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ABSTRACT

Large language models (LLMs) have demonstrated impressive reasoning abilities,
but they still struggle with faithful reasoning due to knowledge gaps and halluci-
nations. To address these issues, knowledge graphs (KGs) have been utilized to
enhance LLM reasoning through their structured knowledge. However, existing
KG-enhanced methods, either retrieval-based or agent-based, encounter difficul-
ties in accurately retrieving knowledge and efficiently traversing KGs at scale.
In this work, we introduce graph-constrained reasoning (GCR), a novel frame-
work that bridges structured knowledge in KGs with unstructured reasoning in
LLMs. To eliminate hallucinations, GCR ensures faithful KG-grounded reason-
ing by integrating KG structure into the LLM decoding process through KG-Trie,
a trie-based index that encodes KG reasoning paths. KG-Trie constrains the de-
coding process, allowing LLMs to directly reason on graphs and generate faithful
reasoning paths grounded in KGs. Additionally, GCR leverages a lightweight KG-
specialized LLM for graph-constrained reasoning alongside a powerful general
LLM for inductive reasoning over multiple reasoning paths, resulting in accurate
reasoning with zero reasoning hallucination. Extensive experiments on several
KGQA benchmarks demonstrate that GCR achieves state-of-the-art performance
and exhibits strong zero-shot generalizability to unseen KGs without additional

training.

1 INTRODUCTION

Large language models (LLMs) have shown impressive reasoning abilities in handling complex
tasks (Qiao et al.l 2023} |Huang & Chang| 2023), marking a significant leap that bridges the gap
between human and machine intelligence. However, LLMs still struggle with conducting faithful
reasoning due to issues of lack of knowledge and hallucination (Huang et al.l 2024; Wang et al.,
2023). These issues result in factual errors and flawed reasoning processes (Nguyen et al., [2024),

which greatly undermine the reliability of LLMs in real-world applications.

To address these issues, many studies utilize knowledge graphs (KGs), which encapsulate extensive
factual information in a structured format, to improve the reasoning abilities of LLMs (Pan et al.,
2024; Luo et al.L[2024). Nevertheless, because of the unstructured nature of LLMs, directly applying

them to reason on KGs is challenging.

Existing KG-enhanced LLM reasoning methods can be roughly catego-
rized into two groups: retrieval-based and agent-based paradigms, as
shown in Figure E] (a) and (b). Retrieval-based methods (L1 et al., [2023;
Yang et al.,2024b; Dehghan et al.| [2024) retrieve relevant facts from KGs
with an external retriever and then feed them into the inputs of LLMs for
reasoning. Agent-based methods (Sun et al., 2024; |Zhu et al.| 2024; Jiang
et al.| 2024) treat LLMs as agents that iteratively interact with KGs to find
reasoning paths and answers.

Despite their success, retrieval-based methods require additional accurate
retrievers, which may not generalize well to unseen questions or account
for the graph structure (Mavromatis & Karypis, [2024). Conversely, agent-
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based methods necessitate multiple rounds of interaction between agents and KGs, leading to high
computational costs and latency (Dehghan et al., |2024). Furthermore, existing works still suffer
from serious hallucination issues (Agrawal et al., [2024). [Sui et al.[(2024)) indicates that RoG (Luo
et al., 2024)), a leading KG-enhanced reasoning method, still experiences 33% hallucination errors
during reasoning on KGs, as shown in Figure|[I}

To this end, we introduce graph-constrained reasoning (GCR), a novel KG-guided reasoning
paradigm that connects unstructured reasoning in LLMs with structured knowledge in KGs, seeking
to eliminate hallucinations during reasoning on KGs and ensure faithful reasoning. Inspired by the
concept that LLMs reason through decoding (Wei et al.|[2022), we incorporate the KG structure into
the LLM decoding process. This enables LLMs to directly reason on graphs by generating reliable
reasoning paths grounded in KGs that lead to correct answers.

In GCR, we first convert KG into a structured index, KG-Trie, to facilitate efficient reasoning on KG
using LLM. Trie is also known as the prefix tree (Wikipedia contributors} 2024} that compresses a
set of strings, which can be used to restrict LLM output tokens to those starting with valid prefixes
(De Cao et al., 2022} [Xie et al., [2022). KG-Trie encodes the reasoning paths in KGs as formatted
strings to constrain the decoding process of LLMs. Then, we propose graph-constrained decoding
that employs a lightweight KG-specialized LLM to generate multiple KG-grounded reasoning paths
and hypothesis answers. With the constraints from KG-Trie, we ensure faithful reasoning while
leveraging the strong reasoning capabilities of LLMs to efficiently explore paths on KGs in constant
time. Finally, we input multiple generated reasoning paths and hypothesis answers into a powerful
general LLM to utilize its inductive reasoning ability to produce final answers. In this way, GCR
combines the graph reasoning strength of KG-specialized LLMs and the inductive reasoning advan-
tage in general LLMs to achieve faithful and accurate reasoning on KGs. The main contributions of
this work are as follows:

* We propose a novel framework called graph-constrained reasoning (GCR) that bridges the
gap between structured knowledge in KGs and unstructured reasoning in LLMs, allowing
for efficient reasoning on KGs via LLM decoding.

* We combine the complementary strengths of a lightweight KG-specialized LLM with a
powerful general LLM to enhance reasoning performance by leveraging their respective
graph-based reasoning and inductive reasoning capabilities.

* We conduct extensive experiments on several KGQA reasoning benchmarks, demonstrat-
ing that GCR not only achieves state-of-the-art performance with zero hallucination, but
also shows zero-shot generalizability for reasoning on unseen KGs without additional train-
ing.

2 RELATED WORK

LLM reasoning. Many studies have been proposed to analyze and improve the reasoning ability
of LLMs (Wei et all 2022; Wang et al.| 2024 |Yao et al., |2024). To elicit the reasoning ability
of LLMs, Chain-of-thought (CoT) reasoning (Wei et al., 2022) prompts the model to generate a
chain of reasoning steps in response to a question. Wang et al.| (2024) propose a self-consistency
mechanism that generates multiple reasoning paths and selects the most consistent answer across
them. The tree-of-thought (Yao et al.,|2024) structures reasoning as a branching process, exploring
multiple steps in a tree-like structure to find optimal solutions. Other studies focus on fine-tuning
LLMs on various reasoning tasks to improve reasoning abilities (Yu et al.| 2022 [Hoffman et al.,
2024])). For instance, OpenAll (2024c) adopts reinforcement learning to train their most advanced
LLMs called “OpenAl ol” to perform complex reasoning, which produces a long internal chain of
thought before final answers.

KG-enhanced LLM reasoning. To mitigate the knowledge gap and hallucination issues in LLM
reasoning, research incorporates KGs to enhance LLM reasoning (Pan et al.|[2024). KD-CoT (Wang
et al.| 2023) retrieve facts from an external knowledge graph to guide the CoT performed by LLMs.
RoG (Luo et al., 2024) proposes a planning-retrieval-reasoning framework that retrieves reasoning
paths from KGs to guide LLMs conducting faithful reasoning. To capture graph structure, GNN-
RAG (Mavromatis & Karypis| 2024) adopts a lightweight graph neural network to effectively re-
trieve from KGs. Instead of retrieving, StructGPT (Jiang et al.l [2023) and ToG (Sun et al.| [2024)
treat LLMs as agents to interact with KGs to find reasoning paths leading to the correct answers.
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Figure 2 Ilustration of existing KG-enhanced LLM reasoning paradigms and proposed graph-
constrained reasoning (GCR). 1) First, given a KG, we convert it into the KG-Trie, serving as a
structured index to facilitate efficient reasoning path searches using LLMs. 2) Then, we design a
graph-constrained decoding process that employs a lightweight KG-specialized LLM to generate
multiple KG-grounded reasoning paths and hypothesis answers. This ensures the faithfulness of the
reasoning process while leveraging the strong capabilities of LLMs to efficiently explore reasoning
paths within KGs. 3) Finally, we input the generated reasoning paths and hypothesis answers into a
powerful general LLM to utilize its inductive reasoning ability to produce final answers.

3 PRELIMINARY

Knowledge Graphs (KGs) represent a wealth of factual knowledge as a collection of triples: G =
{(e,r,e’) € £ x R x £}, where £ and R denote the set of entities and relations, respectively.

Reasoning Paths are sequences of consecutive triples in KGs: w, = ey — €1 —> ... — ¢,
where V(e;—1,7;,e;) € G. The paths reveal the connections between knowledge that potentially

marry-to

facilitate reasoning. For example, the reasoning path: w, = Alice ———— Bob
Charlie indicates that “Alice” is married to “Bob” and “Bob” is the father of “Charlie”. Therefore,
“Alice” could be reasoned to be the mother of “Charlie”.

father_of
i

Knowledge Graph Question Answering (KGQA) is a representative reasoning task with the as-
sistance of KGs. Given a natural language question ¢ and a KG G, the task aims to design a function
f to reason answers a € A based on knowledge from G, i.e., a = f(q, G).

