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Abstract
Robots acting in real-world environments usually in-
teract with humans. Interactions may occur at differ-
ent levels of abstraction (e.g., process, task, physical),
entailing different research challenges (e.g., task allo-
cation, human-robot joint actions, robot navigation).
When acting in social situations, robots should recog-
nize the context and behave in different manners, so
as to act and interact in a correct and acceptable way.
We propose the integration of task and motion planning
to contextualize robot behaviors for social navigation.
The main idea is to leverage the contextual knowledge
of a deliberative task planner to dynamically adapt the
navigation behaviors of a robot and enhance human-
robot interaction. More specifically, we propose a holis-
tic model of tasks and human features and a mapping
from task-level knowledge to motion-level knowledge
to constrain the generation of robot trajectories. The
proposed framework is tested in simulation for some
commonly occurring scenarios in a hospital.

Introduction
Robots acting in situations requiring direct or indirect in-
teractions with humans should realize behaviors that take
into account also a social dimension. A set of implemented
behaviors should not be only technically valid and efficient
but also acceptable by humans (Rossi, Ferland, and Tapus
2017). There is a crucial need of considering a social per-
spective in order to meet the expectations of humans in dif-
ferent (social) contexts and, realize behaviors that are safe,
reliable, and legible. In Human-Robot Interaction (HRI), it
is particularly important to reason about how tasks are car-
ried out by a robot in order to do the right action in the right
way and comply with the so-called social norms (Triebel
et al. 2016; Bruno et al. 2019; Awaad, Kraetzschmar, and
Hertzberg 2015). Nevertheless, human behaviors are usu-
ally only partially predictable. From a control perspective,
the presence of humans constitutes a source of uncertainty
concerning, e.g., their goals, beliefs, and intentions (Clodic
and Alami 2021; Clodic et al. 2017). This uncertainty raises
robot control issues and strongly affects the way a robot
achieves its goals.

To deploy more natural and acceptable behaviors, robots
need advanced reasoning capabilities and intelligent con-
trollers that take into account: who is the human a robot in-

teracts with; what are the objectives of the interactions; how
to achieve them; when to execute the needed actions, and;
where interactions take place. In general, it is necessary to
reason about both technical and social aspects of the interac-
tions in order to, respectively, realize correct behaviors and
adapt robot behaviors to different contexts and human users.

Implementing “intelligent behaviors” requires investigat-
ing several research directions that lead to the integration
of Robotics and Artificial Intelligence (AI) (Lemaignan et
al. 2017; Ingrand and Ghallab 2017). General interaction
capabilities of robotic platforms should be customized ac-
cording to the specific features of a scenario as well as
the preferences and needs of users (Cortellessa et al. 2021;
Moro, Nejat, and Mihailidis 2018). In this regard, it is
paramount to endow the robot with contextual knowledge
about human users, social environments, and (social) tasks
to be performed. On the one hand, such knowledge allows
robots to personalize their general interactions capabilities
(i.e., behaviors) to the specific needs of a user. On the other
hand, it provides a means for robots to adapt their behavior
execution over time according to the changing or evolving
states of users (Umbrico et al. 2020).

In this work, we propose a novel integrated Task And Mo-
tion Planning (TAMP) approach to enhance the awareness
of the social navigation skills of robots. This approach relies
on a motion planning framework, called CoHAN (Singama-
neni, Favier, and Alami 2021; 2022), which allows the tun-
ing of human-aware navigation behaviors. It exposes a num-
ber of motion parameters that are used by a task planner,
called PLATINUm (Umbrico et al. 2017) to dynamically
adapt motion behaviors to the expected social context. To
this aim, the paper proposes a holistic model characterizing
domain and task requirements as well as human features at
both domain and geometric levels. The feasibility of the ap-
proach is evaluated in an assistive scenario where a robot is
requested to dynamically change motion behaviors accord-
ing to different types of tasks, environmental features as well
as interacting features of involved humans.

