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Abstract

Video anomaly detection (VAD) – commonly formulated as a multiple-instance learning
problem in a weakly-supervised manner due to its labor-intensive nature – is a challeng-
ing problem in video surveillance where the frames of anomaly need to be localized in an
untrimmed video. In this paper, we first propose to utilize the ViT-encoded visual features
from CLIP, in contrast with the conventional C3D or I3D features in the domain, to effi-
ciently extract discriminative representations in the novel technique. We then model long-
and short-range temporal dependencies and nominate the snippets of interest by leveraging
our proposed Temporal Self-Attention (TSA). The ablation study conducted on each compo-
nent confirms its effectiveness in the problem, and the extensive experiments show that our
proposed CLIP-TSA outperforms the existing state-of-the-art (SOTA) methods by a large
margin on two commonly-used benchmark datasets in the VAD problem (UCF-Crime and
ShanghaiTech Campus). The source code will be made publicly available upon acceptance.

1 Introduction

Video understanding is a growing field and a subject of intense research that requires analysis of both spatial
and temporal information, e.g., action recognition (Pareek & Thakkar, 2021; Vu et al., 2021a;b; Sun et al.,
2022; Vu et al., 2022), action detection (Xu et al., 2020; Zeng et al., 2019; Vo et al., 2021a; Zhang et al.,
2022), video captioning (Lei et al., 2020a; Dai et al., 2019; Yamazaki et al., 2022), video retrieval (Snoek
et al., 2009; Gabeur et al., 2020; Wang et al., 2021; Wray et al., 2021). One of the challenging problems in
video understanding is video anomaly detection (VAD), which is the task of localizing anomalous events in
a given video. VAD is an area of research that has several years of history, and it has been gaining more
attraction in recent years (Hasan et al., 2016; Sultani et al., 2018; Wu & Liu, 2021). Generally, there are
three main paradigms in VAD, namely, fully-supervised (Liu & Ma, 2019), unsupervised (Gong et al., 2019;
Zaheer et al., 2022), and weakly-supervised (Thakare et al., 2022; Sultani et al., 2018; Tian et al., 2021).
While it generally yields high performance, the supervised VAD requires fine-grained anomaly labels (i.e.,
frame-level normal/abnormal annotations in the training data). However, the problem has traditionally been
difficult to solve in a fully supervised manner due to the labor-expensive nature of data collection. In general,
anomaly detection annotation requires the annotator to localize and label anomalies in a video, or a large set
of sequential frames. Unfortunately, this is a very strenuous labor for the annotator because, as anomalies
can happen at any moment, almost all of the frames need to be observed carefully, leading to massive time
consumption. Because of its time-consuming and labor-intensive nature, collecting a fully-annotated large-
scale dataset is a difficult task for the supervised VAD. In unsupervised VAD learning, one-class classification
(OCC) problem (Zaheer et al., 2020) is a common approach, in which the model is trained on only normal
class samples with the assumption that unseen abnormal videos have high reconstruction errors. However,
the performance of unsupervised VAD is usually poor because of its lack of prior knowledge of abnormality
as well as its inability to capture all normality variations (Chandola et al., 2009). Compared to both
unsupervised and supervised VAD, the weakly-supervised VAD is considered the most practical approach
by many for VAD because of its competitive performance and annotation efficiency by employing video-level
labels to reduce the cost of manual fine-grained annotations (Zaheer et al., 2020; Zhong et al., 2019). The
comparison among various VAD approaches is shown in Table 1.
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Table 1: Comparison among multiple VAD approaches.
Supervision Normal Abnormal Annotation Approaches

Fully-Supervised ✓ ✓ Frame-Level Liu & Ma (2019)

Weakly-Supervised ✓ ✓ Video-Level

Sultani et al. (2018); Thakare et al. (2022);
Purwanto et al. (2021); Tian et al. (2021);
Zaheer et al. (2020); Sapkota & Yu (2022)

Unsupervised ✓ ✗ ✗

Hasan et al. (2016); Gao et al. (2021)
Wang & Cherian (2019); Lu et al. (2013)

Zaheer et al. (2022); Wu & Liu (2021)

In the weakly-supervised VAD task, there exist two fundamental problems. First, anomalous-labeled frames
tend to be dominated by normal-labeled frames, as the videos are untrimmed and no strict length requirement
exists for the anomalies in the video. Second, the anomaly may not necessarily stand out against normality.
As a result, it occasionally becomes challenging to localize anomaly snippets. In order to combat the issues,
Sultani et al. (2018); Tian et al. (2021); Wu et al. (2020); Zhang et al. (2019); Zhu & Newsam (2019) have
attempted to tackle the problem in multiple instance learning (MIL) frameworks, which treat a video as a
bag containing multiple instances, each instance being a video snippet. A video is labeled as anomalous if
any of its snippets are anomalous, and normal if all of its snippets are normal. Following the MIL framework,
anomalous-labeled videos belong to the positive bag and normal-labeled videos belong to the negative bag.