KG-constrained Zero-hallucination. As facts in KGs are usually verified, making them a reliable
source for assessing the faithfulness of LLM reasoning (Nguyen et al.,|2024). In this paper, we define
KG-constrained zero hallucinations as the LLM generated reasoning paths can be fully grounded
within KGs, ensuring the alignment of reasoning process with real-world facts. The limitations of
the definition are discussed in Appendix

4 APPROACH

4.1 FROM CHAIN-OF-THOUGHT REASONING TO GRAPH-CONSTRAINED REASONING

Chain-of-Thought Reasoning (CoT) (Wei et al.l 2022)) has been widely adopted to enhance the
reasoning ability of LLMs by autoregressively generating a series of reasoning steps leading to the
answer. Specifically, given a question ¢, CoT models the joint probability of the answer a and
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reasoning steps z as
||
P(alg) = Zpe alz,q)Py(z|q) = ZPG alg, z) [ [ Po(zila, z1:-1), (1)

1=1
where ¢ denotes the 1nput question, a denotes the ﬁnal answer, 6 denotes the parameters of LLMs,

and z; denotes the i-th step of the reasoning process z. To further enhance the reasoning ability,
many previous works focus on improving the reasoning process Py(z|q) by exploring and aggregat-
ing multiple reasoning processes (Wang et al.| [2024;|Yao et al.| 2024).

Despite the effectiveness, a major issue remains the faithfulness of the reasoning process generated
by LLMs (Huang et all [2024). The reasoning is represented as a sequence of tokens decoded
step-by-step, which can accumulate errors and result in hallucinated reasoning paths and answers
(Nguyen et al.| 2024). To address these issues, we utilize knowledge graphs (KGs) to guide LLMs
toward faithful reasoning.

KG-enhanced Reasoning utilizes the structured knowledge in KGs to improve the reasoning of
LLMs (Luo et al.l 2024} |Sun et al [2024), which can generally be expressed as finding a reasoning
path w, on KGs that connects the entities mentioned in the question and the answer. This can be

formulated as
P(alg,G) =Y Py(alg, wz) Py(w:|q,G), )

ws
where Py(w_|q, G) denotes the probability of discovering a reasoning path w, on KGs G given the
question ¢ by a function parameterized by ¢. To acquire reasoning paths for reasoning, most prior
studies follow the retrieval-based (Li et al., [2023)) or agent-based paradigm (Sun et al., 2024), as
shown in Figure 2] (a) and (b), respectively. Nevertheless, retrieval-based methods rely on precise
additional retrievers, while agent-based methods are computationally intensive and lead to high
latency. To address these issues, we propose a novel graph-constrained reasoning paradigm (GCR).

Graph-constrained Reasoning (GCR) directly incorporates KGs into the decoding process of
LLMs to achieve faithful reasoning. The overall framework of GCR is illustrated in Figure [2| (c),
which consists of three main components: 1) Knowledge Graph Trie Construction: building a
structural index of KG to guide LLM reasoning, 2) Graph-constrained Decoding: generating KG-
grounded paths and hypothesis answers using LL.Ms, and 3) Graph Inductive Reasoning: reasoning
over multiple paths and hypotheses to derive final answers.

4.2 KNOWLEDGE GRAPH TRIE CONSTRUCTION

Knowledge graphs (KGs) store abundant knowledge in a structured format. However, large language
models (LLMs) struggle to efficiently access and reason on KGs due to their unstructured nature. To
address this issue, we propose to convert KGs into knowledge graph Tries (KG-Tries), which serve
as a structured index of KGs to facilitate efficient reasoning on graphs using LLMs.

A Trie (a.k.a. prefix tree) (Wikipedia contributors| 2024} [Fredkin, |1960) is a tree-like data structure
that stores a dynamic set of strings, where each node represents a common prefix of its children.
Tries can be used to restrict LLM output tokens to those starting with valid prefixes (De Cao et al.,
2022; Xie et al., 2022 |Chen et al., |2022). The tree structure of Trie is an ideal choice for encoding
the reasoning paths in KGs for LLMs to efficiently traverse.

Given a KG G and a question ¢, we first retrieve paths VW, within L hops starting from entities
mentioned in the question {e,}. We adopt the breadth-first search (BFS) algorithm to retrieve rea-
soning paths, but it can be replaced with other efficient graph-traversing algorithms, such as random
walk (Xia et al.l|2019). The retrieved paths are formatted as sentences using the template shown in
Figure 8| The formatted sentences are then split into tokens by the tokenizer of LLM and stored as
a KG-Trie Cg. The overall process can be formulated as:

WZ :BFS(Q,{E(I},L), (3)
T. = Tokenizer(W,), 4)
Cg = Trie(T>), (5

where e, denotes the entities mentioned in the question, L denotes the maximum hops of paths, and
T- denotes the tokens of reasoning paths. The KG-Trie Cg is used as a constraint to guide the LLM
decoding process.
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By constructing KG-Trie for each question entity, we can enable efficient traversal of reasoning
paths in constant time (O(|W,]|)) without costly graph traversal (Sun et al., [2024). Moreover,
KG-Trie can be pre-constructed offline and loaded during reasoning for fast inference, or it can
be built on-demand to reduce pre-processing time. Detailed discussions on construction efficiency
and potential solutions for further improvements to scale into real-world applications is available
in Appendix [B] This significantly reduces the computational cost and latency of reasoning on KGs,
making it feasible for real-time applications.

Prompt Input
Please generate some reasoning paths in the KG starting from the topic entities to answer the question.
# Question: what is the name of justin bieber brother?

LLM Output
# Reasoning Path: <PATH> Justin Bieber — people.person.parents — Jeremy Bieber — peo-
ple.person.children — Jaxon Bieber </PATH>

# Answer: Jaxon Bieber

Figure 3: An example of the graph-constrained decoding. Detailed prompts can be found in Figure@
4.3 GRAPH-CONSTRAINED DECODING

Large language models (LLMs) have strong reasoning capabilities but still suffer from severe hal-
lucination issues, which undermines the trustworthiness of the reasoning process. To tackle this
issue, we propose graph-constrained decoding, which unifies the reasoning ability of LLMs with the
structured knowledge in KGs to generate faithful KG-grounded reasoning paths leading to answers.

Given a question ¢, we design an instruction prompt to harness the reasoning ability of LLMs to
generate reasoning paths w, and hypothesis answers a. To eliminate the hallucination during rea-
soning on KGs, we adopt the KG-Trie Cg as constraints to guide the decoding process of LLMs and
only generate reasoning paths that are valid in KGs, formulated as:

Graph-constrained decoding

|wz|
Py(a,w=lq) = Py(alg, wz) [] Po(w:,
N————

Regular decoding =

1, Iprefix(w,,.,, w), Jw, € W,,

wa) = { )
,else,

where w,; denotes the i-th token of the reasoning path w,, P, denotes the token probabilities
predicted by the LLM with parameters ¢, and Cg(w, |w.,,, ,) denotes the constraint function that
checks whether the generated tokens w,, , is a valid prefix of the reasoning path using KG-Trie.
After a valid reasoning path is generated, we switch back to the regular decoding process to generate
a hypothesis answer conditioned on the path.

q’wzl:i—l)cg(wzz le:i—l)? (6)

CQ (w%

To further enhance KG reasoning ability, we fine-tune a lightweight KG-specialized LLM with
parameters ¢ on the graph-constrained decoding task. Specifically, given a question ¢, the LLM is
optimized to generate relevant reasoning paths w, that are helpful for answering the question, then
provide a hypothesis answer a based on it, which can be formulated as:

|al |we|
L =E(gw,.a)~pg 108 Py(a, wz]q) = E |log [ | Ps(ailg, w=, ar:i1) [] Polw, g, w=,, ) |
i=1 j=1

3
where a; and W denote the i-th token of the answer a and the j-th token of the reasoning path w,
respectively.

The training data (¢, w,,a) € Dg consists of question-answer pairs and reasoning paths generated
from KGs. We use the shortest paths connecting the entities in the question and answer as the
reasoning path w, for training, where details can be found in Appendix [C] An example of graph-
constrained decoding is illustrated in Figure (3| where <PATH> and </PATH> are special tokens
to control the start and end of graph-constrained decoding. Experiment results in Section [5.2] show
that even a lightweight KG-specialized LLM (0.5B) can achieve satisfactory performance in KG
reasoning.
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The graph-constrained decoding method differs from retrieval-based methods by integrating a pre-
constructed KG-Trie into the decoding process of LLMs. This not only reduces input tokens, but
also bridges the gap between unstructured reasoning in LLMs and structured knowledge in KGs,
allowing for efficient reasoning on KGs regardless of its scale, which results in faithful reasoning
leading to answers. Additionally, experimental results in Section [5.4] demonstrate that KG-Trie can
integrate with new KGs on the fly, showcasing its zero-shot generalizability for reasoning on unseen
KGs without further training.

