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Abstract

The goal of zero-shot human-AI coordination is to develop an agent capable of
collaborating with humans without relying on human data. Prevailing two-stage
population-based methods require a diverse population of mutually distinct poli-
cies to simulate diverse human behaviors. The necessity of such populations
severely limits their computational efficiency. To address this issue, we pro-
pose E3T, an Efficient End-to-End Training approach for zero-shot human-AI
coordination. E3T employs a mixture of ego policy and random policy to con-
struct the partner policy, making it both skilled in coordination and diverse. This
way, the ego agent is trained end-to-end with this mixture policy, eliminating
the need for a pre-trained population, and thus significantly improving training
efficiency. In addition, we introduce a partner modeling module designed to
predict the partner’s actions based on historical contexts. With the predicted part-
ner’s action, the ego policy can adapt its strategy and take actions accordingly
when collaborating with humans exhibiting different behavior patterns. Empirical
results on the Overcooked environment demonstrate that our method substan-
tially improves the training efficiency while preserving comparable or superior
performance than the population-based baselines. Demo videos are available at
https://sites.google.com/view/e3t-overcooked.

1 Introduction

Cooperation between AI agents and humans has gained significant attention, spanning various fields
such as robotics [5, 26], automatic driving [41], Human-AI dialogue [14] and Human-AI coordination
games [30]. Due to the high cost of collecting human data and involving humans during training,
recent studies [32, 15] have focused on zero-shot human-AI coordination problems, with the aim to
train an ego agent capable of collaborating with humans without relying on human data.

To train such an ego agent, the prevailing approach [15, 21] involves training the ego agent with
diverse partner agents that can simulate human behavior without the need of human data. One method
for achieving this is through self-play [33, 29], where the ego agent plays against itself as the partner
agent. However, empirical evidence has shown that self-play can lead to agents getting stuck in
a single cooperative pattern during training [15], hindering their ability to adapt to diverse human
behaviors. Alternative approaches like other-play [15] aim to introduce diversity by breaking the
symmetry of self-play policies. Nevertheless, this method relies on the assumption of strict symmetry
in the action or state space, limiting its practical applicability.
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In contrast to relying solely on a single partner policy, advanced population-based methods [21, 42,
32, 18, 19] construct a population with multiple policies to simulate diverse human behaviors, and
then train the ego agent to collaborate with this population. Among these methods, FCP [32] obtains
a diverse population by training several self-play policies with different random seeds and saving
multiple past checkpoints reflecting various coordination levels. TrajeDi [21] promotes diversity
by maximizing the divergence of trajectory distributions within the partner population. MEP [42]
achieves a cooperative and diverse population by maximizing self-play rewards and population
entropy as auxiliary rewards.

However, these population-based methods suffer from two major limitations. Firstly, they are highly
computationally inefficient due to their two-stage framework, which involves training a population of
policies before training the ego agent. For example, training a MEP agent for one environment in
overcooked [8] can take over 15 hours on a single 3090Ti GPU. By contrast, a self-play agent can be
trained in less than 1 hour. Secondly, these methods only learn a single response for all partners in
the population, neglecting the diverse behavior patterns among them. As a result, the learned ego
agent lacks the capability to adjust its policy based on each partner’s unique behavior pattern, leading
to unsatisfactory performance in zero-shot human-AI coordination.
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Figure 1: Illustration of training time and
zero-shot coordination performance of base-
lines. The right y-axis is the required hours
to train one model. The left y-axis represents
the average rewards of collaborating with AI
baselines across 5 layouts.

In this paper, we introduce an Efficient End-to-End
Training approach, called E3T, which aims to im-
prove both efficiency and the ability to recognize
behavior patterns in zero-shot human-AI coordina-
tion. To achieve efficient training, E3T utilizes a
blend of ego and random policies as partners during
training, and integrates a partner modeling module
into the ego policy. This approach is motivated by the
idea that the partner policies should be both skilled
in coordination and diverse [42]. By breaking down
these two objectives into two policies i.e. ego policy
and random policy, and merging them as the partner
policy, E3T is able to be end-to-end trained without
the need for pre-training a population, thus enjoy-
ing higher efficiency and a simpler implementation
compared to population-based methods.

In order to improve the collaboration capabilities of
of ego agents when working with partners exhibiting

different behaviors, we introduce a partner modeling module that predicts the partner’s actions based
on historical contexts. By incorporating this module into the ego policy, the agent is able to know not
only the current observation, but also the predicted actions of the partner. This enables the ego agent
to adapt its behavior more effectively, aligning it better with the partner’s preferences and resulting in
improved collaboration performance. To the best of our knowledge, our paper is the first to utilize a
partner action prediction module in the context of a two-player human-AI coordination task.

Our contributions are three-fold. Firstly, we introduce an efficient end-to-end ego training approach,
named E3T, for zero-shot Human-AI coordination, which offers higher training efficiency compared
to population-based methods. Secondly, we propose a partner modeling module that predicts partner
actions from the context, allowing the ego policy to adapt when collaborating with humans exhibiting
different behavior patterns. Lastly, empirical results on Overcooked show that our method, E3T,
significantly improves training efficiency while achieving comparable or superior performance to
existing methods as Figure 1 shows. Specifically, E3T demonstrates a significant improvement in
training efficiency when compared to state-of-the-art population-based methods.

2 Related Work

Our work investigates how to train an ego agent for zero-shot Human-AI coordination, a field with
broad applications in real-world scenarios such as robotics [5, 26], service allocation [36, 37, 35]
and Human-AI coordination games [30]. In zero-shot Human-AI coordination tasks, reinforcement
learning (RL) algorithms [15] are tasked with training a robust ego agent without relying on human
data, due to the high cost of collecting real human data.
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Self-Play Training There are a number of methods to tackle zero-shot coordination, broadly
categorized into two classes: self-play and population-based training. Self-play has demonstrated
impressive capability in competitive games such as Go [29], Dota [38], StarCraft [34] and imperfect
information games [13]. Self-play can also master high-level skills in cooperative games [8]. However,
self-play agents often struggle to coordinate effectively with previously unseen partners due to their
tendency to adopt rigid conventions formed during training against themselves [32]. Other-play [15]
attempts to mitigate these conventions by breaking the symmetries of self-play policies. However, it
heavily relies on the prior knowledge of strict symmetries in the environment, limiting its applicability
in general environments lacking such symmetries. In this work, E3T follows the self-play training
framework, which avoids falling into conventions by encouraging the partner policies to be more
diverse. In addition, our method offers greater generality compared to other-play, making it applicable
in a wider range of environments.
Population-Based Training Methods Population-based methods train a robust AI by collaborating
with a diverse population. Experimental results show that population-based methods achieve superior
zero-shot coordination performance compared to self-play and other-play [15]. For example, PBT
[8] employs an online evolutionary algorithm, which iteratively updates policy parameters and
performs policy substitution within the population. FCP [32] achieves diversity within a population
by training several self-play policies with different random seeds and saving multiple past checkpoints
to obtain agents with various coordination levels. In a similar vein, TrajeDi [21] regulates the partner
population to be diverse by maximizing the divergence of trajectory distributions between policies
within the population. Furthermore, MEP [42] introduces an auxiliary reward by designing the entropy
of the average of policies in the population, thus promoting population diversity. More recently,
COLE [18, 19] reformulate two-player coordination as a game-theoretic problem, where the trainer’s
objective is to estimate the best responses to the most recent population based on the cooperative
incompatibility distribution. Our work improves the partner behavior diversity by maximizing the
entropy, but E3T directly increases the randomness of a single-agent partner policy, making it more
efficient than MEP and TrajeDi.
Agent Modeling Agent modeling is an important ability for autonomous agents, enabling them to
reason about various properties of other agents such as actions and goals [3]. Typical agent modeling
methods focus on reasoning about types of other agents [1, 2, 31], plan recognition [9, 7], group
modeling [23, 11, 20] and especially policy reconstruction [6, 25, 4, 27], which is also adopted in
E3T to improve zero-shot human-AI coordination performance. However, a key difference is that
E3T’s ego agent’s partner modeling module is trained by pairing with agents and aims to predict the
actions of partners. In addition, we directly employ the predicted partner actions for decision-making,
instead of using the embedding of partner behaviors [10].