Furthermore, the existing approaches encode the extracted visual content by applying a backbone, e.g.,
C3D (Ji et al., 2013), I3D (Carreira & Zisserman, 2017), 2Stream (Simonyan & Zisserman, 2014), which
are pre-trained on action recognition tasks. Different from the action recognition problem, VAD depends on
discriminative representations that clearly represent the events in a scene. Thus, those existing backbones,
C3D, I3D, and 2Stream, are not suitable because of the domain gap (Liu & Ma, 2019). To address such
limitation, we leverage the success of the recent "vision-language" works (Patashnik et al., 2021; Yang &
Zou, 2022; Vo et al., 2022), which have proved the effectiveness of feature representation learning, via
Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021). CLIP consists of two networks, a
vision encoder and a text encoder, which are trained on 400 million text-image pairs collected from a variety
of publicly available sources on the Internet. Given a set of words and an image, CLIP can estimate the
semantic similarity between them. We thus leverage CLIP as a visual feature extractor. Furthermore, the
existing MIL-based weakly-supervised VAD approaches are limited in dealing with an arbitrary number of
abnormal snippets in an abnormal video. To address such an issue, we are inspired by the differentiable
top-K operator (Cordonnier et al., 2021) and introduce a novel technique, termed top-κ function, that
localizes κ snippets of interest in the video with differentiable hard attention in the similar MIL setting to
demonstrate its effectiveness and applicability to the traditional, popular setting. Furthermore, we introduce
the Temporal Self-Attention (TSA) Mechanism, which aims to generate the reweighed attention feature
by measuring the abnormal degree of snippets. Our proposed CLIP-TSA follows the MIL framework and
consists of three components corresponding to (i) Feature Encoding by CLIP; (ii) Modeling snippet coherency
in the temporal dimension with our Temporal Self-Attention and (iii) Localizing anomalous snippets with
Difference Maximization Trainer. As the real-world anomalies are diverse, in order to show the applicability
of our proposed method to multiple environments, we run experiments on three different datasets commonly
used for the VAD evaluation: UCF-Crime (Sultani et al., 2018), ShanghaiTech Campus (Liu et al., 2018),
and XD-Violence (Wu et al., 2020). In addition, we conduct an ablation study on the effectiveness of our
proposed method. Throughout the paper, the term abnormal and anomaly will be used interchangeably.

Our contributions are summarized as follows:

• We propose a Temporal Self-Attention (TSA) mechanism that is applicable to the Weakly-Supervised
VAD problems and acquires anomaly likelihood scores for video snippets.

• We leverage CLIP, which uses a ViT as a backbone for visual features, to introduce 1) novel usage
of CLIP features and 2) novel type of contextual representation in analyzing videos consisting of
abnormal actions.

• We empirically validate the usefulness of our proposed method by showing that, to the best of our
knowledge, it achieves superior performance to all of the current SOTA methods benchmarked on
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UCF-Crime and ShanghaiTech Campus datasets under any type of supervision setting. As for the
XD dataset, it outperforms all the SOTAs trained without auditory features, for a fair comparison.

2 Related Work

2.1 Unsupervised VAD

Unsupervised anomaly detection approaches do not require labeled data during training. In such approaches,
the usual patterns with only normal training samples are first encoded and distinctive encoded patterns are
detected as anomalies. While the early anomaly detection methods (Antić & Ommer, 2011; Basharat et al.,
2008; Li et al., 2013; Saligrama & Chen, 2012) mainly depend on the handcrafted features, the recent
approaches primarily make use of the merits of deep neural networks (DNNs) (Doshi & Yilmaz, 2020; Hasan
et al., 2016; Ionescu et al., 2019; Lu et al., 2013). In such, the reconstruction error is utilized for anomaly
identification with the assumption that anomalous events are often reconstructed poorly. For example,
Hasan et al. (2016) used autoencoders as feature extractors to model the subsequent frame and estimated
abnormality by reconstruction error. Later, Wang & Cherian (2019) assumed that anomalous events cause a
big difference between past and future frames and proposed spatiotemporal autoencoder with combinations
of CNNs and LSTMs (Hochreiter & Schmidhuber, 1997). With a similar assumption on reconstruction errors
as an abnormality recognizer, Feng et al. (2021); Liu et al. (2018); Park et al. (2020) adopted generative
networks to synthesize or predict future frames. Furthermore, Doshi & Yilmaz (2020) proposed a hybrid
use of DNNs and statistical k nearest neighbor decision approach for finding video anomalies. Ramachandra
et al. (2020) employed a Siamese network for the detection by learning the distance function between a pair
of video patches. Historically, the performance of unsupervised anomaly detection problems generally lagged
behind that of weakly-supervised approaches by a large margin because the model in an unsupervised setting
significantly lacks the prior knowledge of anomaly needed for differentiation between normality and anomaly.

2.2 Weakly-supervised VAD

Weakly-supervised VAD methods (Lv et al., 2021; Purwanto et al., 2021; Sapkota & Yu, 2022; Sultani et al.,
2018; Thakare et al., 2022; Tian et al., 2021; Wu et al., 2020; Zaheer et al., 2020; Zhang et al., 2019; Zhong
et al., 2019; Zhu & Newsam, 2019) rely on the video-level labels. In this setup, a normal-labeled video
contains all normal events, whereas an anomaly-labeled video contains both normal and anomalous events
without any temporal information about starting and ending of anomalous events. Weakly-supervised VAD
problem has been generally regarded as an MIL problem (He et al., 2017; Huo et al., 2012; Sultani et al.,
2018) as the videos are labeled at bag-level (i.e., video-level), with the anomaly-labeled video regarded as
a positive bag and the normal-labeled video regarded as a negative bag. Particularly since Sultani et al.
(2018) proposed a weakly-supervised framework to detect anomalies on UCF-Crime, in which both normal
and abnormal samples annotated at video-level are included in both train and test sets, this research in the
weakly-supervised setting has grown and gained significant popularity. Since then, more weakly-labeled VAD
datasets, primarily for use in a weakly-supervised setting, have been introduced (Liu et al., 2018; Wu et al.,
2020). In such approaches, the feature extractor can be trained or utilized by pre-trained models. While
Zhong et al. (2019); Zhu & Newsam (2019) trained both the feature encoder and classifier simultaneously,
Sultani et al. (2018); Tian et al. (2021); Zhang et al. (2019) utilized pre-trained models such as C3D (Ji
et al., 2013), I3D (Carreira & Zisserman, 2017), 2Stream (Simonyan & Zisserman, 2014), and SlowFast
(Feichtenhofer et al., 2019) as feature extractors and trained the classifier only.

