Under review as a conference paper at ICLR 2026

LAYER QUERY NETWORK FOR TEST-TIME-TRAINING
IN VISION-LANGUAGE-MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) struggle to generalize against out-of-
distribution (OOD) samples, where conventional fine-tuning is infeasible. Test-
Time Training (TTT) adapts models to each incoming test sample, yet current
methods rely on heavy data augmentation and repeated forward/backward passes
through the full VLM, incurring high computational cost. We introduce Layer
Query Network (LQN), a lightweight five-layer MLP that adapts a frozen
VLM in one forward pass. LQN employs Binding to distill randomly sampled
intermediate-layer tokens from VLM via 3D positional embeddings, and Recir-
culation to self-supervise spatial invariance for predicting robust spatially consis-
tent features. This design removes the need to fine-tune the entire VLM, achiev-
ing faster convergence and strong dense-prediction performance, outperforming
the teacher VLM. Evaluated across 16 benchmarks spanning natural distribution
shifts and cross-dataset generalization, LQN achieves 15% faster test-time train-
ing on ImageNet-Val compared to the state-of-the-art TPS. In segmentation tasks,
LQN surpasses Mask2Former on COCO, Cityscapes, and ADE20K while reduc-
ing GFLOPs by up to 11%. Our code will be released upon acceptance.

1 INTRODUCTION

CLIP (Radford et al., 2021) is widely regarded as one of the first Vision—Language Model (VLM)
to demonstrate strong zero-shot generalization in tasks like image classification and image—text
retrieval. Its success has spawned a variety of downstream applications like image segmenta-
tion (Wang et al., 2025), video text retrieval (Hur et al., 2025), audio classification (Dixit et al.,
2024), etc. As real-world deployment of VLMs grows, the key question emerges: “Is there an
efficient way to boost the out-of-distribution generalization of VLM-based systems for real-world?”

VLMs systems are known to show sub-optimal performance under distribution shift, like unseen
test domain / Qut-of-distribution (OOD) (Shu et al., 2023; Mayilvahanan et al., 2023). A significant
effort in Computer Vision explores fine-tuning methods, such as Adapters (Yin et al., 2023), LoRA
(Hu et al., 2022), and VPT (Jia et al., 2022) etc. that can adapt models to new datasets while
retaining generalization. However, these approaches assume access to the labeled target dataset, an
assumption that rarely holds in real-world deployments, limiting their practicality.

To improve generalization, Test-Time Adaptation (TTA) methods adapt models by “peeking” at target
data for on-the-fly domain adjustment (Zhang et al., 2024; Osowiechi et al., 2024). Most TTA
approaches, however, rely on multiple test samples (or a cache of past context) to progressively
refine predictions (Nguyen et al., 2025; Karmanov et al., 2024), an assumption that breaks down
in data-constrained scenarios such as medical diagnostics, where only a single test instance may be
available. To overcome this limitation, a more constrained Test-Time Training (TTT) has emerged,
adapting a model using just one test sample (Kojima et al., 2025).

Test-Time Training (TTT) methods such as TPT (Shu et al., 2022) and TPS (Sui et al., 2025) aug-
ment each test sample and enforce prediction consistency across those augmentations for unsuper-
vised prompt fine-tuning (fig. 1 (a)). Although effective, they demand: i) Multiple augmentations,
optimal augmentation pipeline needs to be known beforehand ii) High computational cost : every
augmentation requires image-encoder forward passes. To reduce these overhead, APM (Modi &
Rawat, 2024a) distills a lightweight student from a frozen VLM teacher with just one forward pass
(fig. 1 (b)), avoiding repeated VLM forward / backward passes. However, it faces two key issues:
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Figure 1: Comparison with existing work: (a) Left: TPT applies consistency across multiple aug-
mentations to train trainable prompts via text encoder, requiring backprop through the text backbone.
(b) middle: APM removes the constraint of multiple augmentations and text backbone, by iteratively
distilling over the image encoder. (c) right: Our method introduces positional encoding (spatial and
layer awareness) to APM, and distills intermediate features enabling dense task predictions.

i) Shallow distillation: Learning only from final-layer features misses fine-grained nuances, re-
stricting use to sparse tasks such as image classification. ii) Slow convergence: It still needs many
iterations to match or surpass the teacher’s performance, adding to the computation cost of test time.

Our design aims to answer “Does the entire VLM need to be fine-tuned to handle a single OOD
test sample?” To explore this, we introduce Layer Query Network (LQN), a lightweight five-layer
MLP that efficiently adapts a VLM system for OOD generalization (fig. 1 (c)). Building on APM’s
advantages, LQN avoids both multiple data augmentations (and their repeated forward passes) and
backpropagation through the text encoder. The LQN framework employs two core strategies via the
proposed 3D-binded algorithm: 1) Binding extends shallow distillation beyond the teacher’s final
layer output by randomly sampling intermediate teacher-layer tokens, queried with 3D positional
embeddings. 2) Recirculation is a self-supervised step that enforces spatial invariance, enabling
LQN to produce more robust, spatially consistent features. This yields two main benefits: i) Faster
convergence: fewer training iterations and reduced GFLOPs, whilst surpassing teacher VLMs. ii)
Better dense predictions: Intermediate features improve spatial understanding, boosting dense pre-
diction tasks like image segmentation.

In summary, we present Layer Query Network (LQN), a lightweight MLP for efficient test-time
training and on-the-fly adaptation. LQN converges quickly, reducing GFLOPs while outperform-
ing its teacher VLM in zero-shot and out-of-distribution dense tasks such as image segmentation.
We evaluate LQN on 16 benchmarks covering natural distribution shifts and cross-dataset general-
ization. Key results include: 15% faster test-time training on ImageNet-val compared to the state-
of-the-art TPS. Strong segmentation performance on COCO, Cityscapes, and ADE20K, surpassing
Mask2Former while cutting GFLOPs by up to 11%. These results demonstrate LQN’s superior
efficiency and robust test-time generalization.

2 RELATED WORK

Adapting VLMs via Fine-tuning: Text prompt augmentations were deployed by CLIP to achieve
strong zero-shot image classification. Descriptive prompts crafted via LLMs (Pratt et al., 2023;
Ren et al., 2023) have been shown to improve adaptation. Inspired by parameter-efficient transfer
learning (Lester et al., 2021; Houlsby et al., 2019), follow-up methods improve CLIP adaptation
using adapters (Gao et al., 2023) and cross-modal adaptation (Lin et al., 2023).

Test-Time-Optimization: consists of both Test-Time Adaptation (TTA)/ Test-Time Training (TTT)
approaches. TTA often requires access to multiple test samples simultaneously to progressively
achieve stable adaptation and refined prediction (Wang et al., 2020; Liu et al., 2021; Prabhudesai
et al., 2023; Wang et al., 2022; Yuan et al., 2023a; Gong et al., 2022; Yuan et al., 2023b; Gong et al.,
2024). Test-Time Training (TTT) approaches like TPT (Shu et al., 2022) enhances test-time ro-
bustness via enforcing consistency across augmented views. Prompt-tuning learns trainable textual-
prompts by conditioning on input features (Zhou et al., 2022b;a). While effective, forward/backward
passes through the text encoder makes it costly. TPS (Sui et al., 2025) speeds this up by adjusting
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Figure 2: Layer Query Networks (LQN). For a single test image, a frozen teacher extracts inter-
mediate layers’ feature across all layers for supervision. During test-time tuning, LQN runs for NV
iterations by randomly sampling different destination positions (¢, 7, [), where (i, ) is the spatial lo-
cation and [ the layer depth. The binding procedure takes the image, (0, 0, 0) as the Src position, and
the sampled Dest as input, and the LQN is trained to predict the teacher’s corresponding feature via
MSE loss. During test-time inference, after the final iteration, LQN is queried at all spatial locations
of the last layer L, and the resulting features are processed by task-specific modules, such as CLIP’s
textual encoder for zero-shot classification or the teacher’s segmentation head for dense prediction.

pre-computed vectors in the feature-space instead of back-propogating through text encoder. Re-
cently, MTA Zanella & Ben Ayed (2024) leverages a mean-shift test-time augmentation approach,
which performs unsupervised inlier-score modulation across augmented views. Similarly, GS-Bias
Huang et al. (2025) adds global and spatial biases to the logits of a base-model.