Human-Aware Task and Motion Planning
Endowing a control system with a well-structured model of
humans and social contexts is crucial to synthesize flexi-
ble and effective robot behaviors. Indeed, there are several
human and social-related variables that can affect motions



and interaction styles of a robot in a certain social context.
Usually, works in social navigation mainly focus on the ge-
ometric aspects of the implemented motions (Kruse et al.
2013). Humans are generally considered as dynamic obsta-
cles whose geometric model is defined by taking into ac-
count different aspects e.g., proxemics (Ferrer et al. 2017;
Rios-Martinez, Spalanzani, and Laugier 2015; Mead and
Matarić 2017) or emotional states (Cavallo et al. 2018).
There are additional factors concerning human intention,
perspectives, or social norms that should be considered to
reliably plan robot motions (Che, Okamura, and Sadigh
2020; Repiso, Garrell, and Sanfeliu 2022; Beraldo et al.
2022). Furthermore, works usually focus on single naviga-
tion/interaction episodes ignoring more abstract knowledge
about the interaction skills of involved humans, sequences of
motions (i.e., robot plans), and (domain-level) “motivations”
that lead the robot to act in a (social) situation.

Depending on the specific requirements of the domain-
level task being performed and the qualities of involved
humans, the execution of needed (social) navigation skills
would consider different priorities, safety requirements, and
different performance constraints. Such contextual knowl-
edge impacts the interaction style of a robot and the way
navigation behaviors are actually implemented. In this re-
gard, we propose a holistic model for social navigation tasks
to characterize interacting behaviors from different (syn-
ergetic) perspectives: (i) the domain perspective considers
technical and performance aspects of a task being executed;
(ii) the human perspective considers the interacting skills,
qualitative features, and preferences of humans involved in
the execution of a task; (iii) the robot perspective consid-
ers the acting skills and execution modalities of trajectories;
(iv) the environment perspective considers social features of
the physical space where the execution of a task takes place.
Each of these perspectives contributes to different levels of
abstraction while defining context-aware robot behaviors.
We integrate this holistic model into a novel Task and Mo-
tion planning (TAMP) approach to synthesize flexible robot
behaviors.

Figure 1: Integrated Task and Motion planning architecture.

Fig. 1 shows the designed architecture and the resulting
control flow. The task planner reasons at a high level of ab-
straction taking into account the domain requirements, the
functional capabilities of the robot, and the interaction skills
of humans. It deals with task decomposition, task assign-
ment, and temporal sequencing of needed actions. We rely
on the timeline-based planner PLATINUm1 and the execu-
tive framework ROXANNE2 (Cialdea Mayer, Orlandini, and
Umbrico 2016; Umbrico et al. 2017). The motion planner
reasons at a lower level of abstraction taking into account
the geometrical features of the environment, the robot, and
the involved humans. We rely on the human-aware motion
planning framework CoHAN3 which exposes a number of
parameters to adapt the planning of motion trajectories to
different contexts (Singamaneni, Favier, and Alami 2021;
2022).

The idea behind the proposed TAMP approach is to lever-
age the domain-level knowledge of the task planner to en-
rich the motion planner with contextual knowledge about
tasks and involved humans. It is important to point out
that a model of humans is necessary at both task and mo-
tion planning levels. Humans indeed should be characterized
from both a functional level (necessary for the task planner)
and a geometric level (necessary for the motion planner).
The TAMP approach integrates such knowledge to support
human-aware reasoning.

Task-level Knowledge
This section describes the task planning knowledge charac-
terizing the requirements, motivations, and objectives that
influence the robot’s actions. Table 1 shows the variables
considered at this level of abstraction: (i) the environmental
context in which a task is performed (e.g., crowded spaces,
public or private environments); (ii) the risk of a task with
respect to the safety of humans and; (iii) the performance of
a task (e.g., flexible tasks whose execution does not require
rigid adherence to the nominal duration or strict tasks whose
execution cannot be delayed).

The higher the (cumulative) score, the lower the need
of considering human-related constraints. Depending on the
cumulative score of the variables, we define three classes
of tasks: (i) Technical-critical tasks (score ∈ (6, 9]) fo-
cus on technical requirements mainly. The motion planner
would thus relax social constraints in favor of optimized
and efficient motions; (ii) Interaction-critical tasks (score
∈ (3, 6]) require a trade-off between technical and so-
cial constraints when planning motions; (iii) Social-critical
tasks (score ∈ [0, 3]) focus on social requirements. The mo-
tion planner would almost ignore optimal trajectory to favor
safe and acceptable motions.

Table 2 shows the set of variables characterizing the inter-
action skills of humans. These variables are a subset of the
International Classification of Functioning, Disability, and

1https://github.com/pstlab/PLATINUm.git
2https://github.com/pstlab/roxanne_

rosjava.git
3https://github.com/sphanit/CoHAN_Planner.

git



Table 1: Variables characterizing domain-level knowledge of a task.