2.3 Vision-Language Pre-trained Models

Vision-language pre-trained model (VLPM) aims to learn the semantic correspondence between different
modalities (i.e., video and text) by pre-training the model on a large-scale dataset of video/image-text pairs.
Specifically, the model mines the associations between objects or actions in the video and objects or actions in
the text. Standard vision-language tasks include video captioning (Krishna et al., 2017; Pasunuru & Bansal,
2017; Yamazaki et al., 2022), text-to-video retrieval (Hendricks et al., 2018; Rohrbach et al., 2015), and video
question answering (Girdhar & Ramanan, 2020; Lei et al., 2020b). Generally, VLPM can be divided into two
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categories: single-stream and dual-stream. The former uses a single transformer to model both image/video
and text representations in a unified framework. Both image/video and text embeddings are concatenated
into one feature. This category includes VisualBERT (Li et al., 2019), UNIMO (Li et al., 2020), and UNITER
(Chen et al., 2020b). The latter one separately encodes image/video and text with a decoupled encoder.
This category includes LXMERT (Tan & Bansal, 2019), ViLBERT (Lu et al., 2019), CLIP (Radford et al.,
2021), and DeCLIP (Li et al., 2021). VisualBERT, ViLBERT, UNITER, and LXMERT use masked token
tasks and are based on Language Modeling, whereas UNIMO, CLIP, and DeCLIP are trained on contrastive
learning. Because of simplicity, flexibility, and low computation cost, we adopt the frozen self-supervised
vision-language model CLIP, a dual-stream architecture and contrastive learning in this paper.

2.4 Attention Mechanism

Attention models have a long history. In 2015, Bahdanau et al. (2015) introduced one of the first soft at-
tention models capable of attending to all the source words and attempted to solve the machine translation
task without the traditional encoder-decoder models (e.g., RNN, LSTM), which were common approach for
the problem at the time (Cho et al., 2014; Sutskever et al., 2014). Soon, Xu et al. (2015) introduced a hard
stochastic attention mechanism that is able to compute the relative importance of the source words with
respect to the output words, combating the huge expense of computation required for soft attention. Because
hard attention only places attention locally, the mechanism is generally computationally less expensive than
the soft attention mechanism, which observes all hidden states (Luong et al., 2015). In general, while soft
attention models are trainable end-to-end, hard attention models are not differentiable and require reinforce-
ment learning (Xu et al., 2015). Today, many variations of attention mechanisms have been introduced. For
example, Luong et al. (2015) proposed a local attention mechanism similar to hard attention, but is differ-
entiable. In 2017, Vaswani et al. (2017) introduced a neural machine translation (NMT) architecture named
Transformer that is designed with only fully connected layers and attention by leveraging the self-attention
mechanism. Recently, Vo et al. (2021b; 2022) inherited the merits from both soft attention models and
hard attention models and proposed adaptive attention models. Despite its original application in NMT,
Transformer has been gaining great attraction, and its usage has expanded widely, including computer vision.

3 Proposed Method

3.1 Problem Setup

In weakly-supervised VAD, videos in the training set are only labeled at video-level. Let there be a set of
weakly-labeled training videos S = {X (k), y(k)}|S|

k=1, where a video X (k) ∈ RNk×W ×H is a sequence of Nk

frames that are W pixels wide and H pixels high, and y(k) = {0, 1} is the video-level label of video X (k) in
terms of anomaly (i.e., 1 if the video contains anomaly; 0 otherwise).

Given a video X (k) ∈ RNk×W ×H consisting of Nk frames, i.e., X (k) = {xj}|Nk
j=1, we first divide X (k) into a

set of δ-frame snippets {si}
⌈

Nk
δ

⌉
i=1 . Feature representation of each snippet is extracted by applying a vision-

language model into the middle frame. In this work, CLIP is chosen as a vision-language model; however, it
can be substituted by any vision-language model as introduced in Section 2.3. Thus, each δ-frame snippet
si is represented by a vision-language feature fi ∈ Rd and the video X (k) is represented by a set of video
feature vectors Fk = {fi}|Tk

i=1, where Fk ∈ RTk×d and Tk is the number snippets of X (k).

CLIP-TSA is trained using a mini-batch; thus, it introduces an issue caused by the difference in video
embedding feature length T between samples in the mini-batch. To address this issue, we normalize video
feature length by following the approach introduced by Sultani et al. (2018). Given two videos X (1) and
X (2), their corresponding sets of video feature vectors are F1 = {fi}|T1

i=1 and F2 = {fi}|T2
i=1, respectively,

where T1 ̸= T2. Following their paradigm, both F1 and F2 with size T1 and T2 are reshaped into the same
size of T with Eq. 1, where ⌊g⌋ = ⌊T1

T ⌋ and ⌊g⌋ = ⌊T2
T ⌋ for videos X (1) and X (2), respectively:

F = {fi′}|Ti′=1 = 1
⌊g⌋

⌊g×i′⌋∑
i=⌊g×(i′−1)⌋

fi (1)
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Figure 1: Overall flowchart of our proposed CLIP-TSA in train time. Given a video X consisting of N
frames (i.e., X = {xj}|Nj ), we first divide into a set of δ-frame snippets {si}T

i . Each δ-frame snippet si is
represented by a vision-language feature fi ∈ Rd. Then, the features F = {fi}T

i , where fi ∈ Rd, are resized
into one uniform length T to allow batch training by following Eq. 1. Our proposed TSA is then applied onto
the resized features to obtain anomaly attention feature F̂ = {f̂i}T

i , where f̂i ∈ Rd. The anomaly attention
feature F̂ is used for: 1) producing an anomaly likelihood score U using the score classifier C; 2) optimizing
the model by employing the difference maximization trainer technique υγ,α using the feature magnitude.

This way, we can batch-train videos of arbitrary lengths. In test time, as the videos are evaluated individually,
the features do not go through the normalization process. In the paper, we assume in training time that the
input features F come post-normalized into the uniform shape in temporal dimension T for batch training.

Our proposed CLIP-TSA’s pipeline is portrayed in Figure 1 with the three main components: (i) Feature
Encoding, (ii) Temporal Self-Attention (TSA), and (iii) Difference Maximization Trainer.

