining a clear distinction between final evaluation and component analysis.
Specifically, we only sample part of the data from the SuperGPQA training set for testing, and the
rest of the data sets are tested on the test set.

C.2 Models

Our evaluation includes a variety of recent open-source LLMs to ensure our findings are not model-
specific. These models are selected to cover a range of sizes and specializations, as summarized
in Table 5 and detailed below. To mitigate potential data contamination issues with the Qwen2.5
series on certain benchmarks, we also conduct validation experiments on the more recent Qwen3
and DeepSeek-R1 models. All models used are instruction-tuned variants designed for chat and
instruction-following tasks.

Table 5: Overview of the language models used in our experiments, categorized by scale and
specialization.

Category Model Name Parameters Variant

Small-Scale Models Qwen2.5-0.5B-Instruct 0.5B Instruct
Qwen3-0.6B 0.6B Base

Large-Scale Models Qwen2.5-7B-Instruct 7B Instruct
Qwen3-8B 8B Base

Reasoning-Focused DeepSeek-R1-Distill-Llama-8B 8B Reasoning-Tuned
DeepSeek-R1-Distill-Qwen-7B 7B Reasoning-Tuned

Small-Scale Models. To assess the performance of ROSA on more compact models, we
selected two from the Qwen family, known for their strong general-purpose capabilities.
Qwen2.5-0.5B-Instruct [60] is a 0.5 billion parameter model from the Qwen2.5 series,
optimized for instruction following. Qwen3-0.6B [61] is a 0.6 billion parameter model from the
newer Qwen3 generation, featuring architectural improvements.

Large-Scale Models. We evaluate on larger, more capable base models to test the scalability of
our approach. These include Qwen2.5-7B-Instruct [60], a widely-used 7 billion parameter
instruction-tuned model, and Qwen3-8B [61], its 8 billion parameter successor from the Qwen3
series.

Reasoning-Focused Models. To specifically test performance on complex reasoning, we use
models from the DeepSeek-R1 series, which are explicitly optimized for reasoning capabilities
through reinforcement learning [62]. The models we use are distilled versions of a larger, proprietary
model. DeepSeek-R1-Distill-Llama-8B is an 8 billion parameter model that uses a Llama-
based architecture. DeepSeek-R1-Distill-Qwen-7B is a 7 billion parameter variant that
is instead based on the Qwen architecture, allowing for a more controlled comparison with the
general-purpose Qwen models.

C.3 Evaluation Metrics

We assess ROSA based on two primary aspects: performance and efficiency.

Performance Metrics. To measure problem-solving success, we define two key metrics. Accuracy
is the final proportion of unique problems solved correctly within a total of K conversational turns.
Let P be the set of all problems, and let Si ∈ {0, 1} be an indicator variable where Si = 1 if problem
i is solved at any turn up to K. The accuracy is given by:

Accuracy =

∑
i∈P Si

|P|
(48)

23



Correction Uplift measures the ability of model to recover from initial failures. It is the percentage
of problems that were answered incorrectly in the first turn but were successfully corrected in a
subsequent turn. Let Pfail ⊂ P be the subset of problems that the model failed to solve in the first
turn. The Correction Uplift is:

Correction Uplift =

∑
i∈Pfail

Si

|Pfail|
× 100% (49)

Efficiency Metrics. To evaluate the computational overhead of our method, we measure two
metrics. Latency is the average wall-clock time required for a single generation and update cycle.
Peak GPU Memory is the maximum GPU memory consumed during this cycle. These metrics are
crucial for assessing the practical feasibility of deploying ROSA in real-world interactive systems.

C.4 Reward Models

To simulate different real-world feedback scenarios, we employ two types of reward models.

Rule-Based Reward Model. This model simulates scenarios with definitive, high-level judgments
by providing a sparse feedback signal of {−1,+1}. It programmatically extracts the final answer
from a model’s response, typically from a \boxed{} environment, and compares it to the ground-
truth solution. A reward of +1.0 is assigned for a correct answer, and −1.0 otherwise. This mimics
situations where feedback is based solely on the final outcome. The core logic implementation is
shown in the following table.

