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Abstract

Diffusion models, a specific type of generative model, have achieved unprece-
dented performance in recent years and consistently produce high-quality synthetic
samples. A critical prerequisite for their notable success lies in the presence of
a substantial number of training samples, which can be impractical in real-world
applications due to high collection costs or associated risks. Consequently, various
finetuning and regularization approaches have been proposed to transfer knowledge
from existing pre-trained models to specific target domains with limited data. This
paper introduces the Transfer Guided Diffusion Process (TGDP), a novel approach
distinct from conventional finetuning and regularization methods. We prove that
the optimal diffusion model for the target domain integrates pre-trained diffusion
models on the source domain with additional guidance from a domain classifier.
We further extend TGDP to a conditional version for modeling the joint distribution
of data and its corresponding labels, together with two additional regularization
terms to enhance the model performance. We validate the effectiveness of TGDP
on both simulated and real-world datasets.

1 Introduction

Diffusion models have achieved remarkable success in modeling data distributions and generating
various types of synthetic data, such as images [13, 36, 17], videos [14], vision language [32, 33, 30],
and time series [39]. However, their success heavily relies on the availability of a large number
of training samples. In real-world applications, acquiring ample samples for specific tasks can be
challenging due to the high costs associated with data collection or labeling, or the potential risks
involved. Therefore, an important research question is how to effectively transfer knowledge from a
pre-trained generative model in the source domain (using existing large-scale datasets) to a target
domain (for specific tasks) where data is limited.

Training a generative model directly or finetuning a pre-trained generative model on limited data
from the target domain often results in significant performance degradation due to overfitting and
memorization. To address these issues, numerous studies have proposed methods in generative domain
adaptation, including the GAN-based models [46, 45, 49, 1, 51, 28, 48, 9, 15, 43, 22, 50], diffusion-
based model [25, 52, 44], etc. Specifically, approaches using diffusion models can be divided into
two categories: finetuning lightweight adapters [25, 44] and finetuning with regularization [52].
Approaches involving finetuning lightweight adapters focus on adjusting only a subset of parameters
in a pre-trained model. The primary challenge here is identifying which parameters to finetune.
This process is typically heuristic and requires preliminary experiments to identify the most efficient
parameters for adjustment. Additionally, the specific parameters to be finetuned can vary across
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different neural network architectures. On the other hand, the challenge in incorporating regularization
during the finetuning process is the heuristic design of the regularization term, which can significantly
alter the optimization landscape. We refer to Appendix A for a more detailed discussion of existing
literature.

In this work, we introduce a new approach, termed Transfer Guided Diffusion Process (TGDP), to
transfer knowledge in the source domain generative model to the target domain with limited samples.
Unlike finetuning-based methods that primarily use the pre-trained model as an initialization point,
TGDP leverages the pre-trained model as a plug-and-play prior. We show that the score function for
the diffusion model on the target domain is the score function on the source domain (which can be pre-
trained) with additional guidance as shown by Theorem 3.1 and Theorem 3.3. The guidance network
is related to the density ratio of the target and source domain data distributions. Consequently, we
convert the original optimization problem for a diffusion model on the target domain into estimating
the density ratio.

We utilize a domain classifier (binary classifier) along with samples from both domains to efficiently
estimate the density ratio. Furthermore, we introduce two additional regularization terms for better
training and calibration of the guidance network. These regularization terms are equivalent forms
that the optimal guidance network should satisfy, ensuring they do not alter the original optimization
problem. We validate the effectiveness of our approach through experiments on Gaussian mixture
simulations and real electrocardiogram (ECG) data. Under both fidelity and utility evaluation criteria,
TGDP consistently outperforms finetuning-based methods.

Our contributions can be summarized as follows.

• We introduce a new framework, the Transfer Guided Diffusion Process (TGDP), for transferring
a pre-trained diffusion model from the source domain to the target domain.

• We extend TGDP to a conditional version for modeling the joint distribution of data and its
corresponding labels, along with two additional regularization terms, which are important for
practical applications and downstream tasks.

• TGDP demonstrates superior performance over finetuning-based methods on Gaussian mixture
simulations and on benchmark electrocardiogram (ECG) data.

The rest of the paper is organized as follows. Section 2 reviews the setup of generative domain
adaptation and the diffusion model. Section 3 introduces the proposed method and theoretically
characterizes its effectiveness. Numerical results are given in Section 4. We conclude the paper in
Section 5. All proofs and additional numerical experiments are deferred to the Appendix.

2 Problem Formulation and Preliminaries

2.1 Transfer Learning Problem Setup

Let X denote the data space and Y the label space. A domain corresponds to a joint distribution
over X and Y , denoted as pXY for the source domain and qXY for the target domain. The marginal
distribution of data in the source and target domains are pX and qX , respectively. Suppose we have
access to m (labeled) samples from the source domain S = {(xi, yi)}mi=1 ∼ pXY and n (labeled)
samples from the target domain T = {(x′

i, y
′
i)}

n
i=1 ∼ qXY . Typically, the source domain contains

significantly more samples than the target domain, i.e., n ≪ m. This setup reflects the common
scenario where there is limited data available for specific tasks in the target domain, while abundant
data is readily accessible and stored in the source domain.

The problem of interest is as follows. Given a pre-trained generative model pθ for the data distribution
pX in the source domain, and a relatively small number of samples from the target domain, generative
domain adaptation approaches aim to obtain a generative model that can generate synthetic samples
following the target data distribution qX . We will focus on diffusion generative models, given their
great success in synthetic data generation. We first present the key idea of a carefully designed
guidance network for the generation of x values only. Then, we extend the method to facilitate
conditional generations so that we can generate paired samples with labels, (x, y), and can incorporate
downstream classification tasks on the target domain.
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2.2 Preliminaries of Diffusion Model

Diffusion models are characterized by their forward and backward processes. For illustrative purposes,
we discuss the diffusion model trained on the source domain. The forward process involves perturbing
the data distribution pX(x) by injecting Gaussian noise, as described by the following continuous-time
equation [36]:

dxt = f(xt, t)dt+ g(t)dw, t ∈ [0, T ], (1)

where w is the standard Brownian motion, f(·, t) : Rd → Rd is a drift coefficient, and g(·) : R → R
is a diffusion coefficient. The marginal distribution of xt at time t is denoted as pt(xt), and p0 is
the distribution of the initial value x0, which equals the true data distribution pX(x). For notational
simplicity and provided it does not cause further confusion, we will refer to this diffusion process as p
in the following, and we define p(xt|xs), ∀s, t, as the conditional distribution of xt given the value xs.
Similarly, for initial value x following the target domain distribution, we denote the corresponding
probability measure induced by the above diffusion process (1) as q.

Then, we can reverse the forward process (1) for generation, defined as:

dxt =
[
f(xt, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw, (2)

where w is a standard Brownian motion when time flows backwards from T to 0, and dt is an
infinitesimal negative time step. The key of the backward process is to estimate the score function of
each marginal distribution, ∇x log pt(x), then the generation can be performed by discretizations
of (2) [13, 36]. Score Matching [16, 40, 35] are proposed to train a neural network sϕ(xt, t)
(parameterized by ϕ) to estimate the score:

ϕ∗ = argmin
ϕ

Et

{
λ(t)Ept(xt)

[
∥sϕ(xt, t)−∇xt log pt(xt)∥22

]}
, (3)

where λ(t) : [0, T ] → R>0 is a positive weighting function, t is uniformly sampled over [0, T ]. One
commonly adopted forward process is choosing an affine f(x, t) = − 1

2β(t)x and g(t) =
√

β(t),
which yields the Gaussian transition distribution p(xt|xs) = N (xt;

√
1− β(t)xs, β(t)I), t > s,

with β(t) : [0, T ] → (0, 1) as a variance schedule. This is the Variance Preserving Stochastic
Differential Equation (VP SDE) that we use in the numerical Section 4.