4.4 GRAPH INDUCTIVE REASONING

Graph-constrained decoding harnesses the reasoning ability of a KG-specialized LLM to generate a
faithful reasoning path and a hypothesis answer. However, complex reasoning tasks typically admit
multiple reasoning paths that lead to correct answers (Stanovich et al., 2000). Incorporating diverse
reasoning paths would be beneficial for deliberate thinking and reasoning (Evans},2010; Wang et al.|
2024])). To this end, we propose to input multiple reasoning paths and hypothesis answers generated
by the KG-specialized LLM into a powerful general LLM to leverage its inductive reasoning ability
to produce final answers.

The graph-constrained decoding seamlessly integrates into the decoding process of LLMs, allowing
it to be paired with various LLM generation strategies like beam-search (Federico et al.l |1995) to
take advantage of the GPU parallel computation. Thus, given a question, we adopt graph-constrained
decoding to simultaneously generate K reasoning paths and hypothesis answers with beam search in
a single LLM call, which are then inputted into a general LLM to derive final answers. The overall
process can be formulated as:

Zye = {a", w}iZ, = argtop-K Py(a, w:|q), ©)
K

PQ(A|q7ZK> ~ HP9<A|q7a'k7wlz€); (10)
k=1

where 6 denotes the parameters of the general LLM, Zx denotes the set of top-K reasoning paths
and hypothesis answers, and A denotes the final answers.

We follow the FiD framework (Izacard & Gravel [2021}; [Singh et al.| |2021) to incorporate multiple
reasoning paths and hypothesis answers to conduct inductive reasoning within one LLM call, i.e.,
Py(A|g, Zx ), where detailed prompts can be found in Figure The general LLM can be any
powerful LLM, such as ChatGPT (OpenAl, 2022), or Llama-3 (Metal, |2024), which can effectively
leverage their internal reasoning ability to reason over multiple reasoning paths to produce final
answers without additional fine-tuning.

5 EXPERIMENT

In our experiments, we aim to answer the following research questions: RQ1: Can GCR achieve
state-of-the-art reasoning performance with balances between efficiency and effectiveness? RQ2:
Can GCR eliminate hallucinations and conduct faithful reasoning? RQ3: Can GCR generalize to
unseen KGs on the fly?

5.1 EXPERIMENT SETUPS

Datasets. Following previous research (Luo et al. 2024} Sun et al.| 2024), we first evaluate the
reasoning ability of GCR on two benchmark KGQA datasets: WebQuestionSP (WebQSP) (Yih et al.,
2016) and Complex WebQuestions (CWQ) (Talmor & Berant, [2018)). Freebase (Bollacker et al.,
2008) is adopted as the knowledge graph for both datasets. To further evaluate the generalizability
of GCR, we conduct zero-shot transfer experiments on three new KGQA datasets: FreebaseQA
(Jiang et al.l |2019), CSQA (Talmor et al., 2019) and MedQA (Jin et al., [2021)). FreebaseQA adopts
the same Freebase KG. For CSQA, we use ConceptNet (Speer et al., 2017) as the KG, while for
MedQA, we use a medical KG constructed from the Unified Medical Language System (Yasunaga
et al.,[2021). The details of the datasets are described in Appendix

Baselines. We compare GCR with the 22 baselines grouped into three categories: 1) LLM reasoning
methods, 2) graph reasoning methods, and 3) KG-enhanced LLM reasoning methods. The detailed
baselines are listed in Appendix [D}
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Table 1: Performance comparison with different baselines on the two KGQA datasets.

Types ‘ Methods ‘ WebQSP cwQ

| Hit Fl | Hit Fl
Qwen2-0.5B (Yang et al.||2024a) 262 172 ] 125 11.0
Qwen2-1.5B (Yang et al.!/|2024a) 413 28.0 | 185 157
Qwen2-7B (Yang et al.[[2024a) 50.8 355|253 216
Llama-2-7B (Touvron et al.[|2023) 564 365 | 284 214
LLM Reasoning Llama-3.1-8B (Meta|[2024) 55.5 348 | 28.1 224
GPT-40-mini (OpenAl![2024a) 63.8 40.5 | 63.8 405
ChatGPT (OpenAl|[2022) 59.3 435 | 347 302
ChatGPT+Few-shot (Brown et al.|[2020) 68.5 38.1 | 38.5 28.0
ChatGPT+CoT (Wei et al.;|2022) 735 38.5 | 475 31.0
ChatGPT+Self-Consistency (Wang et al.|[2024) | 83.5 634 | 56.0 48.1
GraftNet (Sun et al.|[2018) 66.7 624 | 36.8 32.7
NSM (He et al.[|[2021) 68.7 62.8 | 47.6 424
Graph Reasoning | SR+NSM (Zhang et al.||2022) 68.9 64.1 | 502 47.1
ReaRev (Mavromatis & Karypis|2022) 764 709 | 529 4738
UniKGQA (Jiang et al.][|2022) 772 722 | 51.2 49.1

KD-CoT (Wang et al.|[2023) 68.6 52.5 | 55.7 -

EWEK-QA (Dehghan et al.|[2024) 71.3 - 52.5 -

ToG (ChatGPT) (Sun et al.[[2024) 76.2 - 57.6 -

ToG (GPT-4) (Sun et al.[|2024) 82.6 - 68.5 -

EffiQA (Dong et al.|[2024) 82.9 - 69.5

KGHIM | oG (Llama-2-7B) (Luo et al.] 2024} 857 708 | 62.6 562
GNN-RAG (Mavromatis & Karypis|[2024) 857 713 | 66.8 594
GNN-RAG+RA (Mavromatis & Karypis/|2024) | 90.7 73.5 | 68.7 60.4
GCR (Llama-3.1-8B + ChatGPT) 92.6 732 | 72.7 60.9
GCR (Llama-3.1-8B + GPT-40-mini) 922 741 | 75.8 61.7

Evaluation Metrics. We adopt Hit and F1 as the evaluation metrics following previous works (Luo
et al.,|2024; Sun et al.,|2024) on WebQSP and CWQ. Hit checks whether any correct answer exists in
the generated predictions, while F1 considers the coverage of all answers by balancing the precision
and recall of predictions. Because CSQA and MedQA are multiple-choice QA datasets, we adopt
accuracy as the evaluation metric.

Implementations. For GCR, we use the KG-Trie to index all the reasoning paths within 2 hops
starting from question entities. For the LLMs, we use a fine-tuned Llama-3-8B (Metal 2024) as
the KG-specialized LLM. We generate top-10 reasoning paths and hypothesis answers from graph-
constrained decoding. We adopt the advanced ChatGPT (OpenAl,2022)) and GPT-40-mini (OpenAl,
2024a)) as the general LLMs for inductive reasoning. The detailed hyperparameters and experiment
settings are described in Appendix [E]

5.2 RQI1: REASONING PERFORMANCE AND EFFICIENCY

Main Results. In this section, we compare GCR with other baselines on KGQA benchmarks to
evaluate the reasoning performance. From the results shown in Table |I| GCR achieves the best
performance on both datasets, outperforming the second-best by 2.1% and 9.1% in terms of Hit on
WebQSP and CWQ, respectively. The results demonstrate that GCR can effectively leverage KGs to
enhance LLMs and achieve state-of-the-art reasoning performance.

Among the LLM reasoning methods, ChatGPT with self-consistency prompts demonstrates the best
performance, which indicates the powerful reasoning ability inherent in LLMs. However, their per-
formances are still limited by the model size and complex reasoning required over structured data.
Graph reasoning methods, such as ReaRev, achieve competitive performance on WebQSP by ex-
plicitly modeling the graph structure. But they struggle to generalize across different datasets and
underperform on CWQ. In KG+LLM methods, both agent-based methods (e.g., ToG, EffiQA) and
retrieval-based methods (e.g., RoG, GNN-RAG) achieve the second-best performance. Neverthe-
less, they still suffer from inefficiency and reasoning hallucinations which limit their performance.
In contrast, GCR effectively eliminates hallucinations and conducts faithful reasoning by leveraging
the structured KG index and graph-constrained decoding.

Efficiency Analysis. To show the efficiency of GCR, we compare the average runtime, number of
LLM calls, and number of input tokens with retrieval-based and agent-based methods in Table [2]
For retrieval-based methods, we compare with dense retrievers (e.g., S-Bert (Reimers & Gurevych,
2019), BGE (Zhang et al., 2023), OpenAI-Emb. (OpenAl, [2024b)) and graph-based retrievers (e.g.,
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Table 2: Efficiency and performance comparison of different methods on WebQSP.

