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Abstract. The unlabeled images are helpful to generalize segmentation
models. To make full use of the unlabeled images, we develop a generator-
discriminator training pipeline based on the EfficientSegNet, which has
achieved the best performance and efficiency in previous FLARE 2021
challenge. For the generator, a coarse-to-fine strategy is used to pro-
duce segmentations of abdominal organs. Then the labeled image and
the ground truth are applied to optimize the generator. The discrimina-
tor receives the original unlabeled image or the relevant noised image,
together with their generated segmentation results to determine which
segmentation is better for the unlabeled image. After the adversarial
training, the generator is used to segment the unlabeled images. On
the FLARE 2022 final testing set of 200 cases, our method achieved an
average dice similarity coefficient (DSC) of 0.8497 and a normalized sur-
face dice (NSD) of 0.8915. In the inference stage, the average inference
time is 11.67 seconds per case, and the average GPU (MB) and CPU
(%) consumption per case are 311 and 225.6, respectively. The source
code is freely available at https://github.com/Yuanke-Pan/Adversarial-
EfficientSegNet.
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1 Introduction

The lack of labeled images is a great burden in medical imaging tasks. In the
past five years, there are many researches [1,10,12] show the potential of semi-
supervised algorithms in medical applications. In this paper, we focus on building
an abdominal multi-organ segmentation model with only 50 labeled and 2000
unlabeled abdominal CT scans. There are two main difficulties in this task: 1)
how to use those 2000 unlabeled CT scans to obtain more generalized results.
2) how to keep GPU memory and computation cost at a low level.
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The EfficientSegNet [11] has shown excellent performance and efficiency in
FLARE 2021 challenge [6]. The basic idea of our method is inheriting the network
architecture of EfficientSegNet and applying semi-supervised learning algorithms
to improve the generalizability of the inference model. In this work, we propose
a novel adversarial strategy to use the unlabeled CT images which can improve
the segmentation results. The main contributions of this work are:

1. We propose an adversarial semi-supervised learning pipeline for segmenta-
tion of medical images.

2. We design an image-label fusion discriminator to make full use of unlabeled
images.

2 Method

2.1 Preprocessing

We use the same preprocessing strategy in both training and prediction. The
details are described as follows:

– Reorienting the images to the left-posterior-inferior (LPI) view by flipping
and reordering.

– Resampling the images to the fixed sizes. The sizes of coarse and fine input
are [160, 160, 160] and [192, 192, 192], respectively.

For labeled images, we implement the following preprocessing steps:

– Reorienting the masks to the LPI view by flipping and reordering.
– Cropping the images according to the masks with a margin of [20, 20, 20].

2.2 Proposed Method

In this work, we combined efficient context-aware network as generator and
image-label fusion discriminator to make cross learning between labeled CT im-
ages and unlabeled images. The whole workflow of our method is illustrated in
Fig. 1,

The training phase of our proposed adversarial semi-supervise learning work-
flow consists of three steps in every iterations:

– In step 1, we use the generator to produce segmentation result of the original
image. Then we train the discriminator with the original image, the gener-
ated segmentation and the ground truth. Here we assume that the ground
truth is always the best segmentation of the original image.

– In step 2, we train the generator with original image and the ground truth
as supervised learning.
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– In step 3, we first add the Gaussian noise to the unlabeled image to get
the relevant noised image. Then we input the unlabeled image and the
noised image into the generator to produce segmentation-Unlabeled and
segmentation-Noised, respectively. After that, we input the unlabeled im-
age and the noised image separately with the two generated segmentation
results (segmentation-Unlabeled and segmentation-Noised) into the discrim-
inator to determine which segmentation is better. The better segmentation
will be used as the pseudo label and will be used to train the generator.
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Fig. 1. The whole workflow of our proposed method. The first step is used to train the
discriminator, the second step is used to train the generator, and the third step is used
to process unlabeled data. Loop through three steps over multiple iterations.