Parameter Value Set Value Range Description
Social Context {crowded, public, private, robotic} [0, 3] Describe the environmental context in which a task is supposed to be performed. Higher values

correspond to a lower predominance of humans, and consequently higher availability of space to
plan robot motions.

Risk {critical, high, average, low} [0, 3] Describe the risk of the execution of a task with respect to the safety of humans. Tasks with low
risk, for example, would allow the execution of optimal trajectories that are not necessarily social.
Vice versa, tasks with high risk would imply the execution of social (and non-optimal) trajectories.

Performance {none, flexible, regular, strict} [0, 3] Describe the required level of performance during the execution of the motions. Higher values
imply stricter adherence to performance optimization when planning robot motions.

Health (ICF)4 proposed by the World Health Organization
(WHO). The ICF framework describes the level of function-
ing of a person and has been proposed in robotics to adapt
the interactions (Umbrico et al. 2020; Kostavelis et al. 2019;
Garcı́a-Betances et al. 2016). Each variable is associated
with an integer value5 expressing the level of functioning
of a person with respect to a particular aspect.

The rationale behind the use of this subset of ICF is to
estimate human uncertainty with respect to the interaction
with the robot. The higher the cumulative score of the vari-
ables the higher the uncertainty (i.e., higher impairments of
interaction-related aspects). Depending on the cumulative
scores of the variables we define three classes of humans:
(i) Fragile humans (score ∈ (25, 44]) have limited interac-
tion skills (e.g., low hearing or seeing functioning) and un-
stable motions (e.g., unstable walking, equilibrium issues,
or low attention). This category entails conservative/prudent
robot motions since no assumption can be made on the ac-
tual state or motions of the human (maximum uncertainty);
(ii) Average humans (score ∈ (13, 25]) have minimal inter-
action skills and sufficiently stable motions. This category
allows the robot to make some assumptions about the ex-
pected behaviors of the interacting humans and thus perform
some level of optimization and planning of motions (average
uncertainty); (iii) Reliable humans (score ∈ [0, 13]) can re-
liably interact with robots and perform mutual adaptation
to robot motions. This category allows a robot to achieve a
higher level of optimization since the behavior of the human
is predictable to some extent (minimum uncertainty).

This knowledge with the discussed classes of tasks and
humans is used within the task planning model to contex-
tualize the interacting tasks of the robot. The task planner
would thus provide the motion planner with contextual in-
formation useful to dynamically adapt the planning of mo-
tion trajectories.

Motion-level Knowledge
The framework CoHAN generates flexible motion trajecto-
ries by taking into account observed intentions of humans
and supporting perspective-taking (Singamaneni, Favier,
and Alami 2021; 2022). CoHAN exposes a number of nav-
igation parameters that can be used by a task planner to

4https://icd.who.int/dev11/l-icf/en
5ICF scores are defined within a 5-point Likert scale: (i) 0

means no impairment; (ii) 1 means soft impairment; (iii) 2 means
medium impairment; (iv) 3 means serious impairment; (v) 4 means
full impairment.

support a finer tuning of motion trajectories. Table 3 shows
the sets of motion parameters exposed by CoHAN and used
within the proposed TAMP approach to dynamically con-
strain the generation of robot trajectories.

The parameter variables can be grouped into three sets.
The first set characterizes the qualities of robot motions. In
addition to variables limiting the speed and acceleration of
the robot, the variable plan specifies the “look ahead” of the
motion planner, determining the “length” of the trajectories.
The variable band specifies the level of collaboration of the
robot in solving motion conflicts with humans (e.g., dead-
locks in narrow passages). The second set characterizes the
qualities of human motions. In addition to variables estimat-
ing the velocity and acceleration of the human, the variable
radius specifies the volume around the human body thus de-
termining the proxemics constraints for the motions of the
robot. The variable field of vision estimates the breadth of the
field of vision of the human, determining whether the robot
is visible or not to the human. The third set characterizes the
social qualities of robot motions. The variable safety speci-
fies the level of safe distance the robot must maintain while
moving. The variable visibility determines the way the robot
should enter the field of vision of the human from behind.
The variable hidden human allows the robot to be cautious
about occluded regions from where the human might emerge
(Singamaneni, Favier, and Alami 2022). All these variables
are meant to realize behaviors that are acceptable to humans.