Several works on image generation [4, 5] and inverse problem [7] extends Score Matching to
Conditional Score Matching, i.e.,

ϕ∗ = argmin
ϕ

Et

{
λ(t)Ept(xt,y)

[
∥sϕ(xt, y, t)−∇xt

log pt(xt|y)∥22
]}

, (4)

where pt(xt|y) is the conditional distribution of perturbed data xt given corresponding label y.

3 Transfer Guided Diffusion Process

In this section, we introduce the proposed Transfer Guided Diffusion Process (TGDP) that leverages
a pre-trained diffusion model – trained on the source domain data – to generate data in the target
domain. The proposed approach is orthogonal to and different from the existing fine-tuning type
methods. We introduce the additional guidance in Section 3.1. The methods for calculating the
guidance are provided in Section 3.2. We extend our framework to the conditional diffusion model in
Section 3.3 and we propose two regularization terms for enhancing the performance of our method in
Section 3.4. All proofs are deferred to Appendix C.

3.1 Methodology Formulation

This subsection outlines the process of transferring knowledge from a diffusion generative model pre-
trained using the source domain data S for generating samples that match the underlying distribution
of target domain sample T . The simplest non-transfer type approach involves directly training a
diffusion model on samples T from the target domain by denoising Score Matching as described by
Eq (3) or Eq (4). However, since we assume only a limited amount of data is accessible on the target
domain, directly learning from the target domain is unlikely to yield an effective generative model.
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Several studies propose to finetune the pre-trained diffusion model to alleviate the challenges caused
by limited data and make use of acquired knowledge [25, 42, 53]. These methods typically design
different strategies, such as adapters, to avoid finetuning all weights in a pre-trained model. However,
these approaches generally use the pre-trained diffusion model from the source domain only as initial
weights. Our method offers a different way for better utilization of the acquired knowledge.

Our proposed method is inspired by the key observation detailed in the following Theorem 3.1.
Intuitively, the score function ∇xt log qt(xt) for the target domain differs from the score function
∇xt log pt(xt) of the source domain by a term related to the density ratio function qX/pX . We refer
to this differing term as a guidance term in the following Theorem.
Theorem 3.1. Consider two diffusion models on the source and target domain, denoted as p and q,
respectively. Let the forward process on the target domain be identical to that on the source domain,
q(xt|x0) = p(xt|x0), and sϕ∗(xt, t) is the score estimator in the target domain:

ϕ∗ = argmin
ϕ

Et

{
λ(t)Eqt(xt)

[
∥sϕ(xt, t)−∇xt log qt(xt)∥22

]}
, (5)

then we have

sϕ∗(xt, t) = ∇xt
log pt(xt)︸ ︷︷ ︸

pre-trained model
on source

+∇xt
logEp(x0|xt)

[
q(x0)

p(x0)

]
︸ ︷︷ ︸

guidance

. (6)

Based on Eq (6), instead of solving sϕ∗ from the limited training samples on the target domain,
we construct sϕ∗ by combing the pre-training score estimator and the guidance based on a binary
classifier of source and target domain samples (detailed in Section 3.2). We comment on some
potential advantages of this simple yet effective idea. First of all, we do not need to fine-tune the
pre-trained diffusion model on the source domain, with the corresponding computation shifted to
training the guidance network which is essentially a classifier. Second, the guidance network can
be effectively estimated by a domain classifier using data from both the source and target domains.
There is also great flexibility in constructing this guidance network due to the extensive literature on
classification problems and density ratio estimation approaches. Additionally, the sample complexity
for training a generative model could be much larger than a discriminative model, since the generative
model needs to recover the full spectrum of target data distribution, while a domain classifier only
needs to distinguish whether the sample is from the source or target distribution.

3.2 Learning Guidance Network

We calculate the guidance for the diffusion model on the target domain as defined in the second term
of Eq (6) via two steps. In the first step, we estimate the density ratio q(x0)/p(x0) by training a
classifier cω(x) : X → [0, 1] to distinguish samples from the source and target domains. We adopt
the typical logistic loss as follows:

ω∗ = argmin
ω

− 1

m

∑
xi∼p

log cω(xi)−
1

n

∑
x′
i∼q

log(1− cω(x
′
i))

 . (7)

Then, the density ratio q(x0)/p(x0) can be estimated as (1− cω∗(x0))/cω∗(x0), and it can be shown
that the optimal solution to the population counterpart of Eq (7) is exactly the true likelihood ratio
[38]. It is worthwhile mentioning that we may only use a subset of source domain samples to learn the
classifier cω to alleviate the unbalanced sample sizes, and we could also adopt modern density ratio
estimators to improve the accuracy [31]. After learning the density ratio q(x0)/p(x0), the second
step is to calculate the expectation Ep(x0|xt)[q(x0)/p(x0)] using Monte Carlo simulation. Since it is
hard to sample from q(x0|xt), we use the following equivalent formulation to get the value instead.
This trick has also been used in previous work such as the Appendix H in [23].
Lemma 3.2. For a neural network hψ (xt, t) parameterized by ψ, define the objective

Lguidance(ψ) := Ep(x0,xt)

[∥∥∥∥hψ (xt, t)−
q(x0)

p(x0)

∥∥∥∥2
2

]
, (8)

then its minimizer ψ∗ = argmin
ψ

Lguidance(ψ) satisfies:

hψ∗ (xt, t) = Ep(x0|xt) [q(x0)/p(x0)] .
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By Lemma 3.2, we estimate the value Ep(x0|xt) [q(x0)/p(x0)] using the guidance network hψ∗ solved
by minimizing the objective function Lguidance(ψ), which can be approximated by easy sampling
from the joint distribution p(x0,xt). Combine the above steps together, the estimated score function
for the diffusion generative model on target domain qX can be calculated as follows:

sϕ∗(xt, t) = ∇xt log p(xt)︸ ︷︷ ︸
pre-trained model

on source

+∇xt
log hψ∗ (xt, t)︸ ︷︷ ︸

guidance network

. (9)

3.3 Extension to the Conditional Version

The approach outlined above is for generating the sample x in the target domain. In this section, we
extend the idea to the conditional generation task. Such extension is essential when the label sets in
the source and target domain are different since, in such cases, we usually rely on the conditional
diffusion model for sampling [18, 21]. We first present the following theorem, which is an analog to
Theorem 3.1 within the context of conditional score matching.
Theorem 3.3. Assume xt and y are conditional independent given x0 in the forward process, i.e.,
p(xt|x0, y) = p(xt|x0), ∀t ∈ [0, T ], and let the forward process on the target domain be identical to
that on the source domain q(xt|x0) = p(xt|x0), and ϕ∗ is the optimal solution for the conditional
diffusion model trained on target domain q(x0, y), i.e.,

ϕ∗ = argmin
ϕ

Et

{
λ(t)Eqt(xt,y)

[
∥sϕ(xt, y, t)−∇xt

log qt(xt|y)∥22
]}

, (10)

then

sϕ∗(xt, y, t) = ∇xt log pt(xt|y)︸ ︷︷ ︸
pre-trained conditional model

on source

+∇xt logEp(x0|xt,y)

[
q(x0, y)

p(x0, y)

]
︸ ︷︷ ︸

conditional guidance

.
(11)

The key difference is we need to estimate the joint density ratio between the source and target
domain. We can extend the density ratio estimator in Section 3.2 for estimating joint density ratio,
i.e., also feed the label y into the classifier cω(x, y). The corresponding Lemma and its proof for
the conditional version of Lemma 3.2 can be found in Appendix C.3. We further provide a detailed
discussion about how to extend this conditional guidance to text-to-image generation tasks and when
the source and target domain contain different class labels in Appendix B.