Types |  Methods | Hit | Avg. Runtime (s) | Avg. # LLM Calls | Avg. # LLM Tokens
S-Bert 66.9 0.87 1 293
BGE 72.7 1.05 1 357
Retrieval-based | OpenAI-Emb. | 79.0 1.77 1 330
GNN-RAG 85.7 1.52 1 414
RoG 85.7 2.60 2 521
- ToG 75.1 16.14 11.6 7,069
Agent-based ‘ EffiQA ‘ 829 ‘ 73 ‘ B
Ours | GCR | 926 | 3.60 [ 2 [ 231

GNN-RAG (Mavromatis & Karypis, 2024), RoG (Luo et al.l|2024)), which retrieve reasoning paths
from KGs and feed them into LLMs for reasoning answers. For agent-based methods, we compare
with ToG (Sun et al., 2024} and EfﬁQ (Dong et al.| 2024)), which heuristically search on KGs for
answers. The detailed settings are described in Appendix [E]

Dense retrievers are most efficient in terms of runtime and LLM calls as they convert all paths into
sentences and encode them as embeddings in advance. However, they sacrifice their accuracy in
retrieving as they are not designed to encode graph structure. Graph-based retrievers and agent-
based methods achieve better performance by considering graph structure; however, they require
more time and LLM calls. Specifically, the retrieved graph is fed as inputs to LLMs, which leads to
a large number of input tokens. Agent-based methods, like ToG, require more LLM calls and input
tokens as the question difficulty increases due to their iterative reasoning process. In contrast, GCR
achieves the best performance with a reasonable runtime and number of LLM calls. With the help
of KG-Trie, GCR explores multiple reasoning paths at the same time during the graph-constrained
decoding, which does not involve additional LLM calls or input tokens and benefits from the parallel
GPU computation with low latency. More efficiency analysis under different beam sizes used for
graph-constrained decoding can be found in parameter analysis.

Ablation Study. We first conduct an  Table 3: Ablation studies of GCR on two KGQA datasets.
ablation study to analyze the effec- ‘ WebQSP ‘ owa

. . . V 1
tiveness of the KG—SPCClallled LLM rnes | Fl  Precision Recall | F1  Precision Recall
and general LLM in GCR. AS ShOWN  Gep (Llama3.1-88 + ChatGPT) | 732 800 769 | 609  6L1 666
in Table Bl the full GCR achieves the GCRw/oKG-specialized LLM | 52.9 66.3 50.2 | 37.5 40.8 379
GCR w/o General LLM 570 580 701 | 394 328 643
best performance on both datasets.
By removing the KG-specialized LLM, we feed all 2-hop reasoning paths into the general LLM.
This results in a significant performance drop, indicating its importance in utilizing reasoning
ability to find relevant paths on KGs for reasoning. On the other hand, removing the gen-
eral LLM and relying solely on answers predicted by KG-specialized LLM leads to a notice-
able decrease in precision, due to noises in its predictions. This highlighting the necessity of
the general LLM for conducting inductive reasoning over multiple paths to derive final answers.

Different LLMs. We further analyze LLMs Table 4: Comparison of different LLMs used in
used for KG-specialized and general LLMs in  GCR on WebQSP.

Table[d] For KG-specialized LLMs, we directly Components | Learning Types |  Variants | Hit | FI
plug the KG-Trie into different LLMs to con- Llama-3.1-8B ‘ 2825 | 10.32

‘ Zero-shot ‘

. . Llama-3.1-70B | 38.53 | 12.53
duct graph-constrained decoding and use Chat- Llama i ] ;(; 32 ;31 = ?9
. ama-Js.1- . .

GPT as the general LLM for final reasoning. KG-specialized | FeWshot \ Llama-3.1-70B \ 413 \ 13.14
For general LLMs, we adopt the same reason- LLM Qwen2-0.5B | 87.48 | 60.03
ing paths generated by KG-specialized LLMs Finetuned 83225%3 el Byl
to different LLMs to produce final answers. Llama-2-7B | 9255 | 73.23
For zero-shot and few-shot learning, we adopt Ll"‘ma';';SB :?Z: 2;3
the original LLMs without fine-tuning, whose en 2B e | aoaa | ST
prompt templates can be found in Figures @ General LLM Zero-shot Llama-3.1-70B | 90.24 | 71.19

ChatGPT 92.55 | 73.23
and [I1] GPT-do-mini | 92.23 | 74.05

Results in Table ] show that a lightweight LLM (0.5B) can outperform a large one (70B) after fine-
tuning, indicating the effectiveness of fine-tuning in enhancing the ability of LLMs and make them
specialized for KG reasoning. However, the larger LLMs (e.g., 7B and 8B) still perform better than
smaller ones, highlighting the importance of model capacity in searching relevant reasoning paths

!Since there is no available code for EffiQA, we directly copy the results from the original paper.
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on KGs. Similar trends are observed in general LLMs where larger models (e.g., GPT-40-mini and
ChatGPT) outperform smaller ones (e.g., Qwen-2-7B and Llama-3.1-8B), showcasing their stronger
inductive reasoning abilities. This further emphasizes the need of paring powerful general LLMs
with lightweight KG-specialized LLMs to achieve better reasoning driven by both of them.

Parameter Analysis. We first analyze the impact of dif- BN Generation Time (s) Precision
ferent beam sizes K for graph-constrained decoding on —o— Hit - Recall
the performance of GCR. We conduct the experiments on —4- Fl

WebQSP with different beam sizes of 1, 3, 5, 10, and 20.
The results are shown in Figure[d We observe that the hit
and recall of GCR increase with the beam size. Because,
with a larger beam size, the LLMs can explore more rea-
soning paths and find the correct answers. However, the
F1 score, peaks when the beam size is set to 10. This is
because the beam size of 10 can provide a balance be-
tween the exploration and exploitation of the reasoning 13 5 10 20

paths. When the beam size is set to 20, the performance = Graph-constrained decoding beam size K
drops due to the increased complexity of the search space, Elgure 4: Parameter analysis of beam
which may introduce noise and make the reasoning less S12€ K.

reliable. This also highlights the importance of using general LLMs to conduct inductive reason-
ing over multiple paths to disregard the noise and find the correct answers. Although the graph-
constrained decoding benefits from the parallel GPU computation to explore multiple reasoning
paths at the same time, the time cost still slightly increases from 1.4s to 7.8s with the increase of
the beam size. Thus, we set the beam size to 10 in the experiments to balance the performance and
efficiency. We also investigate the impact of L hops paths used for KG-Trie construction in Ap-
pendix [F1] The results show that GCR can achieve a good balance between reasoning performance
and efficiency by setting L = 2 and K = 10.

o]

Generation Time (s)
B
Answer Coverage (%)

5.3 RQ2: HALLUCINATION ELIMINATION AND FAITHFUL REASONING

In this section, we investigate the effectiveness of KG constraints in eliminating hallucinations and
ensuring faithful reasoning. We first compare the difference of answer accuracy (Hit) and faithful
reasoning ratio by removing KG constraints in graph-constrained decoding. The faithful reasoning
ratio is calculated as the percentage of faithful reasoning in correctly predicted answers. We define
a reasoning as faithful where the generated reasoning path can be found in KGs, and vice versa.

From the Figure El, we can observe that GCR Faithful Reasoning Error Reasoning

achieves the 100% faiFhfql reasoning ratio on WebQSP cwQ

both datasets, which indicates that GCR can

eliminate hallucinations and ensure faithful rea- iz 60 1 100.0% 5 601 100.0%

soning during reasoning on KGs. In contrast, 5 4 624% | 5 40 48.1%

when removing KG constraints, both the an- 2 20 4 2 20 -

swer accuracy and faithful reasoning decrease < <

significantly on WebQSP. This shows that KG 0 T — 0 T —
GCR GCR w/o constraint GCR GCR w/o constraint

constraints not only improve reasoning by re-

ducing the searching space, but also play a cru- Figure 5: Analysis of performance and reasoning
cial role in preventing hallucinations for accu- errors in GCR.

rate reasoning. While the answer hit rate on CWQ remains almost unchanged, the ratio of faithful
reasoning still decreases to 48.1%. This implies that even if LLMs can produce correct answers, the
reasoning process is still prone to hallucinations and cannot be trusted, which is aligned with the
findings in previous studies (Nguyen et al.| [2024).

Case Study. We further provide a case study to illustrate the effectiveness of GCR in eliminating
hallucinations and ensuring faithful reasoning. As shown in Table[5] the first case demonstrates that,
without constraints, the model generates an incorrect reasoning path leading to an incorrect answer
by hallucinating facts such as “Mabel Rose Ferguson is the child of Naill Ferguson and her parent
is Alyssa Mastromonaco”. In contrast, GCR generates a faithful reasoning path grounded in KGs
that “Naill Ferguson has a child named Thomas Ferguson who has a parent named Ayaan Hirsi Ali”.
Based on the paths we can reason the correct answer to the question is “Ayaan Hirsi Ali”. In the
second case, although the LLM answers the question correctly, the generated reasoning path is still
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Table 5: Examples of the faithful reasoning conducted by GCR. Red denotes the incorrect reasoning
paths and answers, while bold denotes the correct paths and answers.