3 Preliminary

In this section, we introduce the two-player cooperative Markov Game and a representative pipeline
of population-based training for two-player zero-shot coordination.

Two-player Cooperative Markov Game A two-player cooperative Markov Game is described
by a tuple ⟨S,A,A, T , R⟩, where S is a finite set of states, A is the finite set of actions, and
suppose two agents have the same action space. p0 : S → R is the initial state distribution.
T : S × A × A × S → [0, 1] is the transition function and assumes the transition dynamic is
deterministic. R : S ×A×A → R is the reward function and assume rewards are bounded by α, i.e.
R(s, a1, a2) ≤ α,∀s, a1, a2. We assume the transition and reward functions are unknown. In this
work, we solve the two-policy cooperative Markov Game via single-agent reinforcement learning
and the self-play framework as previous studies [8, 15]. Specifically, the ego policy πe is trained by
pairing with a fixed partner policy πp with the object defined as πe = arg maxπ V (π, πp).The value
function of joint policy (π, πp) is defined as V (π, πp) = Ep0,T ,a1∼π,a2∼πp

∑∞
t=0 γ

tR(st, a
1
t , a

2
t ),

where γ ∈ (0, 1) is the discounted factor.
Population-Based Training Population-based methods [21, 42, 32] aim to construct a population
of policies to simulate diverse human behaviors. Intuitively, we expect that the policy in the population
should be both skilled in coordination and diverse. Taking Maximum Entropy Population (MEP)
[42] as an example, it constructs the partner population by maximizing the self-play rewardsand
simultaneously increasing the entropy of policies in the population. The objective of Maximum
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Figure 2: (a). The illustration of the self-play training framework, which trains the ego policy by
pairing it with the copied partner policy. (b). The illustration of E3T. The green box shows the
decision process of the ego agent. The blue box shows that of the partner agent.

Entropy Population training is defined as:

J(π̄) = Eπi∼P

[∑
t

E(st,a1
t ,a

2
t )∼(πi,πi)

[
R(st, a

1
t , a

2
t ) + λH(π̄(.|st))

]]
. (1)

Here P = {π1, π2, ..., πn} denotes a population of policies, π̄(.|st) = 1
n

∑n
i=1 πi(.|st) is the mean

policy of the population P , and λ determines the relative importance of the population entropy term
against the task reward. The task reward under the joint action at is obtained by self-play with a
uniformly sampled policy from the population, and the population entropy term acts as an auxiliary
reward. With this competent and diverse population as the partner population, an ego policy is trained
by collaborating with the population via prioritized sampling that assigns a higher priority to the
partner policy that is difficult to cooperate with. The objective of ego policy training is defined as:

J(πe) =
∑
t

E(st,a1
t ,a

2
t )∼(πe,ρ(P))[R(st, a

1
t , a

2
t )], (2)

where ρ(.) as the prioritized sampling mechanism. However, the training process of MEP is inefficient
due to the complex two-stage training and the necessity of maintaining a large population for
behavioral diversity. Our work draws inspiration from MEP, which achieves behaviorally diverse and
cooperative partners by maximizing the self-play reward and the entropy of partner policy and then
trains a robust ego policy by cooperating with those partners. In the next section, we will discuss how
to solve zero-shot coordination using an efficient end-to-end training process.

4 Methodology

In this section, we introduce the proposed method, E3T, an efficient end-to-end training approach,
which trains an ego policy πe through collaborating with a partner policy πp. To take into account
both training efficiency and partner diversity, we employ a mixture of the copied ego policy and a
random policy as the partner policy πp. The objective of E3T is defined as follows:

J(πe) =
∑
t

E(st,a1
t ,a

2
t )∼(πe,πp)[R(st, a

1
t , a

2
t )] (3)

The proposed method contains two key components, a diverse partner policy and a partner modeling
module for adapting to unseen partners, which will be introduced in Section 4.1 and Section 4.2
respectively. An overview of E3T is presented in Figure 2.

4.1 A Mixture Policy as Partner

We begin with the motivation of leveraging the proposed mixture partner policy. Recall that MEP
trains a partner population by maximizing self-play rewards of policies within it and maximizing the
population entropy as shown in Equation (1). The first term on maximizing self-play rewards tends to
learn a population with cooperative ability. The second entropy term can force the partner population
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to be diverse. However, optimizing the objective of Equation (1) suffers very high computational
complexity due to the necessity of training a number of policies to collaborate effectively with them-
selves. Moreover, it exhibits unstable convergence properties, requiring meticulous hyperparameter
tuning for additional entropy term [12].

To circumvent computational cost and non-stable training, we construct the partner policy via di-
viding Equation (1) into two parts with different partner policies learned, i.e. πp1 and πp2, which
aim to maximize the rewards

∑
t E(st,at)∼πp1,πp1 [R(st,at)] and the entropy of the policy output∑

t E(st,at)∼πp2 [H(πp2(.|st))], respectively. We can see that maximizing the former objective func-
tion is aligned with the goal of learning coordination skills, akin to the self-play training objective.
In this way, we can directly use the ego policy πe as πp1. On the other hand, if we directly learn the
latter one objective, i.e., the entropy of the mean policy, policy πp2 will lead to the random policy πr,
i.e., a uniform distribution over the action space.

To construct a partner who has both skills in coordination and diverse behaviors, we directly mix the
above-discussed partner policies πp1 and πp2 as the partner policy πp. As previously discussed, πp1
can directly apply ego policy πe to achieve high reward for coordination. πp2 is a random policy πr,
which has the maximum policy entropy. In this way, the partner policy πp is the mixture between the
self-play ego policy and the random policy with the balance parameter ϵ, formally defined as:

πp = ϵπr + (1− ϵ)πe (4)

We can see that the computation cost for obtaining this mixture partner policy is significantly lower
than population-based methods since the conversion eliminates the need to train a population of
policies. Additionally, the partner policy achieves behavioral diversity by simply leveraging a
random policy with maximum entropy, whereas population-based approaches rely on more complex
mechanisms, such as gradient descent [21] or reward shaping [42], to enforce the diversity. Both
diversity and coordination ability are two keys to constructing a partner policy. Intuitively, the
diversity reflected by entropy increases, and the coordination performance decreases with the random
coefficient epsilon increasing. We attempt to quantitatively verify these intuitions through Propositions
1 and 2. Firstly, we analyze the behavior diversity of the partner policy of E3T. The entropy of partner
policy reflects the diversity of partner behaviors. Proposition 1 shows that the entropy of the mixture
partner policy is related to that of the random policy with maximum entropy.
Proposition 1 (Entropy of Mixture Partner Policy). The entropy of the mixture partner policy, defined
as πp = (1− ϵ)πe + ϵπr, satisfies that:

H(πp(.|st)) ≥ ϵH(πr(.))− C1,∀st (5)

where C1 = ϵ log ϵ+ |A|(1− ϵ), and |A| is the cardinality of the action apace A. In addition, the
lower bound of H(πp(.|st)) is increased as the increasing of ϵ. Proof. See Appendix.