Combining Perspectives
To dynamically set the values of the motion parameters ac-
cording to the expected interaction context, it is necessary
to combine the domain-level knowledge of the task planner
with the geometry-level knowledge of the motion planner.
Depending on the classification of the task and the involved
human, the task planner would determine patterns of motion
parameter values.

For example, social-critical tasks requiring the interaction
between a robot and a fragile user would entail a prudent
navigation behavior of the robot. In such a case, the task
planner would dispatch navigation requests by setting the
variable Radius to “big” (i.e., avoid the robot moving too
close to the human); the variable Planning horizon to “max”
(i.e., plan long trajectories in order to be more adaptive when
approaching the human); the variable Field of vision to “nar-
row” (i.e., assume the user would see the robot only when in
front of him/her); the variable Hidden humans to “max” (i.e.,
let the robot be very prudent when entering rooms or turning



Table 2: Variables characterizing human-level knowledge of a task.

ICF Area ICF variable Value Range Description

Mental Functioning

Attention [0, 4] Specific mental functions of focusing on an external stimulus or internal experience for the required period of
time.

Memory [0, 4] Specific mental functions of registering and storing information and retrieving it as needed.
Orientation [0, 4] General mental functions of knowing and ascertaining one’s relation to time to place, to self, to others, to

objects, and to space.
Perception [0, 4] Specific mental functions of recognizing and interpreting sensory stimuli.

Sensory
Hearing [0, 4] Sensory functions relating to sensing the presence of sounds and discriminating the location, pitch, loudness,

and quality of sounds.
Seeing [0, 4] Sensory functions relating to sensing the presence of light and sensing the form, size, shape, and color of the

visual stimuli.
Vision [0, 4] Mental functions involved in discriminating shape, size, color, and other ocular stimuli.

Mobility

Body Position [0, 4] Staying in the same body position as required, such as remaining seated or remaining standing for carrying
out a task, in play, work, or school.

Movement Control [0, 4] Functions associated with control over and coordination of voluntary movements.
Muscle Tone [0, 4] Functions related to the tension present in the resting muscles and the resistance offered when trying to move

the muscles passively.
Walking [0, 4] Moving along a surface on foot, step by step, so that one foot is always on the ground, such as when strolling,

sauntering, walking forwards, backward, or sideways.

Table 3: Motion variables exposed by CoHAN.

Type Parameter Value Set Description

Robot

Velocity {min, nominal, max} Set the velocity limits of the implemented motions of the robot.
Angular velocity {min, nominal, max} Set the angular velocity of the implemented motions of the robot.

Acceleration {min, nominal, max} Limit the maximum acceleration of the motions of the robot.
Planning horizon {min, normal, max} Set the “look ahead” of the planned motion trajectories of the robot.

Band tightness {loose, medium, tight} Set the collaborative level of the implemented behavior of the robot.

Human

Radius {small, medium, big} Estimate the volume of the human determining the proxemics constraints for the motion of the robots.
Velocity {min, nominal, max} Estimate the speed of observed human motions over a certain cartesian direction.

Angular velocity {min, nominal, max} Estimate the angular speed of observed human motions.
Field of vision {narrow, normal, wide} Estimate the breadth of the field of vision of a human and thus the “eye contact” with the robot.
Band tightness {loose, medium, tight} Estimate the possibility of a human changing his/her path.

Social

Safety {none, min, nom, max} This variable specifies the level of safety a robot must support while moving.
Relative velocity {none, min, nom, max} This variable reduces the velocity of a robot as its distance from humans decreases and allows the robot to

quickly change the path (moves to one side).
Visibility {none, min, nom, max} This variable allows a robot to avoid entering the human’s field of view very closely from behind.

Hidden humans {none, min, nom, max} This variable makes the robot cautious about the occluded regions from where a human might emerge.

corners in corridors); etc.
Table 4 maps the three classes of tasks to the motion vari-

ables characterizing the navigation skills of the robot and
Table 5 maps the three classes of humans to the motion vari-
ables characterizing the behavioral model of the human. Fi-
nally, Table 6 maps combinations of task/human classes to
the social-related motion variables.
Table 4: Mapping Task classes to Robot-related motion parameters.

Task
Class

Velocity Angular
Velocity

Acceleration Planning
Horizon

Band
Tightness

Technical max max max min tight
Interaction nominal nominal nominal nominal medium
Social min min min max loose

Experimental Evaluation
To assess the proposed TAMP approach we consider an in-
hospital scenario where a socially interacting robot is de-
ployed to support patients and healthcare personnel. The do-
main entails a variety of social situations e.g., approaching

Table 5: Mapping Human classes to Human-related motion param-
eters.

