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ABSTRACT

Vision–Language Models (VLMs) struggle to generalize against out-of-
distribution (OOD) samples, where conventional fine-tuning is infeasible. Test-
Time Training (TTT) adapts models to each incoming test sample, yet current
methods rely on heavy data augmentation and repeated forward/backward passes
through the full VLM, incurring high computational cost. We introduce Layer
Query Network (LQN), a lightweight five-layer MLP that adapts a frozen
VLM in one forward pass. LQN employs Binding to distill randomly sampled
intermediate-layer tokens from VLM via 3D positional embeddings, and Recir-
culation to self-supervise spatial invariance for predicting robust spatially consis-
tent features. This design removes the need to fine-tune the entire VLM, achiev-
ing faster convergence and strong dense-prediction performance, outperforming
the teacher VLM. Evaluated across 16 benchmarks spanning natural distribution
shifts and cross-dataset generalization, LQN achieves 15% faster test-time train-
ing on ImageNet-Val compared to the state-of-the-art TPS. In segmentation tasks,
LQN surpasses Mask2Former on COCO, Cityscapes, and ADE20K while reduc-
ing GFLOPs by up to 11%. Our code will be released upon acceptance.

1 INTRODUCTION

CLIP (Radford et al., 2021) is widely regarded as one of the first Vision–Language Model (VLM)
to demonstrate strong zero-shot generalization in tasks like image classification and image–text
retrieval. Its success has spawned a variety of downstream applications like image segmenta-
tion (Wang et al., 2025), video text retrieval (Hur et al., 2025), audio classification (Dixit et al.,
2024), etc. As real-world deployment of VLMs grows, the key question emerges: “Is there an
efficient way to boost the out-of-distribution generalization of VLM-based systems for real-world?”

VLMs systems are known to show sub-optimal performance under distribution shift, like unseen
test domain / Out-of-distribution (OOD) (Shu et al., 2023; Mayilvahanan et al., 2023). A significant
effort in Computer Vision explores fine-tuning methods, such as Adapters (Yin et al., 2023), LoRA
(Hu et al., 2022), and VPT (Jia et al., 2022) etc. that can adapt models to new datasets while
retaining generalization. However, these approaches assume access to the labeled target dataset, an
assumption that rarely holds in real-world deployments, limiting their practicality.

To improve generalization, Test-Time Adaptation (TTA) methods adapt models by “peeking” at target
data for on-the-fly domain adjustment (Zhang et al., 2024; Osowiechi et al., 2024). Most TTA
approaches, however, rely on multiple test samples (or a cache of past context) to progressively
refine predictions (Nguyen et al., 2025; Karmanov et al., 2024), an assumption that breaks down
in data-constrained scenarios such as medical diagnostics, where only a single test instance may be
available. To overcome this limitation, a more constrained Test-Time Training (TTT) has emerged,
adapting a model using just one test sample (Kojima et al., 2025).

Test-Time Training (TTT) methods such as TPT (Shu et al., 2022) and TPS (Sui et al., 2025) aug-
ment each test sample and enforce prediction consistency across those augmentations for unsuper-
vised prompt fine-tuning (fig. 1 (a)). Although effective, they demand: i) Multiple augmentations,
optimal augmentation pipeline needs to be known beforehand ii) High computational cost : every
augmentation requires image-encoder forward passes. To reduce these overhead, APM (Modi &
Rawat, 2024a) distills a lightweight student from a frozen VLM teacher with just one forward pass
(fig. 1 (b)), avoiding repeated VLM forward / backward passes. However, it faces two key issues:
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Figure 1: Comparison with existing work: (a) Left: TPT applies consistency across multiple aug-
mentations to train trainable prompts via text encoder, requiring backprop through the text backbone.
(b) middle: APM removes the constraint of multiple augmentations and text backbone, by iteratively
distilling over the image encoder. (c) right: Our method introduces positional encoding (spatial and
layer awareness) to APM, and distills intermediate features enabling dense task predictions.

i) Shallow distillation: Learning only from final-layer features misses fine-grained nuances, re-
stricting use to sparse tasks such as image classification. ii) Slow convergence: It still needs many
iterations to match or surpass the teacher’s performance, adding to the computation cost of test time.

Our design aims to answer “Does the entire VLM need to be fine-tuned to handle a single OOD
test sample?” To explore this, we introduce Layer Query Network (LQN), a lightweight five-layer
MLP that efficiently adapts a VLM system for OOD generalization (fig. 1 (c)). Building on APM’s
advantages, LQN avoids both multiple data augmentations (and their repeated forward passes) and
backpropagation through the text encoder. The LQN framework employs two core strategies via the
proposed 3D-binded algorithm: 1) Binding extends shallow distillation beyond the teacher’s final
layer output by randomly sampling intermediate teacher-layer tokens, queried with 3D positional
embeddings. 2) Recirculation is a self-supervised step that enforces spatial invariance, enabling
LQN to produce more robust, spatially consistent features. This yields two main benefits: i) Faster
convergence: fewer training iterations and reduced GFLOPs, whilst surpassing teacher VLMs. ii)
Better dense predictions: Intermediate features improve spatial understanding, boosting dense pre-
diction tasks like image segmentation.

In summary, we present Layer Query Network (LQN), a lightweight MLP for efficient test-time
training and on-the-fly adaptation. LQN converges quickly, reducing GFLOPs while outperform-
ing its teacher VLM in zero-shot and out-of-distribution dense tasks such as image segmentation.
We evaluate LQN on 16 benchmarks covering natural distribution shifts and cross-dataset general-
ization. Key results include: 15% faster test-time training on ImageNet-val compared to the state-
of-the-art TPS. Strong segmentation performance on COCO, Cityscapes, and ADE20K, surpassing
Mask2Former while cutting GFLOPs by up to 11%. These results demonstrate LQN’s superior
efficiency and robust test-time generalization.

2 RELATED WORK

Adapting VLMs via Fine-tuning: Text prompt augmentations were deployed by CLIP to achieve
strong zero-shot image classification. Descriptive prompts crafted via LLMs (Pratt et al., 2023;
Ren et al., 2023) have been shown to improve adaptation. Inspired by parameter-efficient transfer
learning (Lester et al., 2021; Houlsby et al., 2019), follow-up methods improve CLIP adaptation
using adapters (Gao et al., 2023) and cross-modal adaptation (Lin et al., 2023).

Test-Time-Optimization: consists of both Test-Time Adaptation (TTA)/ Test-Time Training (TTT)
approaches. TTA often requires access to multiple test samples simultaneously to progressively
achieve stable adaptation and refined prediction (Wang et al., 2020; Liu et al., 2021; Prabhudesai
et al., 2023; Wang et al., 2022; Yuan et al., 2023a; Gong et al., 2022; Yuan et al., 2023b; Gong et al.,
2024). Test-Time Training (TTT) approaches like TPT (Shu et al., 2022) enhances test-time ro-
bustness via enforcing consistency across augmented views. Prompt-tuning learns trainable textual-
prompts by conditioning on input features (Zhou et al., 2022b;a). While effective, forward/backward
passes through the text encoder makes it costly. TPS (Sui et al., 2025) speeds this up by adjusting
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Figure 2: Layer Query Networks (LQN). For a single test image, a frozen teacher extracts inter-
mediate layers’ feature across all layers for supervision. During test-time tuning, LQN runs for N
iterations by randomly sampling different destination positions (i, j, l), where (i, j) is the spatial lo-
cation and l the layer depth. The binding procedure takes the image, (0, 0, 0) as the Src position, and
the sampled Dest as input, and the LQN is trained to predict the teacher’s corresponding feature via
MSE loss. During test-time inference, after the final iteration, LQN is queried at all spatial locations
of the last layer L, and the resulting features are processed by task-specific modules, such as CLIP’s
textual encoder for zero-shot classification or the teacher’s segmentation head for dense prediction.

pre-computed vectors in the feature-space instead of back-propogating through text encoder. Re-
cently, MTA Zanella & Ben Ayed (2024) leverages a mean-shift test-time augmentation approach,
which performs unsupervised inlier-score modulation across augmented views. Similarly, GS-Bias
Huang et al. (2025) adds global and spatial biases to the logits of a base-model.