It is important to emphasize that for the first 50 and the last 50 training iter-
ations, we only use step 2 to fine-tune the network. After the training process,
the final generator is used to segment the unlabeled images.

Generator For the coarse-to-fine training strategy, there are two different net-
works to extract global and local information. The coarse model is a typical 5-
layer U-net structure which is employed to locate target organs. The fine model
is the EfficientSegNet shown in Fig. 2, which receives the coarse segmentation
results from the coarse model for further refinement.

Discriminator The input of the discriminator includes the original image and
two segmentation results. For the labeled images, these two segmentation re-
sults are the generated segmentation and the ground truth. For the unlabeled
images, these two segmentation results are derived from the unlabeled image and
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the relevant noised unlabeled image. The discriminator is used to decide which
segmentation is better for the original image.
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Fig. 2. The architecture of the fine network in the generator. The fine network performs
fine segmentation on the coarse segmentation results of the corse network, and applies
anisotropic convolution block to speed up the inference process.

Fig. 3. The architecture of the discriminator network. Discriminator can be regarded
as a condition-based binary classification model, which judges which segmentation is
better according to the image.

As shown in Fig. 3, the image-label fusion discriminator fuses the original
image with the two segmentation labels to output which label is better.
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Optional Operation In order to improve the discriminator’s performance,
we apply an augmentation to the ground truth called mask poisoning. This
augmentation step adds a random noise to the ground truth, which can make
the discriminator more concentrate on the data distribution.

Accelerate strategy The same as the EfficientSegNet, the anisotropic convolu-
tion, anisotropic pooling and coarse-to-fine strategy are used to reduce inference
time and GPU memory usage.

2.3 Post-processing

In the last step of the coarse-to-fine model, we apply a connected components
analysis [8] to get the final segmentation results.

3 Experiments

3.1 Dataset and evaluation metrics

The FLARE 2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [9], KiTS [3,4], AbdomenCT-1K [7], and
TCIA [2]. The training set includes 50 labeled CT scans with pancreas disease
and 2000 unlabeled CT scans with liver, kidney, spleen, or pancreas diseases.
The validation dataset includes 50 CT scans with liver, kidney, spleen, or pan-
creas diseases. The test dataset includes 200 CT scans where 100 cases with
liver, kidney, spleen, or pancreas diseases and the other 100 cases with uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation metrics are two accuracy measurements: Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD), and three running efficiency
measurements: running time, area under GPU memory-time curve, and area un-
der CPU utilization-time curve. All measurements will be used to compute the
ranking. Moreover, the GPU memory consumption has a tolerance of 2 GB.

3.2 Implementation details

Environment settings The development environments and requirements are
shown in Table 1.

Training protocols During the training process, we apply random shift and
brightness to the whole dataset, and Gaussian noise to the unlabeled images.
The details of the training protocols are shown in Table 2 and Table 3.



6 Y. Pan et al.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 20.04.1 LTS
CPU AMD EPYC 7742 64-Core Processor
RAM 16×4GB

GPU coarse: 2*NVIDIA A100 40G
refine: 4*NVIDIA A100 40G

CUDA version 11.2
Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.11, torchvision 0.12.0)

Table 2. Training protocols for the coarse model.

Network initialization “he" normal initialization

Batch size Labelled data: 4
UnLabelled data: 2

Patch size 160×160×160
Total epochs 300
Optimizer Adam (µ = 0.99)
Initial learning rate (lr) 0.001
Lr decay schedule halved by 200 epochs
Training time 6 hours
Loss function L = 1− 2∗

∑
ptrue ∗ppred∑

p2true +
∑

p2pred

Table 3. Training protocols for the fine model.

Network initialization “he" normal initialization

Batch size Labelled data: 8
UnLabelled data: 4

Patch size 192×192×192
Total epochs 500
Optimizer Adam (µ = 0.99)
Initial learning rate (lr) 0.001
lr decay schedule halved by 200 epochs
Training time 3.4 hours
Loss function L = 1− 2∗

∑
ptrue ∗ppred∑

p2true +
∑

p2pred
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4 Results and discussion

4.1 Qualitative results on the validation dataset

We compare our proposed method with the baseline model on 20 cases of vali-
dation set. The qualitative results are shown in Table 4.