Other approaches synthetically generate out-of-distribution test data using models like Stable Dif-
fusion (Rombach et al., 2022). Yet almost all TTT methods still incur heavy computation cost
from extensive data augmentation, where each augmentation requires forward pass through image
encoder and increasing compute overhead. Methods like TTT-MAE enhance model adaptation by
introducing self-supervised task, such as image rotation prediction or masked reconstruction. Our
LQN follows the experimental-setup in Modi & Rawat (2024a;b), i.e. processing 1 sample at a time,
without requiring dataset-specific pre-training or more than one instance. Inspired by APM (Modi
& Rawat, 2024a), our LQN does not tune the text-encoder at all, avoiding high computation cost.

3 METHOD

We introduce the Layer Query Network (LON), a test-time training framework designed to en-
hance the out-of-distribution generalization of vision-language models (VLMs). LQN relies on a
distillation-based approach and queries and distills spatial tokens across all layers of the teacher
VLM. By modeling directional relations between pairs of spatial-depth locations, LQN learns to
bind target representations and enforce spatial invariance through a novel binding—recirculation pro-
cedure. This enables a lightweight student network to recover rich hierarchical representations from
the teacher, ultimately improving zero-shot classification and segmentation without requiring addi-
tional supervision or modifications to the frozen teacher model. First we describe the Preliminaries
(section 3.1) to give background on CLIP and the APM algorithm, and then dive deeper into Layer
Query Network & 3D-Binded Algorithm (section 3.2).

3.1 PRELIMINARIES

Zero-Shot CLIP: A VLM like CLIP (Radford et al., 2021) is typically trained on millions of (im-
age,text) pairs. It consists of two parallel encoders, an image encoder 7;,,,, and a text-encoder T;ex.
Given a test image .4, and a class label description cls, corresponding features are produced as:

eXp(Y;eztc . }/;mg)/t
> xp(Ye - Yimg) [t

Y;mg = ﬁmg(xood)7 thext = ﬁezt(ClS% PCLIP(y =Y ‘ .T) = (1)

where, Y;,,4 and Y;..; are vision and text embeddings, respectively,  is the temperature parameter
in softmax and Porip (¥ = ye | Zood) is the probability logit corresponding to this class label Ty.
The max probability logit over C' class is chosen as class prediction.
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Test-Time Training (TTT) setup: Following recent work, APM (Modi & Rawat, 2024a) (shown
in algorithm 2), we adopt a teacher student distillation framework (fig. 1(b)). The teacher is a
frozen VLM (e.g. CLIP, ViT-L), while the student S' is optimized at test time for N iterations.
First the teacher produces text and images embedding corresponding to x,,q and class label cls,
i.e. Yimg, and Yy (eq. (1)). For N iterations, the students randomly select a batch of spatial
indices (i,j) and tries to mimic teacher embeddings on those spatial indices. The student S uses
positional embedding (Vaswani et al., 2017) and the input image x,,q to generate image features.
MSE loss is used to train the student. After /N iterations, the student uses the teacher text encoder to
generate the class logit. It has been observed that such light-weight students can inherit (& surpass)
teacher’s zero-shot generalization on OOD samples. We reset the students after IV iterations, to
prevent information-leakage across test-samples.

3.2 LAYER QUERY NETWORK (LQN)

LQN student S;;,,4 adapts a similar setup as APM. Instead of just distilling on the final layer features

Yimg, here we collect spatial tokens across all the layers, Yz}anL where L denotes all the layers of
teacher VLM. It can be interpreted as a collection of d-dimensional vectors defined over a 3D grid of
spatial and depth locations, totaling H x W x L positions. For the input test sample .4, the student
Simg mimics the teacher’s (i,j) spatial token on depth [ i.e. Simg(Zood,?,J,1) — f, where f € R¢
is the predicted vector at position (7, 7,1). We can query S;,, with different positions (7, 7,1) in
parallel. Previously, it has been observed that directly feeding a 3D position (4, j, 1) as an integer to
a neural network leads to poor convergence (Mildenhall et al., 2021). Therefore, we encode location
(4, 4,1) as a 3D positional-encoding P(ig4, jd,lq), similar to transformers (Vaswani et al., 2017).

Algorithm 1 The 3D-Binded Algorithm: Layer Query Network(inspired by algorithm 2).
Input: Teacher Image/Text Encoder Timg / Tiext, Student Sipng, IV iterations
Require: OOD image x,04, Class Label cls & Predict class logit

1:
2: YL17’7,29L « ﬂmg(xood) c RHXWXLXD
3: 1fts:mt — ﬂezt (Cls)
4: Sz‘mg ~—0
5: for iteration k € N do
6:  #Binding
7: id, Jd,la < Sample(H,W,L)
8: P aty & P(id,jd,ld)
9:  Dest « [Pid,ded‘PT[l”
10: LB — Hsi'mg (Dest, :L'ood) - }/;mg [id, ]d] H% Si'mg
11:  # Recirculation
12: i1, J1, 01 < Sample(H,W,L)
130 P+ P(in, g1, )
14:  Srcl < [Py 4, .5, |PT[0]]
15: 42, j2,l2 < Sample(H,W,L)
16: P»L'Q,jQ,lQ < P(ig,jz, lg)
17: Src2 < [Piy ko | PT[0]]
18: Simg
19: Lg < ||Simg(Srcl, Dest, Zood) — Simg(Src2, Dest, xwd)n%
20:  # Update using both losses
21: Loss + Lp + alLpr
22:  Update Simg
23: end for
24: for V(i,j) € (H,W), last layer L do
25: Pi,j,l < P(Z,], L)
26:  Stc < [Po,0,0|PT[0]]
27:  Dest « [P, ;|PT[1]]
28 Yjluwdent 4= S g(Sre, Dest, 2o0q) I (H - W)
29: end for
30: Pus + Yiult®®™ . View
31: Output: P,
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3.2.1 LQN MODEL ARCHITECTURE

As opposed to a single spatial relation, LQN student S;,,,4 operates on a pair of locations (src, dest),
and encodes a directional relation between them. This can be formulated as S(src, dest, x0q). For
example, if the student S, 4 operates on (src, dest), it should mimic the teacher’s representation at
dest. Consider two randomly sampled locations src = (is, js,ls), and dest = (ig, ja,lq). The stu-
dent should be able to distinguish between which location is the src and which location is the dest.
As shown in algorithm 1, we distinguish between a pair of locations (src, dest) by an additional
‘flag positional-encoding’ PT € R?*P_ PT[0] indicates which location is the ‘source’, whereas
PT[1] indicates which is the ‘destination’. We generate (src, dest) as:

Src =[P, j...|PT[0]], Dest=][Pi, 1, |PT[1]] 1 )

where | denotes the concatenation operator,P;_ ;. 1., Pi, j, i, denote the 3D-positional encodings for
positions (is, Js, ls), (¢d, jd, la) respectively. Note that these positional encodings do not contain any
learnable parameters. The student S;;,,4 performs for IV iterations. During each iteration, it performs

a binding procedure and a recirculation procedure. During final evalaution step, we want to predict

the features corresponding to the last-layer L of the VLM teacher, we set sr¢ = (0,0, 0) and itera-
tively set dest = (i, 7, L), where 1 < i < H,1 < j < W, generating the final Yifflzdent. Features
over spatial positions are averaged for image classification, and multiplied with the teacher’s textual
feature Yieq: 1) . For image segmentation, Yiffl’;de"t is directly feed-forwarded

through the teacher’s mask-head, where it is upsampled, and trained via standard cross-entropy loss.

dsJds

3.2.2 THE 3D-BINDED ALGORITHM

Binding Procedure: Here, the student takes as input a fixed source src location (0,0,0) and a
random destination dest location (44, jg,lq). The student should output a representation similar to
teacher’s representation at destination dest Yiq[ta, ja, la]. We enforce this by an MSE loss:

LB = ||Simg(S7nc-, DeStyxaod) - Y—img[idyjdyld]”g 1 (3)
This ‘binding’ procedure ‘binds’ the 3-D location (4, jq, l4) to the teacher’s output Y4 (34, ja la)-

Recirculation-procedure: Here, we sample two random locations srcl = (i1, j1,101), sr¢2 =
(i2,j2,12) and a single destination location dest = (ig,jq,lq). The idea is that irrespective of
whether the student operates on (srcl, dest) or (src2, dest), it should predict the same representa-
tion everytime. We enforce this spatial-invariance as an additional MSE loss.

Lg = ||Simg(Srcl, Dest, xooq) — Simg(STC2, Dest,xood)H% 1 %)

This self-supervised step doesn’t require a VLM teacher and forces the triplet (srcl, src2, dest) to
communicate among themselves.

Loss: During N iterations, LQN uses a combination of binding/recirculation losses. Mathemati-
cally, we supervise LQN via the loss, with « controlling the weight of the recirculation.

Loss = Lg+ aLg 1 ()

4 EXPERIMENTS
Next, we discuss experiments with LQN across 14 classification and 5 segmentation benchmarks.
4.1 TASKS AND DATASETS

Following prior works like TPT (Shu et al., 2022), we assess our LQN on two types of clas-
sification benchmarks: 1) For evaluating on natural distribution shift, we evaluate on ImageNet
val (2009), along with its distribution-shifted variants, namely ImageNet-A2021a , ImageNet-V2
(2019), ImageNet-R (2021b), and ImageNet-Sketch (2019). (2) For cross-dataset generalization
tasks, we conduct experiments on 9 recognition datasets, including Flowers102 (2008), DTD (2014),
OxfordPets (Parkhi et al. (2012)), UCF101 (2012), Caltech101 (2004), Food101 (2014), SUN397
(2010), FGVCAircraft (2013), and EuroSAT (2019). Additionally, we evaluate LQN on dense
segmentation tasks. We also report results on COCO (2014) and ADE20K (2017) for panoptic,
Cityscapes (2016) and ADE20K (2017) for semantic, and COCO (2014) for instance segmentation.
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Table 1: Robustness under natural distribution shifts: Results for ImageNet and 4 distribution-
shifted variants (ImageNet-A, -V2, -R, -Sketch). Requirements column specifies resources needed
during test-time: X indicates that no external data is required; Aug. Views denotes reliance on multi-
ple augmented views of each test sample; History indicates adaptation using cumulative information
from prior test samples; and Labeled Data denotes the use of labeled training data. LQN adapts
using only a single test sample while achieving superior performance across distribution shifts.

Method Requirements  ImageNet? ImageNet-AT ImageNet-V21 ImageNet-RT ImageNet-Sketcht \ Avgt \ OOD Avg?t
CLIP-ViT-B/16(t) X 66.7 478 60.8 73.9 46.0 59.1 572
Ensemble X 68.3 49.8 61.8 77.6 48.2 61.2 59.4
TPT(NeurlPs'22 Augmentations 68.9 54.7 63.4 77.0 479 62.4 60.8
Diff-TPTiccvo3 Augmentations 70.3 55.6 65.1 75.0 46.8 62.5 60.6
MTA + TPT|cvrr 24 Augmentations 70.0 58.0 64.2 78.3 49.6 64.0 62.5
APMNeurips 4] X 68.1 52.1 67.2 76.5 49.3 62.6 61.2
GS-Biasicvios) Augmentations 70.5 56.6 64.6 80.4 50.3 64.5 63.0
TPSiwaCv 25 Augmentations 70.1 60.0 64.7 80.2 49.9 64.9 63.7
LQN-[src]iours) 69.4 54.5 68.3 78.0 51.0 64.3 62.7
LQN [ours] X 70.2 58.6 68.5 80.4 504 65.6 64.4
TDA [cVPR’24] History 69.5 60.1 64.6 80.2 50.5 64.9 63.8
DMN-ZS[cVPR™24] History 72.2 582 65.1 78.5 53.2 65.4 63.7
DPENeurlPs 24 History 71.9 59.6 65.4 80.4 522 65.9 64.4
CoOpiucv22 Labeled Data 715 49.7 64.2 75.2 479 61.7 59.2
CoCoOpjcvrr:22 Labeled Data 71.0 50.6 64.0 76.1 48.7 62.1 59.9
TPT + CoOp Labeled Data 73.6 579 66.8 77.2 49.2 64.9 62.8
TPT + CoCoOp Labeled Data 71.0 58.4 64.8 78.6 48.4 64.3 62.6
MTA + Coopjcver24]  Labelled Data 73.9 59.2 66.9 78.2 49.9 65.6 63.5
CLIP VIT-L/14(t) X 76.2 69.6 72.1 85.9 58.8 72.5 71.6
APMNeurips 4] X 77.3 71.8 72.8 87.1 62.2 74.2 73.4
LQN-[src]iours) X 78.6 74.2 74.3 89.1 64.1 76.1 753
LQN/ours X 78.9 73.7 75.0 89.4 63.9 76.2 75.5

Table 2: Cross-dataset generalization from ImageNet to fine-grained classification tasks. Re-
sults are reported as top-1 accuracy across nine datasets. CoOp and CoCoOp are tuned on ImageNet
with 16-shot labeled data per class, whereas CLIP, ensemble prompting, TPT, APM, and our LQN
require no training data or annotations.

Method Requirements ~ Flowerl02 DTD Pets UCFI01 Caltechl01 Food101 ~SUN397 Aircraft EuroSAT | Avg
CoOpiucv22] Labeled Data 68.7 419 89.1 66.5 93.7 85.3 64.2 18.5 46.4 63.9
CoCoOpicverR22) Labeled Data 70.9 455 905 68.4 93.8 84.0 66.9 22.3 39.2 64.6
TDAICVPR'24] History 71.4 474  88.6 70.6 94.2 86.1 67.6 239 58.0 67.5
DPE|NeurIPs'24] History 75.0 542 911 70.4 94.8 86.1 70.0 28.9 55.7 69.4
CLIP-VIT-B/16(t) X 67.4 443 883 65.1 93.4 83.7 62.6 237 42.0 63.6
Ensemble X 67.0 450 869 65.2 93.6 82.9 65.6 232 50.4 64.6
TPTNeurlPs*22] Augmentations 69.0 478 87.8 68.0 94.2 84.7 65.5 24.8 424 65.1
DiffTPTjiccv 23 Augmentations 70.1 47.0 88.2 62.6 92.4 87.2 65.7 25.6 43.1 65.4
MTA VPR 24 Augmentations 68.0 459 882 68.6 94.2 85.0 66.6 25.2 453 65.2
APM|Neurlps 24 X 62.0 489 81.6 72.6 89.6 84.2 65.7 29.7 557 | 655
GS-Bias[icML25] Augmentations 71.9 46.1 903 67.5 94.6 86.0 67.4 26.4 52.4 67.0
LQN-[src]iours X 65.2 50.0 84.1 72.2 93.8 85.6 67.0 29.9 56.1 67.0
LQNI0urs) X 66.8 51.3  85.0 73.1 94.0 86.4 67.6 30.5 57.0 67.9

4.2 IMPLEMENTATION DETAILS

We implement two variants of our model: LON-[src] and LON. LON-[src] means that the model
only uses a single location, i.e. dest and does not perform any recirculation-procedure. LON is
the variant which uses both binding/recirculation procedure. These variants are optimized with
Adam using a learning rate of 1 x 10~%. Input images are normalized to ImageNet statistics. The
total number of iterations are set to 7' = 15. For LQN, we set the recirculation loss weight to
a = 0.7. The GFLOPs are measured using Meta’s fvcore package (FLOPs x10%). To ensure
statistical reliability, we report the mean accuracy of three runs with different seeds.