Human
Class

Radius Velocity Angular
Velocity

Field of
Vision

Band
Tightness

Fragile big min min narrow tight
Average medium nominal nominal nominal medium
Reliable small max max wide loose

fragile users, navigating inside crowded corridors, or enter-
ing rooms populated by users whose view is occluded to
the robot. In this context, the robot should perform differ-
ent types of tasks (e.g., drug delivery, patient monitoring,
technical support to healthcare professionals) and interact
with different categories of humans (e.g., fragile patients and
more reliable healthcare professionals) within different en-
vironments (e.g., rooms, corridors).

The integrated approach has been tested in simulation us-
ing stage ros package6. Fig. 2 shows the part of the hospital
map used for all the scenarios with humans’ (circles) and

6http://wiki.ros.org/stage_ros



Table 6: Mapping combinations of human and task classes to
Social-related motion parameters.

Classes Safety Relative
Velocity

Visibility Hidden
Humans

Technical+Fragile max nominal min nominal
Technical+Average min min nominal nominal
Technical+Reliable min min min min
Interaction+Fragile max nominal nominal max
Interaction+Average nominal nominal nominal nominal
Interaction+Reliable min min nominal nominal
Social+Fragile max max max max
Social+Average nominal nominal max max
Social+Reliable min nominal nominal nominal

Figure 2: Hospital scenario simulated in stage ros

the robot’s (square) positions. There are a total of six hu-
mans in the setting with three humans representing patients
in three different rooms, one pharmacist, and two others act-
ing as pedestrians in a corridor. The humans in red circles
are the patients, the ones in blue are the pedestrians and the
human in green is the pharmacist. In this environment, we
have designed and tested three scenarios: (i) A drug delivery
scenario requires the robot to reach the pharmacy to pick up
some drugs and deliver them to a particular patient located in
a known room; (ii) A patrolling scenario requires the robot
to move inside the different rooms of the floor to monitor
the general health conditions of patients; (iii) An emergency
scenario requires the robot to quickly reach the room host-
ing the patient asking for help.

The central aspect is the need for dynamically adapting
motion behaviors according to the social situations charac-
terizing the execution of each task (e.g., navigating the cor-
ridor, entering a room with patients, approaching patients
or healthcare professionals). In particular, it is necessary to
adapt motion behaviors within the execution of the same
domain-level task.

Task Planning Model
The task planning model of the scenarios has been defined
following the timeline-based formalism (Cialdea Mayer, Or-
landini, and Umbrico 2016) 7. Broadly speaking, the model

7Due to space limitations it was not possible to add an
overview of the planning formalism. We invite readers to refer to

consists of a number of state variables characterizing tem-
poral behaviors of domain features, and a number of syn-
chronization rules specifying global constraints coordinat-
ing the temporal evolution of single state variables. While
state variables specify local constraints characterizing the
correct dynamics of the modeled domain features, synchro-
nization rules specify global constraints coordinating state
variables to achieve complex goals (e.g., perform a high-
level domain task).

We have defined four state variables whose values are
predicates asserting states or activities the associated fea-
tures may respectively assume or execute over time. The
state variable RobotBase models the end-effector allowing
the robot to (autonomously) navigate the environment. The
value At(?l) specifies the robot is still in a specific loca-
tion (i.e., the parameter location of the predicate). The value
MoveTo(?l, ?t, ?u) models the generic action of moving the
robot towards a particular goal location (?l). The other pa-
rameters of the predicate contextualize the motion with re-
spect to the class of task (?t) the robot is supposed to perform
and the class of human (?u) the robot is expected to interact
with.

The state variable RobotMotionController contextualizes
navigation skills with respect to the structure of the en-
vironment. The values Still(?l) and NavigateTo(?l, ?t, ?u)
characterize the motion of the robot outside the rooms. The
other values e.g., Enter(?l, ?t, ?u), Inside(?l), Approach(?l,
?t, ?u), etc. characterize the motion of the robot inside the
rooms. The state variable RobotSkill describes the interact-
ing skills of the robot. The values represent complex actions
(e.g., PickDrug(?l1, ?l2, ?l3), DeliverDrug(?l1, ?l2, ?l3))
the robot can perform through its end-effectors. The state
variable RobotService describes the high-level tasks a robot
should perform within the domain. Each value represents a
planning goal and is associated with a particular scenario
(i.e., DeliverDrug(?l1, ?l2, ?l3), Patrolling(?l1, ?l2, ?l3),
and Emergency(?l1, ?l2, ?l3)).