Other approaches synthetically generate out-of-distribution test data using models like Stable Dif-
fusion (Rombach et al., 2022). Yet almost all TTT methods still incur heavy computation cost
from extensive data augmentation, where each augmentation requires forward pass through image
encoder and increasing compute overhead. Methods like TTT-MAE enhance model adaptation by
introducing self-supervised task, such as image rotation prediction or masked reconstruction. Our
LQN follows the experimental-setup in Modi & Rawat (2024a;b), i.e. processing 1 sample at a time,
without requiring dataset-specific pre-training or more than one instance. Inspired by APM (Modi
& Rawat, 2024a), our LQN does not tune the text-encoder at all, avoiding high computation cost.

3 METHOD

We introduce the Layer Query Network (LQN), a test-time training framework designed to en-
hance the out-of-distribution generalization of vision-language models (VLMs). LQN relies on a
distillation-based approach and queries and distills spatial tokens across all layers of the teacher
VLM. By modeling directional relations between pairs of spatial-depth locations, LQN learns to
bind target representations and enforce spatial invariance through a novel binding–recirculation pro-
cedure. This enables a lightweight student network to recover rich hierarchical representations from
the teacher, ultimately improving zero-shot classification and segmentation without requiring addi-
tional supervision or modifications to the frozen teacher model. First we describe the Preliminaries
(section 3.1) to give background on CLIP and the APM algorithm, and then dive deeper into Layer
Query Network & 3D-Binded Algorithm (section 3.2).

3.1 PRELIMINARIES

Zero-Shot CLIP: A VLM like CLIP (Radford et al., 2021) is typically trained on millions of (im-
age,text) pairs. It consists of two parallel encoders, an image encoder Timg and a text-encoder Ttext.
Given a test image xood, and a class label description cls, corresponding features are produced as:

Yimg = Timg(xood), Ytext = Ttext(cls), PCLIP(y = yc | x) =
exp(Ytextc · Yimg)/t∑

c′ exp(Yc · Yimg)/t
, (1)

where, Yimg and Ytext are vision and text embeddings, respectively, t is the temperature parameter
in softmax and PCLIP(y = yc | xood) is the probability logit corresponding to this class label Tc.
The max probability logit over C class is chosen as class prediction.

3
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Test-Time Training (TTT) setup: Following recent work, APM (Modi & Rawat, 2024a) (shown
in algorithm 2), we adopt a teacher student distillation framework (fig. 1(b)). The teacher is a
frozen VLM (e.g. CLIP, ViT-L), while the student S is optimized at test time for N iterations.
First the teacher produces text and images embedding corresponding to xood and class label cls,
i.e. Yimg , and Ytext (eq. (1)). For N iterations, the students randomly select a batch of spatial
indices (i,j) and tries to mimic teacher embeddings on those spatial indices. The student S uses
positional embedding (Vaswani et al., 2017) and the input image xood to generate image features.
MSE loss is used to train the student. After N iterations, the student uses the teacher text encoder to
generate the class logit. It has been observed that such light-weight students can inherit (& surpass)
teacher’s zero-shot generalization on OOD samples. We reset the students after N iterations, to
prevent information-leakage across test-samples.

3.2 LAYER QUERY NETWORK (LQN)

LQN student Simg adapts a similar setup as APM. Instead of just distilling on the final layer features
Yimg , here we collect spatial tokens across all the layers, Y 1,2,...L

img where L denotes all the layers of
teacher VLM. It can be interpreted as a collection of d-dimensional vectors defined over a 3D grid of
spatial and depth locations, totaling H×W×L positions. For the input test sample xood, the student
Simg mimics the teacher’s (i,j) spatial token on depth l i.e. Simg(xood, i, j, l) → f , where f ∈ Rd

is the predicted vector at position (i, j, l). We can query Simg with different positions (i, j, l) in
parallel. Previously, it has been observed that directly feeding a 3D position (i, j, l) as an integer to
a neural network leads to poor convergence (Mildenhall et al., 2021). Therefore, we encode location
(i, j, l) as a 3D positional-encoding P (id, jd, ld), similar to transformers (Vaswani et al., 2017).

Algorithm 1 The 3D-Binded Algorithm: Layer Query Network(inspired by algorithm 2).
Input: Teacher Image/Text Encoder Timg / Ttext, Student Simg , N iterations
Require: OOD image xood, Class Label cls & Predict class logit
1: // Teacher all layers image features and text feats
2: Y 1,2...L

img ← Timg(xood) ∈ RH×W×L×D

3: Ytext ← Ttext(cls)
4: Simg ← 0 // Initialize the student weight
5: for iteration k ∈ N do

6: # Binding
7: id, jd, ld ← Sample(H,W,L) // ‘Dest’ random spatial + layer index
8: Pid,jd,ld ← P (id, jd, ld) // Dest Position embedding
9: Dest← [Pid,jd,ld |P

T [1]] //Indicate (id, jd, ld) is ‘dest’ by concatenating with flag PT [1]
10: LB ← ∥Simg(Dest, xood)− Yimg[id, jd]∥22 // Simg predicts ‘Dest’ features

11: # Recirculation
12: i1, j1, l1 ← Sample(H,W,L) // src 1 random spatial index
13: Pi1,j1,l1 ← P (i1, j1, l1) // Sample Position embedding for src 1
14: Src1← [Pi1,j1,k1 |PT [0]] //Indicate (i1, j1, l1) is ‘src1’ by concatenating with flag PT [0]
15: i2, j2, l2 ← Sample(H,W,L) // src 2 random spatial index
16: Pi2,j2,l2 ← P (i2, j2, l2) // Sample Position embedding for src2
17: Src2← [Pi2,j2,k2 |PT [0]] //Indicate (i2, j2, l2) is ‘src2’ by concatenating with flag PT [0]
18: // Simg self-supervises to predict ‘Dest’ features
19: LR ← ∥Simg(Src1, Dest, xood)− Simg(Src2, Dest, xood)∥22
20: # Update using both losses
21: Loss← LB + αLR

22: Update Simg

23: end for
24: for ∀(i, j) ∈ (H,W ), last layer L do
25: Pi,j,l ← P (i, j, L)
26: Src← [P0,0,0|PT [0]] // Constant source (0, 0, 0)
27: Dest← [Pi,j,l|PT [1]] //Indicate (i, j, l) is ‘dest’ by concatenating with flag PT [1]
28: Y Student

img += Simg(Src,Dest, xood) / (H ·W ) //Spatial average of xood via Simg

29: end for
30: Pcls ← Y Student

img · Ytext Teacher Text + Student image produces logit
31: Output: Pcls

4
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3.2.1 LQN MODEL ARCHITECTURE

As opposed to a single spatial relation, LQN student Simg operates on a pair of locations (src, dest),
and encodes a directional relation between them. This can be formulated as S(src, dest, xood). For
example, if the student Simg operates on (src, dest), it should mimic the teacher’s representation at
dest. Consider two randomly sampled locations src = (is, js, ls), and dest = (id, jd, ld). The stu-
dent should be able to distinguish between which location is the src and which location is the dest.
As shown in algorithm 1, we distinguish between a pair of locations (src, dest) by an additional
‘flag positional-encoding’ PT ∈ R2×D. PT [0] indicates which location is the ‘source’, whereas
PT [1] indicates which is the ‘destination’. We generate (src, dest) as:

Src = [ Pis,js,ls | PT [0] ], Dest = [ Pid,jd,ld | PT [1] ] (lines 8, 10 in algorithm 1) (2)

where | denotes the concatenation operator,Pis,js,ls , Pid,jd,ld denote the 3D-positional encodings for
positions (is, js, ls), (id, jd, ld) respectively. Note that these positional encodings do not contain any
learnable parameters. The student Simg performs for N iterations. During each iteration, it performs
a binding procedure and a recirculation procedure. During final evalaution step, we want to predict
the features corresponding to the last-layer L of the VLM teacher, we set src = (0, 0, 0) and itera-
tively set dest = (i, j, L), where 1 ≤ i ≤ H, 1 ≤ j ≤ W , generating the final Y student

img . Features
over spatial positions are averaged for image classification, and multiplied with the teacher’s textual
feature Ytext (line 29 in algorithm 1) . For image segmentation, Y student

img is directly feed-forwarded
through the teacher’s mask-head, where it is upsampled, and trained via standard cross-entropy loss.