Secondly, we demonstrate the benefits of improving coordination skills when pairing with the partner
policy of E3T. According to Proposition 2, although π′

e is the best response to the mixture partner
policy rather than the ego policy itself, the coordination performance of π′

e with the ego policy is
lower bounded by that of ego policy self-play with a punishment term ζ. The ζ is related to the
balance parameter ϵ and smaller ϵ, which means less weight on the random policy, leads to lower ζ.
Proposition 2 (Coordination Skill Improvement). Let the π′

e as the best response to πp = (1− ϵ)πe +
ϵπr, i.e π′

e = argmaxπ V (π, πp), then we have V (π′
e, πe) ≥ V (πe, πe)−ζ, where ζ = 4αϵ

(1−γ)2 . Proof.
See Appendix.

4.2 Partner Modeling

In this section, we describe the details of the proposed partner modeling module, designed to extract
and analyze the behavior pattern of the partner from historical information. This module equips the
ego policy with the ability to consider not only the current state but also the partner’s behavior pattern,
empowering the ego agent to adapt to previously unseen partners
Partner Action Prediction As in previous works [6, 25, 4], we model the partner agent by policy
reconstruction. If the actual partner action distribution ap

t is given, the two-player cooperative Markov
Game will reduce to a single-agent MDP about the ego agent, in which the ego agent can easily find
the best response to the current state. Formally, under the partner policy πp with ap

t = πp(.|st), the
two-player MDP with transition function T can be converted in to a single-agent MDP with transition
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Algorithm 1 E3T: An efficient end-to-end training approach with mixture policies and partner
modeling
Input: Parameters of context encoder Ec, action prediction network F , ego policy πe, hyper-

parameter ϵ, k.
Output: Well-trained context encoder Ec, action prediction network F and the ego policy πe.

1: while not done do
2: Set data buffer D = ∅.
3: for t = 1, 2, · · · , step do
4: Encode context of the partner: zc

t = Ec(τt)
5: Predict partner action distribution: âp

t = F (zc
t)

6: Randomly select an action distribution: âe
t

7: Mixture partner policy as: πp(·|st, âe
t) = (1− ϵ)πe(·|st, âe

t) + ϵπr(·)
8: Gather data from πe(·|st, âp

t) and πp(·|st, âe
t), then D = D ∪ {(τt+1, st, a

e
t, a

p
t , rt)}

9: end for
10: Update parameters of partner modeling module by minimizing Equation (7).
11: Update parameters of the ego policy πe via PPO.
12: end while

function denoted as Tπp(s
′|st, a) =

∑
ap πp(a

p|st)T (s′|st, ap, a). However, because the agents act
simultaneously, the ego agent can only infer the partner’s action from historical information instead
of directly observing the actual partner’s action.

To obtain the predicted partner action âp
t , we first devise an encoder network Ec to extract historical

partner context zc
t from a sequence of past state-action pairs τt = {(st−i, a

p
t−i)

k
i=1}. The historical

partner context zc
t contains rich information of the partner’s behavior and coordination pattern,

enabling our action prediction network F to predict the partner’s action distribution based on zc
t and

current state st. This procedure is formally written as follows:

zc
t = Ec(τt), â

p
t = F (st, z

c
t) (6)

The parameters of the context encoder Ec and the action prediction network F are jointly optimized
by minimizing a cross-entropy loss:

L =

N∑
i=1

−yi
T log âp

i , (7)

where N is the batch size, and yi is a one-hot vector indicating the actual partner action.

We provide a theoretical analysis of how the accuracy of partner modeling affects the coordination
ability as shown in Proposition 3. We analyze the coordination performance gap between the best
responses to the ground-truth partner policy and the partner prediction module. It is established that
this performance gap is proved to be proportional to the prediction error.
Proposition 3. Denote πτ (.|st) = Eτt [F (st, Ec(τt))] as the expectation of the proposed partner
prediction module over historical trajectory τt. The ground-truth partner policy is denoted as
πp(.|st). Assume the learned πτ (.|st) satisfies that DTV (πτ (.|st), πp(.|st)) ≤ ϵm,∀st. Define the
µ∗
τ and µ∗

p are the best response to the partner prediction module and the ground-truth partner policy
respectively. Then the value functions of these best responses collaborating to the partner policy
satisfy that: |V (µ∗

τ , πp)− V (µ∗
p, πp)| ≤ 2γϵmα

(1−γ)2 . Proof. See Appendix.

4.3 Ego Policy Training and Test

E3T separately trains the partner action prediction module via minimizing the loss function in
Equation (7) and trains the ego policy that makes decisions depending on both observations and
predicted partner action distribution via PPO [24]. The detailed training process of E3T is described
in the Algorithm 1. During testing time, the ego agent zero-shot coordinates with an unseen partner,
without parameters updating or temporally-extended exploration as [22].
Implement Details The partner modeling module of E3T takes current observation at step t and
partner’s past k state-action pairs as input as shown in Equation (6), we set k = 5 in this work. The
ego policy πe(.|st, âpt ) conditions on current state st and predicted partner action distribution âpt ,
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Table 1: The cardinality of the state space of 5 layouts. The state space’s cardinality of Counter
Circuit is up to 5.8× 1016.

Layout Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.
State Space 5.3× 107 1.2× 1014 6.8× 1010 2.0× 109 5.8× 1016

Table 2: Comparisons of baselines in terms of training time and coordination performance with
behaviour-cloned human proxies. The training time represents the hours required for training one
model on the layout Cramped Rm (training time on other layouts is similar). We report the average
and the standard error of coordination rewards over 5 random seeds.

Baseline SP PBT FCP MEP E3T
Training Time(h) 0.5 2.7 7.6 17.9 1.9
Average Reward 65.8± 5.5 66.8± 5.0 71.7± 3.7 89.7± 7.1 114.1± 6.4

which enables the ego agent to analyze and adapt to its partner, while a random action distribution âet
is fed into the partner policy as the predicted ego agent policy. The random action distribution breaks
symmetries and conventions commonly seen in self-play agents and introduces randomness into the
partner policy, which in turn improves partner diversity. Moreover, this is consistent with the fact that
some humans may not take their AI partners’ actions into consideration, but the AI agents should
adapt to their human partners.

5 Experiments

In this section, we evaluate E3T on zero-shot collaborating with behavior-cloned human proxies, real
humans, and AI baselines. More details of the experiment setting and additional results can be found
in Appendix.

5.1 Environments
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(b) AI-AI coordination

Figure 3: (a) We report the cross-play returns between 10
independently trained models for each baseline. (b) These
results show the normalized coordination rewards between
baselines averaged over 5 layouts.

We evaluate the zero-shot coordi-
nation performance of E3T on a
100× 100 cooperative matrix game
[21, 42] and the Overcooked environ-
ment [8]. Overcooked has a discrete
action space with 6 actions, and we
conduct experiments on 5 different
layouts that pose various coordination
challenges, such as avoiding blocking
each other and preparing the required
ingredients for a soup together. In ad-
dition, the state spaces of 5 layouts
are different as shown in Table 1. For
instance, the state space of Counter
Circuit reaches up to 5.8× 1016. This
statistic indicates the 5 layouts are
challenging for explorations. We have
conducted additional experiments on the Google Football [17] environment’s "3 vs 1 with Keeper"
layout, which is a three-player cooperative game with a discrete action space comprising 19 actions.
More details about the environment descriptions can be found in Appendix.

5.2 Baselines

We compare proposed E3T with 6 baselines: Self-Play (SP) [28], Population-Based Training
(PBT) [16, 8], Fictious Co-Play (FCP) [32], Trajectory Diversity (TrajeDi) [21], Maximum-Entropy
Population-based training (MEP) [42] and Other-Play (OP) [15]. All methods, except SP, OP, and
E3T, fall under the category of population-based methods, which aim to develop a robust ego policy
through interaction with a partner population.Detailed descriptions of baselines and the network
details of E3T can be found in Appendix.
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5.3 Result Analysis

We compare E3T with other baselines on zero-shot collaboration with the human proxy, real humans,
and AI baselines.

Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.
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(a) Results on coordinating with human proxy models
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Average reward per episode across layouts
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(b) Results on collaborating with real humans
Figure 4: (a) We plot the mean and standard error of coordination rewards over 5 random seeds. The
parameter ϵ is set to 0.5 for all layouts except Forced Coord., where ϵ is settoas 0.0. In this layout,
the ego agent does not need too much exploration due to the narrow active range. (b) We plot the
mean and standard error of humans collaborating with baselines over all layouts. These results show
that E3T outperforms all other baselines when collaborating with real humans.

Zero-shot Coordination on 100×100 matrix game Figure 3(a) presents the cross-play[15] results
of 10 independently trained policies for each baseline on a one-step matrix game. The cross-play
result measures the coordination performance between models that belong to the same baseline but
have different random seeds. In this game, two players select a row and a column independently, and
the reward is determined by the intersection of their choices. As shown in Figure 3(a), E3T and MEP
can converge to the optimal strategies with the largest return as 1, while E3T can converge faster
than MEP. These results indicate that the mixture partner policy can enable sufficient exploration and
avoid getting stuck in local optima that generalize poorly on the game with large action space. More
details of the matrix game are given in Appendix.
Training Efficiency Analysis Table 2 compares the training time and average rewards of different
baselines, where the rewards are calculated by averaging over 5 layouts on collaboration with human
proxies. These results suggest that E3T outperforms existing baselines on collaboration with human
proxies, and E3T is more efficient than population-based methods. For instance, it only spends 10.6%
training time of previous state-of-the-art MEP.
AI-AI Coordination The zero-shot coordination performance between AI baselines are shown
in Figure 3(b), where each element represents the normalized cooperation rewards averaged over 5
layouts for a pair of baselines. The performance of baselines cooperating with themselves is measured
by the cross-play metric. As shown in Figure 3(b), E3T outperforms other baselines in coordinating
with AI models. In addition, SP and PBT, which train policies only based on rewards and ignore
diversity, have poor generalization to unseen AI partners. MEP and FCP, which train the ego agent
by best responding to a pre-trained diverse partner population, perform better than SP and PBT, but
worse than E3T. These results indicate that partner diversity is essential for zero-shot coordination,
and E3T learns a roust ego policy by providing sufficient partner diversity and being equipped with
adaptation ability. More results of AI-AI coordination on 5 layouts can be found in Appendix.
Human Proxy-AI Coordination Figure 4(a) shows the results of baselines cooperating with
behavior-cloned human proxies. These results suggest that E3T consistently outperforms existing
baselines on all layouts. In addition, FCP, MEP, and TrajeDi have gained better or similar gener-
alization performance than SP and PBT, owing to training an ego agent based on a diverse partner
policy. These results indicate that the diversity of partners is important for the zero-shot coordination
task. Note that SP achieves comparable performance to population-based MEP on Forced Coord.
and E3T achieves the best coordination performance at parameter ϵ = 0.0. One possible reason
is that the Forced Coord. layout is a difficult layout with a very narrow activity range and two
agents being forced to coordinate to complete a soup. Therefore, it requires more cooperation than
exploration. Moreover, E3T with ϵ = 0.0 is better than SP, indicating that the partner modeling
module is beneficial to adapting to an unseen partner.
Human-AI Coordination The average rewards over 5 layouts of AI baselines coordinating with
real humans are shown in Figure 4(b). We follow the Human-AI coordination testing protocol
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proposed in [32] and recruit 20 individuals to evaluate the Human-AI coordination ability of E3T
and state-of-the-art MEP, where individuals play a total of 600 rounds with AI. For cost and time
consideration, we reuse the Human-AI coordination results of other baselines reported in [8, 42].
Figure 4(b) shows that E3T outperforms all other baselines when zero-shot coordinating with real
humans. We also collect individuals’ subjective assessment of E3T and MEP about the degree of
intelligence, collaborative ability, and preference between the two. More details of the Human-AI
coordination setting and individuals’ subjective assessment are given in Appendix.
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Figure 5: (a) Ablation of E3T’s components on collaborating with AI baselines. E3T(+R) and
E3T(+P) respectively integrate the mixture partner and the partner modeling module into the self-play
framework. The balance parameter ϵ is set to 0.3 for E3T(+R). (b) Results on E3T with different
balance parameters ϵ. We plot the average rewards over 5 random seeds when E3T collaborating with
AI (MEP, PBT) baselines and human proxy on layout Coord. Ring. The blue bar shows performance
of E3T cooperating with AI baselines, while the orange and the green bars show its performance
when cooperating with the human proxy, with starting positions switched.

5.4 Ablation Study
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Figure 6: Relationship between the ac-
curacy of partner action prediction and
coordination performance when collab-
orating with the human proxy on layout
Coord. Ring. We plot the rewards and
prediction accuracy obtained by coor-
dinating with the human proxy at dif-
ferent checkpoints along the training
process.

Analysis of Component Ablation Results We present
the ablation results of E3T’s components in Figure 5(a). We
evaluate the effectiveness of each component on collaborat-
ing with AI baselines (including MEP, FCP, and PBT). We
use (+R) and (+P) to denote models incorporated with the
mixture partner policy and the partner modeling module,
respectively. As shown in Figure 5(a), E3T(+P) achieves a
higher average reward than SP on each layout, which shows
that the partner modeling module can improve zero-shot
coordination by apdating actions accordingly. Likewise,
E3T(+R) surpasses SP on 4 layouts except for the Forced
Coord., which shows that encouraging more exploration in
the partner policy can discover more coordination patterns
during training and thus can enhance zero-shot coordination
with unseen partners during testing. The lower performance
on Forced Coord. may be due to its narrow action space
and the lack of reward incentives for coordination when
using a too random partner policy during training. More-
over, E3T(R+P) that combines both the mixture partner
policy and the partner modeling module performs better

than E3T(R) and E3T(P) on the average reward over all layouts.

Analyzing the effect of the hyper-parameter ϵ Figure 5(b) shows how the balance parameter
ϵ of the mixture partner affects the performance of E3T when collaborating with AI baselines and
the human proxy. We observe that the coordination rewards of E3T increase and then decrease as ϵ
increases for both types of partners. The results indicate that both collaboration ability and partner
diversity are essential for zero-shot coordination, but simply increasing the partner action diversity is
not enough. The optimal values of ϵ are 0.3 and 0.5 for AI baselines and human proxy, respectively.
One possible reason for this discrepancy is that the human proxy tends to generate more ‘noop’
actions [8], which reduces the need for coordination behaviors compared to AI baselines.
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Table 3: We present the coordination performance of baselines during training and zero-shot testing
on a three-player Google Football game, where the coordination performance is measured by the
winning rates of scoring a goal. We independently train 3 policies with different random seeds for
each baseline. For zero-shot testing, we consider all 6 possible permutations of the 3 trained policies
and report the mean and standard error of the winning rates as Zero-shot (Mean). We also report the
highest winning rate among the permutations as Zero-shot (Max).

Training Performance Zero-shot (Mean) Zero-shot (Max)
Self-play 0.79± 0.08 0.07± 0.08 0.24

E3T(mixture policy) 0.76± 0.09 0.49± 0.21 0.78

Analyzing the effect of partner modeling module To demonstrate the effect of the proposed
partner modeling module, we plot the accuracy of predicting partner actions and the rewards when
cooperating with a human proxy. As shown in Figure 6, the reward and the prediction accuracy
show the same tendency: better partner modeling leads to improvement in coordination. In addition,
the accuracy at ϵ = 0.5 reaches around 55%, which is higher than the accuracy around 40% when
ϵ = 0.0. This indicates that mixing a random policy can provide more exploration and thus generalize
well to unseen partners.