Core logic for the rule-based reward model.

class MathVerifyRewardModel:
def __init__(self, ground_truth_answer: str):

self.ground_truth_answer = ground_truth_answer

def get_reward(self, response_text: str) -> float:

return 1.0 if compute_score(response_text,
self.ground_truth_answer) == 1.0 else -1.0

def compute_score(solution_str, ground_truth) -> float:
retval = 0.0
try:

string_in_last_boxed =
last_boxed_only_string(solution_str)
if string_in_last_boxed is not None:

answer = remove_boxed(string_in_last_boxed)
if is_equiv(answer, ground_truth):

retval = 1.0
except Exception:

pass
return retval

Model-Based Reward Model. This model simulates more nuanced, fine-grained human feedback
by providing a dense, continuous reward score in the range [−1.0,+1.0]. We use a powerful,
proprietary large language model, Qwen/Qwen3-30B-A3B-Instruct-2507, as the reward
judge. The model is deployed using the VLLM inference engine for efficient scoring. It evaluates the
generated response based on correctness, reasoning, and style by comparing it against the problem
statement and the ideal solution. The prompt used to elicit the score is shown in the following table.
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The prompt template for the model-based reward system.

A student AI was asked the following problem: {problem}.
The student AI gave the following answer: {generated_text}.
The ideal correct solution and answer is {solution}.
Please grade strictly but fairly.
Compare the student's answer to the ideal answer.
Evaluate the student's answer based on correctness, reasoning, and style.
Note: Based on your evaluation, please provide a floating point score
from -1.0 (completely wrong) to 1.0 (perfect).
The score should be placed at the end of your answer in the format: SCORE: [score].

C.5 Parameter Update Mechanisms

To implement the policy update ∆θ computed in Section 3.3, we introduce two distinct, lightweight
update mechanisms. These methods are designed to be computationally efficient, allowing for
real-time policy adaptation during the inference phase without significant overhead.

1. LM Head Update via LoRA. The first mode targets the final layer of the model, the language
modeling (LM) head. The LM head is typically a linear layer (an MLP matrix) that projects the final
hidden state representation of the model into the vocabulary space to produce logits. We augment this
layer by adding a Low-Rank Adaptation (LoRA) [63] matrix. Specifically, a low-rank decomposition,
represented by two matrices A ∈ Rd×r and B ∈ Rr×V (where d is the hidden size, V is the
vocabulary size, and r ≪ d, V is the rank), is added to the original LM head weight matrix. During
our online update process, only the parameters of these small LoRA matrices A and B are modified.
The parameter update ∆θ calculated by the CG solver is applied directly to the flattened weights
of A and B. This approach confines the policy optimization to a very small subset of the total
model parameters, preserving the model’s foundational knowledge while enabling rapid and efficient
adaptation of its final output probabilities. The specific LoRA configuration is shown in Table 6.

Table 6: LoRA Hyperparameter Configuration.

Hyperparameter Value
target_modules lm_head
Rank 1
lora_alpha 8
lora_dropout 0.1

2. Hidden State Modification. The second mode operates not on the model’s weights, but directly
on its activations [37]. Instead of modifying a layer, we intercept the final hidden state H ∈ R1×d just
before it is passed to the LM head. We then compute an update vector ∆H ∈ R1×d (which in this
context represents our ∆θ) and add it directly to the hidden state to produce a modified activation:

Hnew = H+∆H (50)

This new hidden state, Hnew, is then passed to the original, unmodified LM head to generate the
final logits. This method is implemented using model hooking techniques, which allow us to register
a forward hook on the LM head layer. The hook intercepts the input (H), applies the additive
modification, and returns the transformed tensor as the new input for the layer’s forward pass. This
approach completely avoids any updates to the persistent model weights and instead performs a
transient, state-dependent policy correction on the activation flow.