3.2.2 THE 3D-BINDED ALGORITHM

Binding Procedure: Here, the student takes as input a fixed source src location (0, 0, 0) and a
random destination dest location (id, jd, ld). The student should output a representation similar to
teacher’s representation at destination dest Yimg[id, jd, ld]. We enforce this by an MSE loss:

LB = ∥Simg(Src,Dest, xood)− Yimg[id, jd, ld]∥22 (line 11 in algorithm 1) (3)

This ‘binding’ procedure ‘binds’ the 3-D location (id, jd, ld) to the teacher’s output Yimg(id, jd, ld).

Recirculation-procedure: Here, we sample two random locations src1 = (i1, j1, l1), src2 =
(i2, j2, l2) and a single destination location dest = (id, jd, ld). The idea is that irrespective of
whether the student operates on (src1, dest) or (src2, dest), it should predict the same representa-
tion everytime. We enforce this spatial-invariance as an additional MSE loss.

LR = ∥Simg(Src1, Dest, xood)− Simg(Src2, Dest, xood)∥22 (line 20 in algorithm 1) (4)

This self-supervised step doesn’t require a VLM teacher and forces the triplet (src1, src2, dest) to
communicate among themselves.

Loss: During N iterations, LQN uses a combination of binding/recirculation losses. Mathemati-
cally, we supervise LQN via the loss, with α controlling the weight of the recirculation.

Loss = LB + αLR (line 22 in algorithm 1) (5)

4 EXPERIMENTS

Next, we discuss experiments with LQN across 14 classification and 5 segmentation benchmarks.

4.1 TASKS AND DATASETS

Following prior works like TPT (Shu et al., 2022), we assess our LQN on two types of clas-
sification benchmarks: 1) For evaluating on natural distribution shift, we evaluate on ImageNet
val (2009), along with its distribution-shifted variants, namely ImageNet-A2021a , ImageNet-V2
(2019), ImageNet-R (2021b), and ImageNet-Sketch (2019). (2) For cross-dataset generalization
tasks, we conduct experiments on 9 recognition datasets, including Flowers102 (2008), DTD (2014),
OxfordPets (Parkhi et al. (2012)), UCF101 (2012), Caltech101 (2004), Food101 (2014), SUN397
(2010), FGVCAircraft (2013), and EuroSAT (2019). Additionally, we evaluate LQN on dense
segmentation tasks. We also report results on COCO (2014) and ADE20K (2017) for panoptic,
Cityscapes (2016) and ADE20K (2017) for semantic, and COCO (2014) for instance segmentation.
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Table 1: Robustness under natural distribution shifts: Results for ImageNet and 4 distribution-
shifted variants (ImageNet-A, -V2, -R, -Sketch). Requirements column specifies resources needed
during test-time: ✗ indicates that no external data is required; Aug. Views denotes reliance on multi-
ple augmented views of each test sample; History indicates adaptation using cumulative information
from prior test samples; and Labeled Data denotes the use of labeled training data. LQN adapts
using only a single test sample while achieving superior performance across distribution shifts.

Method Requirements ImageNet↑ ImageNet-A↑ ImageNet-V2↑ ImageNet-R↑ ImageNet-Sketch↑ Avg↑ OOD Avg↑
CLIP-ViT-B/16(t) ✗ 66.7 47.8 60.8 73.9 46.0 59.1 57.2
Ensemble ✗ 68.3 49.8 61.8 77.6 48.2 61.2 59.4
TPT[NeurIPS’22] Augmentations 68.9 54.7 63.4 77.0 47.9 62.4 60.8
Diff-TPT[ICCV’23] Augmentations 70.3 55.6 65.1 75.0 46.8 62.5 60.6
MTA + TPT[CVPR’24] Augmentations 70.0 58.0 64.2 78.3 49.6 64.0 62.5
APM[NeurIPS’24] ✗ 68.1 52.1 67.2 76.5 49.3 62.6 61.2
GS-Bias[ICML’25] Augmentations 70.5 56.6 64.6 80.4 50.3 64.5 63.0
TPS[WACV’25] Augmentations 70.1 60.0 64.7 80.2 49.9 64.9 63.7
LQN-[src][Ours] ✗ 69.4 54.5 68.3 78.0 51.0 64.3 62.7
LQN [Ours] ✗ 70.2 58.6 68.5 80.4 50.4 65.6 64.4
TDA [CVPR’24] History 69.5 60.1 64.6 80.2 50.5 64.9 63.8
DMN-ZS[CVPR’24] History 72.2 58.2 65.1 78.5 53.2 65.4 63.7
DPE[NeurIPS’24] History 71.9 59.6 65.4 80.4 52.2 65.9 64.4
CoOp[IJCV’22] Labeled Data 71.5 49.7 64.2 75.2 47.9 61.7 59.2
CoCoOp[CVPR’22] Labeled Data 71.0 50.6 64.0 76.1 48.7 62.1 59.9
TPT + CoOp Labeled Data 73.6 57.9 66.8 77.2 49.2 64.9 62.8
TPT + CoCoOp Labeled Data 71.0 58.4 64.8 78.6 48.4 64.3 62.6
MTA + Coop[CVPR’24] Labelled Data 73.9 59.2 66.9 78.2 49.9 65.6 63.5
CLIP VIT-L/14(t) ✗ 76.2 69.6 72.1 85.9 58.8 72.5 71.6
APM[NeurIPS’24] ✗ 77.3 71.8 72.8 87.1 62.2 74.2 73.4
LQN-[src][Ours] ✗ 78.6 74.2 74.3 89.1 64.1 76.1 75.3
LQN[Ours] ✗ 78.9 73.7 75.0 89.4 63.9 76.2 75.5

Table 2: Cross-dataset generalization from ImageNet to fine-grained classification tasks. Re-
sults are reported as top-1 accuracy across nine datasets. CoOp and CoCoOp are tuned on ImageNet
with 16-shot labeled data per class, whereas CLIP, ensemble prompting, TPT, APM, and our LQN
require no training data or annotations.

Method Requirements Flower102 DTD Pets UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT Avg

CoOp[IJCV’22] Labeled Data 68.7 41.9 89.1 66.5 93.7 85.3 64.2 18.5 46.4 63.9
CoCoOp[CVPR’22] Labeled Data 70.9 45.5 90.5 68.4 93.8 84.0 66.9 22.3 39.2 64.6
TDA[CVPR’24] History 71.4 47.4 88.6 70.6 94.2 86.1 67.6 23.9 58.0 67.5
DPE[NeurIPS’24] History 75.0 54.2 91.1 70.4 94.8 86.1 70.0 28.9 55.7 69.4
CLIP-ViT-B/16(t) ✗ 67.4 44.3 88.3 65.1 93.4 83.7 62.6 23.7 42.0 63.6
Ensemble ✗ 67.0 45.0 86.9 65.2 93.6 82.9 65.6 23.2 50.4 64.6
TPT[NeurIPS’22] Augmentations 69.0 47.8 87.8 68.0 94.2 84.7 65.5 24.8 42.4 65.1
DiffTPT[ICCV’23] Augmentations 70.1 47.0 88.2 62.6 92.4 87.2 65.7 25.6 43.1 65.4
MTA[CVPR’24] Augmentations 68.0 45.9 88.2 68.6 94.2 85.0 66.6 25.2 45.3 65.2
APM[NeurIPS’24] ✗ 62.0 48.9 81.6 72.6 89.6 84.2 65.7 29.7 55.7 65.5
GS-Bias[ICML’25] Augmentations 71.9 46.1 90.3 67.5 94.6 86.0 67.4 26.4 52.4 67.0

LQN-[src][Ours] ✗ 65.2 50.0 84.1 72.2 93.8 85.6 67.0 29.9 56.1 67.0
LQN[Ours] ✗ 66.8 51.3 85.0 73.1 94.0 86.4 67.6 30.5 57.0 67.9

4.2 IMPLEMENTATION DETAILS

We implement two variants of our model: LQN-[src] and LQN. LQN-[src] means that the model
only uses a single location, i.e. dest and does not perform any recirculation-procedure. LQN is
the variant which uses both binding/recirculation procedure. These variants are optimized with
Adam using a learning rate of 1 × 10−4. Input images are normalized to ImageNet statistics. The
total number of iterations are set to T = 15. For LQN, we set the recirculation loss weight to
α = 0.7. The GFLOPs are measured using Meta’s fvcore package (FLOPs ×109). To ensure
statistical reliability, we report the mean accuracy of three runs with different seeds.