Case 1: Incorrect answers and hallucinated reasoning paths without constraints.

Question ‘ ‘Who is niall ferguson ’s wife?

Answer | Ayaan Hirsi Ali

# Reasoning Path: Niall Ferguson — people.person.children — Mabel Rose Ferguson —
people.person.parents — Alyssa Mastromonaco
#Answer: Alyssa Mastromonaco

GCR w/o constraint

# Reasoning Path: Niall Ferguson — people.person.children — Thomas Ferguson — peo-
ple.person.parents — Ayaan Hirsi Ali
#Answer: Ayaan Hirsi Ali

GCR

Case 2: Correct answers but hallucinated reasoning paths without constraints.

Question | Where is jamarcus russell from?
Answer | Mobile

# Reasoning Path: JaMarcus Russell — people.person.place_of_birth — Tampa
#Answer: Mobile, Alabama

# Reasoning Path: JaMarcus Russell — people.person.place_of_birth — Mobile
#Answer: Mobile

GCR w/o constraint

GCR ‘

hallucinated with incorrect facts. Conversely, GCR conducts faithful reasoning with both correct
answer and reasoning path. These results demonstrate that GCR can effectively eliminate hallucina-
tions and ensure faithful reasoning by leveraging KG constraints in graph-constrained decoding.

5.4 RQ3: ZERO-SHOT GENERALIZABILITY TO UNSEEN KGS

In GCR, the knowledge graph is converted into a con- Table 6: Zero-shot transferability to
straint which is plugged into the decoding process of other KGQA datasets.
LLMs. This allows GCR to generalize to unseen KGs

X . . X Model FreebaseQA  CSQA  MedQA
without further training. To evaluate the generalizabil- ChaiGPT o5 7 o
ity of GCR, we conduct zero-shot transfer experiments on  Gcr (ChatGPT) 92 85 66
three unseen KGQA datasets: FreebaseQA (Jiang et al.| GPT-4o-mini 89 91 75
2019), CSQA (Talmor et al.,2019) and MedQA (Jinet al., GCR (GPT-4o-mini) 94 94 79

2021). Specifically, we use the same KG-specialized LLM (Llama-3.1-8B) trained on Freebase as
well as two general LLMs (ChatGP, GPT-40-mini). During reasoning, we directly plug the KG-Trie
constructed from Freebase, ConceptNet and medical KGs into the GCR to conduct graph-constrained
decoding without additional fine-tuning. The results are shown in Table[6]

From the results, it is evident that GCR outperforms ChatGPT and GPT-40-mini in zero-shot per-
formance on both datasets. Specifically, GCR shows 8.2% and 7.6% increase in accuracy on Free-
baseQA and CSQA, respectively. This highlights the strong zero-shot generalizability of its graph
reasoning capabilities to unseen datasets and KGs without additional training. However, the im-
provement on MedQA is not as significant as that on CSQA. We hypothesize this difference may
be due to LLMs having more common sense knowledge, which aids in reasoning on common sense
knowledge graphs effectively. On the other hand, medical KGs are more specialized and require
domain-specific knowledge for reasoning, potentially limiting the generalizability of our method.

6 CONCLUSION

In this paper, we introduce a novel LLM reasoning paradigm called graph-constrained reasoning
(GCR) to eliminate hallucination and ensure faithful reasoning by incorporating structured KGs. To
bridge the unstructured reasoning in LLMs with the structured knowledge in KGs, we propose a
KG-Trie to encode paths in KGs using a trie-based index. KG-Trie constrains the decoding process
to guide a KG-specialized LLM to generate faithful reasoning paths grounded in KGs. By impos-
ing constraints, we can not only eliminate hallucination in reasoning but also reduce the reasoning
complexity, contributing to more efficient and accurate reasoning. Last, a powerful general LLM is
utilized as a complement to inductively reason over multiple reasoning paths to generate the final
answer. Extensive experiments demonstrate that GCR excels in faithful reasoning and generalizes
well to reason on new KGs without additional fine-tuning.
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ETHICS STATEMENT

Our research focuses exclusively on scientific questions, with no involvement of human subjects,
animals, or environmentally sensitive materials. Therefore, we foresee no ethical risks or conflicts
of interest. We are committed to maintaining the highest standards of scientific integrity and ethics
to ensure the validity and reliability of our findings.

REPRODUCIBILITY STATEMENT

Our model is clearly formalized in the main text for clarity and comprehensive understanding. De-
tailed implementation, including dataset information, baselines, experimental settings, and model
configurations, is provided in Appendices|C|to[E] The experimental settings and baselines have been
rigorously checked for fair comparison. Code and fine-tuned model weights will be made public
upon acceptance.
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A DETAILED RELATED WORK ON KG-ENHANCED LLMSs

Knowledge graph (KG), as a structured representation of factual knowledge, has been widely used
to enhance the factual knowledge and reasoning abilities of LLMs 2024) by reducing the
hallucinations (Nguyen et al.| 2024} [Dhuliawala et al.; [Lv et al} 2024)). In this section, we provide
a detailed review of the related work on KG-enhanced LLMs, which can be categorized into two
paradigms: retrieval-based and agent-based methods.

Retrieval-based Methods. Retrieval-based methods retrieve relevant facts from KGs with an ex-
ternal retriever and then feed them into the inputs of LLMs for reasoning. These methods aim to
provide LLMs with external knowledge to enhance their reasoning abilities. For example, KD-CoT
(Wang et al}, 2023)) retrieves relevant knowledge from KGs to generate faithful reasoning plans for
LLMs. EWEK-QA (Dehghan et all, 2024) enriches the retrieved knowledge by searching from
both KGs and the web. RoG (Luo et al., [2024) proposes a planning-retrieval-reasoning framework
that retrieves reasoning paths from KGs to guide LLMs conducting faithful reasoning. GNN-RAG
(Mavromatis & Karypis| 2024) adopts a lightweight graph neural network to effectively retrieve
from KGs. GNN-RAG+RA (Mavromatis & Karypis, [2024) combines the retrieval results of both
RoG and GNN-RAG to enhance the reasoning performance. However, these methods may suffer
from the retrieval accuracy, which limits the reasoning performance.

Agent-based Methods. Agent-based methods treat LLMs as agents that iteratively interact with
KGs to find reasoning paths and answers. For example, StructGPT 2023)) treats LLMs
as agents to interact with KGs to find a reasoning path leading to the correct answer. ToG
extends the method and conducts reasoning on KGs by exploring multiple paths and
concludes the final answer by aggregating the evidence from them. EffiQA (Jiang et all [2024)
proposes an efficient agent-based method to reason on KGs. Plan-on-Graph (Chen et al.)) proposes
an adaptive planing paradigm to decompose the question into sub-tasks and guide the LLMs to
reason on KGs. Debate on Graph asks LLM as agents to debate with each other
to gradually simplify complex questions and find the correct answers. Although these methods are
effective, they face high computational costs and challenges in designing the interaction process.

B KG-TRIE CONSTRUCTION

KG-Trie converts KG structures into the format that LLMs can handle. It can been incorporated
into the LLM decoding process as constraints, allowing for faithful reasoning paths that align with
the graph’s structure. The KG-Trie can be either pre-computed for fast inference or constructed
on-demand to minimize pre-processing time.
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B.1 CONSTRUCTION STRATEGIES

Offline Construction. The KG-Trie can be pre-computed offline, allowing them to be used during
inference at no additional cost. Instead of constructing the KG-Trie for all entities in the KG, we
could only construct the KG-Trie for certain entities. We can select the entities based on their
popularity, importance, or the frequency of their occurrence in the questions.

On-demand Construction. Alternatively, we can construct the KG-Trie on-demand. When a ques-
tion is given, we first identify the question entities with named entity recognition (NER) tools. Then,
we retrieve the question-related subgraphs around the question entities from the KGs. Finally, we
construct a question-specific KG-Trie based on the retrieved subgraphs. The KG-Trie is then used
to guide the LLMs to reason on the KGs.

Dynamic Cache for KG-Trie Construction. Users can also develop their own strategies to balance
pre-processing and inference overhead. For example, we can maintain a dynamic cache to store the
KG-Trie for the most frequently asked questions, as shown in Figure [f} When a new question is
given, they first check whether the KG-Trie for the question is in the cache. If it is, they directly
use the KG-Trie for inference. Otherwise, they construct a question-specific KG-Trie on-demand.
The cache can be updated periodically to remove the least frequently used KG-Trie and add the new
ones.

Q: Who is the
president of
Australia?

Enti ~ "
T'Y. @ KG-Trie Graph-constrained
Recognition R i

A =

Q: Who is the
spouse of the ex-

Australia

president of USA? JV USA Return K6-Trie
User Queries KG-Trie Cache Cache KG-Trie Cache
Key Value Update Key Value
»| Australia | Triel — f------- »| Australia | Triel
China Trie 2 China Trie 2
Initialization - ) | USA | Trie3 ) Cache
With Popular Management
Entities USA Graph KG-Trie
Retrieval Construction
K6 storage @—)
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Figure 6: The illustration of dynamic cache for KG-Trie construction.