3.4 Additional Regularizations in Practical Implementations

In this subsection, we provide two additional regularization terms in our final objective function, to
enhance the performance of the proposed scheme.

Cycle Regularization In the approaches described above, after obtaining the classi-
fier network cω∗ , calculation of the additional guidance ∇xt logEp(x0|xt)[q(x0)/p(x0)](or
∇xt

logEp(x0|xt,y)[q(x0, y)/p(x0, y)] for conditional generation) only utilizes the data from source
domain. In this section, we provide an enhancement in which the limited data from the target domain
can also be utilized to improve the training of the guidance network hψ .

Notice that (with detailed derivation given in Appendix C.5)

Ep(x0|xt)

[
q(x0)

p(x0)

]
= Eq(x0|xt)

[
qt(xt)

pt(xt)

]
, (12)

where recall pt(xt) and qt(xt) are the marginal distribution at time t for source and target distributions,
respectively. A similar idea to Theorem 3.2 implies that we can learn the guidance network by solving
the following optimization problem as well:

ψ∗ = argmin
ψ

Lcycle := Eq(x0,xt)

[∥∥∥∥hψ (xt, t)−
qt(xt)

pt(xt)

∥∥∥∥2
2

]
. (13)

Moreover, in order to estimate the density ratio for marginal distributions at time t between the target
and source data distribution, we train a time-dependent classifier cω(x, t) to distinguish samples from
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source domain pt(x) and target domain qt(x) by the logistic loss as follow:

ω∗ = argmin
ω

− 1

m

∑
x0∼p

∑
xt|x0

log cω(xt, t)−
1

n

∑
x0∼q

∑
xt|x0

log(1− cω(xt, t))

 ,

where m,n are the number of training samples in source and target domains. The density ratio
qt(xt)/pt(xt) can then be calculated by (1− cω∗(xt, t))/(cω∗(xt, t)).

Consistency Regularization Motivated by the fact that an optimal guidance network should recover
the score in the target domain, we further use score matching in the target domain as the Consistency
Regularization Lconsistence to learn the guidance network better.
ψ∗ = argmin

ψ
Lconsistence

:= Et

{
λ(t)Eq(x0)Eq(xt|x0)

[
∥∇xt log p(xt|x0) +∇xt log hψ (xt, t)−∇xt log q(xt|x0)∥22

]}
.

(14)

Combining these two additional regularization terms together with the original guidance loss (19),
the final learning objective for the guidance network can be described as follows:

ψ∗ = argmin
ψ

{Lguidance + η1 Lcycle + η2 Lconsistence}, (15)

where η1, η2 ≥ 0 are hyperparameters that control the strength of additional regularization, which
also enhances the flexibility of our solution scheme. We summarize the Algorithm of TGDP in
Appendix D.1. We provide the ablation studies that demonstrate the effectiveness of these two
regularizations in Appendix D.2 and we also empirically show only adopt Lconsistence to optimize the
guidance network is not good enough because of the limited data from the target distribution.
Remark 3.4 (Discussion about related guidance). Classifier guidance has become a common trick in
recent research [36, 8, 3, 6]. We highlight that, under the transfer learning framework, the guidance
proposed in our work is the optimal guidance since the resulting score function matches the oracle
score on the target domain. On the contrary, vanilla versions of classifier guidance utilizing a domain
classifier cannot generate samples that exactly follow target distribution. Indeed, for a pre-trained
domain classifier cω, vanilla domain classifier guidance formulates the source for generation as
follows:
sϕ∗(xt, t) = ∇xt

log p(xt)−∇xt
Ep(x0|xt) [log(1− cω(x0))]

̸= ∇xt log p(xt) +∇xt logEp(x0|xt)

[
q(x0)

p(x0)

]
(correct form proven in Theorem 3.1)

= ∇xt
log p(xt) +∇xt

logEp(x0|xt)

[
1− cω(x0))

cω(x0)

]
.

4 Experiments

In this section, we present empirical evidence demonstrating the efficacy of the proposed Transfer
Guided Diffusion Process (TGDP) on limited data from a target domain. In Section 4.1, we conduct
proof-of-concept experiments using a Gaussian mixture model to showcase that the guidance network
of TGDP can successfully steer the pre-trained diffusion model toward the target domain. In Section
4.2, we illustrate the effectiveness of TGDP using a real-world electrocardiogram (ECG) dataset.

4.1 Simulation Results

Experimental setup We begin with a Gaussian mixture model where X = Rd and Y = {−1, 1}.
On both domains, the marginal distribution for label y is uniform in Y , and the conditional distribution
of features is x|y ∼ N (yµ, σ2Id), where µ ∈ Rd is non-zero, and Id is the d dimensional identity
covariance matrix. We let µ = µS on the source domain and µ = µT on the target domain,
with (µS)⊤µT = 0. Under such case, the marginal distribution of x on the source domain pX is
a Gaussian mixture, for convenience we denote it as 0.5N (µS, σ

2I) + 0.5N (−µS, σ
2I), and the

marginal feature of target distribution qX is 0.5N (µT, σ
2I)+0.5N (−µT, σ

2I). We let d = 2,µS =
[0.5, 0.5],µT = [0.5,−0.5], σ2 = 0.1, and draw m = 10000 samples from source domain pX , and
n = 10, 100, 1000 samples from target domain qX , respectively.
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Implementation details and Baselines We adopt the default Variance Preserving (VP) SDE in
[36] with a linear schedule, i.e., q(xt|x0) = p(xt|x0) = N

(
xt|αtx0, σ

2
t I

)
with αt and σt being:

αt = −β1 − β0

4
t2 − β0

2
t, σt =

√
1− α2

t ,

with β0 = 0.1, β1 = 20. We adopt 5-layer MLP with hidden sizes of [512, 512, 512, 512, 256] and
SiLU activation function as the diffusion model. We train the diffusion model on data from the source
domain for 100 epochs using the Adam optimizer with a learning rate of 1e−4 and batch size of 4096.
The guidance network is a 4-layer MLP with 512 hidden units and SiLU activation function. We
train the guidance network 20 epochs for our TGDP and train a vanilla diffusion model or finetune
the diffusion model target domain 50 epochs. For generation, we adopt DPM-Solver [24] with a
second-order sampler and a diffusion step of 25. We compare TGDP with the following baseline
methods: 1) Vanilla Diffusion: directly training from target domain; 2) Finetune Diffusion: finetuning
all weights of a pre-trained diffusion model on target distribution 2.