While performing recirculation in the LQN model, there are n = H ×W × L plausible locations.
Selecting a triplet (src1, src2, dest) yields

(
n
3

)
= O(n3) possibilities, making exhaustive compu-

tation infeasible. However, we find that randomly sampling as few as 5% of these triplets provides
sufficient performance gains, consistent with Masked Autoencoders He et al. (2022), where most
tokens can be dropped without loss in performance.

4.3 MAIN RESULTS

Baselines We compare with (1) zero-shot VLMs such as CLIP, including backbones of varying
sizes like ViT-B/16 and ViT-L/14; (2) relevant TTT baselines such as TPT and Diff-TPT, which
adapt VLMs using augmented views of a single test sample, and TPS, which provides an efficient
alternative by learning shift vectors for each class prototype; and (3) various TTA baselines such
as TDA, DMN-ZS, and DPE, which rely on historical information from multiple test samples, (4)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Comparison across various segmentation tasks. GFLOPs consumed by Panoptic and In-
stance segmentation are identical. Both use an input resolution of 12802, whereas semantic segmen-
tation uses a resolution of 10242. PQ: Panoptic Quality, AP: Average Precision.

Method Backbone GFLOPs ↓
Panoptic Instance Semantic

COCO ADE20K COCO CityScapes ADE20K

PQ ↑ PQ ↑ AP ↑ GFLOPs ↓ mIoU ↑ GFLOPs ↓ mIoU ↑

Mask2Former [CVPR 2022] ViT-Adapter-L 4817 59.7 53.0 51.4 5200 84.5 910 58.9
EoMT(t) [CVPR 2025] ViT-L 4146 58.3 51.7 48.8 4350 84.2 721 58.4
APM [NeurIPS 2024] MLP 4336 59.2 52.6 51.6 4540 85.1 911 58.5
LQN-[src][Ours] MLP 4342 59.9 53.2 52.1 4490 85.7 861 61.2
LQN[Ours] MLP 4384 61.8 55.4 53.8 4588 86.3 959 62.7

as well as prompt learning approaches like CoOp and CoCoOp, which require annotated training
data and often incur additional computational or memory overhead. In contrast, LQN is designed
specifically for the TTT setting: it adapts the VLM using only one test sample without requiring
auxiliary training data or multiple test streams, while also leveraging an ensemble of 80 prompts
similar to CLIP to improve robustness.

Natural Distribution Shifts: In Tab 1, we compare the performance of our LQN on in-domain
ImageNet and its 4 OOD (Out-Of-Distribution) variants. Zero-Shot CLIP underperforms in the
OOD case, obtaining a mere 57.2 average accuracy. Compared with other TTT-baselines, LQN on
average outperforms TPT by 3.2%, TPS by 0.7%, Diff-TPT by 3.1%, and ZERO by 1.6%. On
the ImageNet-val set, LQN comes close 0.1% to Diff-TPT. However, note that Diff-TPT requires a
heavily parameterized diffusion model to generate test augmentations, whereas LQN is lightweight
with 25M parameters. Methods like CoOP and CocoOp utilize annotated training data, which limits
their effectiveness in real-world situations. This might pose problems in scenarios where models are
‘rolled out’ on edge-devices, and only test samples are available. Despite this, our method still
exhibits significant performance gains of 5.2% compared to CoOp. Leveraging CLIP VIT-L/14 as a
teacher, LQN outperforms the teacher model by 3.9%.

Cross-Dataset Generalization: In Tab 2, we evaluate our LQN on 9 additional fine-grained recog-
nition benchmarks. LQN-[src] obtains an SOTA average accuracy of 67.0, which is 1.5% better than
the prior SOTA method APM. LQN improves the performance further to 67.9, and notably outper-
forms even strong TTA baselines like TDA/DPE. On 4/9 datasets, we come close to other methods,
and acknowledge the potential for further improvements.

Figure 3: LQN demonstrates better qualitative segmentation results than EoMT teacher. (left) LQN
can even segment persons ‘occluded’ behind the window of the bus. (right) LQN semantically-
groups visual-elements of the scene, including the walls, whereas EoMT falls short.

Generalization to Segmentation Tasks: Building on the strong performance of LQN in classifica-
tion, we extend our study to the more challenging dense-level segmentation setting. Table 3 reports
results with segmentation methods, including the Mask2Former baseline Cheng et al. (2022) and the
recent EoMT architecture Kerssies et al. (2025). Although EoMT substantially reduces FLOPs, it
performs worse than Mask2Former in terms of accuracy. By using EoMT as the teacher, our LQN
attains superior performance relative to both baselines. Importantly, even with TTT, the FLOPs con-
sumed by LQN remain lower than those of the Mask2Former baseline. Fig3 shows some sample
qualitative segmentation results of LQN.

4.4 ANALYSIS

Computation FLOP Analysis: We analyze how LQN achieves faster convergence compared to
popular TTT methods such as TPT, TPS, and DiffTPT, which rely on augmenting each test sample
multiple times. In terms of the full test-time tuning process, as shown in Fig. 4(ii), TPT requires only
one gradient update per test sample but constructs 63 augmented views, resulting in 63 + 1 = 64
forward passes through the encoder and a total cost of 1312 GFLOPs. By contrast, LQN performs
multiple iterations. The first forward step costs 20.5 GFLOPs through CLIP’s encoder, while the
subsequent 14 backward steps cost 10 GFLOPs each for updating the student, yielding a total of
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Method H Time Acc. Gain

CLIP ResNet-50 ✗ 9 min 59.8 -
TDA ✓ 16m 61.3 +1.5
DPE ✓ 1h 50m 63.4 +3.6
TPT ✗ 9h 15m 60.7 +0.93
DiffTPT ✗ >20 h 60.8 +0.99
TPS ✗ 55 min 61.4 +1.6
APM ✗ 1h 7m 61.6 +1.8
LQN-[src] ✗ 47m 61.9 +2.1
LQN ✗ 1h 27m 62.3 +2.5

(i) (ii) (iii)

Figure 4: (Left) Wall-clock time comparison on ImageNet using CLIP ResNet-50. H: ✓ means TTT
used cumulative training results from multiple history test samples. (Right) Graphs of computation
cost and performance. (i) Test-time inference computation cost. (ii) Test-time tuning computation
cost. (iii) Semantic segmentation performance.

20.5 + 14 × 10 = 160.5 GFLOPs—an order of magnitude lower than TPT. As shown in Tab. 1,
LQN not only converges faster but also surpasses TPT in accuracy. Moreover, unlike TPT, which
incurs additional FLOPs for optimizing prompts in the text encoder, LQN avoids this overhead.

Fig. 4(i) further highlights the test-time inference cost. To obtain last-layer features, TPT requires
feed-forward through all 12 layers of CLIP’s encoder (20.5 GFLOPs), whereas LQN can query its
student S directly at a constant cost of 10 GFLOPs. Finally, Tab. 4 reports the actual wall-clock
time Zhang et al. (2024) required for TTT over all 50,000 ImageNet validation samples on a single
A6000 GPU (following DPE). TPS, the prior SOTA, consumes 55m since it avoids backpropagation
through the text encoder. LQN-[src] further reduces this to 47m while improving accuracy by 0.5%.
Full LQN achieves even higher accuracy (62.3%), though with an added cost of 1h 27m due to
recirculation. Thus, while LQN improves over both TPT and TPS, it introduces a trade-off between
accuracy and wall-clock efficiency.