B.2 TIME AND SPACE COMPLEXITY ANALYSIS

The time and space complexity for KG-Trie construction is affordable and can be easily improved in
industry-level applications to support billions of scale graphs. To support this, we provide detailed
theoretical analysis and empirical evidence. In experiments, we adopt the breadth-first search, whose
complexities are:

B.2.1 THEORETICAL ANALYSIS

Time Complexity. Constructing the KG-Trie involves a BFS traversal to explore paths up to a
maximum length of L starting from certain entities. The time complexity of this traversal is O(EL),
where F is the average number of edges per entity, and L is the maximum path length. BFS ensures
that all reachable paths up to length L are considered. However, BFS can be replaced with other

efficient graph-traversing algorithms, such as random walk to further improve
efficiency.
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Space Complexity. The space complexity of the KG-Trie depends on the number of unique paths
and their tokenized representations. In the worst case, the space complexity is O(EL x T)), where
T represents the average number of tokens per path. Trie structures are efficient for storing shared
prefixes, which reduces redundancy and optimizes memory usage. Moreover, it supports efficient
traversal of reasoning paths in constant time.

B.2.2 EMPIRICAL ANALYSIS

We have provided the average BFS running time and space consumption of the KG-Trie construction
to demonstrate its efficiency. The system settings are illustrated at Table[7]

Table 7: System settings overview for efficiency experiments.

System Setting | Specification

CPU | Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz
Memory | 32G

BFS Implementation \ Virtuoso SPARQL

Space Storage | Pickle

In the experiment, we build the KG-Trie for all question entities of WebQSP dataset and measure
the average running time and space consumption. The BFS is executed on the Freebase KG stored
in a Virtuoso database (Erling & Mikhailov, 2009). We retrieve the L-hop paths, then save the
constructed KG-Trie with Pickle. The statistics show that both running time and space usage are
acceptable when L <= 3, which highlights efficiency in KG-Trie construction. Although a larger
hop can lead to better coverage of the possible answer, it would significantly increase the time
and space complexity. Thus, we set hops to 2 or 3 in experiments to balance between efficiency and
effectiveness. Notably, time can be further reduced by utilizing multi-threading. Space consumption
can be optimized by storing data in a database.

B.3 STRATEGIES FOR OPTIMIZING EFFICIENCY

We provide several strategies that can be used to further speed up the KG-Trie construction.

Parallel Processing: As the KG-Trie is independently constructed for each entity, it can be easily
scaled with parallel processing. We provide the total running time of constructing 2-hop KG-Trie of
all question entities in WebQSP dataset in Table [9]to show the improvement of parallel processing.
It shows that the efficiency can be greatly improved with parallel processing. This parallel nature
enables it to be executed on distributed computing systems such as Hadoop and Spark in real-world
applications.

Efficiency Graph Traversal Algorithms: The BFS or DFS enumerates all the paths around the
entities which might lead to computational overhead. However, they can be easily replaced with
other graph traversal algorithms, such as random walk, to reduce time complexity.

Combination with Graph Retrieval Algorithms: To reduce the overhead of graph traversal, we
can construct the KG-Trie on the question-related subgraphs. To this end, our methods can be
combined with other graph retrieval algorithms, such as GNN-RAG (Mavromatis & Karypis, [2024)
and RoG [2024). They would retrieve meaningful and relevant paths from KGs to speed
up the KG-Trie construction. However, the performance might be limited by the retrieval accuracy.

Table 8: Average running time and space utilization of the KG-Trie construction.

Hop Avg. Running Time (s) Space (Mb)

L=1 0.0058 0.4
L=2 0.0133 0.5
L=3 0.0219 2.5
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Table 9: Total running time and improvement under different processing threads.

Total time (s) Total Time (min) Improvement

Thread=1 4.03 100%
Thread=4 3.21 126%
Thread=10 2.31 174%
Thread=20 1.92 210%

Reduce Entities Number: Instead of constructing the KG-Trie for all entities in the KG, we could
only construct the KG-Trie for certain entities. We can select the entities based on their popularity,
importance, or the frequency of their occurrence in the questions.

B.4 REAL-WORLD APPLICABILITY

To support real-world applications with billion-scale KGs, KG-Trie construction can be imple-
mented in industrial-level settings. For instance, billion-scale KGs can be stored in scalable graph
databases like Neo4j. The parallel nature of KG-Trie construction allows it to be executed on dis-
tributed computing systems such as Hadoop and Spark, enabling pre-computation and offline stor-
age. The constructed KG-Trie can then be stored in a database and loaded for inference without
additional computation, facilitating real-time responses. To reduce the overhead in pre-processing,
we can design a cache mechanism that only builds KG-Trie for popular accessed entities and caches
them for faster inference. The illustration of the framework can be found in Figure[6]

C DATASETS

KGQA Datasets. To compare the reasoning performance with existing methods, we use two bench-
mark KGQA datasets in this study: WebQuestionSP (WebQSP) (Yih et al., 2016)) and Complex We-
bQuestions (CWQ) (Talmor & Berant, |2018)). To ensure fairness, we adopt the same train and test
splits as previous works (Jiang et al., 2022} [Luo et al., 2024). Details of the datasets can be found in
Table

Both WebQSP and CWQ can be reasoned using Freebase KGﬁ (Bollacker et al., 2008). To reduce
the size of the KGs, we use a subgraph of Freebase by extracting all triples that start from question
entities within the maximum reasoning hops provided by previous worksﬂ (Luo et al., [2024). The
statistics of the knowledge graphs are shown in Table[12]

Fine-tuning Datasets. To enhance the KG reasoning ability of LLMs, we construct fine-tuning
datasets by generating reasoning paths from the KGs. Specifically, we adopt the training split of
WebQSP and CWQ, which contain 2,826 and 27,639 question-answer pairs, respectively. For each
question, we find all the shortest reasoning paths on KGs that connect the question entity to the
answer entity. We then convert the reasoning paths into formatted strings and pair them with the
question-answer pairs with the template shown in Figure 0] to form the fine-tuning datasets. Since
there could be multiple reasoning paths for a question, we generate multiple training instances paired
with different reasoning paths for each question-answer pair. The fine-tuning datasets contain 28,307
and 181,602 question-reasoning path-answer triples for WebQSP and CWQ, respectively. The statis-
tics of the fine-tuning datasets are shown in Table[T1]

Zero-shot Generalization Datasets. To evaluate the transferability of GCR, we further select three
new KGQA datasets: FreebaseQA (Jiang et al.l 2019), CommonsenseQA (CSQA) (Talmor et al.,
2019) and MedQA-USMLE (MedQA) (Jin et al., 2021)).FreebaseQA is an open-ended question
answering dataset. CSQA is a 5-way multiple choice QA dataset that involves reasoning with com-
monsense knowledge. MedQA is a 4-way multiple choice QA task that requires biomedical and
clinical knowledge. FreebaseQA adopts the same Freebase KG used in WebQSP and CWQ. For
CSQA, we use the ConceptNet (Speer et al., 2017), which is a general-purpose KG that contains

https://github.com/microsoft/FastRDFStore
*WebQSP: https://huggingface.co/datasets/rmanluo/RoG-webgsp, CWQ: https://
huggingface.co/datasets/rmanluo/RoG-cwqg
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commonsense knowledge. For MedQA, we use a medical KG constructed from the Unified Med-
ical Language System (Yasunaga et al., 2021). The statistics of the knowledge graphs are shown
in Table[I2] We respectively select 100 questions from each dataset. For each question, following
previous studies (Feng et al., 2020} [Yasunaga et al., 2021)), a 2-hop subgraph is extracted from the
KGs to form the zero-shot generalization datasets.

Table 10: Statistics of datasets.

Dataset | Dataset Statistics | Statistics of Answer Numbers
| #Train ~ #Test | #Ans=1 2>#Ans<4 5>#Ans<9 #Ans> 10
WebQSP | 2,826 1,628 51.2% 27.4% 8.3% 12.1%
CWQ 27,639 3,531 70.6% 19.4% 6% 4%

Table 11: Statistics of fine-tuning datasets for graph-constrained decoding.

Total WebQSP CWQ
209,909 28,307 181,602

Table 12: Statistics of constructed knowledge graphs.

KG #Entities  #Relations  #Triples
Freebase 2,566,291 7,058 8,309,195
ConceptNet 799,273 17 2,151,303
MedKG 9,958 15 49,974

D BASELINES

We compare GCR with the 22 baselines grouped into three categories: 1) LLM reasoning methods,
2) graph reasoning methods, and 3) KG-enhanced LLM reasoning methods. The details of each
baseline are described as follows.