State variables have a simple structure with a single value
as a stable state (e.g., the values Idle(), Still(?l) and At(?l))
and other values as actions with bounded duration (e.g., De-
liverDrug(?l1, ?l2, ?l3), PickDrug(?l1, ?l2, ?l3), HelpPa-
tient(?l1, ?l2, ?l3)). Value transitions thus go from a sta-
ble state value (e.g., Idle()) to action values (e.g., Deliver-
Drug(?l1, ?l2, ?l3)) and vice versa. The state variable Robot-
MotionController has a more complex structure depicted in
Fig. 3. It distinguishes between the robot moving outside
rooms (i.e., NavigateTo(?l, ?t, ?u)) and inside rooms (e.g.,
Enter(?l, ?t, ?u), Approach(?l, ?t, ?u)) supporting a finer
tuning of the motion parameters.

Synchronization rules then organize state variables in a
hierarchical fashion and specify the decomposition of high-
level tasks (i.e., values belonging to more abstract state vari-
ables) into incrementally simpler tasks (i.e., values belong-
ing to lower-level state variables). For example, the high-
level task DeliverDrug(?l1, ?l2, ?l3) is first decomposed
into values of the state variable RobotSkill denoting com-

(Cialdea Mayer, Orlandini, and Umbrico 2016) for an exhaustive
description of the timeline-based formalism.



Figure 3: State variable RobotMotionController.

plex actions necessary to accomplish the task correctly (e.g.,
PickDrug(?l1, ?l2, ?l3)). Each complex action is then fur-
ther decomposed into a number of contextualized naviga-
tion skills (e.g., NavigateTo(?l, ?t, ?u)). Rules may spec-
ify temporal relations constraining the correct execution of
the sub-tasks. For example, within the high-level task De-
liverDrug(?l1, ?l2, ?l3) of the RobotService state variable,
the BEFORE temporal relation (Allen 1983) specifies the
correct sequencing of the complex actions PickDrug(?l1,
?l2, ?l3), DeliverDrug(?l1, ?l2, ?l3) and GoHome() of the
RobotSkill state variable. Each navigation skill is then fur-
ther decomposed into the primitive motion actions (i.e., in-
stances of MoveTo(?l, ?t, ?u)) that are dispatched to the mo-
tion planner for execution.

ROS-based Implementation and Integration
The integrated task and motion planning approach depicted
in Fig. 1 has been implemented in ROS Melodic using: (i)
PLATINUm (Umbrico et al. 2017) as a timeline-based task
planning engine; (ii) ROXANNE as ROS-compliant execu-
tive for timeline-based plans, and; (iii) CoHAN (Singama-
neni, Favier, and Alami 2021) as a motion planner imple-
menting the navigation skills of the robot.

ROXANNE is a ROS package supporting the develop-
ment of goal-oriented plan-based controllers. It encapsulates
PLATINUm as a timeline-based planning engine and pro-
vides a ROS-compliant executive. Interactions with ROX-
ANNE and the underlying task planning system are realized
through a set of topics exchanging custom ROS messages:
(i) receiving planning requests (i.e., ActingGoal); (ii) dis-
patching plan tokens as execution requests for a robot (i.e.,
TokenExecution), and; (iii) receiving related execution feed-
back (i.e., TokenExecutionFeedback).

The actual set of topics used by ROXANNE can be set
through a dedicated configuration file. In this case, we con-
figure ROXANNE with a single goal topic and a single pair
of dispatching and feedback topics for the execution of nav-
igation skills. The dispatching topic allows PLATINUm to
send CoHAN contextualized motion execution requests. The
content of a dispatched message (TokenExecution) is a token
composing the timeline of RobotBaseType, instantiating the

value MoveTo(?l, ?t, ?u). The feedback topic allows PLAT-
INUm to receive information from CoHAN about the actual
execution of dispatched commands. The content of a feed-
back message (i.e., TokenExecutionFeedback) consists of a
code denoting the result of the execution where a value of
0 means successful execution and values > 0 are used to
denote different types of failures.