Error

O(1)

O(L)

Layer 2 Layer 4 Layer 6 Layer 8

Whole Part

Input

Layer 9

(i) (ii)

(i)

(i) (ii)

Figure 5: (Left) Token visualizations of the teacher model EoMT (top row), the student model LQN
(middle row), and their difference (bottom row). EoMT operates sequentially, predicting intermedi-
ate features in O(L) time, whereas LQN predicts them in constant O(1) time. As depth increases,
LQN’s predictions closely match those of EoMT. (Right) (i) Effect of the number of image aug-
mentations, comparing ViT-B/16, APM, and LQN. Augmenting the test sample during TTT harms
APM and LQN. (ii) Effect of the number of randomly sampled token positions. Distilling more
teacher locations into APM/LQN improves performance, highlighting the benefit of single-sample
supervision.

LQN generalizes to unseen teacher layers beyond those used in test-time training: In Fig. 4(iii),
we use EoMT ViT-L as LQN’s teacher for semantic segmentation on ADE20k. When TTT is per-
formed by distilling all 24 layers of the teacher into LQN, we obtain a peak mIoU of 62.7, thereby
improving over the EoMT baseline of 58.4 mIoU. Interestingly, we next perform TTT using only the
first 20 layers of EoMT. During inference, however, we query LQN with the deeper layers 21–24.
In this case, we still observe an increase in performance, reaching 60.3 mIoU. This result shows
that LQN has effectively encoded depth as a valid spatial dimension, enabling it to generalize to the
teacher’s deeper layers never seen during training.

LQN can predict teacher’s features in constant time irrespective of layer-depth: In Fig 5 (Left),
we feed-forward a sample image from the COCO dataset into both the EoMT teacher and LQN. We
plot intermediate representations via t-SNE reduction. We observe that the predicted features are
significantly similar to those of the teacher. A notable advantage of LQN is that estimating those
features takes O(1) time, whereas in EoMT it takes O(l), where l is the depth of the queried layer.
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Figure 6: Ablations on LQN-[src] and LQN variants: (i) TTT iteration N study. (ii) Effect of
recirculation loss coefficient α. (iii) Effect of different ‘Src’ locations in LQN. (iv) Effect of the
number of teacher layers during TTT.

4.5 ABLATIONS STUDIES

Recall, we implemented two variants of our model, i) LQN-[src], which only contains dest, and does
not use the recirculation procedure. ii) LQN which uses both binding and recirculation procedures.
We ablate several important hyperparameters in this section. To ensure consistency, we perform all
TTT experiments on the ImageNet val set, with CLIP VIT-B/16 as LQN’s teacher.

Effect of varying TTT iterations N : In Fig. 6(i), we study the impact of increasing the number
of iterations for LQN. We observe that performance first improves, peaks at 15 iterations, and then
begins to decrease. It is important to note that, before adapting each test sample, LQN’s weights are
initialized randomly from a normal distribution. In contrast, methods such as TPT and TPS adapt
the pre-trained VLM itself, which has been trained on large-scale data. This fundamental difference
likely explains why LQN requires multiple iterations (N > 1) to achieve optimal adaptation.

Effect of the recirculation loss weight α: In Fig. 6(ii), we observe that performance improves as α
increases and peaks at α = 0.7. This result is notable because a higher weight on the recirculation
objective means the network benefits more from the self-supervised consistency constraint rather
than relying solely on the teacher’s supervision. It highlights how LQN’s predicted features can
eventually surpass those of the frozen VLM image encoder. This suggests that recirculation acts as
a strong regularizer, encouraging more robust and transferable representations.

Modeling ‘pairs’ of teacher tokens is important: LQN operates on pairs of locations (src, dest).
A natural question is whether such pairing is even necessary. As shown in Fig. 6(iii), LQN-[src],
which only uses a single location dest, achieves 69.4%, whereas modeling both (src, dest) in LQN
improves performance to 70.2%. Similarly, during test-time inference, we set src = (0, 0, 0). Why
is this fixed choice needed? We observe that src = random drops the performance significantly
to 64.8%. Interestingly, fixing src to another constant position, e.g., (2, 5, 8), achieves performance
comparable to (0, 0, 0). This suggests that src should be a consistent fixed 3D location when decod-
ing features for the last layer, but its exact choice is not critical.

Increasing teacher layers distilled into LQN improves performance: In Fig. 6(iv), we observe
that distilling a larger number of teacher layers into LQN consistently improves performance. This
suggests that modeling intermediate teacher layers enables the student to capture multi-level feature
representations, which directly correlates with stronger downstream TTT performance, highlighting
the benefit of leveraging hierarchical depth from the teacher.

LQN can adapt using just a single test sample: How can adaptation occur even without test-
time augmentation? We study this by subjecting the student to multiple augmented views of the
same test sample. In Fig. 5(i), we find that increasing augmentations improves the ViT-B based
teacher, consistent with prior observations in TPT and TPS. However, we observe lower results in
LQN and APM, which points to a unique inductive bias in their structure. Recall that the LQN
student takes coordinate-based inputs (src, dest). For a test sample xood, we vary the number of
such coordinate-based locations distilled into LQN during TTT. As shown in Fig. 5(ii), distilling
more teacher locations further improves performance. A formal justification of this unique property
of coordinate-conditioned networks has been discussed in Hinton (2022; 2023); Modi & Rawat
(2024a).

L2 outperforms entropy minimization: Applying entropy-minimization objective (similar to TPT)
on LQN drops performance from 70.2 to 67.4, implying L2 constraint on features is more effective.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

Our results suggest that it is possible to adapt VLM’s like CLIP using as few as 1 test-sample (TTT),
and without requiring primitives like data augmentation. Further, we can design architectures like
LQN which can predict intermediate features of a teacher in a constant amount of time, as opposed
to O(l) time which is incurred in classical neural-netsBengio et al. (2006). This brings us closer
towards validating the insight that perception is a ‘continuous’ field which can be ‘queried’ (Layer
Query Network), instead of computed ‘sequentially’Hinton (2023); Löwe et al. (2019). We remain
encouraged by LQN’s potential to improve asynchronous processing across different layers.

6 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have included the detailed implementation details and hyperparame-
ters in the supplementary material. The complete codebase and model checkpoints will be made pub-
licly available following the review process. LQN is designed to be lightweight and can be trained
on a single GPU (e.g., NVIDIA Pascal). For larger-scale runs, it also supports parallelization across
a multi-node setup—for instance, a cluster with 2 nodes, each equipped with 8 NVIDIA A6000
(Ampere) GPUs. We provide more details relevant to reproducibility in supplementary (Sec8).
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7 BROADER IMPACT

There are two core ideas that motivate the design of the Layer Query Network (LQN). The first
idea is that positional encodings could function as an addressing mechanism Vaswani et al. (2017).
When a network is conditioned on a specific positional encoding, it becomes capable of ‘retrieving’
the relevant entity stored at that location Modi & Rawat (2024b). The second idea is to recognize
that feature-representations in a neural network form part-whole hierarchiesAmir et al. (2021): they
can be treated as a ‘graph-like structure’, where each node represents a part/whole. Directed re-
lationships between such nodes (src, dest) (denoted by ←,→) could then be modeled using the
LQN architecture. This allows mapping part-whole hierarchies onto a shared connectionist hard-
wareHinton (2023). However, given a single node, one cannot infer all its incoming/outgoing edges
without brute-forcing over all the possible entity pairs and identifying the ones where the network’s
response becomes high.

Limitations: In future, we would like to study how such co-ordinate based nets perform when
trained on large-scale data. In its current formulation, LQN relies on recirculation, which is a
compute-intensive procedure. We are excited to explore how this time could be reduced further.
Ultimately, we would like to extend LQN to videos: mimicking how spatio-temporal processing
occurs in infero-temporal pathway of human primates.

Ethical Considerations: Layer Query Network (LQN) introduces a non-sequential mechanism for
querying intermediate representations in deep models, offering computational and adaptability ben-
efits. However, this capability raises important ethical considerations. At test time, the model may
adapt in ways that unintentionally amplify biases present in the teacher or the test distribution,
particularly in safety-critical settings. Furthermore, the ability to synthesize features at arbitrary
depths may reduce interpretability and complicate efforts to audit or explain model behavior. While
LQN reduces inference-time overhead, it builds upon large pre-trained teacher models with signifi-
cant resource footprints. We emphasize that LQN should not be deployed in applications involving
surveillance, manipulation, or deceptive content generation, and advocate for its use in settings that
prioritize transparency, accountability, and societal benefit.