Does the mixture partner policy accommodate the multi-player game? We verify the effect of
the mixture partner policy on improving the zero-shot coordination performance on a three-player
Google Football game, the 3 vs 1 with Keeper scenario. We train self-play policies via the Multi-
Agent PPO (MAPPO) [40], where policies have shared parameters. E3T(mixture policy) integrates
the mixture partner policy into the self-play training process, in detail, the three agents randomly
sample an action with a probability as ϵ, otherwise, take actions according to the action policies. We
independently train 3 policies with different random seeds for each baselines and report the cross-play
results between unseen policies to test the zero-shot coordination ability of these models.

Table 3 shows that self-play policies fail to zero-shot cooperate with policies from different training
seeds, because they may fall into some specific coordination conventions during training. Our
proposed mixture partner policy can increase the behavioral diversity of the partners, allowing the ego
policy to encounter different coordination patterns during training. Consequently, our method with
the mixture partner policy can train robust ego policies that can adapt well to policies independently
trained from different training seeds. Moreover, increasing partner’s behavior diversity during training
can significantly improve the generalization ability of the trained ego policy.

6 Conclusion

In this paper, we propose an Efficient End-to-End Training approach for zero-shot human-AI
coordination, called E3T. Different from previous population-based methods, E3T employs a mixture
policy of ego policy and random policy to construct the partner policy, enabling the partner policy
to be both coordination-skilled and diverse. In this way, the ego-agent is able to be end-to-end
trained in such a mixture policy without pre-training a population, thus significantly improving the
training efficiency. Additionally, we introduce a partner modeling module that allows the ego agent
to predict the partner’s next action, enabling adaptive collaboration with partners exhibiting different
behavior patterns. Empirical results on Overcooked clearly demonstrate that E3T can significantly
improve training efficiency while achieving comparable or superior performance compared to existing
methods.

Limitations and Future Work In this paper, we only explore the feasibility of our framework
in zero-shot two-player human-AI coordination tasks but neglect general multi-player (more than
two) human-AI coordination tasks. Future research will focus on expanding the framework to
multi-player (more than two) human-AI coordination tasks, with a goal of enhancing both zero-shot
coordination performance and training efficiency. Since AI agents are unable to regulate human
behavior, indiscriminately collaborating with humans in accomplishing their goals could result in
unlawful circumstances. Therefore, future research should concentrate on developing AI agents
capable of detecting dangerous intentions and preventing their misuse for illicit or military purposes.
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A Proposition Proofs

A.1 Proof of Proposition 1

Proposition 1 (Entropy of Mixture Partner Policy). The entropy of the mixture partner policy, defined
as πp = (1− ϵ)πe + ϵπr, satisfies that:

H(πp(.|st)) ≥ ϵH(πr(.))− C1,∀st (5)

where C1 = ϵ log ϵ+ |A|(1− ϵ), and |A| is the cardinality of the action apace A. In addition, the
lower bound of H(πp(.|st)) is increased as the increasing of ϵ. Proof. See Appendix.

Proof. The mixture partner policy is defined as πp = (1− ϵ)πe + ϵπr with the balance parameter ϵ.
Detailed derivations of Equation (5) in Proposition 1 are as follows:

H(πp(.|st))

=
∑
a

−πp(a|st) log πp(a|st)

=
∑
a

− [ϵπr(a) + (1− ϵ)πe(a|st)] log πp(a|st)

=
∑
a

−ϵπr(a) log πp(a|st)− (1− ϵ)πe(a|st) log πp(a|st)

(1)

≥
∑
a

−ϵπr(a) log πp(a|st)

=
∑
a

−ϵπr(a) log

[
ϵπr(a)

(
1 +

(1− ϵ)πe(a|st)
ϵπr(a)

)]
(2)

≥
∑
a

−ϵπr(a)

[
log ϵ+ log πr(a) +

(1− ϵ)πe(a|st)
ϵπr(a)

]
=

∑
a

−ϵπr(a) log ϵ− ϵπr(a) log πr(a)− (1− ϵ)πe(a|st)

= ϵH(πr(.))− ϵ log ϵ− |A|(1− ϵ)πe(a|st)
(3)

≥ ϵH(πr(.))− ϵ log ϵ− |A|(1− ϵ)

= ϵH(πr(.))− C1,

(8)

where C1 = ϵ log ϵ+ |A|(1− ϵ), and |A| is the cardinality of the action apace A. Inequality (1) and
(3) hold because πp(a|st) ≤ 1 and πe(a|st) ≤ 1. Inequality (2) holds because log(1 + x) ≤ x. Since
C1 decreases in the range ϵ ∈ (0, e|A|−1] and ϵ belongs to [0, 1], the lower bound of H(πp(.|st))
increases as ϵ increases.

A.2 Necessary Notations and Lemmas for Proofs of Proposition 2 and 3

Notations As the previous statement in section 4.2, that when the partner policy πp is given
with apt = πp(.|st), the two-player MDP with transition function T can be converted in to a
single-agent MDP with transition function denoted as Tπp

(s′|st, a) =
∑

ap πp(a
p|st)T (s′|st, ap, a).

Note that the value estimation V (π1, π2) under the two-player transition function T is equal to
the value estimation V Tπ2 (π1) =

1
1−γE(s,a1)∼ρπ1 (Tπ2 )

[
∑

a2 π2(a
2|s)R(s, a1, a2)] under the single-

agent transition function Tπ2 . ρπ1(Tπ2) denotes the stationary state-action distribution under the
single-agent transition function Tπ2 , formally written as:

ρπ1
(s, a1; Tπ2

) = (1− γ)

∞∑
t=0

γtP(st = s, a1t = a1;π1, Tπ2
). (9)
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Then, the equivalence between the the value estimations V (π1, π2),V Tπ2 (π1) is proven as:

V Tπ2 (π1) =
1

1− γ
E(s,a1)∼ρπ1 (Tπ2 )

[
∑
a2

π2(a
2|s)R(s, a1, a2)]

=
∑

s,a1,a2

∞∑
t=0

γtP(st = s, a1t = a1;π1, Tπ2
)π2(a

2|s)R(s, a1, a2)

=
∑

s,a1,a2

∞∑
t=0

γtP(st = s, a1t = a1, a2t = a2;π1, π2, T )R(s, a1, a2)

= V (π1, π2)

(10)

We next give the necessary lemmas for proofs of Proposition 2 and 3. We first introduce the following
Lemma, which describes the relationship between value estimation and policy distribution discrepancy
on single-agent MDP.
Lemma 1. Given a single agent MDP with transition T , assume there are two policies πa and πb
with DTV (πa(.|s), πb(.|s)) ≤ ϵ,∀s, a holding. Then the difference between value functions satisfies
that |V T (πa)− V T (πb)| ≤ 2αϵ

(1−γ)2 , where rewards are bounded by α and γ is the discounted factor.

Proof. The Lemma 1 can be proved directly following the proof process of Theorem 1 in [39].

We provide the error bound on value estimations under different transitions used for the proof of
Proposition 3.
Lemma 2. Given an MDP with true transition function T ∗ and assume the estimated transition
function T ′ satisfies that, for a policy π, Eρπ(T ∗)

[DTV (T ∗(.|s, a), T ′(.|s, a))] ≤ ϵm, then we have:∣∣∣V T ′
(π)− V T ∗

(π)
∣∣∣ ≤ αγ

(1− γ)2
ϵm, (11)

where rewards are bounded by α and γ is the discounted factor

Proof. The Lemma 2 can be proved directly following the prove process of Lemma 7 in [39].