3.2 Feature Encoding

CLIP (Radford et al., 2021) is an image-text matching model, and it has recently attained remarkable
achievements in various computer vision tasks such as image classification (Cheng et al., 2021), image-text
retrieval (Dzabraev et al., 2021), and image generation (Patashnik et al., 2021). Originally, CLIP is trained
to match an image with its corresponding natural language descriptions. CLIP consists of two independent
encoders respectively for visual and textual features encoding. Given a batch of images and texts, CLIP aims
to align their feature in the embedding space with a contrastive loss during the training process. CLIP is
comprehensively trained on 400 million image-text pairs collected from the Internet. In this work, we leverage
CLIP as a feature extractor to obtain a vision-language scene feature. Specifically, we choose the middle
frame Ii that represents each snippet si. We first encode frame Ii with the pre-trained Vision Transformer
(Dosovitskiy et al., 2021) to extract visual feature If

i . We then project feature If
i onto the visual projection

matrix L pre-trained by CLIP to obtain the image embedding fi = L · If
i . Thus, the embedding feature Fk

of video X , which consists of Tk snippets X = {si}|Tk
i=1, is defined in Eq. 2b. Finally, we apply the video

normalization as in Eq. 1 into the embedding feature to obtain the final embedding feature F as in Eq. 2c.
fi = L · If

i where fi ∈ Rd (2a)
Fk = {fi}|Tk

i=1 where Fk ∈ RTk×d (2b)
F = Norm(Fk) where F ∈ RT ×d (2c)

3.3 Temporal Self-Attention (TSA)

Our proposed TSA mechanism aims to model the coherency between snippets of a video and select the
top-κ most relevant snippets. It contains three modules i.e., (i) temporal scorer network, (ii) top-κ score
nominator, and (iii) fusion network, as visualized in Figure 2 and mathematically explained in Algorithm 1.
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Figure 2: Top: Illustration of our proposed TSA mechanism to model coherency between snippets. The TSA
mechanism consists of three components: (i) temporal scorer network ϕs to obtain a relevance score vector ω;
(ii) top-κ score nominator to extract the κ most relevant snippets from a video; (iii) fusion process to combine
information to provide the model output. The TSA mechanism takes the vision language encoding feature
F ∈ RT ×d of T post-normalized snippets (Eq. 1) of a given video as its input and returns the reweighed
attention feature F̂ ∈ RT ×d as its output. Bottom: Details of top-κ score nominator network, which takes
the score vector ω as its input and returns a stack of soft one-hot vectors V̂ as its output.

In TSA, the vision language feature F ∈ RT ×d (from 3.2 Feature Encoding) is first converted into a score
vector ω ∈ RT ×1 through a temporal scorer network ϕs, i.e., ω = ϕs(F). This network is meant to be
shallow; thus, we choose a multi-layer perceptron (MLP) of 3 layers in this paper. The scores, each of
which is representing the snippet si, are then passed into the top-κ score nominator to extract the κ most
relevant snippets from the video. The top-κ score nominator is implemented by the following two steps.
First, the scores ω ∈ RT ×1 are cloned M times and the cloned score ω̄ ∈ RT ×M is obtained; M represents
the number of independent samples of score vector ω to generate for the empirical mean, which is to be used
later for computing the expectation with noise-perturbed features. Throughout the paper, we set M to be
100. Second, Gaussian noise G ∈ RT ×M is applied to the stack of M clones by Eq. 3 to produce ω̂ ∈ RT ×M :

ω̂ = G ⊕ ω̄ where ⊕ is an element-wise addition (3)

From the Gaussian-perturbed scores ω̂ ∈ RT ×M , the indices of top-κ snippets are selected based on the
score magnitude independently across its M dimension to represent the most relevant snippets and are later
one-hot encoded into a matrix V = {Vi}M

i=1, with each Vi ∈ Rκ×T containing a set of one-hot vectors. More
specifically, we guide the network to place the attention on κ magnitudes with the highest values because
the Difference Maximization Trainer (See 3.4) trains the anomalous snippets to have a high value and the
normal snippets to have a low value. The matrix V is then averaged across its M dimension to produce a
stack of soft one-hot vectors V̂ ∈ Rκ×T . Through the soft one-hot encoding mechanism, the higher amount
of attention, or weight, is placed near and at the indices of top-κ scores (e.g., [0, 0, 1, 0] → [0, 0.03, 0.95,
0.02]). The top-κ score nominator can be summarized by the pseudocode in Algorithm 2.

Afterwards, the stack of perturbed soft one-hot vectors V̂ ∈ Rκ×T is transformed into Ṽ ∈ Rκ×T ×d by making
d clones of V̂, and the set of input feature vectors F ∈ RT ×d is transformed into F̃ ∈ Rκ×T ×d by making κ
clones of F . Next, the matrices Ṽ and F̃ , which carry the reweighed information of snippets and represent
the input video features, respectively, are fused together to create a perturbed feature Q ∈ Rκ×T ×d that
represents the reweighed feature magnitudes of snippets based on the previous computations as follows:

Q = Ṽ ⊗ F̃ where ⊗ is an element-wise multiplication (4)

Then, each stack of perturbed feature vectors Q ∈ Rκ×d within the perturbed feature Q = {Qi}T
i=1 is

independently summed up across its dimension κ to combine the magnitude information of Qi into one
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vector f̂i ∈ Rd. This step is akin to the process of reversing the previous one-hot encoding procedure
by reducing the one dimension previously expanded for one-hot encoding. The reweighed feature vector,
f̂i ∈ Rd, which collectively forms F̂ = {f̂i}|Ti=1, is collectively obtained as the model output from the TSA
mechanism σ to represent an anomaly attention feature F̂ ∈ RT ×d. The pipeline of TSA is described by the
pseudocode in Algorithm 1 and illustrated in Figure 2.