While performing recirculation in the LQN model, there are n = H x W x L plausible locations.
Selecting a triplet (srcy, srea, dest) yields () = O(n®) possibilities, making exhaustive compu-
tation infeasible. However, we find that randomly sampling as few as 5% of these triplets provides
sufficient performance gains, consistent with Masked Autoencoders He et al. (2022), where most

tokens can be dropped without loss in performance.
4.3 MAIN RESULTS

Baselines We compare with (1) zero-shot VLMs such as CLIP, including backbones of varying
sizes like ViT-B/16 and ViT-L/14; (2) relevant TTT baselines such as TPT and Diff-TPT, which
adapt VLMs using augmented views of a single test sample, and TPS, which provides an efficient
alternative by learning shift vectors for each class prototype; and (3) various TTA baselines such
as TDA, DMN-ZS, and DPE, which rely on historical information from multiple test samples, (4)
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Table 3: Comparison across various segmentation tasks. GFLOPs consumed by Panoptic and In-
stance segmentation are identical. Both use an input resolution of 12802, whereas semantic segmen-
tation uses a resolution of 10242. PQ: Panoptic Quality, AP: Average Precision.

Panoptic Instance | Semantic
Method Backbone GFLOPs| cocoO  ADE20K  COCO | CityScapes ADE20K
PQ T PQ T AP 7T ‘ GFLOPs | mloU?T GFLOPs] mloU T

Mask2Former [CVPR 2022]  ViT-Adapter-L 4817 59.7 53.0 51.4 5200 84.5 910 58.9
EoMT(t) [CVPR 2025] VIiT-L 4146 58.3 51.7 48.8 4350 84.2 721 58.4
APM [NeurIPs 2024] MLP 4336 59.2 52.6 51.6 4540 85.1 911 58.5
LQN-[src][Ours] MLP 4342 59.9 53.2 52.1 4490 85.7 861 61.2
LQN/Ours) MLP 4384 61.8 554 53.8 4588 86.3 959 62.7

as well as prompt learning approaches like CoOp and CoCoOp, which require annotated training
data and often incur additional computational or memory overhead. In contrast, LQN is designed
specifically for the TTT setting: it adapts the VLM using only one test sample without requiring
auxiliary training data or multiple test streams, while also leveraging an ensemble of 80 prompts
similar to CLIP to improve robustness.

Natural Distribution Shifts: In Tab I, we compare the performance of our LQN on in-domain
ImageNet and its 4 OOD (Out-Of-Distribution) variants. Zero-Shot CLIP underperforms in the
OOD case, obtaining a mere 57.2 average accuracy. Compared with other TTT-baselines, LQN on
average outperforms TPT by 3.2%, TPS by 0.7%, Diff-TPT by 3.1%, and ZERO by 1.6%. On
the ImageNet-val set, LQN comes close 0.1% to Diff-TPT. However, note that Diff-TPT requires a
heavily parameterized diffusion model to generate test augmentations, whereas LQN is lightweight
with 250 parameters. Methods like CoOP and CocoOp utilize annotated training data, which limits
their effectiveness in real-world situations. This might pose problems in scenarios where models are
‘rolled out’ on edge-devices, and only test samples are available. Despite this, our method still
exhibits significant performance gains of 5.2% compared to CoOp. Leveraging CLIP VIT-L/14 as a
teacher, LQN outperforms the teacher model by 3.9%.

Cross-Dataset Generalization: In Tab 2, we evaluate our LQN on 9 additional fine-grained recog-
nition benchmarks. LQN-[src] obtains an SOTA average accuracy of 67.0, which is 1.5% better than
the prior SOTA method APM. LQN improves the performance further to 67.9, and notably outper-
forms even strong TTA baselines like TDA/DPE. On 4/9 datasets, we come close to other methods,
and acknowledge the potential for further improvements.

Input EoMT LQN Input EoMT LQN

Figure 3: LQN demonstrates better qualitative segmentation results than EOMT teacher. (left) LQN
can even segment persons ‘occluded’ behind the window of the bus. (right) LQN semantically-
groups visual-elements of the scene, including the walls, whereas EoMT falls short.

Generalization to Segmentation Tasks: Building on the strong performance of LQN in classifica-
tion, we extend our study to the more challenging dense-level segmentation setting. Table 3 reports
results with segmentation methods, including the Mask2Former baseline Cheng et al. (2022) and the
recent EOMT architecture Kerssies et al. (2025). Although EoMT substantially reduces FLOPs, it
performs worse than Mask2Former in terms of accuracy. By using EOMT as the teacher, our LQN
attains superior performance relative to both baselines. Importantly, even with TTT, the FLOPs con-
sumed by LQN remain lower than those of the Mask2Former baseline. Fig3 shows some sample
qualitative segmentation results of LQN.

4.4 ANALYSIS

Computation FLOP Analysis: We analyze how LQN achieves faster convergence compared to
popular TTT methods such as TPT, TPS, and DiffTPT, which rely on augmenting each test sample
multiple times. In terms of the full resz-time tuning process, as shown in Fig. 4(ii), TPT requires only
one gradient update per test sample but constructs 63 augmented views, resulting in 63 + 1 = 64
forward passes through the encoder and a total cost of 1312 GFLOPs. By contrast, LQN performs
multiple iterations. The first forward step costs 20.5 GFLOPs through CLIP’s encoder, while the
subsequent 14 backward steps cost 10 GFLOPs each for updating the student, yielding a total of
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Figure 4: (Left) Wall-clock time comparison on ImageNet using CLIP ResNet-50. H: v means TTT
used cumulative training results from multiple history test samples. (Right) Graphs of computation
cost and performance. (i) Test-time inference computation cost. (ii) Test-time tuning computation
cost. (iii) Semantic segmentation performance.

20.5 + 14 x 10 = 160.5 GFLOPs—an order of magnitude lower than TPT. As shown in Tab. 1,
LQN not only converges faster but also surpasses TPT in accuracy. Moreover, unlike TPT, which
incurs additional FLOPs for optimizing prompts in the text encoder, LQN avoids this overhead.

Fig. 4(i) further highlights the test-time inference cost. To obtain last-layer features, TPT requires
feed-forward through all 12 layers of CLIP’s encoder (20.5 GFLOPs), whereas LQN can query its
student S directly at a constant cost of 10 GFLOPs. Finally, Tab. 4 reports the actual wall-clock
time Zhang et al. (2024) required for TTT over all 50,000 ImageNet validation samples on a single
A6000 GPU (following DPE). TPS, the prior SOTA, consumes 55m since it avoids backpropagation
through the text encoder. LQN-[src] further reduces this to 47m while improving accuracy by 0.5%.
Full LQN achieves even higher accuracy (62.3%), though with an added cost of 1h 27m due to
recirculation. Thus, while LQN improves over both TPT and TPS, it introduces a trade-off between
accuracy and wall-clock efficiency.