Experimental results We first demonstrate the effectiveness of guidance in Figure 1 under the
above setup. Figure 1 (a) plots the source samples, while Figure 1 (b) shows the target samples under
different sample sizes n = 10, 100, 1000. Figure 1 (c-e) illustrates the generated target samples via
different methods, respectively. It can be seen that the samples generated via the proposed TGDP
approach share similar patterns with the target distribution and two mixture components are more
obvious as compared with other baseline methods. Furthermore, since the true data distribution of the
target domain is known, we calculate the average likelihood of samples generated by each method as
demonstrated in Table 1 for quantitative evaluation and comparison.

(b) Target

(a) Source

(c) Vanilla Diffusion (d) Finetune Diffusion (e) TGDP

n=10

n=100

n=1000

Figure 1: An illustration of the effectiveness of TGDP on simulations with 10/100/1000 target
samples, respectively.

Table 1: Quantitative evaluation of TGDP on simulations. Training on 10K samples from the source
domain and n = 10, 100, 1000 numbers on the target domain, respectively. TGDP achieves the
highest average likelihood under target distribution.

Average likelihood
n=10 n=100 n=1000

Vanilla Diffusion 0.145 0.253 0.328
Finetune 0.290 0.329 0.335
TGDP 0.417 0.627 0.673

2It is worthwhile mentioning that the reason we do not compared with the works that finetune partial weights
in a pre-trained diffusion model [44] is their results are usually worse or comparable with method that finetunes
all weights, the implementation of [25] are not available, and the regularization proposed by [52] is only valid
for image data.
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As a sanity check, we also look at the sensitivity of the learned density ratio estimator (through the
classifier network (7)) regarding different sizes of target samples. As shown in Figure 2, even with
only 10 samples from the target domain (and 10 samples from the source domain for class balance
sampling), we can accurately estimate the landscape of density ratio (although the magnitude of the
estimated ratio is not entirely accurate when the number of target samples equal 10).

(a) Oracle (b) 10 target (c) 100 target (d) 1000 target

Figure 2: An ablation study of the sensitivity of density ratio estimator.

4.2 ECG Data

In this section, we demonstrate the effectiveness of the proposed guidance on the benchmark of
electrocardiogram (ECG) data. We first provide the standard synthetic quality and diversity evaluation
in Section 4.2.1. Then, we utilize downstream classification tasks to further evaluate the effectiveness
of TGDP in Section 4.2.2. We follow the setup of existing benchmarks on biomedical signal
processing [37] that regard PTB-XL dataset [41] as the source domain and ICBEB2018 dataset [27]
as the target domain. PTB-XL dataset contains 21,837 clinical 12-lead ECG recordings of 10 seconds
length from 18,885 unique patients. A 12-lead ECG refers to the 12 different perspectives of the
heart’s electrical activity that are recorded. Moreover, the PTB-XL dataset is a multi-label dataset
with 71 different statements (label). ICBEB2018 dataset [27] comprises 6877 12-lead ECGs lasting
between 6 and 60 seconds. Each ECG record is categorized into one of nine classes, which is a subset
of labels in the PTB-XL dataset. We randomly select 10% samples as limited target distribution by
stratified sampling preserving the overall label distribution in each fold following [41]. We use the
data from PTB-XL dataset and ICBEB2018 dataset at a sampling frequency of 100 Hz, which means
100 samples per second. We include more implementation details in Appendix D.3.

4.2.1 Synthetic Quality and Diversity Evaluation

Baseline method We compare TGDP with the following baseline methods to demonstrate the
effectiveness of TGDP. 1) Learn a generative model directly (Vanilla Diffusion): The vanilla way
is to learn a generative model directly on limited samples from the target domain. 2) Leveraging
the pre-trained generative model from source domain (Finetune Generator): Since the label set of
the target domain is a subset of that in the source domain, a preliminary solution is to utilize the
pre-trained diffusion model to generate samples with labels in the target domain.

Experimental results In Table 2, we compare the generation performance on the target domain
using two metrics. The first criterion is the widely used Frechet Inception Distance (FID) [12] to
evaluate the quality of synthetic data, which calculates the Wasserstein-2 distance between the real
data and the synthetic data on the feature space. We use the pre-trained classifier on the target domain
as the feature extractor, i.e., xresnet1d50 [37]. The second metric is the coverage [26] that evaluates
the diversity of the synthetic data. It is defined as the ratio of real records that have at least one fake
(synthetic) record in its sphere. The higher the coverage is, the more diverse the synthetic data are.

From Table 2, we see that TGDP achieves better performance than baseline methods on two criteria,
which demonstrates the effectiveness of TGDP on generative transfer learning in scenarios with
limited data. Moreover, TGDP has fewer parameters to be trained and less training time. We also
demonstrate the T-SNE of the generated ECG data in Figure 3.

4.2.2 TGDP for Downstream Task

In Section 4.2.1, we illustrate that TGDP is capable of generating samples that adhere to the joint
distribution of data and labels in the target domain and is diverse enough. In this subsection, we
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(a) Vanilla Diffusion (b) Finetune Generator (c) TGDP (d) Real

Figure 3: T-SNE of the generated ECG data.

Table 2: The effectiveness of TGDP on ECG benchmark under synthetic quality and diversity criteria.

Method Diversity (↑) FID (↓) Number of Parameters Training Time

Vanilla Diffusion 0.37 11.01 50.2M 1h
Finetune Generator 0.47 12.26 50.2M 40min

TGDP 0.53 10.46 2.8M 30min

further investigate whether utilizing TGDP to acquire a generative model for the target domain yields
superior performance compared to existing transfer learning pipelines.

Baseline method First of all, we can utilize the generative model learned in Section 4.2.1 to
generate sufficient samples. Incorporated with the original limited sample from the target domain, we
can train the classifier, which we still denoted as Vanilla Diffusion, Finetune Generator, and TGDP,
respectively. Moreover, we have the following baseline methods. Directly train a classifier on target
domain (Vanilla Classifier): Utilizing the limited data from the target domain, a vanilla classifier
can be obtained. Finetune pre-trained classifier (Finetune Classifier): Instead of training a classifier
from scratch on the target domain, the parameters of the classifier trained on the source domain are
adjusted by using the limited data from the target domain. To verify the effectiveness of the generative
model, we demonstrate that it improves the performance of the learned classifier in the following.

Experimental results We adopt the same evaluation criteria as ECG benchmark [37], i.e., Macro-
averaged area under the receiver operating characteristic curve (AUC), Macro-averaged Fβ-score

(β = 2), where Fβ =
(1+β2)· TP

(1+β2)· TP +β2· FN + FP , and Macro-averaged Gβ-score with β = 2, where
Gβ = TP

TP+ FP +β· FN . In Table 3, TGDP outperforms baseline methods across three evaluation criteria,
showcasing its effectiveness in transfer for diffusion model with limited data.

Table 3: The effectiveness of TGDP on ECG benchmark for downstream task. We provide 95%
confidence intervals via empirical bootstrapping used by [37]. 0.906(03) stands for 0.906 ± 0.003.