8 IMPLEMENTATION DETAILS

Architecture: In Tab 4, we inflate the full architecture of our LQN. LQN consists of a single CNN
filter. Given an input image xood, we first run a single convolution filter on it with a stride s. The
resultant h/s× w/s× 1 vector is then ‘flattened’. The two locations (src, dest) are encoded as 3-
D positional encodings, along with the flag positional encoding (Alg 1). The flattened input image,
along with d dimensional source, and d dimensional destination are passed through an MLP. The first
layer of the MLP contains (h/s∗w/s+dp+d†p) * 4096 learnable parameters. The subsequent layers
contain 4096 * 4096, 4096 * 4096, 4096 * 2048 , 2048 * 1024 parameters respectively. Finally, we
have a projection head which projects the MLP output to 1024, d, where d is the dimensionality of
internal tokens of a teacher.

Table 4: LQN architecture for TTT: with input dimensions h,w, c and feature dimension dp:
dimensionality of positional encoding. s: stride of convolutional filter in encoder, dc: dimension of
the intermediate token of teacher on which LQN learns. LQN contains two locations, (src, dest),
so additional dp term is added to the input. † : LQN-[src] contains only a single location, so this
term is not added.

Layer Feature Dimension nkernels Stride Padding
(H ×W × C) Input / Output

Input h × w × c

Encoder Conv h/s × w/s × d 1 s 0 / 0

Decoder

Linear (h/s ∗ w/s+ dp + d†p) * 4096 - - -
Linear 4096 * 4096 - - -
Linear 4096 * 4096 - - -
Linear 4096 * 2048 - - -
Linear 2048 * 1024 - - -

Feature Projection Head Linear 1024 * dc - - -
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Hyperparameters: All hyper-parameters utilized for LQN during test-time-training are detailed in
5. We leveraged the seed 0/7/42 in most of our experiments. The weight matrices in LQN were
initilized with from a random distribution with µ = 0 and σ = 0.01. We tried initializing the
net with other schemes such as xavier initialization etc, but found normal-weight intialization to
work the best. All our code has been written in Pytorch version 1.13.0. However, since we only
use pytorch, and no external libraries, we expect that our codebase will also support more recent
versions, for eg, Pytorch 2.0+. We also note that performing test-time-training with 16 bit floating
point allows us to effectively use recent GPU architectures for eg, Ampere: they contain a larger
number of tensor cores in addition to CUDA cores which results in significant speedups during the
exprimentation process. Finally, we normalize an input image using standard Imagenet stats, and
dont resort to any other form of augmentation, thereby making the pipeline far-simpler.

Table 5: LQN hyperparameters during test-time-training.

Number of Test samples 50000 (Imagenet Splits), variable for other datasets.
Testing iterations 15
Batch Size 1
Learning Rate 1e-4
Optimizer Adam

Feature Output size d 768/1024
Positional Encoding size 768/1024

Image/Crop Size 448
Augmentations Normalization, µ = (0.485, 0.456, 0.406), σ = (0.229, 0.224, 0.225)

Precision fp16 (grad-scaled)
Num of Workers 8
Operating System 1x rtx a6000 48GB/96GB ram/Ubuntu 22.04/2TB ssd/5TB HDD

ViT Encoder: During our experiments in test-time-training, APM relies on higher-dimensional
intermediate token distilled from a teacher trained on a large-scale-dataset, often via contrastive
image-text objectives. We showed quantitative results with CLIP VIT-L/VIT-H and semantic clus-
terings with EoMT (CVPR’25).

CLIP is a zero-shot model from OpenAI which contains a vision encoder, and a textual encoder.
The textual encoder tokenises input class names to features. Both image/text encoder project them
to common dimensionality, and classification happens by measuring distances in contrastive space,
thereby offering a higher degree of freedom, as opposed to training a class-sensitive linear-probe.
CLIP VIT-L features an output CLS token of 768 dimensions, while CLIP VIT-H outputs 1024
dimensions both of which have been accommodated in Tab4.

9 DETAILS OF THE DATASETS

Evaluating a model’s robustness to distribution shifts necessitates testing on datasets that feature
a broad spectrum of perturbations—such as fog, snow, rain, and other real-world variations. A
common strategy is to apply synthetic corruptions to well-established test sets (e.g., ImageNet)
to create benchmark splits suitable for controlled evaluation. Alternatively, new test sets may be
manually compiled from online sources to capture modality changes, such as sketches or artistic
reinterpretations. Below, we describe the key datasets used in this work to assess the robustness and
generalization capabilities of LQN. These datasets consist of both classification and segmentation
benchmarks.

9.1 CORRUPTION & DISTRIBUTION SHIFT BENCHMARKS

CIFAR-10-C: Comprising 10,000 test samples from CIFAR-10, this benchmark introduces 15 cor-
ruption types (e.g., blur, noise, weather effects), each applied at 5 severity levels. Our evaluation
focuses on the most difficult setting—level 5—due to computational constraints.

ImageNet-C: A widely used benchmark for corruption robustness based on the original ImageNet
dataset. It includes 15 distortion types applied at 5 severity levels, affecting all 1,000 classes. The
corruptions degrade image quality in ways that simulate real-world noise and artifacts.
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ImageNet-V2: A re-collection of ImageNet-like samples from the web, preserving label distribution
across 1,000 categories. The dataset consists of 10,000 images across three distinct splits, offering
a testbed for evaluating generalization to naturally shifted data.

ImageNet-A: Contains 7,500 images from 200 categories that are hard for standard models like
ResNet-50. These examples are “naturally adversarial”—real-world images that consistently cause
misclassification.

ImageNet-R: Focuses on stylized renditions of ImageNet classes, including paintings, cartoons, and
other artistic formats. It contains approximately 30,000 images across 200 categories and evaluates
robustness to stylistic domain shifts.

ImageNet-Sketch: A challenging modality shift dataset containing 50,000 black-and-white
sketches corresponding to 1,000 ImageNet categories. It tests the model’s ability to recognize ab-
stract shapes and contours, without relying on color or texture cues.

To ensure consistency with prior work (e.g., CLIP), we evaluate LQN using an ensemble of 80
handcrafted textual prompts across these ImageNet-derived benchmarks.

9.2 DENSE PREDICTION BENCHMARKS

COCO (Common Objects in Context): A large-scale dataset for object detection, segmentation,
and captioning tasks. It features over 200,000 labeled images containing instances of 80 object
categories in diverse, cluttered scenes. COCO is widely used to evaluate models’ ability to handle
multi-object, real-world environments.

Cityscapes: Focused on urban street scenes, this dataset contains 5,000 finely annotated images
from 50 different European cities. It includes 19 semantic classes relevant to autonomous driving
(e.g., road, pedestrian, traffic light) and is primarily used for evaluating semantic segmentation under
real-world conditions.

ADE20K: A challenging benchmark for semantic segmentation that includes 25,000 images anno-
tated with over 150 object and stuff categories. The dataset spans indoor, outdoor, urban, and natural
scenes, providing a diverse set of environments for evaluating dense prediction tasks.

10 ADDITIONAL ABLATIONS

How should the locations (src1, src2, dest) be chosen for the recirculation procedure? Images
consist of large redundant information, for eg, a large number of pixels generally represent the
same object, for eg, a tree. If (src1, src2, dest) correspond to the same object, the LQN might not
learn useful information. So, it would help if (src1, src2, dest) correspond to different objects. To
validate this, we run a segmentation model like EomT on an input test sample prior to beginning
the TTT. We sample (src1, src2, dest) from locations corresponding to different segments, and
observe that the performance of the LQN model on ImageNet val using CLIP VIT-B/16 as a teacher
improves from the reported 70.2 to 71.5, thereby even outperforming the Diff-TPT in Tab 1) of the
main paper. This validates the insight that (src1, src2, dest) should come from different objects.