The control flow of the robot is initiated by the task plan-
ner when receiving a planning request through the goal topic
of ROXANNE. A goal request instantiates one of the values
of the state variable RobotService (e.g., the value Deliver-
Drug(?l1, ?l2, ?l3)) thus representing a high-level planning
task to perform. The task planner synthesizes a set of valid
timelines for each of the state variables of the model, follow-
ing the decomposition encoded by the synchronization rules.
The obtained timeline-based plan is then executed through
ROXANNE.

Given a planned instance of the value MoveTo(?l, ?t, ?u)
(i.e., a token of the timeline of the state variable Robot-
Base), ROXANNE encapsulates related information into a
TokenExecution message and sends it through the dispatch-
ing topic. A simple ROS package is developed that receives
this request and dynamically maps the parameters accord-
ing to the values of ?task and ?user, following the mappings
in Tables 4, 5, and 6. It then updates the motion parame-
ters of CoHAN before calling the motion planning service.
When the motion execution is complete, CoHAN sends a To-
kenExecutionFeedback to ROXANNE notifying the result.
For each dispatched request, ROXANNE waits for feedback
before executing the next tokens of the timeline.

Results and Discussion
The variety of social situations occurring in the designed
assistive domain is well-suited to assess the contextual and
human-aware navigation capabilities of the proposed TAMP
approach. To this aim, the evaluation analyzes and compares
the results of two configurations: (i) cohan showing the be-
havior without the use of contextual information from the
task planner; (iii) cohan+platinum showing the behavior of
the proposed TAMP approach. We now proceed to the de-
scription of the parameters in each scenario and analyze the
results.

Patrolling Scenario The goal in this scenario is to navi-
gate to each room with a patient and monitor them taking
into consideration their fragile state. The list of parameters
for this scenario is shown in Table 7. The robot goes to each

Navigate corridor Task: Technical, Human: Average
Enter patient’s room Task: Social, Human: Average

Monitor patient Task: Social, Human: Fragile
Leave room Task: Social, Human: Average

Table 7: Parameters for patrolling and monitoring

room to monitor the patient and the complete task consists
of a total of 13 navigational phases (or steps). The veloc-
ity profiles of the robot and the time taken in each naviga-
tion phase are presented in Fig. 4. The top part of the fig-
ure shows the run in cohan configuration, while the one at
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Figure 4: Velocity profiles and times for each navigation phase in the patrolling scenario. Top: cohan, Bottom: cohan+platinum.

the bottom shows the run in cohan+platinum configuration.
The green line represents the start and the blue dashed line
represents the end of each navigation phase. The subsequent
figures follow the same conventions.

P1, P5, P9, and P13 are phases of navigating the corri-
dor, and the ones in between consist of entering, monitoring,
and leaving each room. From the top part of Fig. 4 showing
the cohan setting, it can be seen that the robot moves with
a maximum velocity of around 0.7m/s. However, this may
not be ideal for monitoring patients who can have limited re-
active capabilities. Hence, the robot should be more careful
(and slower) around the patients which can be achieved by
updating the parameters (cohan+platinum) as shown in the
bottom part of Fig. 4. Since the corridor navigation phases
are simply technical, the robot could move with a larger ve-
locity and use minimal human-aware capabilities for navi-
gation. It makes the robot pass through these phases faster
(comparing the times) when compared to the cohan setting.
It might also affect the robot’s trajectory as shown in Fig. 5.
The color of the trajectory changes from blue at the start
to red towards the end. Having toned down human-aware
capabilities makes the robot react to the human only when
required (Fig. 5 (b)) instead of adapting its trajectory early
as in the case of Fig. 5 (a).

Figure 5: Trajectories in Phase 9

The total time taken for the robot to complete the task
with dynamic parameter adaptation is 184.64 s and with con-
stant parameters, it is 141.94 s. Even though there is an
overhead of 42.7 s, the integrated approach moves the robot
more safely around the fragile humans in the environment.
Moreover, in a human-aware planning setting, the fastest ap-
proach may not be the ideal approach. From Fig. 4, it can be
seen that there is a small time gap between the end of one
phase and the start of another. This timing gap is attributed
to the communication delay associated with the task planner
and the motion planner, and the time to update the param-
eters of CoHAN. Considering only the times of the navi-
gation phases, the total execution times for cohan and co-
han+platinum settings are 128.20 s and 154.16 s. This gives
us an overhead time of 2.34 s per phase in the dynamic set-
ting and 1.06 s per phase in the constant setting. Although
these overhead times are not large for real-world applica-
tions, we plan to reduce them in the future version of TAMP.