Method AUC Fβ=2 Gβ=2

Vanilla Classifier 0.906(03) 0.674(06) 0.433(06)
Finetune Classifier 0.941(05) 0.747(08) 0.521(10)

Vanilla Diffusion 0.932(05) 0.718(09) 0.464(09)
Finetune Generator 0.941(04) 0.761(10) 0.528(12)

TGDP 0.953(05) 0.773(11) 0.534(11)

5 Conclusion

In this work, we propose a novel framework, Transfer Guided Diffusion Process (TGDP), for
transferring a source-domain diffusion model to the target domain which consists of limited data.
Instead of reducing the finetuning parameters or adding regularization for finetuning, TGDP proves the
optimal diffusion model on the target domain is the pre-trained diffusion model on the source domain
with additional guidance. TGDP outperforms existing methods on Gaussian mixture simulations and
electrocardiogram (ECG) data benchmarks.
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Limitations and broader impact Overall, this research presents a promising direction for lever-
aging pre-trained diffusion models to tackle new tasks. The proposed method, TGDP, has potential
applications in a wide range of tasks where domain shift exists. A limitation of this study is the lack
of empirical validation regarding TGDP’s performance on language vision tasks, which we have
earmarked for future exploration. Since we propose a generic algorithm for transferring knowledge
to new tasks, this technique could enable people to train Deepfakes for disinformation better. Our
approach hinges on the efficacy of detection methods in mitigating negative societal consequences.
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A More Discussion on Related Work

Finetune diffusion model on limited data Directly finetuning the pre-trained generative model
on limited data from the target domain may suffer from overfitting and diversity degradation. Moon
et. al. [25] introduce a time-aware adapter inside the attention block. Since the attention modules
take about 10% of parameters in the entire diffusion model, they significantly reduced the turning
parameters and alleviated the overfitting. While in [44], the authors only finetune specific parameters
related to bias, class embedding, normalization, and scale factor. Zhu et. al. [52] found out the images
generated by directly finetuned diffusion models share similar features like facial expressions and lack
ample high-frequency details. Therefore, they introduce two regularization terms, pairwise similarity
loss for diversity and high-frequency components loss to enhance the high-frequency feature.

The main drawback of finetuning the pre-trained diffusion model is the sample complexity is larger
compared with training a classifier since modeling the distribution is a tougher task. In our work, we
decompose the diffusion model on the target domain as the diffusion model on the source domain
plus a guidance network. Since training a guidance network (essential as a classifier demonstrated in
section 3) requires smaller sample complexity, we believe this novel framework might provide a new
way for diffusion-based domain adaptation.

Text-to-image diffusion model and learning with human feedback Numerous studies on Text-to-
Image diffusion models focus on optimizing the diffusion model to align with human preferences and
personalize its performance for specific tasks. These endeavors commonly involve strategies such
as text-guided zero-shot finetuning [34, 29] or finetuning diffusion model (or its adaptor) through
reward-weighted objectives [32, 19, 11, 20, 10]. We acknowledge the significant potential in these
approaches, given that language models inherently encapsulate rich semantic information, thereby
endowing text-to-image diffusion models with zero-shot transferability. However, it is noteworthy
that in domains lacking a substantial amount of paired data for learning semantic mappings, such as
biomedical signal processing and electrocardiogram (ECG) data, we refrain from considering these
methods as the primary benchmarks in our comparative analysis.

Non-diffusion based approaches in generative domain adaptation Numerous works in genera-
tive domain adaptation (or few-shot generative adaptation) study how to improve the transferability of
the generative model on limited data from the target domain. Since we mainly focus on the diffusion
model, we summarize the primary GAN-based domain adaptation there. They mainly propose to add
different kinds of regularization to avoid model collapse [28, 51, 49, 48, 9, 15, 43] or finetune subset
of the parameter (adaptor) [1, 45, 22, 50].

B More Discussion on the Potential of the Proposed Method

In this section, we demonstrate the proposed framework is general enough to deal with text-to-image
generation tasks and homogeneous transfer learning.

B.1 Text-to-Image Generation Tasks

Given a source distribution (x, ct) ∼ p, where ct denotes text prompts by using the terminology
from [47], a pre-trained diffusion model can be trained on the source distribution. Given a target
distribution (x, ct, cf) ∼ q, where cf denotes a task-specific condition, Zhang et al. [47] can fine-tune
the pre-trained model by noise matching objective,

L = Ex0,t,ct,cf ,ϵ∼N (0,1)

[
∥ϵ− ϵθ (xt, t, ct, cf) ∥22

]
.

Our method can directly estimate ∇xt logEp(x0|xt,ct)

[
q(x0,ct,cf )
p(x0,ct)

]
rather than fine-tuning the pre-

trained diffusion model. Domain classifier cw(x, y) can still be used for estimating the density ratio,
where y denotes the embedding of the condition. Moreover, directly fine-tuning the diffusion model
on data from the target domain used by [47] is similar to the consistency regularization proposed
in our work, while they have a more in-depth design for the architecture and have great results on
vision-language tasks. However, with limited data from the target distribution, direct fine-tuning
may not achieve good enough performance, which is verified in the two-dimensional Gaussian
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setting. In [47], Zhang et al. propose to use zero convolution layers, i.e., 1 × 1 convolution layer
with both weight and bias initialized to zeros, which alleviates the instability of fine-tuning process.
This is very different from our methodology which relies on the smaller sample complexity of the
classifier/density ratio estimator.

B.2 Homogeneous Transfer Learning

When the source and target domain contain different class labels, our framework is still applicable,
i.e., when yt ̸= ys,

sϕ∗(xt, yt, t)︸ ︷︷ ︸
target source

= ∇xt
log pt(xt|ys)︸ ︷︷ ︸

pre-trained conditional model
on source

+∇xt
logEp(x0|xt,ys)

[
q(x0, yt)

p(x0, ys)

]
︸ ︷︷ ︸

conditional guidance

.

To generate an unseen class yt, the key problem here is to choose a particular class from the source
domain ys such that we can borrow useful information from the source domain to generate this
unseen class from the target domain. The coupling between yt and ys can be learned by solving
a static optimal transport problem. More in-depth design, e.g. coupling solved by static optimal
transport, can be left to future work.

C Theoretical Details for Section 3

C.1 Proof of Theorem 3.1

Proof. To prove Eq (6), we first build the connection between Score Matching on the target domain
and Importance Weighted Denoising Score Matching on the source domain in the following Lemma.

Lemma C.1. Score Matching on the target domain is equivalent to Importance Weighted Denoising
Score Matching on the source domain, i.e.,

ϕ∗ =argmin
ϕ

Et

{
λ(t)Eqt(xt)

[
∥sϕ(xt, t)−∇xt

log qt(xt)∥22
]}

=argmin
ϕ

Et

{
λ(t)Ep(x0)Ep(xt|x0)

[
∥sϕ(xt, t)−∇xt

log p(xt|x0)∥22
q(x0)

p(x0)

]}
.

(16)

Proof of Lemma C.1. We first connect Score Matching objective in the target domain to Denoising
Score Matching objective in target distribution, which is proven by [40], i.e.,

ϕ∗ =argmin
ϕ

Et

{
λ(t)Eqt(xt)

[
∥sϕ(xt, t)−∇xt

log qt(xt)∥22
]}

=argmin
ϕ

Et

{
λ(t)Eq(x0)Eq(xt|x0)

[
∥sϕ(xt, t)−∇xt

log q(xt|x0)∥22
]}

.