However, this improvement comes at a cost: one needs to run a segmentation model before begin-
ning to TTT, which increases the GFlops. Therefore, being able to discover object regions, without
segmentation models remains an interesting direction of future research.

Why do we concatenate embeddings and not add them as in a transformer: Recall that first
MLP layer of LQN-[src] contains as input the test sample’s representation x′, and positional en-
coding corresponding to (src). Instead of concatenating these inputs, we perform an additional
experiment where positional encoding is added to x’. Specifically, given xood, we first convolve it
with a CNN filter to yield x′ ∈ Rh′×w′×1. The resultant x′ is flattened and added to psrc, which
similar to transformer. We find that the TTT performance on ImageNet for LQN-[src] model using
CLIP VIT-B/16 as a teacher drops from 69.4 to 61.2. However, we do note that in the original VIT
paper, Dosovitskiy et al. (2021), the best results were estimated by adding the positional encoding
to the image features. We believe that the reason behind this might be the unique inductive bias in
the architecture of LQN, which is originally inspired by the APM paperModi & Rawat (2024b).

11 PSEUDO-CODE OF APM
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Algorithm 2 Asynchronous Perception Machine. Student operations shown in blue.
Input: Teacher Image/Text Encoder Timg / Ttext, Student Simg (to adapt), N iterations, P ∈
R(H×W )×D (positional embedding)
Require: OOD image xood, Class Label cls & Predict class logit
1: // Teacher image and text feats
2: Yimg ← Timg(xood) ∈ RH×W×D

3: Ytext ← Ttext(cls)
4: Simg ← 0 // Reset the student
5: for iteration k ∈ N do
6: i, j ← Sample(H,W) // random spatial index
7: Pi,j ← P (i, j) // Position embedding
8: loss← ∥Simg(Pi,j , xood)− Yimg[i, j]∥22
9: Update Simg // update student

10: end for
11: //Spatial average of xood via Simg

12: for ∀(i, j) ∈ (H,W ) do
13: Pi,j ← P (i, j)
14: Y Student

img += Simg(Pi,j , xood) / (H ·W )
15: end for
16: Teacher Text + Student image produces logit
17: Pcls ← Y Student

img · Ytext

18: Output: Pcls

Test-Time Training (TTT) setup: Following recent work, APM (Modi & Rawat, 2024a) (shown
in algorithm 2), we adopt a teacher student distillation framework (fig. 1(b)). The teacher is a frozen
VLM (e.g. CLIP, ViT-L), while the student S is optimized at test time for N iterations. First the
teacher produces text and images embedding corresponding to xood and class label cls, i.e. Yimg ,
and Ytext (eq. (1)). For N iterations, the students randomly select a batch of spatial indices (i,j) and
tries to mimic teacher embeddings on those spatial indices. At every iteration, the student S is reset
before doing any prediction (ideal TTT), and uses positional embedding (Vaswani et al., 2017) and
the input image xood to generate image features. MSE loss is used to train the student. After N
iterations, the student uses the teacher text encoder to generate the class logit. It has been shown
to improve light-weight students to inherit (& surpass) teacher’s zero-shot generalization on OOD
samples.

12 ADDITIONAL RESULTS ON CIFAR 10-C

We report more results on Cifar 10C in Table 6, where LQN model gets the lowest error rate of 13.0.

Table 6: CIFAR-10-C results at highest severity level of 5. We report Error Rate (%, lower is better).
The t- model acts as the teacher for APM and LQN variants. TTT was performed on the test set with
randomly initialized weights. APM and LQN weights were reinitialized after each TTT iteration
to prevent information leakage. All LQN variants outperform prior methods, with LQN-Two Word
achieving the best overall performance.

Method orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elas pixel jpeg Avg
TTT-Online 8.2 25.8 22.6 30.6 14.6 34.4 18.3 17.1 20.0 18.0 16.9 11.2 15.6 21.6 18.1 21.2 19.1
UDA-SS 9.0 28.2 26.5 20.8 15.6 43.7 24.5 23.8 25.0 24.9 17.2 12.7 11.6 22.1 20.3 22.6 21.4
Zeroshot
CLIP ViT-L/14 4.63 35.4 32.3 21.9 19.3 49.7 19.3 17.3 17.0 15.1 21.6 8.4 15.9 34.6 25.0 27.4 24.5
CLIP ViT-L/14 (t)
APM 3.5 21.9 30.1 13.7 15.2 34.1 11.9 11.1 15.0 9.0 13.5 5.8 9.5 23.0 15.8 17.0 14.8
LQN-[src] (Ours) 3.2 20.1 21.3 13.2 14.7 31.5 11.1 10.8 14.3 8.7 12.4 5.2 8.8 20.5 14.5 15.5 13.9
LQN (Ours) 2.9 18.8 20.0 12.5 14.1 30.2 10.5 10.1 13.4 8.1 11.7 4.9 8.1 19.3 13.6 14.3 13.0

13 ADDITIONAL RESULTS ON IMAGENET-C

Following TTT-MAEGandelsman et al. (2022), we evaluate our method , we evaluate our method
on ImageNet-C. ImageNet-C is a dataset which consists of 15 types of corruptions applied to the
original ImageNet validation set. As evidenced in Tab 7, we obtain the highest accuracy of 53.0 on
the highest severity level 5, thereby showcasing the efficacy of LQN.
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Table 7: LQN’s performance on ImageNet-C, level 5. The first three rows are fixed models without
test-time training. The third row, ViT probing, is the baseline used in Gandelsman et al. (2022). A ✓
in P means that method leveraged pre-trained weights on clean variant of train set aka, Image-net
and downstream-ttt on corrupted version. OpenCLIP VIT-L/14 is generally more robust. LQN does
better on various noises with an average accuracy score of 52.3.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Joint Train ✓ 62.3 4.5 26.7 39.9 25.7 30.0 5.8 16.3 5.8 45.3 30.9 45.9 7.1 25.1 31.8 24.8
Fine-Tune ✓ 67.5 7.8 33.9 32.4 36.4 38.2 22.0 15.7 23.9 51.2 37.4 51.9 23.7 37.6 37.1 33.7
ViT Probe ✓ 68.3 6.4 24.2 31.6 38.6 38.4 17.4 18.4 18.2 51.2 32.2 49.7 18.2 35.9 32.2 29.2
TTT-MAE ✓ 69.1 9.8 34.4 50.7 44.7 50.7 30.5 36.9 32.4 63.0 41.9 63.0 33.0 42.8 45.9 44.4

OpenCLIP VIT-L/14(t) ✗ 71.9 47.0 50.3 32.7 58.3 46.9 26.0 26.5 28.1 62.7 37.7 58.3 28.2 50.4 37.9 42.1
APM ✗ 77.4 51.9 56.6 37.9 64.8 53.2 28.7 31.4 33.0 68.4 44.1 64.5 33.1 56.9 43.9 50.3
LQN-[src] (Ours) ✗ 79.2 54.0 58.9 40.2 67.1 55.3 30.8 33.5 35.2 70.8 46.3 66.7 35.1 59.1 46.0 51.8
LQN (Ours) ✗ 80.1 55.2 60.4 41.5 68.7 56.4 31.6 34.2 36.0 71.9 47.2 67.9 36.3 60.3 47.1 53.0

Table 8: Performance on ImageNet-C, level 4. The first two rows are from the supplementary
materials of Gandelsman et al. (2022). A ✓ in column P indicates use of pre-trained weights
on clean ImageNet followed by TTT on corrupted inputs. OpenCLIP ViT-L/14 shows stronger
robustness than earlier models. LQN variants surpass prior methods.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 73.1 33.1 35.8 56.9 54.2 45.2 39.6 26.0 38.2 62.0 43.2 60.3 32.2 44.2 40.7 47.4
TTT-MAE ✓ 72.7 39.6 45.7 64.9 58.3 52.6 48.5 42.8 47.6 67.0 50.5 66.6 42.4 45.7 51.5 53.2