A.3 Proof of Proposition 2

Proposition 2 (Coordination Skill Improvement). Let the π′
e as the best response to πp = (1− ϵ)πe +

ϵπr, i.e π′
e = argmaxπ V (π, πp), then we have V (π′

e, πe) ≥ V (πe, πe)−ζ, where ζ = 4αϵ
(1−γ)2 . Proof.

See Appendix.

Proof. The total variance distance between the ego policy πe and the mixture partner policy policy
πp satisfies DTV (πe(.|s), πp(.|s)) ≤ ϵ, derived by:

DTV (πe(.|s), πp(.|s)) =
1

2

∑
a

|πe(a|s)− πp(a|s)|

=
1

2

∑
a

|πe(a|s)− (1− ϵ)πe(a|s)− ϵπr(a|s)|

=
1

2

∑
a

|ϵπe(a|s)− ϵπr(a|s)|

=
ϵ

2

∑
a

|πe(a|s)− πr(a|s)|

≤ ϵ

2

∑
a

(|πe(a|s)|+ |πr(a|s)|)

=
ϵ

2

∑
a

(πe(a|s) + πr(a|s))

= ϵ

(12)
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Next, following the Lemma 1 and the equivalence of the value estimations as shown in Equation (10),
we have that |V (π, πp)− V (π, πe)| <= 2αϵ

(1−γ)2 ,∀π, where δ = 2αϵ
(1−γ)2 . Combing the definition of

π′
e = argmaxπ V (π, πp), we have

V (π′
e, πe) ≥ V (π′

e, πp)− δ ≥ V (πe, πp)− δ ≥ V (πe, πe)− 2δ, (13)

let ζ = 2δ, then the proof is completed.

A.4 Proof of Proposition 3

Proposition 3. Denote πτ (.|st) = Eτt [F (st, Ec(τt))] as the expectation of the proposed partner
prediction module over historical trajectory τt. The ground-truth partner policy is denoted as
πp(.|st). Assume the learned πτ (.|st) satisfies that DTV (πτ (.|st), πp(.|st)) ≤ ϵm,∀st. Define the
µ∗
τ and µ∗

p are the best response to the partner prediction module and the ground-truth partner policy
respectively. Then the value functions of these best responses collaborating to the partner policy
satisfy that: |V (µ∗

τ , πp)− V (µ∗
p, πp)| ≤ 2γϵmα

(1−γ)2 . Proof. See Appendix.

Proof. Recall that, when the partner policy πp is given with apt = πp(.|st), the two-player MDP with
transition function T can be converted in to a single-agent MDP with transition function denoted
as Tπp

(s′|st, a) =
∑

ap πp(a
p|st)T (s′|st, ap, a). The total variance distance between single-agent

transition functions under the partner prediction module or the ground-truth partner policy is given
by:

DTV

(
Tπτ

(.|s, a), Tπp(.|s, a)
)
=

1

2

∑
s′

∑
a1

∣∣πτ (a
1|st)− πp(a

1|s)
∣∣ T (s′|s, a1, a)

(1)
=

1

2

∑
a1

|π(a1|s)− πp(a
1|s)|T (s′′|s, a1, a)

=
1

2

∑
a1

|π(a1|s)− πp(a
1|s)|

= DTV (πτ (.|s), πp(.|s))
≤ ϵm

(14)

The equation (1) is holds because that the transition function T is deterministic and equals to 1 at a
unique next state s′′. Define the µ∗

τ and µ∗
p are the best response to the partner prediction module

and the ground-truth partner policy respectively. Then the performance gap of these best responses
collaborating to the partner policy is bounded by:

∣∣V (µ∗
τ , πp)− V (µ∗

p , πp)
∣∣

=
∣∣V Tπp (µ∗

τ )− V Tπp (µ∗
p)
∣∣

=
∣∣V Tπp (µ∗

τ )− V Tπp (µ∗
p)− V Tπτ (µ∗

τ ) + V Tπτ (µ∗
p) + V Tπτ (µ∗

τ )− V Tπτ (µ∗
p)
∣∣

=
∣∣V Tπp (µ∗

τ )− V Tπτ (µ∗
τ ) + V Tπτ (µ∗

p)− V Tπp (µ∗
p) + V Tπτ (µ∗

τ )− V Tπτ (µ∗
p)
∣∣

=
∣∣V Tπp (µ∗

τ )− V Tπτ (µ∗
τ ) + V Tπτ (µ∗

p)− V Tπp (µ∗
p) + δ

∣∣
(1)

≤
∣∣V Tπp (µ∗

τ )− V Tπτ (µ∗
τ ) + V Tπτ (µ∗

p)− V Tπp (µ∗
p)
∣∣

≤
∣∣V Tπp (µ∗

τ )− V Tπτ (µ∗
τ )
∣∣+ ∣∣V Tπτ (µ∗

p)− V Tπp (µ∗
p)
∣∣

(2)

≤ 2γϵmα

(1− γ)2

(15)

Due to the optimality of µ∗
p when collaborating with the partner policy πp, thus V (µ∗

τ , πp) −
V (µ∗

p , πp) ≤ 0. In addition, according to the definitions of µ∗
p , i.e, the optimal policy under

the MDP with transition function Tπp , and µ∗
τ , i.e, the optimal policy under the MDP with transi-

tion function Tπτ
, thus we have V Tπp (µ∗

τ )− V Tπp (µ∗
p) ≤ 0, V Tπτ (µ∗

p)− V Tπτ (µ∗
τ ) ≤ 0. Let δ =
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V Tπτ (µ∗
τ )−V Tπp (µ∗

τ ) ≥ 0. In summary, the inequality (1) holds because V (µ∗
τ , πp)−V (µ∗

p , πp) ≤ 0,
V πp(µ∗

τ )− V πp(µ∗
p) ≤ 0 , V πτ (µ∗

p)− V πτ (µ∗
τ ) ≤ 0 and δ ≥ 0.

The inequality (2) holds by applying Lemma 2 with the condition DTV

(
Tπτ

(.|s, a), Tπp(.|s, a)
)
≤

ϵm,∀s, a satisfied as proven in Equation 14 .
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Figure 7: (a) The illustration of 10×10 sub-matrix of in the upper left of the 100× 100 matrix. (b)
The returns of E3T with varying balance parameters ϵ. The left subfigure shows the self-play returns
and the right subfigure shows the coordination returns across 10 independently trained policies.

Figure 8: Overcooked Layouts. From left to right: the layouts are Cramped Room, Asymmetric
Advantages, Coordination Ring, Forced Coordination, and Counter Circuit.

B Experiment Settings

B.1 Environments

A 100× 100 Matrix game We verify the effectiveness of the mixed partner policy for learning a
robust policy on a one-step matrix game. The matrix is partially shown in Figure 7(a), where we
zoom in on the upper left 10×10 sub-matrix. The matrix denoted as M is constructed such that
M [i, i] = 1, M [i + 1, i] = M [i, i + 1] = 0.2 for i ≥ 3, and M [1, 1] = M [2, 1] = 1. All other
elements are zero.In the matrix game, two players select a row and a column independently, and the
reward is determined by the intersection of their choices. We use a one-step matrix game to test the
robustness of our mixture partner policy. The game has a 100× 100 matrix, where each element
represents the reward for both players if they choose the corresponding row and column.

Overcooked We validate the mixed partner policy and the partner modeling module for improving
zero-shot coordination on the Overcooked environment [8]. In this environment, the target of players
is to make soup using onions, and dishes, and then serve it. After successfully serving a soup, players
gain 20 rewards. Its discrete action space contains 6 actions: up, down, left, right, noop, and interact.