Then, we split the mean squared error of Denoising Score Matching objective on target distribution
into three terms as follows:

Eq(x0)Eq(xt|x0)

[
∥sϕ(xt, t)−∇xt

log q(xt|x0)∥22
]

=Eq(x0,xt)

[
∥sϕ(xt, t)∥22

]
− 2Eq(x0,xt) [⟨sϕ(xt, t),∇xt

log q(xt|x0)⟩] + C1, (17)

where C1 = Eq(x0,xt)

[
∥∇xt

log q(xt|x0)∥22
]

is a constant independent with ϕ. We can similarly
split the objective function in the right-hand side (RHS) of Eq (16) as follows:

Ep(x0)Ep(xt|x0)

[
∥sϕ(xt, t)−∇xt log p(xt|x0)∥22

q(x0)

p(x0)

]
=Ep(x0,xt)

[
∥sϕ(xt, t)∥22

q(x0)

p(x0)

]
− 2Ep(x0,xt)

[
⟨sϕ(xt, t),∇xt

log p(xt|x0)⟩
q(x0)

p(x0)

]
+ C2, (18)
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where C2 is a constant independent with ϕ. It is easy to show that the first term in Eq (17) is equal to
the first term in Eq (18), i.e.,

Ep(x0,xt)

[
∥sϕ(xt, t)∥22

q(x0)

p(x0)

]
=

∫
x0

∫
xt

p(x0)p(xt|x0) ∥sϕ(xt, t)∥22
q(x0)

p(x0)
dx0dxt

(i)
=

∫
x0

∫
xt

p(x0)q(xt|x0) ∥sϕ(xt, t)∥22
q(x0)

p(x0)
dx0dxt

=

∫
x0

∫
xt

q(x0,xt) ∥sϕ(xt, t)∥22 dx0dxt

=Eq(x0,xt)

[
∥sϕ(xt, t)∥22

]
,

where the equality (i) is due to q(xt|x0) = p(xt|x0).

Next, we prove the second terms in Eq (17) and Eq (18) are also equivalent:

Ep(x0,xt)

[
⟨sϕ(xt, t),∇xt

log p(xt|x0)⟩
q(x0)

p(x0)

]
=

∫
x0

∫
xt

p(x0,xt)⟨sϕ(xt, t),
∇xt

p(xt|x0)

p(xt|x0)
⟩q(x0)

p(x0)
dx0dxt

(i)
=

∫
x0

∫
xt

p(x0)p(xt|x0)⟨sϕ(xt, t),
∇xt

q(xt|x0)

p(xt|x0)
⟩q(x0)

p(x0)
dx0dxt

=

∫
x0

∫
xt

⟨sϕ(xt, t),∇xt
q(xt|x0)⟩q(x0)dx0dxt

=

∫
x0

∫
xt

⟨sϕ(xt, t),∇xt
log q(xt|x0)⟩q(xt|x0)q(x0)dx0dxt

=Eq(x0,xt) [⟨sϕ(xt, t),∇xt log q(xt|x0)⟩] ,

where the equality (i) is again due to q(xt|x0) = p(xt|x0). Thereby we prove Eq 16.

According to Lemma C.1,

ϕ∗ = argmin
ϕ

Et

{
λ(t)Ep(x0)Ep(xt|x0)

[
∥sϕ(xt, t)−∇xt

log p(xt|x0)∥22
q(x0)

p(x0)

]}
.

Based on this, we may use Importance Weighted Denoising Score Matching on the source domain to
get the analytic form of sϕ∗ as follows:

sϕ∗(xt, t) =
Ep(x0|xt)

[
∇xt

log p(xt|x0)
q(x0)
p(x0)

]
Ep(x0|xt)

[
q(x0)
p(x0)

] .

The RHS of Eq (6) can be rewritten as follows:

RHS =∇xt log pt(xt) +∇xt logEp(x0|xt)

[
q(x0)

p(x0)

]
= ∇xt log pt(xt) +

∇xtEp(x0|xt)

[
q(x0)
p(x0)

]
Ep(x0|xt)

[
q(x0)
p(x0)

]
=∇xt

log pt(xt) +
Ep(x0|xt)

[
q(x0)
p(x0)

∇xt log p(x0|xt)
]

Ep(x0|xt)

[
q(x0)
p(x0)

] .

Since
∇xt log p(x0|xt) = ∇xt log p(xt|x0) +∇xt log p(x0)−∇xt log pt(xt)

= ∇xt log p(xt|x0)−∇xt log pt(xt),
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we can further rewrite the RHS of Eq (6) as follows:

RHS =∇xt
log pt(xt) +

Ep(x0|xt)

[
q(x0)
p(x0)

∇xt
log p(xt|x0)

]
Ep(x0|xt)

[
q(x0)
p(x0)

] −∇xt
log pt(xt)

=
Ep(x0|xt)

[
∇xt log p(xt|x0)

q(x0)
p(x0)

]
Ep(x0|xt)

[
q(x0)
p(x0)

]
=sϕ∗(xt, t).

Thereby we complete the proof.

C.2 Proof of Lemma 3.2

Proof. The proof is straightforward and we include it below for completeness. Note that the objective
function can be rewritten as

Lguidance(ψ) :=Ep(x0,xt)

[∥∥∥∥hψ (xt, t)−
q(x0)

p(x0)

∥∥∥∥2
2

]

=

∫
xt

{∫
x0

p(x0|xt)

∥∥∥∥hψ (xt, t)−
q(x0)

p(x0)

∥∥∥∥2
2

dx0

}
p(xt)dxt

=

∫
xt

{
∥hψ(xt, t)∥22 − 2⟨hψ(xt, t),

∫
x0

p(x0|xt)
q(x0)

p(x0)
dx0⟩

}
p(xt)dxt + C

=

∫
xt

∥∥∥∥hψ(xt, t)− Ep(x0|xt)

[
q(x0)

p(x0)

]∥∥∥∥2
2

p(xt)dxt,

where C is a constant independent of ψ. Thus we have the minimizer ψ∗ = argmin
ψ

Lguidance(ψ)

satisfies hψ∗ (xt, t) = Ep(x0|xt) [q(x0)/p(x0)].

C.3 Conditional version for Lemma 3.2

Lemma C.2. For a neural network hψ (xt, y, t) parameterized by ψ, define the objective

Lguidance(ψ) := Ep(x0,xt,y)

[∥∥∥∥hψ (xt, y, t)−
q(x0, y)

p(x0, y)

∥∥∥∥2
2

]
, (19)

then its minimizer ψ∗ = argmin
ψ

Lguidance(ψ) satisfies:

hψ∗ (xt, y, t) = Ep(x0|xt,y) [q(x0, y)/p(x0, y)] .

Proof of Lemma C.2

Proof. The proof is straightforward and we include it below for completeness. Note that the objective
function can be rewritten as

Lguidance(ψ)

:=Ep(x0,xt,y)

[∥∥∥∥hψ (xt, y, t)−
q(x0, y)

p(x0, y)

∥∥∥∥2
2

]

=

∫
xt

∫
y

{∫
x0

p(x0|xt, y)

∥∥∥∥hψ (xt, y, t)−
q(x0, y)

p(x0, y)

∥∥∥∥2
2

dx0

}
p(xt|y)p(y)dydxt

=

∫
xt

∫
y

{
∥hψ(xt, y, t)∥22 − 2⟨hψ(xt, y, t),

∫
x0

p(x0|xt, y)
q(x0, y)

p(x0, y)
dx0⟩

}
p(xt|y)p(y)dydxt + C

=

∫
xt

∫
y

∥∥∥∥hψ(xt, y, t)− Ep(x0|xt,y)

[
q(x0, y)

p(x0, y)

]∥∥∥∥2
2

p(xt|y)p(y)dydxt,
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where C is a constant independent of ψ. Thus we have the minimizer ψ∗ = argmin
ψ

Lguidance(ψ)

satisfies hψ∗ (xt, y, t) = Ep(x0|xt,y) [q(x0, y)/p(x0, y)].