OpenCLIP VIT-L/14 ✗ 74.2 64.2 58.7 57.8 66.3 52.8 45.3 34.6 45.2 68.9 46.6 63.9 41.1 56.2 45.6 54.8
APM ✗ 79.2 70.4 64.9 63.7 72.3 58.6 51.2 40.4 51.3 74.1 53.0 70.0 46.7 62.5 51.8 59.6
LQN-[src] (Ours) ✗ 80.1 71.2 65.7 64.4 73.1 59.2 52.0 41.1 52.1 74.7 53.6 70.7 47.3 63.2 52.6 60.4
LQN (Ours) ✗ 80.9 72.1 66.5 65.2 73.9 59.9 52.9 41.9 52.8 75.3 54.2 71.4 47.9 63.9 53.3 61.2

Table 9: Performance on ImageNet-C, level 3. The first two rows are from the supplementary
materials of Gandelsman et al. (2022). A ✓ in column P indicates that the method used pre-trained
weights on clean ImageNet and applied TTT on the corrupted set. OpenCLIP ViT-L/14 is more
robust than earlier models. Both LQN variants outperform prior approaches.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 75.8 62.7 49.5 67.1 59.8 47.6 57.1 35.0 57.4 68.6 60.2 70.1 54.3 54.7 48.0 57.6
TTT-MAE ✓ 75.8 64.4 59.4 71.2 64.0 54.0 63.6 50.7 64.2 71.3 64.2 73.1 61.8 58.0 57.4 64.4

OpenCLIP VIT-L/14 ✗ 75.8 71.8 65.5 67.7 69.0 54.7 58.9 42.4 59.5 72.8 59.9 69.7 58.2 63.5 51.8 62.5
APM ✗ 80.5 77.2 71.3 73.3 74.8 60.6 64.7 48.5 65.4 77.8 61.6 75.2 64.1 69.3 58.0 68.5
LQN-[src] (Ours) ✗ 81.2 78.0 72.0 74.0 75.4 61.2 65.5 49.2 66.1 78.4 62.1 75.9 64.8 69.9 58.8 69.2
LQN (Ours) ✗ 81.9 78.8 72.8 74.9 76.2 61.9 66.3 49.9 66.9 79.1 62.8 76.7 65.5 70.5 59.5 69.9

Table 10: Performance on ImageNet-C, level 2. The first two rows are from the supplementary
materials of Gandelsman et al. (2022). A ✓ in column P indicates that the method used pre-trained
weights on clean ImageNet and performed TTT on the corrupted version. OpenCLIP ViT-L/14 is
generally more robust than earlier models. Both LQN variants outperform prior methods.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 77.4 71.2 62.3 51.0 66.3 58.4 68.6 59.2 64.9 70.4 70.6 74.7 66.2 54.2 55.2 64.1
TTT-MAE ✓ 77.8 71.5 69.4 49.7 69.8 62.7 72.5 66.4 70.0 72.7 72.3 76.2 70.6 58.7 63.6 68.3

OpenCLIP VIT-L/14 ✗ 76.6 74.4 71.4 53.8 72.0 62.6 67.6 64.0 64.6 73.8 69.0 72.8 66.4 61.8 58.3 66.1
APM ✗ 81.1 79.4 76.6 59.4 77.3 68.2 73.1 70.0 70.3 78.6 74.5 77.8 72.0 67.8 64.3 72.4
LQN-[src] (Ours) ✗ 81.7 80.2 77.5 60.1 78.1 69.0 73.9 70.6 71.0 79.3 75.1 78.5 72.6 68.4 65.1 73.2
LQN (Ours) ✗ 82.4 81.0 78.4 60.9 78.9 69.8 74.7 71.3 71.7 80.1 75.8 79.2 73.4 69.1 65.8 74.1

Table 11: APM and LQN performance on ImageNet-C, level 1. The first two rows are reproduced
from the supplementary materials of Gandelsman et al. (2022). A ✓ in column P indicates that the
method used pre-trained weights on clean ImageNet and applied TTT on the corrupted set. Open-
CLIP VIT-L/14 is generally more robust than earlier models. Both LQN variants surpass OpenCLIP
and prior methods.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Baseline ✓ 78.5 74.5 68.1 73.9 70.5 70.6 74.8 68.6 72.3 73.0 75.2 75.9 73.6 69.3 63.7 71.4
TTT-MAE ✓ 78.9 74.7 72.5 74.7 72.9 72.2 76.8 72.2 75.5 74.5 75.8 77.0 75.9 71.9 69.3 73.1

OpenCLIP VIT-L/14 ✗ 77.3 75.4 73.5 73.1 73.5 71.4 71.9 70.2 69.9 75.1 73.7 74.2 71.9 71.2 65.2 71.1
APM ✗ 81.6 80.3 78.6 78.0 78.6 76.6 77.2 75.7 75.1 79.6 78.7 79.1 76.9 76.4 70.7 76.0
LQN-[src] (Ours) ✗ 82.4 81.1 79.4 78.8 79.2 77.3 77.9 76.2 75.9 80.1 79.3 79.8 77.5 77.1 71.6 76.8
LQN (Ours) ✗ 83.2 82.0 80.3 79.6 80.1 78.0 78.6 77.0 76.5 80.9 80.2 80.5 78.4 77.9 72.3 77.6

14 ADDITIONAL QUALITATIVE RESULTS

In the original paper, we showed LQN’s results on segmentation. In Fig7,8,10, we qualitatively
demonstrate the semantic quality of the predictions made by our model. We compare against the
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EoMT baseline, APM, and our method. As it can be seen, LQN consistently gives better outputs
than other methods.

Input EoMT APM LQN (Ours)

Figure 7: Qualitative results on LQN. Panoptic segmentation on COCO-Val set. LQN obtains more
semantically-detailed masks than the EoMT/APM baselines via test-time-training. Masks visualized
after 15 iterations of TTT on both APM/LQN. EoMT is a fully-supervised, fixed baseline. TTT on
APM/LQN is performed with EoMT as the teacher. The red regions are the regions where a kind
reader can focus on to see the comparison in the prediction quality. Starting from above, LQN
easily segments the books in the bookshelf as white region, spoon as a white outline on the plate,
distinguishes between the people in the background, and easily partitions chairs into two distinct
parts, whereas other EoMT and APM group them together. The red regions are the regions where a
kind reader can focus on to see the comparison in the prediction quality. Starting from above, LQN
easily segments the books in the bookshelf as white region, spoon as a white outline on the plate,
distinguishes between the people in the background, and easily partitions chairs into two distinct
parts, whereas other EoMT and APM group them together.
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Input EoMT APM LQN (Ours)

Figure 8: Qualitative results on LQN. Panoptic segmentation on COCO-Val set. LQN obtains more
semantically-detailed masks than the EoMT/APM baselines via test-time-training. Masks visualized
after 15 iterations of TTT on both APM/LQN. EoMT is a fully-supervised, fixed baseline. TTT on
APM/LQN is performed with EoMT as the teacher. The red regions are the regions where a kind
reader can focus on to see the comparison in the prediction quality. Starting from above, (first row)
LQN gets the passengers in the bus in the background, even though they are partially occluded,
(second row) easily segments the building into the blue regions, (third row) partitions buildings into
a green colored region whereas other two methods dont detect it as all/term it as background (fourth
row) gets window in the proper shape.
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Input EoMT APM LQN (Ours)

Figure 9: Qualitative results on LQN. Panoptic segmentation on COCO-Val set. LQN obtains more
semantically-detailed masks than the EoMT/APM baselines via test-time-training. Masks visualized
after 15 iterations of TTT on both APM/LQN. EoMT is a fully-supervised, fixed baseline. TTT on
APM/LQN is performed with EoMT as the teacher. The red regions are the regions where a kind
reader can focus on to see the comparison in the prediction quality. Starting from above, (first
row) LQN properly segments the suitcases, (second row) Precise boundaries of the cellphone in the
person’s hand, even though part of the cellphone is gripped very tightly by the person’s hand. (third
row) segments the base of the tree, whereas other two methods dont detect it at all (fourth row)
is able to understadn the fine regions which correspond to the bag/floor. In contrast, EoMT/APM
confuse that some part of the purse is also the background.
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Figure 10: Qualitative results on LQN. LQN reconstructs RGB images with lowest pixelwise
loss as compared to MAE/APM. This illustrates the extreme scenario when input images contain
repeating textures and tests whether the model encodes semantics consistently.
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