D More result

D.1 Additional Empirical Results

This section presents supplementary empirical results to further validate our findings. First, Table 8
reports the performance of all models on three benchmarks—AIME25, GPQA-diamond, and
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M-IMO—which were omitted from the main text due to space constraints. Second, to provide a
more complete picture of model performance, Table 7 details the Accuracy and Correction Uplift
for the DeepSeek-R1-Distill-Qwen-7B model on both mathematical reasoning and code
generation datasets. Across these additional results, a clear and consistent trend emerges: reinforcing
the conclusions from our main analysis, our proposed method, ROSA, significantly enhances both
overall task performance and the capacity of model for self-correction.

Table 7: Performance of the DeepSeek-R1-Distill-Qwen-8B model on mathematical reasoning
and code generation datasets. The values in red indicate the absolute improvement of ROSA over the
baseline.

MATH AIME25 MATH-500 HumanEval
Method Final Acc. ↑ Correction Uplift ↑ Final Acc. ↑ Correction Uplift ↑ Final Acc. ↑ Correction Uplift ↑ Final Acc. ↑ Correction Uplift ↑
Baseline 7.60 3.14 10.00 3.57 7.40 6.09 45.12 17.05
ROSA 9.80 (+2.20) 5.65 (+2.51) 16.67 (+6.67) 16.67 (+13.10) 22.20 (+14.80) 18.62 (+12.53) 51.22 (+6.10) 33.75 (+16.70)

Table 8: Supplementary performance results on additional benchmarks, reporting accuracy (%). The
values in red indicate the absolute improvement of ROSA variants over the baseline.

Mathematical Reasoning General Reasoning Multilingual Reasoning
Model Method AIME25 GPQA-diamond M-IMO

Qwen2.5-0.5B
-Instruct

Baseline 3.33 3.54 1.99
ROSA (+LM + R) 6.67 (+3.34) 7.07 (+3.53) 2.09 (+0.10)
ROSA (+HS + R) 6.67 (+3.34) 8.53 (+4.99) 3.20 (+1.21)
ROSA (+LM + M) 6.67 (+3.34) 10.27 (+6.73) 4.71 (+2.72)

Qwen3-0.6B

Baseline 10.00 12.20 5.20
ROSA (+LM + R) 16.67 (+6.67) 9.09 (+-3.11) 5.30 (+0.10)
ROSA (+HS + R) 10.00 (+0.00) 10.54 (+-1.66) 5.30 (+0.10)
ROSA (+LM + M) 10.00 (+0.00) 13.16 (+0.96) 6.60 (+1.40)

Qwen2.5-7B
-Instruct

Baseline 10.00 26.14 10.53
ROSA (+LM + R) 23.33 (+13.33) 42.24 (+16.10) 17.57 (+7.04)
ROSA (+HS + R) 20.00 (+10.00) 43.16 (+17.02) 18.36 (+7.83)
ROSA (+LM + M) 20.00 (+10.00) 45.83 (+19.69) 21.21 (+10.68)

Qwen3-8B

Baseline 16.67 41.16 20.37
ROSA (+LM + R) 30.00 (+13.33) 69.11 (+27.95) 33.17 (+12.80)
ROSA (+HS + R) 33.33 (+16.66) 70.27 (+29.11) 37.62 (+17.25)
ROSA (+LM + M) 36.67 (+20.00) 75.18 (+34.02) 39.16 (+18.79)

DeepSeek-R1
-Distill-Llama-8B

Baseline 3.33 19.03 4.36
ROSA (+LM + R) 16.67 (+13.34) 21.14 (+2.11) 6.32 (+1.96)
ROSA (+HS + R) 16.67 (+13.34) 22.23 (+3.20) 5.17 (+0.81)
ROSA (+LM + M) 16.67 (+13.34) 25.36 (+6.33) 6.36 (+2.00)

D.2 Comparison with Multi-Turn Training Methods

While our main analysis focuses on test-time adaptation, it is instructive to compare ROSA with
traditional training-based methods for multi-turn dialogue. In this section, we benchmark the
performance of ROSA against two such paradigms on the MATH dataset: Supervised Fine-Tuning
(SFT) and Reinforcement Learning (RL).