C.4 Proof of Theorem 3.3

Proof. The proof is similar to the proof of Theorem 3.1. To prove Eq 11, we first build the connection
between the Conditional Score Matching on the target domain and Importance Weighted Conditional
Denoising Score Matching on the source domain in the following Lemma:

Lemma C.3. Conditional Score Matching on the target domain is equivalent to Importance Weighted
Denoising Score Matching on the source domain, i.e.,

ϕ∗ =argmin
ϕ

Et

{
λ(t)Eqt(xt,y)

[
∥sϕ(xt, y, t)−∇xt

log qt(xt|y)∥22
]}

=argmin
ϕ

Et

{
λ(t)Ep(x0,y)Ep(xt|x0)

[
∥sϕ(xt, y, t)−∇xt

log p(xt|x0)∥22
q(x0, y)

p(x0, y)

]}
.

Proof of Lemma C.3. We first connect the Conditional Score Matching objective in the target domain
to the Conditional Denoising Score Matching objective in target distribution, which is proven by [4,
Theorem 1], i.e.,

ϕ∗ =argmin
ϕ

Et

{
λ(t)Eqt(xt,y)

[
∥sϕ(xt, y, t)−∇xt

log qt(xt|y)∥22
]}

=argmin
ϕ

Et

{
λ(t)Eq(x0,y)Eq(xt|x0)

[
∥sϕ(xt, y, t)−∇xt

log q(xt|x0)∥22
]}

.

Then we split the mean squared error of the Conditional Denoising Score Matching objective on
target distribution into three terms as follows:

Eq(x0,y)Eq(xt|x0)

[
∥sϕ(xt, y, t)−∇xt

log q(xt|x0)∥22
]

=Eq(x0,xt,y)

[
∥sϕ(xt, y, t)∥22

]
− 2Eq(x0,xt,y) [⟨sϕ(xt, y, t),∇xt

log q(xt|x0)⟩] + C1, (20)

where C1 = Eq(x0,xt,y)

[
∥∇xt log q(xt|x0)∥22

]
is a constant independent with ϕ, and q(xt|x0, y) =

q(xt|x0) because of conditional independent of xt and y given x0 by assumption. We can similarly
split the mean squared error of Denoising Score Matching on the source domain into three terms as
follows:

Ep(x0,y)Ep(xt|x0)

[
∥sϕ(xt, y, t)−∇xt

log p(xt|x0)∥22
q(x0, y)

p(x0, y)

]
=Ep(x0,xt,y)

[
∥sϕ(xt, y, t)∥22

q(x0, y)

p(x0, y)

]
− 2Ep(x0,xt,y)

[
⟨sϕ(xt, y, t),∇xt

log p(xt|x0)⟩
q(x0, y)

p(x0, y)

]
+ C2,

(21)
where C2 is a constant independent with ϕ.

It is obvious to show that the first term in Eq (20) is equal to the first term in Eq (21), i.e.,

Ep(x0,xt,y)

[
∥sϕ(xt, y, t)∥22

q(x0, y)

p(x0, y)

]
=

∫
x0

∫
xt

∫
y

p(x0, y)p(xt|x0) ∥sϕ(xt, y, t)∥22
q(x0, y)

p(x0, y)
dx0dxtdy

=

∫
x0

∫
xt

∫
y

p(x0, y)q(xt|x0) ∥sϕ(xt, y, t)∥22
q(x0, y)

p(x0, y)
dx0dxtdy

=

∫
x0

∫
xt

∫
y

q(x0,xt, y) ∥sϕ(xt, y, t)∥22 dx0dxtdy

=Eq(x0,xt,y)

[
∥sϕ(xt, y, t)∥22

]
.
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And the second term is also equivalent:

Ep(x0,xt,y)

[
⟨sϕ(xt, y, t),∇xt log p(xt|x0)⟩

q(x0, y)

p(x0, y)

]
=

∫
x0

∫
xt

∫
y

p(x0,xt, y)⟨sϕ(xt, y, t),
∇xt

p(xt|x0)

p(xt|x0)
⟩q(x0, y)

p(x0, y)
dx0dxtdy

=

∫
x0

∫
xt

∫
y

p(x0,xt, y)⟨sϕ(xt, y, t),
∇xt

q(xt|x0)

p(xt|x0)
⟩q(x0, y)

p(x0, y)
dx0dxtdy

=

∫
x0

∫
xt

∫
y

⟨sϕ(xt, y, t),∇xt
q(xt|x0)⟩q(x0, y)dx0dxtdy

=

∫
x0

∫
xt

∫
y

⟨sϕ(xt, y, t),∇xt log q(xt|x0)⟩q(xt|x0)q(x0, y)dx0dxtdy

=Eq(x0,xt,y) [⟨sϕ(xt, y, t),∇xt
log q(xt|x0)⟩] .

According to Lemma C.3, the optimal solution satisfies

ϕ∗ = argmin
ϕ

Et

{
λ(t)Ep(x0,y)Ep(xt|x0)

[
∥sϕ(xt, y, t)−∇xt

log p(xt|x0)∥22
q(x0, y)

p(x0, y)

]}
,

Then, we use Importance Weighted Conditional Denoising Score Matching on the source domain to
get the analytic form of sϕ∗ as follows:

sϕ∗(xt, y, t) =
Ep(x0|xt,y)

[
∇xt log p(xt|x0)

q(x0,y)
p(x0,y)

]
Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

] .

Moreover, the RHS of Eq (11) can be rewritten as:

RHS =∇xt
log pt(xt|y) +∇xt

logEp(x0|xt,y)

[
q(x0, y)

p(x0, y)

]

=∇xt
log pt(xt|y) +

∇xt
Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

]
Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

]
=∇xt log pt(xt|y) +

Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

∇xt
log p(x0|xt, y)

]
Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

] .

Since
∇xt log p(x0|xt, y) = ∇xt log p(xt|x0, y) +∇xt log p(x0|y)−∇xt log pt(xt|y)

= ∇xt log p(xt|x0, y)−∇xt log pt(xt|y),
= ∇xt

log p(xt|x0)−∇xt
log pt(xt|y),

we can further simplify the RHS of Eq (11) as follows:

RHS =∇xt log pt(xt|y) +
Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

∇xt
log p(xt|x0)

]
Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

] −∇xt log pt(xt|y)

=
Ep(x0|xt,y)

[
∇xt log p(xt|x0)

q(x0,y)
p(x0,y)

]
Ep(x0|xt,y)

[
q(x0,y)
p(x0,y)

]
=sϕ∗(xt, t).

Thereby, we finish the proof.
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C.5 Proof for Cycle Regularization

Proof of Eq (12).