Algorithm 1: TSA mechanism σ to produce
anomaly attention features F̂
Data: Feature F ∈ RT ×d,

Top snippet count κ ∈ R1

Result: Anomaly attention feature F̂
ω ← ϕs(F) // RT ×1

V̂ ← Top-κ Score(M, κ, ω) // Alg.2,Rκ×T

Ṽ ← Make d clones of V̂ // Rκ×T ×d

F̃ ← Make κ clones of F // Rκ×T ×d

Q ← Ṽ ⊗ F̃ // Rκ×T ×d

F̂ ← summation of Q across dim κ // RT ×d

return F̂ // dim:dimension

Algorithm 2: Top-κ Score function
Data: Sample count M ,

Top snippet count κ,
Score vector ω

Result: A stack of soft one-hot vectors V̂
set ω̄ to M clones of ω // RT ×M

set G to Gaussian noise // RT ×M

ω̂ ← G ⊕ ω̄ // RT ×M

U ← indices of top-κ scores
across dim M in ω̂ // Rκ×M

V ← one-hot encode κ in U // Rκ×T ×M

V̂ ← average of V across dim M // Rκ×T

return V̂ // dim:dimension

3.4 Difference Maximization Trainer Learning

Our weakly-supervised VAD model, CLIP-TSA, is set up as an MIL framework, in which the positive bag
represents anomaly and the negative bag denotes normality. Following the paradigm, a video, treated as a
bag, is labeled a positive bag if it contains at least one snippet of anomaly, while it is labeled a negative bag
otherwise. Given a mini-batch of 2 ∗ B videos {X (k)}|2∗B

k=1, each video X (k) is represented by Fk = {fi}|Ti=1
obtained by TSA (Section 3.3). Let the input mini-batch be represented by Z = {Fk}|2∗B

k ∈ R2∗B×T ×d,
where B, T , and d denote the user-input batch size, normalized time snippet count, and feature dimension,
respectively. The actual batch size is dependent on the user-input batch size, following the equation of 2∗B,
because the first half, Z− ∈ RB×T ×d, is loaded with a set of normal bags, and the second half, Z+ ∈ RB×T ×d,
is loaded with a set of abnormal bags in order within the mini-batch.

After the mini-batch undergoes the phase of TSA, it outputs a set of reweighed normal attention features
Ẑ− = {F̂k}|Bk=1 and a set of reweighed anomaly attention features Ẑ+ = {F̂k}|2∗B

k=B . The reweighed attention
features Ẑ are then passed into a convolutional network module J composed of dilated convolutions (Yu
& Koltun, 2016) and non-local block (Wang et al., 2018) to model the long- and short-term relationship
between snippets based on the reweighed magnitudes. The resulting stack of convoluted attention features
Ž = {F̌k}|2∗B

k , where Ž ∈ R2∗B×T ×d, is then passed into a shallow MLP-based score classifier network
C that converts the features into a set of scores U ∈ R2∗B×T ×1 to determine the binary anomaly state of
feature snippets. The set of scores U is saved as part of a group of returned variables, for use in loss.

Next, each convoluted attention feature {F̌k}|2∗B
k=1 of the batch Ž undergoes Difference Maximization Trainer

(DMT). Leveraging the top-α instance separation idea employed by Li & Vasconcelos (2015); Sultani et al.
(2018), we use DMT, represented by υγ,α, in this problem to maximize the separation, or difference, between
top instances of two contrasting bags, Ž− and Ž+, by first picking out the top-α snippets from each convoluted
attention feature F̌k based on the feature magnitude. This produces a top-α subset Ḟk ∈ Rα×d for each
convoluted attention feature F̌k ∈ RT ×d. Second, Ḟk is averaged out across top-α snippets to create one
feature vector F̈k ∈ Rd that represents the bag. The procedure is explained by Eq. 5 below:

λγ,α(F̌) = F̈ = max
Ωα(F̌)⊆{f̌i}T

i=1

1
α

∑
f̌i∈Ω(F̌)

f̌i (5)

In the equation, λ is parameterized by γ, which denotes its dependency on the ability of the convolutional
network module J (i.e., representation of F̈ depends on the top-α positive instances selected with respect
to J). In addition, α in Eq. 5 denotes the size of Ω, where Ω represents a subset of α snippets from F̌ . Each
representative vector F̈ is then normalized to produce

...
F ∈ R1.
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υγ,α(F̌+, F̌−) = ||λγ,α(F̌+)|| − ||λγ,α(F̌−)|| (6)

The separability is computed as in Eq. 6, where F̌− = {f̌−,i}|Ti represents a negative bag and F̌+ = {f̌+,i}|Ti
represents a positive bag. More specifically, we leverage the theorem below to maximize the separability of
the top-α instances (feature snippets) from each contrasting bag.

Theorem 1 (Li & Vasconcelos, 2015; Tian et al., 2021): Expected Separability. Let E[∥f̌+∥2] ≥ E[∥f̌−∥2],
where F̌+ has ϵ ∈ [1, T ] abnormal samples and (T − ϵ) normal samples, F̌− has T normal samples, and
T = |F̌+| = |F̌−|. Let Υγ,α(·) be the random variable from which the separability scores υγ,α(.) are drawn.

1. If 0 < α < ϵ, then
0 ≤ E[Υγ,α(F̌+, F̌−)] ≤ E[Υγ,α+1(F̌+, F̌−)] (7)

2. For a finite ϵ, then
lim

α→∞
E[Υγ,α(F̌+, F̌−)] = 0 (8)

In simple terms, the theorem in our setting conveys that, as the number of samples in the top-α snippets of
the abnormal video increases – but no greater than ϵ – the separability between the two contrasting bags may
be maximized. However, if it exceeds the number, it becomes difficult as the number of negative (normal)
samples starts to dominate in both negative and positive bags.

Afterward, to compute the loss, a batch of normalized representative features {
...
F normal}|Bk=1 and

{
...
F abnormal}|2∗B

k=B are then measured for margins between each other. A batch of margins is then aver-
aged out and used as part of the net loss together with the score-based binary cross-entropy loss computed
using the score set U .

3.5 Inference

In test time, the video feature vectors F that have been extracted with CLIP do not undergo the normal-
ization process to be reshaped into the common size of T because each feature is evaluated at a time. When
Fk ∈ RTk×d is input into the model in test time, the feature Fk undergoes the proposed TSA process to
produce the reweighed attention features F̂k. They are then passed into the convolutional network module
J , followed by the MLP-based score classifier network C, to acquire a set of scores U ∈ RTk×1. Each score
{ui}|Tk

i within this set of scores U represents the anomaly likelihood of the snippet at the corresponding index
and carries a value between 0 and 1. Each score ui is rounded to produce a set of binary scores U ′ = {u′

i}|Tk
i .