For the SFT baseline, we first generated a multi-turn dialogue dataset using DeepSeek-R1 on
the MATH training set, and then fine-tuned the base model on this newly created data. For the RL
baseline [64], we employed a Group Preference Optimization (GRPO) scheme tailored for multi-turn
dialogue, similar to the approach described in our related work (Appendix A).

The results, presented in Table 9, report both Accuracy and Correction Uplift. The key finding is that
ROSA, a purely test-time method, achieves performance that is comparable or even superior to these
training-based approaches. This highlights a significant advantage of our method: it obviates the
need for expensive data collection and resource-intensive model training, offering a more efficient
and flexible solution for enhancing multi-turn capabilities.

D.3 Efficiency Analysis

In this section, we analyze the computational overhead of ROSA in Table 10. ROSA introduces
an explicit parameter update step, which incurs additional time and memory costs. As shown in

26



Table 9: Comparison of ROSA with training-based methods on the MATH dataset for the Qwen3-
8B model. Our test-time method achieves performance comparable to full Reinforcement Learning
(RL) training and surpasses Supervised Fine-Tuning (SFT), without requiring data collection or
model training.

Method Final Acc. ↑ Correction Uplift ↑
Baseline 55.80 23.00
SFT Training 63.80 39.24
RL Training 66.20 40.45
ROSA 65.80 40.42
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Figure 6: Time-to-Accuracy comparison for the Qwen3-0.6B model with (ROSA) and without
(Baseline) our method on the MATH, MATH500, AIME25, and HumanEval datasets. The x-axis
represents the cumulative wall-clock time in seconds. Our method ROSA consistently has larger
slopes, highlighting its significant advantage in time efficiency.

the table 10, the Avg. Update Time makes the total processing time per turn roughly double that
of the baseline’s inference-only time. However, this update process is designed to be executed
asynchronously. In a real-world application, the update can be performed in the background while the
user is interpreting the response of model and formulating their next prompt. This parallel processing
makes the update latency largely imperceptible to the user, enabling a seamless and responsive
interactive experience.

We plotted time and accuracy as a line graph, as shown in Figure 6, clearly demonstrating the time
efficiency of our method. The graph plots accuracy as a function of cumulative time. A consistent
trend can be observed across all four benchmarks: the curve for our method, ROSA (solid line), has a
significantly steeper slope than the baseline (dashed line). This indicates a faster rate of improvement
in accuracy per second, validating ROSA’s effectiveness in conversational error correction. Notably,
even on datasets where ROSA initially had lower accuracy (such as MATH and MATH500), its
superior error correction efficiency enabled it to quickly surpass the baseline. Ultimately, our method
not only achieved a higher final accuracy ceiling, but also achieved this in a shorter time, highlighting
its practical advantages in real-world interaction scenarios.

Regarding memory, the Update Peak shows only a modest increase over the Inference Peak. This
demonstrates that ROSA can perform its online updates without a prohibitive increase in GPU
memory requirements, confirming its practicality for deployment on existing hardware.

D.4 Ablation Studies

D.4.1 The Importance of the Optimization Strategy

To isolate the contribution of our proposed optimization method, we conduct an ablation study
comparing the full ROSA framework against a more direct reinforcement learning approach. This
baseline, which we term RL, directly optimizes the standard RLHF objective function in (1)). To
simulate the online, multi-turn interaction setting in a comparable manner to ROSA, we estimate the
gradient of J(πθ) using only a single response y sampled from the policy πθ for each prompt x, and
then update the model’s parameters using this gradient. This approach contrasts with our full ROSA
framework, which first computes a stable target policy π∗ and then solves for the parameter update
∆θ.
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Table 10: Efficiency analysis of ROSA. We report the averaged inference latency and peak GPU
memory per turn. The “Update" columns show the additional overhead introduced by ROSA.