LLM reasoning methods only rely on LLMs for reasoning without utilizing external KGs. We
include both the vanilla LLMs with different sizes and the LLMs with advanced reasoning mecha-
nisms. Specifically, we consider the following baselines:

* Qwen2-0.5B/1.5B.7B (Yang et al.,|2024a) provides a series of pre-trained LLMs with dif-
ferent sizes, including 0.5B, 1.5B, and 7B parameters.

* Llama-2-7B (Touvron et al., 2023) is a large-scale LLM pre-trained on a diverse range of
tasks.

* Llama-3.1-8B (Meta, |[2024) is the updated version of Llama-2 with more powerful reason-
ing capabilities.

* ChatGPT (OpenAl, |2022)) is a powerful closed-source LLM that could follow instructions
to conduct complex tasks.

* GPT-40-mini (OpenAll 2024a) is the new flagship model of OpenAl that could reason
across different modalities and tasks.

» Few-shot prompt (Brown et al., 2020) is a few-shot learning method that provides LLMs
with a few examples in the prompts to conduct reasoning.

* CoT (Wei et al.,[2022) is a chain-of-thought reasoning method that prompts LLMs to gen-
erate a chain of reasoning steps.

* Self-consistency (Wang et al., 2024) generates multiple reasoning paths and selects the
most consistent answer.
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Graph reasoning methods focus on reasoning on KGs using graph neural networks (GNNs) (Wu
et al.,[2020) or graph-based reasoning mechanisms. We include the following baselines:

* GraftNet (Sun et al., 2018) is a graph-based reasoning method that retrieves relevant sub-
graphs from KGs with entity linking.

* NSM (He et al., 2021) utilizes the sequential model to mimic the multi-hop reasoning
process on KGs.

* SR+NSM (Zhang et al.l [2022) proposes a relation-path retrieval to retrieve subgraphs for
multi-hop reasoning.

* ReaRev (Mavromatis & Karypis, 2022) is a GNN-based method that reasons on KGs by
considering complex graph information.

* UniKGQA (Jiang et al.|,[2022) is a unified framework that combines graph-based reasoning
of GNNs and LLMs for KGQA.

KG-enhanced LLM reasoning methods incorporate KGs to enhance the reasoning abilities of
LLMs which can be further divided into retrieval-based and agent-based paradigms. We include the
following baselines:

Retrieval-based methods retrieve relevant facts from KGs with an external retriever and then feed
them into the inputs of LLMs for reasoning:

* KD-CoT (Wang et al., 2023) retrieves relevant knowledge from KGs to generate faithful
reasoning plans for LLMs.

* EWEK-QA (Dehghan et al., [2024) enriches the retrieved knowledge by searching from
both KGs and web.

* RoG (Luo et al.l 2024) proposes a planning-retrieval-reasoning framework that retrieves
reasoning paths from KGs to guide LLMs conducting faithful reasoning.

* GNN-RAG (Mavromatis & Karypisl [2024) adopts a lightweight graph neural network to
effectively retrieve from KGs.

* GNN-RAG+RA (Mavromatis & Karypis}, 2024)) combines the retrieval results of both RoG
and GNN-RAG to enhance the reasoning performance.

Agent-based methods treat LLMs as agents that iteratively interact with KGs to find reasoning paths
and answers:

* ToG (Sun et al., |2024) conducts the reasoning on KGs by exploring multiple paths and
concludes the final answer by aggregating the evidence from them.

» EffiQA (Jiang et al., |2024) proposes an efficient agent-based method to reason on KGs.

E IMPLEMENTATION DETAILS AND EXPERIMENT SETTINGS

In this section, we will detail the implementation of GCR as well as the experiment settings.

Fine-tuning KG-specialized LL.Ms. We fine-tune several lightweight LL.Ms ranging from 0.5B to
8B (Yang et al., [2024a; Touvron et al.| 2023; Meta, 2024) on the fine-tuning datasets for 3 epochs.
The batch size is set to 4 and the learning rate is set to 2e-5. We use the cosine learning rate scheduler
policy with the warmup ratio set to 0.03. The training is conducted on 2 A100-80G GPUs for each
model. The training time and memory usage are shown in Table[T3]

KGQA Experiment Settings. The KGQA experiment shown in Table |1| aims to compare the rea-
soning performance of GCR with existing methods. For our method, we use the fine-tuned Llama-
3.1-8B as KG-specialized LLMs, the general LLM is selected as ChatGPT and GPT-40-mini. The
KG-Trie is constructed from the subgraph of Freebase KGs. The maximum reasoning hops are set
to 2 for both WebQSP and CWQ. The beam size is set to 10 for graph-constrained decoding. For
vanilla LLMs baselines, we use the zero-shot prompting to ask the models to answer the questions.
For other baselines, we strictly check whether the original papers follow the same settings and copy
the results for fair comparison.
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Table 13: Training time and memory usage for different KG-specialized LLMs.

Model Time  Mem. Usage per GPU
Qwen2-0.5B 3.47h 10G
Qwen2-1.5B 4.11h 25G
Qwen2-7B 14.37h 81G
Llama-2-7B 13.93h 80G
Llama-3.1-8B  14.52h 85G

Efficiency Analysis Settings. The efficiency analysis shown in Table |2| aims to compare the effi-
ciency and performance of different methods on WebQSP. For GCR, we use the same settings as the
KGOQA experiment. For dense retriever methods (e.g., S-Bert (Reimers & Gurevych, [2019), BGE
(Zhang et al., 2023)), OpenAI-Emb. (OpenAll |2024b)), we first search all paths within 2-hops on the
KGs which are formatted as sentences with the template in Figure[8] Then, we adopt the embedding
model to encode the path sentences as embeddings which are stored in a vector database. During in-
ference, we retrieve 10 paths from the vector database with the question as query and feed them into
the LLMs for reasoning. For GNN-RAG (Mavromatis & Karypis,|2024) and RoG (Luo et al.,|2024),
we strictly follow the original papers to retrieve reasoning paths and conduct the experiments. For
agent-based methods (e.g., ToG (Sun et al.| [2024)), we use the same settings detailed in the original
papers. For EfiQA (Jiang et al.,|2024)), since there is no available code, we directly copy the results
from the original paper.

The average runtime is measured by the time taken to answer the questions. The average number
of LLM calls is the number of times the LLMs are called to answer the questions. The average
number of LLM tokens is the number of tokens inputted into LLMs to answer the questions, such
as questions and retrieved reasoning paths. The experiments are conducted on a single A100-80G
GPU for each method.

Ablation Study. In ablation study, we first try to analyze the effectiveness of different components in
GCR. We conduct the experiments on WebQSP and CWQ datasets. By removing the KG-specialized
LLM (w/o KG-specialized LLM), we search all the 2-hop paths starting from question entities and
feed them into the general LLMs for reasoning. By removing the general LLM (w /o general LLM),
we directly use the hypothesis answers generated by the KG-specialized LL.Ms as the final answers.

Different LLLMs. We also analyze the different LLMs used for KG-specialized LLMs and general
LLMs on WebQSP. For KG-specialized LLMs, we first use the vanilla LLMs with different learning
types (i.e., zero-shot and few-shot prompting). For zero-shot prompting, we directly ask the models
to generate the reasoning paths with the constraints. For few-shot prompting, we provide the models
with a few examples in the prompts to conduct path generation. Detailed prompts can be found in
Figures[9|and[T1] Then, we fine-tune the lightweight LLMs with different sizes (0.5B to 8B) on the
graph-constrained decoding task. For general LLMs, we use the vanilla LLMs to directly conduct
reasoning over multiple reasoning paths. The detailed reasoning prompts can be found in Figure[T0}

Parameter Analysis. We first analyze the performance of GCR with different beam sizes for graph-
constrained decoding. We conduct the experiments on the WebQSP datasets with beam sizes of 1, 3,
5, 10, and 20. Then, we analyze the performance of GCR with different hops of paths encoded in the
KG-Trie. We conduct the experiments on the WebQSP datasets with maximum paths hops ranging
from 1 to 4.

Faithful Reasoning Analysis. We investigate the effect of the KG constraints on ensuring faithful
reasoning. We adopt the fine-tuned Llama-3.1-8B as KG-specialized LLMs. Then, we compare
the faithful reasoning rate and answer hit of GCR with and without the KG constraints in graph-
constrained decoding. The faithful reasoning rate is the percentage of the faithful reasoning in the
correctly predicted answers. A reasoning path is considered faithful if it can be found in the KGs,
and vice versa. The answer hit is the percentage of the correct answers in the predictions.

Zero-shot Generalization Analysis. We evaluate the transferability of GCR on two zero-shot gen-
eralization datasets: CSQA and MedQA. We use the fine-tuned Llama-3.1-8B as KG-specialized
LLMs and ChatGPT as well as GPT-40-mini as the general LLMs. The KG-Trie is constructed
from the subgraph of ConceptNet and MedKG. The maximum reasoning hops are set to 2 for both
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datasets. The beam size is set to 10 for graph-constrained decoding. For vanilla LLMs baselines
(i.e., ChatGPT and GPT-40-mini), we use the zero-shot prompting to ask the models to answer the
questions.