When the binary score u′ is 1, the snippet at the corresponding index is deemed to be anomalous; whereas,
when the score is 0, the snippet at the corresponding index is assumed to be normal. Lastly, each binary
score in U ′ is repeated δ times, preserving the original order, to reproduce a vector Û = {ûi}|δ∗Tk

i with the
common frame length as the video X (k), for use in evaluation against the ground truth labels as in Eq. 9
below. The remainder frames Nk − δ ∗ Tk are either discarded or padded with the final label of the video.

û[δ∗i:δ∗(i+1)] = u′
i (9)

4 Experimental Results

4.1 Datasets and Metrics

UCF-Crime Dataset (Sultani et al., 2018) contains 1,900 untrimmed video clips encompassing 13 different
anomalies and normal activities. The types of anomalies in the videos include abuse, arrest, arson, assault,
burglary, explosion, fighting, road accident, robbery, shooting, shoplifting, stealing, and vandalism. Each of
the real-world surveillance videos, totaling 128 hours in length, has been weakly annotated at video-level as
anomalous or normal. The dataset comes pre-split into a train set of 800/810 normal/anomalous videos; a
test set of 150/140 normal/anomalous videos.

ShanghaiTech Campus Dataset (Liu et al., 2018) contains 317,398 frames of video clips encompassing
the scenes of multiple areas in ShanghaiTech Campus. The dataset cumulatively covers 13 scenes, in which
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Table 2: Performance comparisons (AUC@ROC) between the SOTA methods and our method on UCF-Crime
dataset (Sultani et al., 2018). They are grouped into the unsupervised, supervised, and weakly-supervised
methods in order.

Sup. Method Venue Feature AUC@ROC ↑

U
n-

Hasan et al. (2016) CVPR‘16 - 50.60
Lu et al. (2013) ICCV‘13 C3D 65.51
BODS (Wang & Cherian, 2019) ICCV‘19 I3D 68.26
GODS (Wang & Cherian, 2019) ICCV‘19 I3D 70.46
GCL (Zaheer et al., 2022) CVPR‘22 ResNext 71.04

Fu
lly

-

Liu & Ma (2019) MM‘19 NLN 82.0

W
ea

kl
y-

GCLW S (Zaheer et al., 2022) CVPR‘21 ResNext 79.84
GCN (Zhong et al., 2019) CVPR‘19 TSN 82.12
WSAL (Lv et al., 2021) TIP‘21 TSN 85.38
Purwanto et al. (2021) ICCV‘21 TRN 85.00
Thakare et al. (2022) ExpSys‘22 C3D+I3D 84.48
Sultani et al. (2018) CVPR‘18

C3D

75.41
Zhang et al. (2019) ICIP‘19 78.70
GCN (Zhong et al., 2019) CVPR‘19 81.08
CLAWS (Zaheer et al., 2020) ECCV‘20 83.03
RTFM (Tian et al., 2021) ICCV‘21 83.28

Ours: CLIP-TSA† 83.94
Sultani et al. (2018) CVPR‘18

I3D

77.92
Wu et al. (2020) ECCV‘20 82.44
DAM (Majhi et al., 2021) AVSS‘21 82.67
BN-SVP (Sapkota & Yu, 2022) CVPR‘22 83.39
RTFM (Tian et al., 2021) ICCV‘21 84.30
Wu & Liu (2021) TIP‘21 84.89

Ours: CLIP-TSA‡ 84.66
Ours: CLIP-TSA CLIP 87.58

300,308 frames represent normal events and the remaining 17,090 frames comprise 130 distinct anomalous
events. The dataset is split into a train set of 330 videos (274,515 frames) and a test set of 107 videos (42,883
frames), captured at 480×856 pixels. The train set contains only normal videos, while the test set contains
a mix of normal and anomalous videos, where the anomalies in the test set are annotated at pixel-level.

XD-Violence Dataset (Wu et al., 2020) contains 217 hours of 4,754 untrimmed videos encompassing six
different anomalies and normal activities. The anomalous actions in the dataset include abuse, car accident,
explosion, fighting, riot, and shooting. The train set contains video-level annotations, while the test set
contains frame-level annotations (i.e., rough from-and-to frame locations of each anomaly, not to exceed
three, in a video). The dataset is split into a train set of 3,954 videos, where 1,905 of them are anomalous,
and a test set of 800 videos, where 500 are anomalous.

Metrics: Similar to other work (Hasan et al., 2016; Sultani et al., 2018; Tian et al., 2021; Wu & Liu, 2021;
Wu et al., 2020; Zhong et al., 2019), UCF-Crime and Shanghai datasets are evaluated using AUC@ROC
and XD-Violence dataset is evaluated using AUC@PR. AUC@ROC refers to the area under the receiver
operating characteristics curve, whereas AUC@PR refers to the area under the precision-recall curve.

4.2 Implementation Details

In training time, we follow Sultani et al. (2018); Tian et al. (2021) and divide each video in the batch into 32
video snippets, (i.e., T is set as 32 in train time), using Eq. 1. For all datasets, we follow the aforementioned
steps to preprocess videos with the snippet length set to δ = 16. The scorer network θs in Section 3.3
is defined as an MLP of three layers of 512, 256, and 1 units. The hidden layer is followed by a ReLU
activation function, and the final layer is followed by a sigmoid function to produce a value between 0 and
1. To extract the linguistic scene elements features of the scene, we employ CLIP (Radford et al., 2021) that

9
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Table 3: Performance comparisons (AUC@ROC) between the SOTA methods and our method on Shang-
haiTech Campus dataset (Liu et al., 2018). The first group is unsupervised methods, and the rest are
weakly-supervised methods. Sultani et al. (2018)* is retrained with I3D features as it was previously not
evaluated on ShanghaiTech Campus.