- VIT8/16 =+ LON
~ APM

—+— LON
—— APM

32 512 1024

Mogation

0] (ii)

nnnn

Layer2 Layer4 Layer6 Layer8 Layer9

Figure 5: (Left) Token visualizations of the teacher model EoMT (top row), the student model LQN
(middle row), and their difference (bottom row). EOMT operates sequentially, predicting intermedi-
ate features in O(L) time, whereas LQN predicts them in constant O(1) time. As depth increases,
LQN’s predictions closely match those of EoMT. (Right) (i) Effect of the number of image aug-
mentations, comparing ViT-B/16, APM, and LQN. Augmenting the test sample during TTT harms
APM and LQN. (ii) Effect of the number of randomly sampled token positions. Distilling more
teacher locations into APM/LQN improves performance, highlighting the benefit of single-sample
supervision.

LQN generalizes to unseen teacher layers beyond those used in test-time training: In Fig. 4(iii),
we use EoMT ViT-L as LQN’s teacher for semantic segmentation on ADE20k. When TTT is per-
formed by distilling all 24 layers of the teacher into LQN, we obtain a peak mloU of 62.7, thereby
improving over the EOMT baseline of 58.4 mloU. Interestingly, we next perform TTT using only the
first 20 layers of EOMT. During inference, however, we query LQN with the deeper layers 21-24.
In this case, we still observe an increase in performance, reaching 60.3 mloU. This result shows
that LQN has effectively encoded depth as a valid spatial dimension, enabling it to generalize to the
teacher’s deeper layers never seen during training.

LQN can predict teacher’s features in constant time irrespective of layer-depth: In Fig 5 (Left),
we feed-forward a sample image from the COCO dataset into both the EOMT teacher and LQN. We
plot intermediate representations via t-SNE reduction. We observe that the predicted features are
significantly similar to those of the teacher. A notable advantage of LQN is that estimating those
features takes O(1) time, whereas in EoOMT it takes O([), where [ is the depth of the queried layer.
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Figure 6: Ablations on LQN-[src] and LQN variants: (i) TTT iteration N study. (ii) Effect of
recirculation loss coefficient .. (iii) Effect of different ‘Src’ locations in LQN. (iv) Effect of the
number of teacher layers during TTT.

4.5 ABLATIONS STUDIES

Recall, we implemented two variants of our model, i) LQN-[src], which only contains dest, and does
not use the recirculation procedure. ii) LQN which uses both binding and recirculation procedures.
We ablate several important hyperparameters in this section. To ensure consistency, we perform all
TTT experiments on the ImageNet val set, with CLIP VIT-B/16 as LQN’s teacher.

Effect of varying TTT iterations N: In Fig. 6(i), we study the impact of increasing the number
of iterations for LQN. We observe that performance first improves, peaks at 15 iterations, and then
begins to decrease. It is important to note that, before adapting each test sample, LQN’s weights are
initialized randomly from a normal distribution. In contrast, methods such as TPT and TPS adapt
the pre-trained VLM itself, which has been trained on large-scale data. This fundamental difference
likely explains why LQN requires multiple iterations (N > 1) to achieve optimal adaptation.

Effect of the recirculation loss weight o: In Fig. 6(ii), we observe that performance improves as «
increases and peaks at « = 0.7. This result is notable because a higher weight on the recirculation
objective means the network benefits more from the self-supervised consistency constraint rather
than relying solely on the teacher’s supervision. It highlights how LQN’s predicted features can
eventually surpass those of the frozen VLM image encoder. This suggests that recirculation acts as
a strong regularizer, encouraging more robust and transferable representations.

Modeling ‘pairs’ of teacher tokens is important: LQN operates on pairs of locations (src, dest).
A natural question is whether such pairing is even necessary. As shown in Fig. 6(iii), LQN-[src],
which only uses a single location dest, achieves 69.4%, whereas modeling both (src, dest) in LQN
improves performance to 70.2%. Similarly, during test-time inference, we set src = (0,0,0). Why
is this fixed choice needed? We observe that src = random drops the performance significantly
to 64.8%. Interestingly, fixing src to another constant position, e.g., (2, 5, 8), achieves performance
comparable to (0,0, 0). This suggests that src should be a consistent fixed 3D location when decod-
ing features for the last layer, but its exact choice is not critical.

Increasing teacher layers distilled into LQN improves performance: In Fig. 6(iv), we observe
that distilling a larger number of teacher layers into LQN consistently improves performance. This
suggests that modeling intermediate teacher layers enables the student to capture multi-level feature
representations, which directly correlates with stronger downstream TTT performance, highlighting
the benefit of leveraging hierarchical depth from the teacher.

LQN can adapt using just a single test sample: How can adaptation occur even without fest-
time augmentation? We study this by subjecting the student to multiple augmented views of the
same test sample. In Fig. 5(i), we find that increasing augmentations improves the ViT-B based
teacher, consistent with prior observations in TPT and TPS. However, we observe lower results in
LQN and APM, which points to a unique inductive bias in their structure. Recall that the LQN
student takes coordinate-based inputs (src, dest). For a test sample x,,4, We vary the number of
such coordinate-based locations distilled into LQN during TTT. As shown in Fig. 5(ii), distilling
more teacher locations further improves performance. A formal justification of this unique property
of coordinate-conditioned networks has been discussed in Hinton (2022; 2023); Modi & Rawat
(2024a).

L outperforms entropy minimization: Applying entropy-minimization objective (similar to TPT)
on LQN drops performance from 70.2 to 67.4, implying Lo constraint on features is more effective.
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5 CONCLUSION

Our results suggest that it is possible to adapt VLM’s like CLIP using as few as 1 test-sample (TTT),
and without requiring primitives like data augmentation. Further, we can design architectures like
LQN which can predict intermediate features of a teacher in a constant amount of time, as opposed
to O(I) time which is incurred in classical neural-netsBengio et al. (2006). This brings us closer
towards validating the insight that perception is a ‘continuous’ field which can be ‘queried’ (Layer
Query Network), instead of computed ‘sequentially’Hinton (2023); Lowe et al. (2019). We remain
encouraged by LQN'’s potential to improve asynchronous processing across different layers.

6 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have included the detailed implementation details and hyperparame-
ters in the supplementary material. The complete codebase and model checkpoints will be made pub-
licly available following the review process. LQN is designed to be lightweight and can be trained
on a single GPU (e.g., NVIDIA Pascal). For larger-scale runs, it also supports parallelization across
a multi-node setup—for instance, a cluster with 2 nodes, each equipped with § NVIDIA A6000
(Ampere) GPUs. We provide more details relevant to reproducibility in supplementary (Sec8).
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7 BROADER IMPACT

There are two core ideas that motivate the design of the Layer Query Network (LQN). The first
idea is that positional encodings could function as an addressing mechanism Vaswani et al. (2017).
When a network is conditioned on a specific positional encoding, it becomes capable of ‘retrieving’
the relevant entity stored at that location Modi & Rawat (2024b). The second idea is to recognize
that feature-representations in a neural network form part-whole hierarchiesAmir et al. (2021): they
can be treated as a ‘graph-like structure’, where each node represents a part/whole. Directed re-
lationships between such nodes (src, dest) (denoted by <—, —) could then be modeled using the
LQN architecture. This allows mapping part-whole hierarchies onto a shared connectionist hard-
wareHinton (2023). However, given a single node, one cannot infer all its incoming/outgoing edges
without brute-forcing over all the possible entity pairs and identifying the ones where the network’s
response becomes high.