F ADDITIONAL EXPERIMENT RESULTS

F.1 PERFORMANCE ON DIFFERENT HOPS OF KG-TRIE

In this section, we analyze the impact of different hops of reasoning paths on the performance of
GCR. We conduct the experiments on WebQSP with different maximum hops of reasoning paths
encoded in the KG-Trie. The results are shown in Figure We observe that the performance
of GCR increases with the number of hops of reasoning paths. The performance peaks when the
maximum hops of reasoning paths are set to 2. This is because the 2-hop paths can provide sufficient
information for the LLMs to conduct reasoning. When the hops are set to 3 or 4, the performance
drops due to the increased complexity of the reasoning paths, which may introduce noise and make
the reasoning less reliable. Additionally, the size of the KG-Trie slightly increases from 0.5 MB to
7.5 MB with the increase of the hops from 1 to 4. This indicates that the KG-Trie can be efficiently
constructed with a small size and guide the LLMs to reason on graphs effectively.

Hl Avg. KG-Trie size (MB) Precision
—e— Hit M- Recall
-4- Fl

Avg. KG-Trie size (MB)
Answer Coverage (%)

KG-Trie Path Length L

Figure 7: Parameter analysis of path hop L for KG-Trie construction on WebQSP.

F.2 PERFORMANCE ON MULTI-PATH REASONING

GCR could take advantage of the GPU parallel computation to conduct multi-path explorations on
KGs with beam-search. It could generate simultaneously generate K reasoning paths and hypothesis
answers with beam search in a single LLM call. The effectiveness of different K is analyzed in
Figure [f] where larger K can lead to a better recall of the answers. In addition, we compare the F1
performance under different numbers of ground-truth answers with RoG, which requires reasoning
across multiple reasoning paths to find all answers. From the results shown in Table [T4 we can
observe that GCR exhibits better performance in exploring multiple paths for reasoning.

Table 14: F1 comparison against RoG under different numbers of ground-truth answers.

Methods | WebQSP | CWQ
\#Ans:l 2<=#Ans <=4 5<=#Ans<=9 #Ans>=lO\#Ans=1 2<=#Ans <=4 5<=#Ans<=9 #Ans>=10
GCR 71.31 78.14 83.47 63.20 55.80 64.08 62.57 55.32
RoG 67.89 79.39 75.04 58.33 56.9 53.73 58.36 43.62
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F.3 PERFORMANCE ON MULTI-HOP REASONING

To demonstrate the effectiveness of multi-hop reasonings. We illustrate the F1 performance under
different hops. From results shown in Table[T5] we can observe that GCR also outperforms baselines
in multi-hop reasoning.

Table 15: F1 comparison against RoG under different hops of reasoning.

Methods ‘ WebQSP CWQ
| Thop 2hop >=3hop | lhop 2hop >=3hop
GCR 75.05 7272 - 64.54 62.44 43.82
RoG 77.03 64.86 - 62.88 58.46 37.82

F.4 ANALYSIS OF THE FAILURE CASES

Although GCR achieves 100% trustful reasoning, there are still some failure cases due to the noise
and redundant information in KGs. Two failure cases are presented in Table @ In the first case,
the generated path is unrelated to the question. GCR provides a valid reasoning path that describes
Anna Bligh’s political position, which lacks information about her electoral district. Although LLMs
exhibit strong reasoning ability, they still cannot always find meaningful paths, resulting in incorrect
answers. In the second case, the KG is incomplete, and the generated path does not contain facts for
generating answers. Although KGs store abundant factual knowledge, there are still missing facts.
Because there is no information about the character’s player stored in KGs, GCR cannot generate the
correct answer. These failure cases indicate that the performance of GCR can be further improved
by enhancing the reasoning ability of LLMs and the completeness of KGs.

Table 16: Failure cases predicted by GCR.

Case 1: Generated paths are unrelated to the questions.

Question \ What electorate does anna bligh representt?
Answer | Electoral district of South Brisbane
Generated Path Anna Bligh — government.politician.government_positions_held — m.Ocr320w — gov-

ernment.government_position_held.jurisdiction_of_office — Queensland

Predicted answer \ Queensland

Case 2: KG incompleteness.

Question \ who plays ken barlow in coronation street?

Answer | William Roache

Coronation Street —  tv.tv_program.program_creator — Tony Warren — fic-

Generated Path tional_universe.fictional_character_creator.fictional_characters_created — Ken Barlow

Predicted answer ‘ Ken Barlow

G LIMITATIONS

In this section, we discuss the limitations and future directions of the proposed method.

* Definition of Zero-hallucination. This paper defines KG-constrained zero-hallucination
as the generated reasoning paths are fully grounded in the KG. However, KGs often face is-
sues of incompleteness and incorrect facts, leading to occasional false positives. Detecting
such hallucinations without external evidence remains challenging, highlighting the poten-
tial of integrating cross-references from multiple knowledge sources—such as KGs, web
data, and documents—to improve reasoning faithfulness.

e Time Complexity of Complex Questions. Highly complex questions usually require con-
duct reasoning with multiple steps. However, directly constructing a KG-Trie for a larger
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L can be time-consuming. To address this, GCR can be integrated with existing planning-
based methods to decompose complex questions into multiple shorter steps 2024).
By breaking down the reasoning process, we can construct a KG-Trie with a smaller L for
each subtask to conduct reasoning, thereby reducing computational overhead while main-
taining inference quality.

 Irrelevant Reasoning Path. As shown in Appendix although LLMs exhibit strong
reasoning ability, they still cannot always find meaningful paths, resulting in incorrect an-
swers. It is worth to investigate how to further improve the reasoning ability of LLMs,
especially under the settings of incomplete knowledge graphs.

H TEMPLATES AND PROMPTS

In this section, we illustrate all the templates and prompts used in the experiments.

Path Sentence Template. The template for converting reasoning paths into natural language sen-
tences is shown in Figure EL where the e, and r, denotes the entities and relations in a reasoning

pathwz:eor—1>elT—2>...r—l>el,

Path Sentence Template

<PATH>e; — 711 — €2 —...—> 1 —> e </PATH>

Figure 8: The template for converting reasoning paths into formatted sentences.

Graph-constrained Decoding Prompt. The prompt for graph-constrained decoding is shown in
Figure 0] where the question and mentioned entities are provided to the LLMs to generate rea-
soning paths and hypothesis answers. In the fine-tuning datasets, the supervised LLM outputs are
constructed from the ground-truth answers and reasoning paths extracted from the KGs.

Graph-constrained Decoding Prompt

Prompt Input
Reasoning path is a sequence of triples in the KG that connects the topic entities in the question to
answer entities. Given a question, please generate some reasoning paths in the KG starting from the
topic entities to answer the question.

# Question:
<Question>

# Topic entities:
<Question Entities>

LLM Output

# Reasoning Path:
<PATH> <Reasoning Path> </PATH>

# Answer:
<Hypothesis Answer>

Figure 9: The prompt template for graph-constrained decoding.

The few-shot prompt template for graph-constrained decoding is shown in Figure[TT} We provide a
few examples in the prompts to guide the LLMs to generate reasoning paths. Since the LLMs with
few-shot prompt learning are not fine-tuned on the graph-constrained decoding task, we only apply
the constraint to generate reasoning paths.
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Graph Inductive Reasoning Prompt. The prompt for graph inductive reasoning is shown in Fig-
ure [T0] We adopt the graph-constrained decoding to generate K reasoning paths and hypothesis
answers for each question. The reasoning paths and hypothesis answers are provided to the general
LLMs to answer the questions without fine-tuning.

Graph Inductive Reasoning Prompt

Prompt Input

# Reasoning Paths:
<Reasoning Path 1><Hypothesis Answer 1>

<Reasoning Path K><Hypothesis Answer K>

# Question:
<Question>

Based on the reasoning paths, please answer the given question. Please keep the answer as simple as
possible and only return answers. Please return each answer in a new line.

LLM Output

<Answer 1>
<Answer 2>

Figure 10: The prompt template for graph inductive reasoning.

26



Under review as a conference paper at ICLR 2025

Few-shot Graph-constrained Decoding Prompt

Prompt Input
Reasoning path is a sequence of triples in the KG that connects the topic entities in the question to
answer entities. Given a question, please generate some reasoning paths in the KG starting from the
topic entities to answer the question.

Example 1

# Question:
<Question>

# Topic entities:
<Question Entities>

# Reasoning Path:
<Reasoning Path>

Example 2

# Question:
<Question>

# Topic entities:
<Question Entities>

# Reasoning Path:
<Reasoning Path>

Example 3

# Question:
<Question>

# Topic entities:
<Question Entities>

# Reasoning Path:
<Reasoning Path>

Input

# Question:
<Question>

# Topic entities:
<Question Entities>

LLM Output

# Reasoning Path:
<Reasoning Path>

Figure 11: The few-shot prompt template for graph-constrained decoding.
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