Averaged Latency (s) Peak GPUMemory (GB)
Model Method Inference ↓ Update ↓ Inference ↓ Update ↓

Qwen2.5-0.5B
-Instruct

Baseline 8.42 0 11.85 0
ROSA 7.97 7.58 11.68 18.60

Qwen3-0.6B Baseline 18.71 0 15.61 0
ROSA 18.85 13.16 16.24 23.65

Qwen2.5-7B
-Instruct

Baseline 19.40 0 42.01 0
ROSA 19.72 23.28 43.41 48.95

Qwen3-8B Baseline 30.64 0 51.90 0
ROSA 30.70 28.39 51.90 58.63

DeepSeek-R1
-Distill-Llama-8B

Baseline 26.40 0 48.16 0
ROSA 26.70 26.37 48.73 54.8

DeepSeek-R1
-Distill-Qwen-7B

Baseline 23.53 0 44.27 0
ROSA 23.56 25.87 45.52 51.61

Table 11: Comparison of Accuracy (%) on mathematical reasoning datasets with RL and ROSA.

Model Method MATH MATH-500 AIME25 HumanEval

Qwen3-0.6B RL 26.20 28.80 10.00 42.68
ROSA 50.20 (+24.00) 51.60 (+22.80) 16.67 (+6.67) 45.73 (+3.05)

Qwen3-8B RL 59.60 63.60 16.67 79.27
ROSA 65.80 (+6.20) 72.80 (+9.20) 30.00 (+13.33) 81.71 (+2.44)

DeepSeek-R1-Distill
-Llama-8B

RL 6.20 8.40 10.00 28.05
ROSA 7.80 (+1.60) 18.40 (+10.00) 16.67 (+6.67) 39.02 (+10.97)

The results of this comparison are presented in Figure 4. The analysis leads to two clear observations.
First, the direct RL optimization (dotted lines) yields only marginal improvements over the baseline
models (solid lines) across all three datasets. The proximity of the solid and dotted lines indicates that
a naive policy gradient update with a single sample provides a noisy and inefficient learning signal,
resulting in minimal performance gains. Second, in stark contrast, ROSA (dashed lines) consistently
and significantly outperforms both the baseline and the RL-enhanced version. The steeper slopes
of the dashed lines demonstrate that ROSA not only achieves a higher absolute accuracy but also
accelerates the error correction process over the conversation turns. For example, on the MATH
dataset, the Qwen3-8B model enhanced with ROSA shows a much more rapid accuracy improvement
compared to its RL counterpart.

The quantitative results of this comparison, presented in Table 11 and Table 12, demonstrate a clear
and consistent advantage for ROSA. Table 11 reveals that ROSA achieves substantially higher final
accuracy across all models and datasets. For instance, on the MATH dataset with the Qwen3-0.6B
model, ROSA surpasses the RL baseline by a remarkable +24.00%. Furthermore, Table 12 highlights
its superior self-correction capability. In the most significant case, ROSA boosts the Correction Uplift
score by +31.31% on MATH-500 for the same model. The data consistently show that a direct RL
update provides only marginal benefits, while our principled optimization strategy yields significant
gains in both overall success and the ability to recover from errors.

This ablation study confirms that the superior performance of ROSA is not merely due to the
introduction of an online reward signal. Rather, it is the principled optimization strategy—deriving
a stable online target π∗ and then efficiently solving for the optimal parameter update ∆θ—that is
crucial for achieving effective and efficient test-time adaptation.
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Table 12: Comparison of Correction Uplift (%) on mathematical reasoning datasets with RL and
ROSA.