Ep(x0|xt)

[
q(x0)

p(x0)

]
=

∫
p(x0|xt)

q(x0)

p(x0)
dx0 =

∫
p(xt|x0)p(x0)

pt(xt)

q(x0)

p(x0)
dx0

=

∫
q(xt|x0)p(x0)

pt(xt)

q(x0)

p(x0)
dx0 =

∫
q(xt|x0)

q(x0)

pt(xt)
dx0

=

∫
q(x0|xt)qt(xt)

q(x0)

q(x0)

pt(xt)
dx0 =

∫
q(x0|xt)

qt(xt)

pt(xt)
dx0

=Eq(x0|xt)

[
qt(xt)

pt(xt)

]
,

where pt(xt) =
∫
p(x0)p(xt|x0)dx0 and qt(xt) =

∫
q(x0)q(xt|x0)dx0 are the marginal distribu-

tions at time t of source and target distributions, respectively.

D More Details on Experiments

D.1 Algorithms for TGDP

TGDP adopts Algorithm 1 and 2 for training a domain classifier and Algorithm 3 and 4 for training
the guidance network.

Algorithm 1 Training a domain classifier
Require: Samples from the marginal distribution of the source domain p(x) and target domain q(x),

and initial weights of domain classifier ω.
1: repeat
2: Sample mini-batch data from source distribution and target distribution respectively with batch

size b.
3: Take gradient descent step on

∇ω

−1

b

∑
xi∈p

[log cω(xi)]−
1

b

∑
x′
i∈q

[log(1− cω(x
′
i))]

 .

4: until converged.
5: return weights of domain classifier ω.

Algorithm 2 Training a time-dependent domain classifier
Require: Samples from the marginal distribution of the source domain p(x) and target domain q(x),

pre-defined forward transition p(xt|x0), and initial weights of domain classifier ω.
1: repeat
2: Sample mini-batch data from source distribution and target distribution respectively with batch

size b.
3: Sample time t ∼ Uniform({1, . . . , T}) and perturb x0 by forward transition p(xt|x0).
4: Take gradient descent step on

∇ω

−1

b

∑
x0∼p

∑
xt|x0

[log cω(xt, t)]−
1

b

∑
x0∼q

∑
xt|x0

[log(1− cω(xt, t))]

 .

5: until converged.
6: return weights of time-dependent domain classifier ω.
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Algorithm 3 Training a guidance network (without regularization)
Require: Samples from the marginal distribution of the source domain p(x), pre-defined forward

transition p(xt|x0), pre-trained domain classifier cω , and initial weights of guidance network ψ.
1: repeat
2: Sample mini-batch data from source distribution x0 with batch size b.
3: Sample time t ∼ Uniform({1, . . . , T}) and perturb x0 by forward transition p(xt|x0).
4: Take gradient descent step on

∇ψ

{
1

b

∑
x0,xt

[
∥hψ (xt, t)− cω(x0)∥22

]}
.

5: until converged.
6: return weights of guidance network ψ.

Algorithm 4 Training a guidance network (with regularization)
Require: Samples from the marginal distribution of the source domain p(x) and target domain q(x),

pre-trained diffusion model on source distribution ssource(xt, t), pre-defined forward transition
q(xt|x0), p(xt|x0), pre-trained domain classifier cω(x0) and time dependent domain classifier
c′ω(x0, t), hyperparameter η1, η2, and initial weights of guidance network ψ.

1: repeat
2: Sample mini-batch data from source distribution x0 with batch size b.
3: Perturb x0 by forward transition p(xt|x0).
4: Lguidance(ψ) =

1
b

∑
x0,xt,t

[
∥hψ (xt, t)− (1− cω(x0))/cω(x0)∥22

]
5: Sample mini-batch data from target distribution x′

0 with batch size b.
6: Sample time t ∼ Uniform({1, . . . , T}) and perturb x′

0 by forward transition q(x′
t|x′

0).
7: Lcycle =

1
b

∑
x′
0,x

′
t,t

[
∥hψ (x′

t, t)− c′ω(x
′
0, t)∥

2
2

]
.

8: Lconsistence =
1
b

∑
x′
0,x

′
t,t

[∥∥ssource(x
′
t, t) +∇x′

t
log hψ (x′

t, t)−∇x′
t
log q(xt|x′

0)
∥∥2
2

]
.

9: Take gradient descent step on

∇ψ {Lguidance + η1 Lcycle + η2 Lconsistence} .

10: until converged.
11: return weights of guidance network ψ.

D.2 Ablation Studies on simulations

In Figure D.2, we demonstrate the ablation studies on simulations. We can see that only using the
consistency regularization term (Figure D.2 (b)) is not able to recover the true distribution in the
target domain. Our guidance loss together with cycle regularization can learn a good approximation
of target distribution while adding consistency regularization can achieve better performance.

D.3 Implementation details for ECG Benchmark

For TGDP and all of the baseline methods, we utilize the same architecture as the conditional
generative models for ECG data, SSSM-ECG [2]. For Vanilla Diffusion, we train the diffusion model
for 100k iterations by Adam optimizer with a learning rate 2e−4. For Finetune Generator, we finetune
the pre-trained diffusion model for 50k iterations by Adam optimizer with a learning rate 2e−5. For
TGDP, we adopt a 4-layer MLP with 512 hidden units and SiLU activation function as the backbone
of the guidance network. We train the guidance network for 50k iterations by Adam optimizer with
a learning rate 2e−4. For utility evaluation, we adopt the same architecture, xresnet1d50 [37], as
the backbone. We train the classifier from sketch for 50 epochs with with a learning rate 1e-2. For
Finetune Classifier, we finetune a pre-trained classifier for 30 epochs with with a learning rate 1e-3.
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(a) Source diffusion (b) Only Lguidance (c) Lguidance + Lcycle

(d) Lguidance + Lconsistence (e) Lguidance+Lcycle+Lconsistence (f) Target

Figure 4: An illustration of the effectiveness of cycle regularization and consistency regularization
proposed in Section 3.4.
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with memory 24268MiB and Intel(R) Xeon(R) Platinum 8352Y CPUs @ 2.20GHz. The
computational costs for each of the individual experimental runs can be found in the following
table. The total computational time of all experiments in this paper is around 200 GPU hours.

Experiments Memory-Usage Running Time

Experiments in Table 1 1281MiB 5min

Training Vanilla Diffusion 19815MiB 1h
Finetune Generator 19815MiB 40min

Training TGDP 19597MiB 40min
Sampling 9535MiB 21h

Experiments in Table 3 6075MB 10min

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We review the NeurIPS Code of Ethics and ensure our compliance with its
requirements.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes] .
Justification: We summarize the potential negative societal impacts of this paper together with
the corresponding solutions to mitigate the negative impacts in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA] .

Justification: The main contribution of our paper is an efficient way for transferring a pre-
trained model on target distribution. We do not release data or models that have a high risk for
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes] .

Justification: The license of the dataset and code used in this paper can be found in the
following table.

Assets License Link
PTB-XL CC-BY 4.0 https://physionet.org/content/ptb-xl/1.0.3/

ICBEB2018 CC0: Public Domain https://www.kaggle.com/datasets/bjoernjostein/china-12lead-ecg-challenge-database

SSSD-ECG MIT License https://github.com/AI4HealthUOL/SSSD-ECG?tab=readme-ov-file

ECG Benchmarks CC-BY 4.0 https://github.com/helme/ecg_ptbxl_benchmarking

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: The code provided in the supplementary material follows the CC-BY 4.0 license.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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