Limitations: In future, we would like to study how such co-ordinate based nets perform when
trained on large-scale data. In its current formulation, LQN relies on recirculation, which is a
compute-intensive procedure. We are excited to explore how this time could be reduced further.
Ultimately, we would like to extend LQN to videos: mimicking how spatio-temporal processing
occurs in infero-temporal pathway of human primates.

Ethical Considerations: Layer Query Network (LQN) introduces a non-sequential mechanism for
querying intermediate representations in deep models, offering computational and adaptability ben-
efits. However, this capability raises important ethical considerations. At test time, the model may
adapt in ways that unintentionally amplify biases present in the teacher or the test distribution,
particularly in safety-critical settings. Furthermore, the ability to synthesize features at arbitrary
depths may reduce interpretability and complicate efforts to audit or explain model behavior. While
LON reduces inference-time overhead, it builds upon large pre-trained teacher models with signifi-
cant resource footprints. We emphasize that LQN should not be deployed in applications involving
surveillance, manipulation, or deceptive content generation, and advocate for its use in settings that
prioritize transparency, accountability, and societal benefit.

8 IMPLEMENTATION DETAILS

Architecture: In Tab 4, we inflate the full architecture of our LQN. LQN consists of a single CNN
filter. Given an input image z,,q, We first run a single convolution filter on it with a stride s. The
resultant h/s X w/s x 1 vector is then ‘flattened’. The two locations (src, dest) are encoded as 3-
D positional encodings, along with the flag positional encoding (Alg 1). The flattened input image,
along with d dimensional source, and d dimensional destination are passed through an MLP. The first
layer of the MLP contains (h/s*w/s+d,+ d;f)) * 4096 learnable parameters. The subsequent layers
contain 4096 * 4096, 4096 * 4096, 4096 * 2048 , 2048 * 1024 parameters respectively. Finally, we
have a projection head which projects the MLP output to 1024, d, where d is the dimensionality of
internal tokens of a teacher.

Table 4: LQN architecture for TTT: with input dimensions h,w, ¢ and feature dimension d:
dimensionality of positional encoding. s: stride of convolutional filter in encoder, d.: dimension of
the intermediate token of teacher on which LQN learns. LQN contains two locations, (src, dest),
so additional d), term is added to the input. { : LQN-[src] contains only a single location, so this
term is not added.

Layer Feature Dimension Nkernels ~ Stride  Padding
HxWxC) Input / Output

Input hxwxXc
Encoder Conv h/s xw/s x d 1 s 0/0

Linear  (h/s*w/s+d, +df) * 4096 - - -
Linear 4096 * 4096 - - -
Linear 4096 * 4096 - - -
Linear 4096 * 2048 - - -
Linear 2048 * 1024 - - -

Feature Projection Head  Linear 1024 * d, - - -

Decoder
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Hyperparameters: All hyper-parameters utilized for LQN during test-time-training are detailed in
5. We leveraged the seed 0/7/42 in most of our experiments. The weight matrices in LQN were
initilized with from a random distribution with ;4 = 0 and 0 = 0.01. We tried initializing the
net with other schemes such as xavier initialization etc, but found normal-weight intialization to
work the best. All our code has been written in Pytorch version 1.13.0. However, since we only
use pytorch, and no external libraries, we expect that our codebase will also support more recent
versions, for eg, Pytorch 2.0+. We also note that performing test-time-training with 16 bit floating
point allows us to effectively use recent GPU architectures for eg, Ampere: they contain a larger
number of tensor cores in addition to CUDA cores which results in significant speedups during the
exprimentation process. Finally, we normalize an input image using standard Imagenet stats, and
dont resort to any other form of augmentation, thereby making the pipeline far-simpler.

Table 5: LQN hyperparameters during test-time-training.

Number of Test samples 50000 (Imagenet Splits), variable for other datasets.

Testing iterations 15
Batch Size 1
Learning Rate le-4
Optimizer Adam

Feature Output size d 768/1024
Positional Encoding size ~ 768/1024

Image/Crop Size 448

Augmentations Normalization, p = (0.485,0.456,0.406), o = (0.229,0.224,0.225)
Precision fpl6 (grad-scaled)

Num of Workers 8

Operating System 1x rtx 26000 48GB/96GB ram/Ubuntu 22.04/2TB ssd/5TB HDD

ViT Encoder: During our experiments in test-time-training, APM relies on higher-dimensional
intermediate token distilled from a teacher trained on a large-scale-dataset, often via contrastive
image-text objectives. We showed quantitative results with CLIP VIT-L/VIT-H and semantic clus-
terings with EOMT (CVPR’25).

CLIP is a zero-shot model from OpenAl which contains a vision encoder, and a textual encoder.
The textual encoder tokenises input class names to features. Both image/text encoder project them
to common dimensionality, and classification happens by measuring distances in contrastive space,
thereby offering a higher degree of freedom, as opposed to training a class-sensitive linear-probe.
CLIP VIT-L features an output CLS token of 768 dimensions, while CLIP VIT-H outputs 1024
dimensions both of which have been accommodated in Tab4.

9 DETAILS OF THE DATASETS

Evaluating a model’s robustness to distribution shifts necessitates testing on datasets that feature
a broad spectrum of perturbations—such as fog, snow, rain, and other real-world variations. A
common strategy is to apply synthetic corruptions to well-established test sets (e.g., ImageNet)
to create benchmark splits suitable for controlled evaluation. Alternatively, new test sets may be
manually compiled from online sources to capture modality changes, such as sketches or artistic
reinterpretations. Below, we describe the key datasets used in this work to assess the robustness and
generalization capabilities of LQN. These datasets consist of both classification and segmentation
benchmarks.

9.1 CORRUPTION & DISTRIBUTION SHIFT BENCHMARKS

CIFAR-10-C: Comprising 10,000 test samples from CIFAR-10, this benchmark introduces 15 cor-
ruption types (e.g., blur, noise, weather effects), each applied at 5 severity levels. Our evaluation
focuses on the most difficult setting—level 5—due to computational constraints.

ImageNet-C: A widely used benchmark for corruption robustness based on the original ImageNet
dataset. It includes 15 distortion types applied at 5 severity levels, affecting all 1,000 classes. The
corruptions degrade image quality in ways that simulate real-world noise and artifacts.
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ImageNet-V2: A re-collection of ImageNet-like samples from the web, preserving label distribution
across 1,000 categories. The dataset consists of 10,000 images across three distinct splits, offering
a testbed for evaluating generalization to naturally shifted data.

ImageNet-A: Contains 7,500 images from 200 categories that are hard for standard models like
ResNet-50. These examples are “naturally adversarial’—real-world images that consistently cause
misclassification.

ImageNet-R: Focuses on stylized renditions of ImageNet classes, including paintings, cartoons, and
other artistic formats. It contains approximately 30,000 images across 200 categories and evaluates
robustness to stylistic domain shifts.

ImageNet-Sketch: A challenging modality shift dataset containing 50,000 black-and-white
sketches corresponding to 1,000 ImageNet categories. It tests the model’s ability to recognize ab-
stract shapes and contours, without relying on color or texture cues.

To ensure consistency with prior work (e.g., CLIP), we evaluate LQN using an ensemble of 80
handcrafted textual prompts across these ImageNet-derived benchmarks.

9.2 DENSE PREDICTION BENCHMARKS

COCO (Common Objects in Context): A large-scale dataset for object detection, segmentation,
and captioning tasks. It features over 200,000 labeled images containing instances of 80 object
categories in diverse, cluttered scenes. COCO is widely used to evaluate models’ ability to handle
multi-object, real-world environments.