Model Method MATH MATH-500 AIME25 HumanEval

Qwen3-0.6B RL 18.54 20.00 6.90 22.31
ROSA 48.87 (+30.33) 51.31 (+31.31) 16.67 (+9.77) 31.01 (+8.70)

Qwen3-8B RL 29.37 31.58 10.71 50.00
ROSA 40.42 (+11.05) 52.94 (+21.36) 27.59 (+16.88) 62.50 (+12.50)

DeepSeek-R1-Distill
-Llama-8B

RL 4.87 7.29 6.90 16.31
ROSA 6.30 (+1.43) 17.41 (+10.12) 13.79 (+6.89) 31.97 (+15.66)

D.4.2 Ablation Study on the Influence of Hyperparameter β

Experimental Setup and the Role of β. To investigate the sensitivity of our proposed method to
its hyperparameters, we conduct an ablation study on the regularization coefficient β. We vary its
value across a wide range of [0.25, 1.75] to observe its impact on model performance. As defined in
the standard RLHF objective, β controls the trade-off between maximizing the reward and maintaining
proximity to the reference policy. In the ROSA framework, its role is to modulate the intensity of the
policy update based on the reward signal r(x,y), as formulated in our practical update target in (3).A
smaller β amplifies the reward signal, leading to more aggressive updates, while a larger β dampens
it, resulting in more conservative updates.

Analysis and Conclusions. The results of our study are presented in Figure 7, which illustrates
the cumulative accuracy over 10 conversational turns for each tested β value. A key observation is
that while the initial learning trajectories vary—with smaller β values often yielding a steeper initial
performance gain—all configurations converge to a similar final accuracy. This convergence can be
attributed to the iterative nature of the multi-turn interaction. Although β adjusts the magnitude of
each corrective step, the consistent directional feedback provided by the reward signal ensures that
the model is always guided towards an improved policy. Consequently, over a sufficient number of
turns, even a series of conservative updates can accumulate to achieve the correct solution.

From this analysis, we draw two key conclusions. First, for tasks with definitive solutions, such as
mathematical reasoning, different search strategies—ranging from aggressive to conservative—are
all highly likely to converge to the correct solution given adequate opportunities for self-correction.
Second, this study underscores the robustness of the ROSA framework. The model’s final
performance demonstrates low sensitivity to the choice of β across a wide operational range, indicating
that ROSA can achieve stable and effective results without extensive hyperparameter tuning.
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Figure 7: Ablation study of the hyperparameter β on the MATH dataset. The figure
illustrates the cumulative accuracy over 10 conversational turns for different values of β, ranging
from 0.25 to 1.75.
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E Case Study

Qwen3-0.8B, MATH dataset

Question: Convert the point (0,3) in rectangular coordinates to polar coordinates.
Enter your answer in the...

True answer: \left( 3, \frac{\pi}{2} \right)

# --- Turn 1 ---
Baseline answer: 'Okay, so I need to convert the point (0, 3) from rectangular
coordinates to polar coordinates. Hmm, let me remember how to do this....
So putting it all together, the polar coordinates should be (3, pi/2).
Let me just'

ROSA answer: 'Okay, so I need to convert the point (0, 3) from rectangular
coordinates to polar coordinates. Hmm, let me remember how to do this....
So putting it all together, the polar coordinates should be (3, pi/2).
Let me just'

# --- Turn 2 ---

Baseline answer: 'Okay, let me try to figure this out again. The original
point is (0, 3). In rectangular coordinates....Therefore, after checking,
I think the correct answer is (3, pi/2). However, the user initially
thought it was wrong, but after rethinking, it's correct.'

ROSA answer: 'Okay, so I got confused earlier. The original point is (0, 3)
. If I use polar coordinates,....Alternatively, if someone thought that
theta is measured as the angle between the x-axis and the'

# --- Turn 3 ---
Baseline answer: 'Okay, so the user initially thought that converting
(0,3) to polar coordinates woul....Is there any possibility that theta
could be negative? No, because theta is always between 0 and 2pi,
and since (0,3) is in the first quadrant'

ROSA answer: 'Okay, so the user initially thought the answer was
(3, pi/2) but the second time they said "Wrong answer....

**Final Answer**
The polar coordinates of the point (0, 3)
are \boxed{(3, \frac{\pi}{2})}.'
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