Emergency Scenario In this scenario, the robot has to
rush to the patient in a room to assist in an emergency. For
the setting, the list of parameters is updated as shown in Ta-
ble. 8. Unlike the previous scenario, the robot moves at a

Navigate corridor Task: Technical, Human: Reliable
Enter patient’s room Task: Technical, Human: Average

Monitor patient Task: Technical, Human: Fragile
Leave room Task: Interaction, Human: Fragile

Table 8: Parameters for an emergency

larger speed to rush to the patient in the cohan+platinum
setting compared to the cohan setting. From Fig. 6, it can be
seen that each phase in the cohan+platinum configuration is
executed in less or almost the same time as the cohan set-
ting. The total time for cohan+platinum setting is 70.80 s
with an overhead time of 2.24 s and it is 81.88 s with an
overhead time of 0.92 s in the cohan setting. This clearly
shows that the integrated approach takes lesser time to reach
the patient in an emergency even with a larger overhead.
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Figure 6: Velocity profiles and times for each navigation phase in
the emergency scenario. Top: cohan, Bottom: cohan+platinum

Moreover, the execution time for the cohan setting is 77.30 s
which is larger than the overall planning time of the inte-
grated approach, whereas, in the cohan+platinum setting, it
is only 59.60 s. The benefit of the proposed TAMP approach
is apparent from this scenario.

Drug Delivery Scenario The scenario simulates a robot
that has to take the prescribed drugs from the pharmacy and
deliver them to a patient in a room. The complete set of pa-
rameters for this scenario is listed below in Table. 9.

Navigate corridor Task: Technical, Human: Average
Enter pharmacy Task: Interaction, Human: Average

Approach pharmacist Task: Interaction, Human: Reliable
Leave pharmacy Task: Interaction, Human: Average

Enter patient’s room Task: Social, Human: Average
Deliver drugs Task: Interaction, Human: Fragile
Leave room Task: Social, Human: Average

Table 9: Parameters for drug delivery

Fig. 7 shows the velocity profiles and the times for each
phase. The corridor navigation phases in this scenario are
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Figure 7: Velocity profiles and times for each navigation phase in
the drug delivery scenario. Top: cohan, Bottom: cohan+platinum.

P1, P5 and P9, where it can be seen that the robot with
dynamic parameter adaptation takes lesser time to traverse.
Phases P2 to P4 are the interaction phases of the robot with
the pharmacist who might have already interacted with the
robot and could act reliably compared to other humans in
the environment. Therefore, the robot could use nominal
human-aware parameters during these phases. Compared to
the patrolling scenario, instead of monitoring the human, the
robot has to interact with the patient in P7. Hence, the robot

adapts a nominal velocity to be more responsive while inter-
acting in the cohan+platinum setting.

The cohan setting takes 114.46 s to complete the task
while the cohan+platinum setting takes 124.46 s. However,
the execution time for the cohan+platinum setting is lesser
(103.26 s) than the cohan setting (105.1 s). Hence, the robot
effectively spends lesser time in navigation and delivery
while using cohan+platinum configuration. Although this
initial integration has an overhead time of 2.35 s per phase
in the cohan+platinum setting, it could be reduced system-
atically.

Final Remarks and Future Works
We presented a novel integrated Task and Motion Planning
approach to enhance the awareness of the social naviga-
tion skills of robots. We discussed task-related and human-
related knowledge leveraged by a task planner to dynam-
ically reconfigure the parameters of a motion planner and
adapt the planning of trajectories to different (social) situ-
ations. We evaluated and tested the proposed approach in a
simulated assistive domain, designing three different scenar-
ios that required the robot to interact with different types of
humans and perform various types of tasks. When compared
to a situation in which the robot uses the motion planner
alone, results show that the integrated approach effectively
allows the robot to dynamically adapt the velocity and mo-
tion behaviors to perform better in varying social situations.

Future works will focus on improving the efficiency of the
approach by reducing the overhead detected during the ex-
periments. On a longer time horizon, we plan to investigate
the integration also of augmented perception capabilities to
enrich the contextual knowledge provided online by the task
planner. Namely, perception capabilities would enrich dis-
patched motions by providing information about detected
social situations (e.g., detecting a fragile human instead of
a reliable human expected at planning time).
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