Cityscapes: Focused on urban street scenes, this dataset contains 5,000 finely annotated images
from 50 different European cities. It includes 19 semantic classes relevant to autonomous driving
(e.g., road, pedestrian, traffic light) and is primarily used for evaluating semantic segmentation under
real-world conditions.

ADE20K: A challenging benchmark for semantic segmentation that includes 25,000 images anno-
tated with over 150 object and stuff categories. The dataset spans indoor, outdoor, urban, and natural
scenes, providing a diverse set of environments for evaluating dense prediction tasks.

10 ADDITIONAL ABLATIONS

How should the locations (srcl, src2, dest) be chosen for the recirculation procedure? Images
consist of large redundant information, for eg, a large number of pixels generally represent the
same object, for eg, a tree. If (srcl, src2, dest) correspond to the same object, the LQN might not
learn useful information. So, it would help if (srcl, src2, dest) correspond to different objects. To
validate this, we run a segmentation model like EomT on an input test sample prior to beginning
the TTT. We sample (srcl, src2,dest) from locations corresponding to different segments, and
observe that the performance of the LQN model on ImageNet val using CLIP VIT-B/16 as a teacher
improves from the reported 70.2 to 71.5, thereby even outperforming the Diff-TPT in Tab 1) of the
main paper. This validates the insight that (srcl, src2, dest) should come from different objects.

However, this improvement comes at a cost: one needs to run a segmentation model before begin-
ning to TTT, which increases the GFlops. Therefore, being able to discover object regions, without
segmentation models remains an interesting direction of future research.

Why do we concatenate embeddings and not add them as in a transformer: Recall that first
MLP layer of LQN-[src] contains as input the test sample’s representation x’, and positional en-
coding corresponding to (src). Instead of concatenating these inputs, we perform an additional
experiment where positional encoding is added to x’. Specifically, given x4, We first convolve it
with a CNN filter to yield 2’ € R *w'*x1 The resultant 2’ is flattened and added to Dsre, Which
similar to transformer. We find that the TTT performance on ImageNet for LQN-[src] model using
CLIP VIT-B/16 as a teacher drops from 69.4 to 61.2. However, we do note that in the original VIT
paper, Dosovitskiy et al. (2021), the best results were estimated by adding the positional encoding
to the image features. We believe that the reason behind this might be the unique inductive bias in
the architecture of LQN, which is originally inspired by the APM paperModi & Rawat (2024b).

11 PSEUDO-CODE OF APM
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Algorithm 2 Asynchronous Perception Machine. Student operations shown in blue.

Input: Teacher Image/Text Encoder Timg / Tieat, Student Simg (to adapt), N iterations, P €
REXWIXD (positional embedding)
Require: OOD image 04, Class Label cls & Predict class logit

Y;mg — ﬂmg(l‘ood) S RHXWXD
Yiewt < ﬂext(Cls)
Simg +~—0
for iteration k£ € N do
1,7 < Sample(H,W)
P j < P(i, j)
1085 <= [|Simg (Pi,j, Tood) — Yimgli, 5113
Update Simg
: end for

R A S

—
N =o

: forV(i,5) € (H,W) do

Pi,j — P(Z7.])

Yz’frf;dem += Simg(Pij, Tooa) I (H - W)
: end for

—_— e =
A

. Student
. Pcls “— )/im,: ent. }/tea;t
: Output: P,

—_
o

Test-Time Training (TTT) setup: Following recent work, APM (Modi & Rawat, 2024a) (shown
in algorithm 2), we adopt a teacher student distillation framework (fig. 1(b)). The teacher is a frozen
VLM (e.g. CLIP, ViT-L), while the student S is optimized at test time for N iterations. First the
teacher produces text and images embedding corresponding to x,0q and class label cls, i.e. Y,
and Yie.t (eq. (1)). For N iterations, the students randomly select a batch of spatial indices (i,j) and
tries to mimic teacher embeddings on those spatial indices. At every iteration, the student .S is reset
before doing any prediction (ideal TTT), and uses positional embedding (Vaswani et al., 2017) and
the input image x,,q to generate image features. MSE loss is used to train the student. After N
iterations, the student uses the teacher text encoder to generate the class logit. It has been shown
to improve light-weight students to inherit (& surpass) teacher’s zero-shot generalization on OOD
samples.

12 ADDITIONAL RESULTS ON CIFAR 10-C
We report more results on Cifar 10C in Table 6, where LQN model gets the lowest error rate of 13.0.

Table 6: CIFAR-10-C results at highest severity level of 5. We report Error Rate (%, lower is better).
The t- model acts as the teacher for APM and LQN variants. TTT was performed on the test set with
randomly initialized weights. APM and LQN weights were reinitialized after each TTT iteration
to prevent information leakage. All LQN variants outperform prior methods, with LQN-Two Word
achieving the best overall performance.

Method orig | gauss | shot | impul | defoc | glass | motn | zoom | snow | frost | fog | brit | contr | elas | pixel | jpeg | Avg
TTT-Online 82 | 258 | 226 | 30.6 146 | 344 | 183 | 17.1 | 200 | 180 | 169 | 11.2 | 156 | 21.6 | 18.1 | 21.2 | 19.1
UDA-SS 9.0 | 282 | 265 | 20.8 15.6 | 437 | 245 | 238 | 250 | 249 | 17.2 | 127 | 11.6 | 22.1 | 203 | 22.6 | 21.4

Zeroshot
CLIP ViT-L/14 463 | 354 | 323 | 219 193 | 49.7 | 193 | 173 | 17.0 | 15.1 | 21.6 | 84 | 159 | 34.6 | 25.0 | 274 | 245
CLIP ViT-L/14 (t)

APM 35 | 219 | 30.1 13.7 152 | 341 | 119 | 11.1 150 | 90 | 135 | 5.8 95 |23.0 | 158 | 17.0 | 148
LQN-[src] (Ours) | 3.2 | 20.1 | 213 | 132 147 | 315 | 11.1 10.8 | 143 | 87 | 124 | 52 88 | 205 | 145 | 155 139
LQN (Ours) 29 18.8 | 20.0 | 125 14.1 | 302 | 105 | 10.1 134 | 81 | 117 | 49 8.1 193 | 13.6 | 143 | 13.0

13 ADDITIONAL RESULTS ON IMAGENET-C

Following TTT-MAEGandelsman et al. (2022), we evaluate our method , we evaluate our method
on ImageNet-C. ImageNet-C is a dataset which consists of 15 types of corruptions applied to the
original ImageNet validation set. As evidenced in Tab 7, we obtain the highest accuracy of 53.0 on
the highest severity level 5, thereby showcasing the efficacy of LQN.