Sup. Method Venue Feature AUC@ROC ↑

U
n-

Hasan et al. (2016) CVPR‘16 - 60.85
Gao et al. (2021) ICCV‘19 - 71.20
Yu et al. (2020) MM‘20 - 74.48
GCLP T (Zaheer et al., 2022) CVPR‘21 ResNext 78.93

W
ea

kl
y-

GCN (Zhong et al., 2019) CVPR‘19 TSN 84.44
GCLW S (Zaheer et al., 2022) CVPR‘21 ResNext 86.21
Purwanto et al. (2021) ICCV‘21 TRN 96.85
GCN (Zhong et al., 2019) CVPR‘19

C3D

76.44
Zhang et al. (2019) ICIP‘19 82.50
CLAWS (Zaheer et al., 2020) ECCV‘20 89.67
RTFM (Tian et al., 2021) ICCV‘21 91.57
BN-SVP (Sapkota & Yu, 2022) CVPR‘22 96.00

Ours: CLIP-TSA† 97.19
Sultani et al. (2018)* CVPR‘18 85.33
DAM (Majhi et al., 2021) AVSS‘21

I3D
88.22

AR-Net (Wan et al., 2020) ICME‘20 91.24
RTFM (Tian et al., 2021) ICCV‘21 97.21
Wu & Liu (2021) TIP‘21 97.48

Ours: CLIP-TSA‡ 97.98
Ours: CLIP-TSA CLIP 98.32

Table 4: Performance comparisons (AUC@PR) between the SOTA methods and our method on XD-Violence
dataset (Wu et al., 2020). The first group is an unsupervised method, and the other group is weakly-
supervised methods. V and A represent visual and audio features, respectively.

Sup. Modality Method Venue Feature AUC@PR ↑
Un- – OCSVM (Schölkopf et al., 1999) NeurIPS‘00 – 27.25

Hasan et al. (2016) CVPR‘16 – 30.77

W
ea

kl
y-

Vision
& Audio

Wu & Liu (2021) TIP‘21 I3D(V) + VGGish(A) 75.90
Wu et al. (2020) ECCV‘20 I3D(V) + VGGish(A) 78.64
Pang et al. (2021) ICASSP‘21 I3D(V) + VGGish(A) 81.69
MACIL-SD (Yu et al., 2022) MM‘22 I3D(V) + VGGish(A) 83.40
DDL (Pu & Wu, 2022) ICCECE‘22 I3D(V) + VGGish(A) 83.54

Vision

Sultani et al. (2018) CVPR‘18 C3D(V) 73.20
RTFM (Tian et al., 2021) ICCV‘21 C3D(V) 75.89

Ours: CLIP-TSA† C3D(V) 77.66
RTFM (Tian et al., 2021) ICCV‘21 I3D(V) 77.81

Ours: CLIP-TSA‡ I3D(V) 78.19
Ours: CLIP-TSA CLIP(V) 82.19

was pre-trained on a large-scale dataset of 400M image-text pairs crawled from the Internet. Thus, d is set as
512 for all experiments. We set M as 100 for Gaussian noise in Eq. 3. In addition, we choose 0.7 (70%), 0.7
(70%), and 0.9 (90%) for r in UCF-Crime, ShanghaiTech Campus, and XD-Violence datasets, respectively,
for the best performance, where r denotes the number of snippets in a feature to place attention onto using
TSA in a proportionate, relative figure rather to later compute κ in a hard number:

κ = ⌊T × r⌋ (10)

Our CLIP-TSA is trained in an end-to-end manner and implemented using PyTorch. We use the Adam
optimizer (Kingma & Ba, 2015) with a weight decay of 0.005, a learning rate of 0.001, and a batch size of
16 for 4,000 (UCF-Crime), 35,000 (ShanghaiTech Campus), and 4,000 (XD-Violence) iterations.

4.3 Performance Comparison

Besides CLIP-TSA, which is conducted on vision-language feature CLIP and our temporal attention mech-
anism TSA, we also test CLIP-TSA on other common features, i.e., C3D (Ji et al., 2013) and I3D (Carreira
& Zisserman, 2017), to fairly compare CLIP-TSA with other existing approaches. Thus, we report the
performance of the CLIP-TSA and its variants in this section as follows:

10
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• CLIP-TSA†: TSA and replacing CLIP feature with C3D (Ji et al., 2013) feature
• CLIP-TSA‡: TSA and replacing CLIP feature with I3D (Carreira & Zisserman, 2017) feature
• CLIP-TSA: TSA and using CLIP feature

Table 2 shows the frame-level AUC@ROC results of SOTA models that we have found to the best of our
ability on the UCF-Crime dataset. Based on the table, first, it is apparent that unsupervised methods
generally provide an inferior performance. Second, it can be observed that the performance of our method,
CLIP-TSA, stands out against other SOTA methods by a large margin in any type of supervision setting.
Compared to the current best-performing model, i.e., Lv et al. (2021), our CLIP-TSA holds 2.2% better
performance when evaluated with the same metric. Furthermore, on the same feature, our CLIP-TSA† yields
better performance than the current SOTA on C3D by 0.66%, and CLIP-TSA‡ obtains very competitive
scores on I3D.

Similarly, Table 3 shows the frame-level AUC@ROC results of SOTA models on the ShanghaiTech Campus
dataset. In the table, it can be seen that our model outperforms all of the previous SOTA methods reported
in the table. Empirically, it shows that, on the same feature, CLIP-TSA† beats BN-SVP (Sapkota & Yu,
2022), the current SOTA on C3D, by 1.19%, and CLIP-TSA‡ outperforms Wu & Liu (2021), the current
SOTA on I3D, by 0.5%. Furthermore, CLIP-TSA yields superior performance to that of Wu & Liu (2021),
the current best-performing model, by 0.84% with the end-to-end training scheme.

Lastly, Table 4 shows the frame-level AUC@PR results of SOTA models on the XD-Violence dataset, which
is the most recently released dataset of the three. From the table, it can be seen that ours outperforms all
SOTA models on various visual features as well as some models that leveraged both visual and auditory
features. More specifically, it has left a remarkable margin of 1.77%, 0.38%, and 4.38% on C3D, I3D, and
CLIP, respectively.