We conduct experiments on 5 layouts illustrated in Figure 8. The calculation of the cardinality of
state spaces shown in Table 1 is explained as follows. Let’s take the example of calculating the state
space cardinality for the Counter Circuit layout. In the Counter Circuit layout, there are 16 positions
on the kitchen counter where plates, onions, soup, or nothing can be placed. Each pot can be in one
of 24 states, which includes being empty, having one onion, two onions, three onions, or waiting for
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20 counts. There are two players, each of whom can stand at one of 14 grids and face one of four
directions. Each player can hold either a plate, an onion, soup, or nothing in their hands. Therefore,
the total number of possible states for this layout is: 416C2

2424
24242 ≈ 5.8× 1016. Despite having

a smaller state space, Forced Coordination is more challenging than Asymmetric Advantages for
zero-shot coordination. This is because the two players are separated and must complete different
tasks in a timely manner to finish a soup in Forced Coordination, while players can independently
complete a soup in Asymmetric Advantages.

B.2 Baselines

We compare proposed E3T with 6 baselines: Self-Play (SP) [28], Population-Based Training
(PBT) [16, 8], Fictious Co-Play (FCP) [32], Trajectory Diversity (TrajeDi) [21], Maximum-Entropy
Population-based training (MEP) [42] and Other-Play (OP) [15]. The baselines are described in detail
below:
Self-Play (SP) [28] In coordination self-play, two players share the same policy during sampling
and iteratively improve the policy by focusing on coordinating well with itself. If it converges, the
self-play policy is able to coordinate with itself but is poor in generalization when meeting unseen
policies.
Population Based Training (PBT) [16, 8] PBT is an online evolutionary algorithm, which is widely
used in multi-agent RL to iteratively improve policies and finally converge to a population with high
quality. At each iteration, paired policies randomly sampled from the population are improved by
interacting with a number of timesteps, and then the population is updated according to the recorded
performance. Specifically, the worst policy in the population is replaced with a mutation of the best
policy.
Fictitious Co-Play (FCP) [32] FCP trains a policy that coordinates well with unseen humans by
making the best response to a diverse population of partners. To obtain the population, it trains several
self-play policies with different random seeds, in addition, it saves past checkpoints with different
levels of coordination during training self-play policies.
Trajectory Diversity (TrajeDi) [21] TrajeDi solves the two-player zero-shot coordination problem
by jointly training a diverse population and its common best response (BR). To be as diverse as
possible, the training of the population is regularized by maximizing the Jensen-Shannon divergence
(JSD) on the trajectory distributions of policies. Additionally, it trains a common BR to a diverse
population, which indicates that the BR is able to coordinate well with unseen policies. We reuse the
results of TrajeDi coordinating with human proxies reported in [42].
Maximum Entropy Population-based training (MEP) [42] MEP first trains a diverse population
through PBT, and this population is encouraged to be diverse with the entropy of the mean policies in
the population as an auxiliary reward. Secondly, a common best agent is trained to cooperate with
policies in this diversified population, and the selection of partner policies is via prioritized sampling.
The prioritization is dynamically updated based on coordination rewards during training progress.
Other-Play [15] Both E3T and other-play [15] both belong to the self-play training framework,
and we discuss the difference between them as follows. Other-play avoids trapping into specialized
conventions by breaking known symmetries in environments, for example the colors in Card games
are symmetric, and thus improves the robustness of the trained ego agent. However, this approach
relies heavily on the assumption of the state or action space is strongly symmetric, for example, the
colors of the cards are symmetric on Hanabi. But it does not adapt to the Overcooked environment,
a population two-player cooperative game, since there do not exist obvious and easy to exchange
symmetries. Our work shares the benefits of other-play with end-to-end training and breaking the
symmetric of self-play training, but E3T is more general since it incents partner exploration by
employing a constant random policy and does not rely on any assumptions on environments.
E3T We propose an efficient and robust training approach, combing a mixed partner policy for
enhancing the diversity of partner policy and the partner modeling module for better adaptation. An
ego policy is trained by pairing with the mixture partner which consists of the parameter-copied ego
policy and the random policy. We set the length of the context k = 5.

B.3 Experiments design of zero-shot coordination with humans

We describe the details of Human-AI coordination experiments. The results of baselines coordinating
with real humans are shown in Figure 4(b). We follow the Human-AI coordination testing protocol
proposed in [32]. We recruit 20 individuals to evaluate the coordination ability of E3T and state-
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Figure 9: Subjective assessments of E3T and MEP providing by real humans. (a). Average scores of
the intelligence degree and the coordination ability, both scores are rated in the range of [1, 5], and a
larger score indicates higher intelligence and coordination ability. (b). The proportion of real humans’
preference for E3T and MEP.

of-the-art MEP, humans play a total of 600 rounds with them. For cost and time consideration, we
reuse the Human-AI coordination results of other baselines reported in [8, 42]. We select models
with the best coordination performance with human proxies for both E3T and MEP. For E3T, we set
the ϵ = 0.5 on layouts except for Forced Coord. with ϵ = 0.0 on it. We use the code provided in [20]
to implement the Human-Ai interaction interface.

Participants first watched a description video explaining the game rules and then they were familiar
with the experimental process on a single-agent demo layout with the other player not moving to
experience the game. During formal experiments, each participant cooperated with the AI agents
to complete the 5 layouts and is suggested to get as larger rewards as possible. Pairing with each
agent on each layout will repeat 3 times, and the experiment has a total of 30 rounds, with each round
lasting one minute. We incentivized game performance: participants earned 50 yuan to complete 30
rounds, and the participants with the top 5 highest rewards earned an extra 50 yuan.

Besides the objective coordination rewards, we also collected participants’ subjective assessment
of E3T and MEP about the degree of intelligence, collaboration ability, and preference between the
two. After the experiments of each layout, participants were required to answer these three questions.
Study sessions lasted around 50 minutes on average, including being familiar with the experiment
process, playing with AI agents, recording rewards, and filling in subjective assessments.

Figure 4(b) shows that E3T outperforms all other baselines when zero-shot coordinating with real
humans on average reward across all layouts. Subjective assessments of E3T and MEP are shown in
Figure 9. These results show that participants rate E3T with higher scores on the intelligence level
and the coordination ability than MEP, across all layouts. In addition, more participants prefer E3T
than MEP.

B.4 The network details of E3T

The network architecture of E3T including the policy network and the partner modeling module is
described in Table 4. We describe E3T for the Overcooked environment, which has a discrete action
space with 6 actions. E3T are trained based on Tensorflow-GPU 1.15.5 and cuda11.4+cudnn8.8.

C Additional Results

C.1 Results on 100× 100 Matrix Game

The performance of E3T under different balance parameters ϵ is illustrated in Figure 7(b). When
ϵ = 1.0, the ego policy is trained by pairing with the completely random partner policy and fails
to coordinate during self-play and cross-play with other independently trained ego policies. When
ϵ < 1.0, E3T sacrifices some self-play returns during training due to the random policy mixture but
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Table 4: The network details of E3T.

Partner Prediction Module
index Layers Channels Kernel Size

1 Conv2D + LeakyReLU 25 5*5
2 Conv2D + LeakyReLU 25 3*3
3 Conv2D + LeakyReLU 25 3*3
4 Concatenate state embedding and action embedding / /
5 (FC + LeakyRelu)×3 64 /
6 Concatenate embedding of 5 state-action pairs 64×5 /
7 (FC + LeakyRelu)×3 64 /
8 FC + Tanh 64 /
9 FC + L2 normalize 6 /

Policy Network
index Layers Channels Kernel Size

1 Conv2D + LeakyReLU 25 5*5
2 Conv2D + LeakyReLU 25 3*3
3 Conv2D + LeakyReLU 25 3*3
4 Concatenate state embedding and action embedding / /
5 (FC + LeakyRelu)×3 64 /
6 FC 6 /
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Figure 10: Results of MEP with varying entropy coefficient on 100×100 matrix game.

Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.
Layouts

0

25

50

75

100

125

150

Av
er

ag
e 

re
wa

rd
 o

f p
er

 e
pi

so
de

Performance with human proxy model

Hproxy + SP
Hproxy + PBT
Hproxy + FCP
Hproxy + TrajeDi
Hproxy + MEP
Hproxy + E3T

Figure 11: Results on coordinating with human proxy models. The difference between this figure
with the Figure 4(a) is that the starting positions of two agents are switched. We plot the mean and
standard error of coordination rewards over 5 random seeds. The parameter ϵ is set as 0.5 for all
layouts except for Forced Coord., which sets the ϵ as 0.0. In this layout, the ego agent does not need
too much exploration due to the range of activity being very narrow.
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Figure 12: Results on coordinating with other AI baselines. These results plot the normalized
cross-play [15] rewards between baselines. The first 5 subfigures show the results on 5 layouts and
the last shows the average results over 5 layouts. The last column of each subfigure represents the
average result of collaborating with other baselines. For each baseline, we train 5 different models
varying only over random seeds. The hyper-parameter ϵ is set as 0.5 on Cramped Rm. and Asymm.
Adv., as 0.3 on Coord. Ring, and Counter Circ and a 0.0 on Forced Coord.
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Figure 13: Ablation of E3T’s components on collaborating with human proxies. We plot the average
performance over standing in two different positions. (a) (+R) and (+P) respectively integrate the
mixed partner policy and the partner modeling module into the self-play framework. For versions
with the mixed partner policy (+R), the balance parameter ϵ is defined as 0.5, and as 0.3 on Forced
Coord.. (b) E3T(context) means that the policy depends on the concatenation of the state and the
context embedding. E3T(-A) means that both the partner policy and ego policy use outputs of the
partner prediction module as additional latent. We plot the results of models coordinating with the
human proxy on Coord. Ring with ϵ = 0.5.

achieves optimal cross-play returns during testing. These results demonstrate that E3T can explore
effectively and avoid being stuck in suboptimal on the diagonal line as shown in Figure 7(a).

Results of MEP with varying population entropy coefficients are shown in Figure 10. The entropy
coefficient corresponds the λ in Equation (1). MEP with population=2 can reach the best self-play
returns but fail to coverage to the optimal policy (with the first column, the first and second rows)
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when λ = 15, which indicates the hyper-parameter λ for reward reshaping is hard to tune. We select
ϵ = 0.99 and λ = 5.0 for results in Figure 3(a).

C.2 Results on Overcooked

Results on collaborating with human proxies with starting position switched are shown in Figure 11.
E3T achieves superior or comparable performance compared to other baselines.

AI-AI coordination results on 5 layouts Additional results of AI-AI coordination on all layouts
and the average performance over all layouts are shown Figure 12. E3T outperforms other baselines
on 4 layouts and has comparable performance with population-based method MEP on Asymm. Adv..
In addition, E3T achieves the highest average performance over all layouts when collaborating with
AI baselines. Moreover, MEP and FCP training the ego agent by pairing with pre-trained diverse
partner populations are better than SP and PBT, which only improve the coordination rewards during
training.

Ablation studies of E3T’s components on cooperation with human proxies The ablation studies of
E3T’s components on cooperation with human proxies are shown in Figure 13(a). The average reward
of E3T(+P) is larger than that of SP on each layout, thus the partner modeling can assist the zero-shot
coordination since the ego policy adapts to the predicted partner actions. In addition, E3T(+R) also
outperforms SP on 4 layouts except for the Forced Coord., which indicates that encouraging the
partner policy to be more diverse during training time is beneficial to zero-shot coordinating with
unseen partners. Moreover, E3T(R+P) that combing the partner modeling and the mixed policy is
better than other models on the averaged reward over all layouts. Figure 13(b) compares the ego
policy that conditions on the context embedding with the one that conditions on the predicted partner
action. The results show that the latter policy performs better, suggesting that the predicted partner
action is easier to comprehend and respond to than the context embedding. Moreover, E3T(-A) has
lower coordination performance than E3T, which demonstrates the advantage of using asymmetric
latent variables for ego and partner policies during training, as explained in section 4.3. This technique
enhances zero-shot coordination by introducing more diversity in the latent space and breaking the
asymmetry between ego and partner policies.
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Figure 14: Ablation studies of ϵ on 4 layouts. In general, the ϵ can be set small when the layout space
is not large, e.g. smaller ϵ for the Forced Coordination layout. For layouts with big space, a larger ϵ
can provide more explanation about different cooperation patterns.

Further ablation studies of ϵ on more layouts Figure 14 Ablation studies of epsilon (in the range
of [0.1, 0.3, 0.5, 0.7, 0.9]) on the other 4 layouts are shown in Figure 14 of the rebuttal material.
In general, the epsilon can be set small when the layout space is not large, e.g. smaller epsilon
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for the Forced Coordination layout can achieve better performance because the activation range is
narrow and the partner’s coordination ability is more important than behavior diversity in this case.
For layouts with big spaces, there exist different coordination patterns, such as multiple paths to
deliver soups. Therefore, we normally set the epsilon larger to encourage the policy to explore more
coordination patterns. For example, our method achieves higher rewards with epsilon=0.5 when
coordinating with human proxies in other layouts, and with epsilon=0.3 or 0.5 when coordinating
with other AI baselines.
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Figure 15: (a) We plot the effect of the partner modeling to Self-play and MEP when collaborating
with AI baselines. (b) We plot the effect of the asymmetric input setting. E3T(-A) indicates both ego
and partner policies are equipped with the partner modeling module.

The effect of the partner modeling module We have incorporated the partner modeling module
into two baselines (Self-play and the state-of-the-art MEP) as illustrated in Figure 15(a). These
results demonstrate that the partner modeling module can further enhance the zero-shot coordination
performance of baselines when they collaborate with AI baselines.

The effect of the asymmetric inputs for the ego and partner policies This work makes use of
predicted partner action distribution for ego policy and random action distribution for the partner
policy during training. The motivation of the asymmetric input setting comes from two considerations.
Firstly, the random action distribution introduces extra randomness into the partner policy, which
in turn improves partner diversity. Secondly, this is consistent with the real-world command that
AI agents should adapt to human partners’ behavior, while different humans may have various
cooperative patterns and are not necessary to try to fit AI agents.

In addition, we have empirically verified that asymmetric input is helpful to zero-shot coordination
as illustrated in Figure 15(b) of the rebuttal material, where the performance of our method with
asymmetric input slightly outperforms the model that uses the partner modeling for both ego and
partner policies on most layouts.

The partner modeling module with only the historical observations accessible In more complex
environments, we do not have the ground truth of partner actions, but only the historical observations
of the ego policy are available, thus it is worth developing an advanced model to predict the partner
action from changes in the observed environment. In the Overcooked environment, agents can
observe the global state (this is the environmental setting). We also empirically verified that partner
action can be predicted from the sequence of ego states on Coord. Ring layout. As shown in Table
5, the prediction accuracy from only the state sequence is comparable to that from the state-action
sequence. Note that the accuracy of random prediction is around 0.17.

Table 5: The accuracy of partner prediction and the coordination performance under the settings of
the state or state-action available.

Prediction accuracy Coordination reward with human proxy
state-action 0.54± 0.04 143.3± 8.3

state 0.50± 0.01 139.3± 6.8
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