17



Under review as a conference paper at ICLR 2026

Table 7: LQN’s performance on ImageNet-C, level 5. The first three rows are fixed models without
test-time training. The third row, ViT probing, is the baseline used in Gandelsman et al. (2022). A v/
in P means that method leveraged pre-trained weights on clean variant of train set aka, Image-net
and downstream-ttt on corrupted version. OpenCLIP VIT-L/14 is generally more robust. LQN does
better on various noises with an average accuracy score of 52.3.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom = Average
Joint Train v 623 45 267 399 257 300 58 163 58 453 309 459 7.1 251 318 24.8
Fine-Tune v 675 78 339 324 364 382 220 157 239 512 374 519 237 376 371 BT
ViT Probe v 683 64 242 316 386 384 174 184 182 512 322 497 182 359 322 29.2
TTT-MAE v 691 98 344 507 447 507 305 369 324 630 419 630 33.0 428 459 44.4
OpenCLIP VIT-L/14(t) X 719 47.0 503 327 583 469 260 265 281 627 377 583 282 504 379 42.1
APM X 774 519 566 379 648 532 287 314 330 684 441 645 331 569 439 50.3
LQN-[src] (Ours) X 792 540 589 402 671 553 308 335 352 708 463 667 351 59.1 46.0 51.8
LQN (Ours) X 801 552 604 415 687 564 316 342 360 719 472 679 363 603 47.1 53.0

Table 8: Performance on ImageNet-C, level 4. The first two rows are from the supplementary
materials of Gandelsman et al. (2022). A v in column P indicates use of pre-trained weights
on clean ImageNet followed by TTT on corrupted inputs. OpenCLIP ViT-L/14 shows stronger
robustness than earlier models. LQN variants surpass prior methods.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average
Baseline v/ 731 331 358 569 542 452 39.6 260 382 620 432 603 322 442 407 47.4
TTT-MAE v/ 727 396 457 649 583 526 485 428 476 670 505 666 424 457 515 B2
OpenCLIP VIT-L/14 X 742 642 587 578 663 528 453 346 452 689 466 639 41.1 562 456 54.8
APM X 792 704 649 637 723 586 512 404 513 741 530 700 467 625 518 59.6
LQN-[src] (Ours) X 801 712 657 644 731 592 520 411 521 747 536 707 473 632 526 60.4
LQN (Ours) X 809 721 665 652 739 599 529 419 528 753 542 714 479 639 533 61.2

Table 9: Performance on
materials of Gandelsman et al. (2022). A v in column P indicates that the method used pre-trained
weights on clean ImageNet and applied TTT on the corrupted set. OpenCLIP ViT-L/14 is more
robust than earlier models. Both LQN variants outperform prior approaches.

ImageNet-C,

level 3. The first two rows are from the supplementary

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average
Baseline v/ 758 627 495 671 598 476 57.1 350 574 68.6 602 70.1 543 547 480 57.6
TTT-MAE v/ 758 644 594 712 640 540 63.6 507 642 713 642 731 61.8 580 574 64.4
OpenCLIP VIT-L/14 X 758 71.8 655 677 69.0 547 589 424 595 728 599 697 582 635 518 62.5
APM X 805 772 713 733 748 60.6 647 485 654 778 616 752 641 693 580 68.5
LQN-[src] (Ours) X 812 780 720 740 754 612 655 492 66.1 784 621 759 648 699 588 69.2
LQN (Ours) X 819 788 728 749 762 619 663 499 669 791 628 767 655 705 595 69.9

Table 10: Performance on ImageNet-C, level 2. The first two rows are from the supplementary
materials of Gandelsman et al. (2022). A v in column P indicates that the method used pre-trained
weights on clean ImageNet and performed TTT on the corrupted version. OpenCLIP ViT-L/14 is
generally more robust than earlier models. Both LQN variants outperform prior methods.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average
Baseline v 774 712 623 510 663 584 686 592 649 704 70.6 747 662 542 552 64.1
TTT-MAE v 718 715 694 497 698 627 725 664 700 727 723 762 706 587 63.6 68.3
OpenCLIP VIT-L/14 X 76.6 744 714 538 720 626 676 640 646 738 690 728 664 61.8 583 66.1
APM X 811 794 766 594 773 682 731 700 703 786 745 718 720 678 643 724
LQN-[src] (Ours) X 817 802 775 601 781 69.0 739 706 710 793 751 785 726 684 65.1 73.2
LQN (Ours) X 824 810 784 609 789 698 747 713 717 801 758 792 734 69.1 658 74.1

Table 11: APM and LQN performance on ImageNet-C, level 1. The first two rows are reproduced
from the supplementary materials of Gandelsman et al. (2022). A v in column P indicates that the
method used pre-trained weights on clean ImageNet and applied TTT on the corrupted set. Open-
CLIP VIT-L/14 is generally more robust than earlier models. Both LQN variants surpass OpenCLIP
and prior methods.

P brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average
Baseline v 785 745 681 739 705 70.6 748 68.6 723 730 752 759 736 693 637 714
TTT-MAE v 89 747 725 747 729 722 768 722 755 745 758 770 759 719 693 73.1
OpenCLIP VIT-L/14 X 7713 754 735 731 735 714 719 702 699 751 737 742 719 712 652 71.1
APM X 816 803 786 780 786 766 772 757 751 796 187 79.1 769 764 70.7 76.0
LQN-[src] (Ours) X 824 811 794 788 792 773 779 762 759 80.1 793 798 775 771 716 768
LQN (Ours) X 832 8.0 803 796 801 780 786 77.0 765 809 802 805 784 779 723 77.6

14 ADDITIONAL QUALITATIVE RESULTS

In the original paper, we showed LQN’s results on segmentation. In Fig7,8,10, we qualitatively
demonstrate the semantic quality of the predictions made by our model. We compare against the
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EoMT baseline, APM, and our method. As it can be seen, LQN consistently gives better outputs
than other methods.

EoMT

Input

Figure 7: Qualitative results on LQN. Panoptic segmentation on COCO-Val set. LQN obtains more
semantically-detailed masks than the EOMT/APM baselines via test-time-training. Masks visualized
after 15 iterations of TTT on both APM/LQN. EoMT is a fully-supervised, fixed baseline. TTT on
APM/LQN is performed with EOMT as the teacher. The red regions are the regions where a kind
reader can focus on to see the comparison in the prediction quality. Starting from above, LQN
easily segments the books in the bookshelf as white region, spoon as a white outline on the plate,
distinguishes between the people in the background, and easily partitions chairs into two distinct
parts, whereas other EOMT and APM group them together. The red regions are the regions where a
kind reader can focus on to see the comparison in the prediction quality. Starting from above, LQN
easily segments the books in the bookshelf as white region, spoon as a white outline on the plate,
distinguishes between the people in the background, and easily partitions chairs into two distinct
parts, whereas other EOMT and APM group them together.
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LQN (Ours)

Figure 8: Qualitative results on LQN. Panoptic segmentation on COCO-Val set. LQN obtains more
semantically-detailed masks than the EOMT/APM baselines via test-time-training. Masks visualized
after 15 iterations of TTT on both APM/LQN. EoMT is a fully-supervised, fixed baseline. TTT on
APM/LQN is performed with EOMT as the teacher. The red regions are the regions where a kind
reader can focus on to see the comparison in the prediction quality. Starting from above, (first row)
LQN gets the passengers in the bus in the background, even though they are partially occluded,
(second row) easily segments the building into the blue regions, (third row) partitions buildings into
a green colored region whereas other two methods dont detect it as all/term it as background (fourth
row) gets window in the proper shape.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

LQN (Ours)

Figure 9: Qualitative results on LQN. Panoptic segmentation on COCO-Val set. LQN obtains more
semantically-detailed masks than the EOMT/APM baselines via test-time-training. Masks visualized
after 15 iterations of TTT on both APM/LQN. EoMT is a fully-supervised, fixed baseline. TTT on
APM/LQN is performed with EOMT as the teacher. The red regions are the regions where a kind
reader can focus on to see the comparison in the prediction quality. Starting from above, (first
row) LQN properly segments the suitcases, (second row) Precise boundaries of the cellphone in the
person’s hand, even though part of the cellphone is gripped very tightly by the person’s hand. (third
row) segments the base of the tree, whereas other two methods dont detect it at all (fourth row)
is able to understadn the fine regions which correspond to the bag/floor. In contrast, EOMT/APM
confuse that some part of the purse is also the background.
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Input Image

Figure 10: Qualitative results on LQN. LQN reconstructs RGB images with lowest pixelwise
loss as compared to MAE/APM. This illustrates the extreme scenario when input images contain
repeating textures and tests whether the model encodes semantics consistently.
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