Our hypothesis for relatively small performance improvement on the ShanghaiTech Campus dataset com-
pared to UCF-Crime and XD-Violence is that optimality has already been achieved in the ShanghaiTech
Campus dataset as it is already yielding very high, near-100% scores by SOTA models. As a result, we
believe that it is much more difficult to pull up its score in comparison to the remaining two datasets, with
problems potentially being noise or subjective, frame-level human label errors.

4.4 Ablation Study

In this section, we conduct two ablations studies to analyze hyperparameter r in Eq. 10 and the effectiveness
of the proposed TSA mechanism.

Hyperparameter Study First, we run the experiments with our CLIP-TSA model under the same setting
as in Section 4.2, but using various r. More specifically, r will be set to the steps of 0.1 from 0.1 to 1.0. To
ensure the reported performance is generalized enough, we run the model five times each. The performance
of the model at each r for each dataset is shown in Figure 3. According to the figure, the value of r where the
model performs at optimal level differs for each: UCF-Crime yields 87.6% AUC@ROC when r is set to 0.7,
ShanghaiTech obtains 98.3% AUC@ROC at r ∈ [0.3, 0.7], and XD-Violence gets 82.2 AUC@PR at r = 0.9.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r

0.850

0.855

0.860

0.865

0.870

0.875

AU
C@

RO
C

UCF-Crime

Global Max
Global Mean
Local Max
Local Min
Local Mean

Global Max
Global Mean
Local Max
Local Min
Local Mean

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r

0.955

0.960

0.965

0.970

0.975

0.980

0.985

AU
C@

RO
C

ShanghaiTech Campus

Global Max
Global Mean
Local Max
Local Min
Local Mean

Global Max
Global Mean
Local Max
Local Min
Local Mean

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r

0.72

0.74

0.76

0.78

0.80

0.82

AU
C@

PR

XD-Violence

Global Max
Global Mean
Local Max
Local Min
Local Mean

Global Max
Global Mean
Local Max
Local Min
Local Mean

Figure 3: r-adjusted performance comparison chart. Local best denotes the best score yielded when tests
were run with r set to the corresponding value in the x-axis. Global best denotes the best score achieved
across all r. The experiments were conducted at 10 different intervals of 0.1, starting from r = 0.1.
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Figure 4: Per-anomaly class distribution of UCF-Crime (left) and
XD-Violence (right) datasets on train and test sets.

To understand why the optimal value of
r is changing from dataset to dataset, we
collect two pieces of information: 1) data
distribution of UCF-Crime (1,900 videos
with 13 types of anomalies), Shang-
haiTech Campus (317,398 videos with
130 anomaly events), and XD-Violence
(4,754 videos with 6 types of anoma-
lies) datasets; 2) frame-level anomaly-to-
all ratio ( #ofAnomaly

#ofAnomaly+#ofNormal ) of their
test sets, which are 0.1819, 0.4247, and
0.4977, respectively. The ShanghaiTech
Campus is a big-scale data with a com-
paratively large number of anomaly events, so we assume that the model is able to be generalized enough,
and the values of r ∈ [0.3, 0.7] are around the anomalous-to-all ratio. However, UCF-Crime and XD-Violence
have imbalanced anomaly category distributions as shown in Figure 4. Furthermore, the important features
for making the correct decision are not limited to anomalous snippets, but also include some normal snippets
as well, especially as part of computation for loss, in which both the magnitudes for top anomalous snippets
and normal snippets are factored in. Thus, the best values of r in UCF-Crime and XD-Violence datasets
are not aligned around anomalous-to-all ratios.

Table 5: Ablation study of TSA on UCF-Crime, ShanghaiTech
Campus, and XD-Violence Datasets, using the corresponding met-
ric for each. The best score is bolded, the runner-up is underlined,
and the improved score after the TSA is italicized.

Feature TSA UCF-Crime ShanghaiTech XD-Violence
(AUC@ROC ↑) (AUC@ROC ↑) (AUC@PR ↑)

C3D ✗ 82.59 96.73 76.84
C3D ✓ 83.94 97.19 77.66
I3D ✗ 83.25 96.39 77.74
I3D ✓ 84.66 97.98 78.19
ViT ✗ 86.29 98.18 80.43
ViT ✓ 87.58 98.32 82.19

Effectiveness of TSA mechanism
In order to investigate the effectiveness
of TSA, we conduct the experiments
in two cases with and without TSA
on the same vision-language feature
on UCF-Crime, ShanghaiTech Cam-
pus, and XD-Violence datasets. Both
experiments are sharing the same con-
figuration settings with five different
seeds, five different batch sizes (4, 8,
16, 32, 64), and three different learn-
ing rates (0.01, 0.001, 0.0001).

Table 5 reports the best performance
of both CLIP-TSA and baseline model
(w/o TSA) on three separate datasets.
From the table, it can be observed that CLIP-TSA outperforms the baseline on all three when it is compared
to the same dataset. Moreover, comparing Table 5 with Tables 2-4, we observe that the best-performing
baseline model for each dataset is shown to yield a higher score than the SOTA models for the respective
dataset. That implies the strength and efficiency of vision-language in VAD.

5 Conclusion

This paper presents CLIP-TSA, an effective end-to-end weakly-supervised VAD framework. Specifically,
we proposed the novel TSA mechanism that maximizes attention on a subset of features while minimizing
attention on noise and showed its applicability to the weakly-supervised VAD problem. We also applied
TSA to CLIP-extracted features to demonstrate its efficacy in Visual Language features and exploited visual
language features in the weakly-supervised VAD problem. We also empirically validate the excellence of our
model on the three popular VAD datasets by comparing ours against the SOTAs.

Future investigations might aim for better techniques to incorporate both temporal and spatial information
as well as handle imbalanced data with less annotation. New techniques for attention such as context-reliant
recognition (Li et al., 2022) and self-supervised learning (Caron et al., 2021; Chen et al., 2020a) are also
potential extensions for performance improvement.
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