Table 4. Qualitative results of baseline and baseline+SS(semi-supervised) on 20 cases
of validation set.

Organ Baseline Baseline+SS
DSC NSD DSC NSD

Liver 0.936 0.915 0.961 0.955
RK 0.818 0.796 0.838 0.815
Spleen 0.920 0.899 0.941 0.932
Pancreas 0.762 0.848 0.816 0.892
Aorta 0.945 0.977 0.958 0.986
IVC 0.835 0.825 0.891 0.892
RAG 0.709 0.820 0.660 0.745
LAG 0.709 0.798 0.821 0.900
Gallbladder 0.676 0.658 0.753 0.751
Esophagus 0.798 0.884 0.806 0.877
Stomach 0.731 0.752 0.864 0.883
Duodenum 0.675 0.829 0.718 0.811
LK 0.889 0.879 0.893 0.893
Average 0.800 0.837 0.840 0.872

In the case of comparison with the ground truth, Fig. 4 and Fig. 5 show two
examples with good segmentation results and two examples with poor segmen-
tation results, respectively. Table 5 and Table 6 shows the corresponding DSC
and NSD scores. For all 20 cases in the validation dataset, the average of DSC
and NSD of our model are 0.840 and 0.872, respectively. At the same time, we
observe that the segmentation results of our proposed model on Right Adrenal
Gland (RAG) is the worst in all organs, with the average DSC and average NSD
of 0.660 and 0.745, respectively. One reason may be that there are too many
organs around it.

Meanwhile, we compare our proposed method with the baseline model on 50
cases of validation set based on DSC. The qualitative results are shown in Table
7.
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Fig. 4. Comparison of 3D segmentation in two good segmentation results (NO.6 and
NO.21) and two poor segmentation results (NO.47 and NO.48).

Fig. 5. Comparison of section segmentation of a layer in two good segmentation results
(NO.6 and NO.21) and two poor segmentation results (NO.47 and NO.48).
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Table 5. DSC of each organ in the two good segmentation results (NO.6 and NO.21)
and two poor segmentation results (NO.47 and NO.48).

Organ NO.6 NO.21 NO.47 NO.48

Liver 0.983 0.978 0.917 0.860
RK 0.979 0.978 0.984 0.738
Spleen 0.986 0.989 0.769 0.613
Pancreas 0.894 0.927 0.700 0.800
Aorta 0.976 0.972 0.938 0.828
IVC 0.970 0.951 0.734 0.523
RAG 0.898 0.807 0.000 0.788
LAG 0.926 0.888 0.860 0.921
Gallbladder 1.000 1.000 0.557 0.000
Esophagus 0.907 0.951 0.841 0.260
Stomach 0.938 0.977 0.734 0.297
Duodenum 0.826 0.939 0.000 0.708
LK 0.968 0.986 0.984 0.920
Average 0.942 0.949 0.694 0.635

Table 6. NSD of each organ in the two good segmentation results (NO.6 and NO.21)
and two poor segmentation results (NO.47 and NO.48).

Organ NO.6 NO.21 NO.47 NO.48

Liver 0.982 0.991 0.812 0.781
RK 0.988 0.986 0.998 0.658
Spleen 0.989 1.000 0.638 0.510
Pancreas 0.947 0.991 0.758 0.851
Aorta 0.998 0.999 0.988 0.850
IVC 0.996 0.962 0.688 0.581
RAG 0.968 0.918 0.000 0.888
LAG 0.989 0.972 0.944 0.984
Gallbladder 1.000 1.000 0.610 0.000
Esophagus 0.988 1.000 0.892 0.335
Stomach 0.948 0.999 0.772 0.373
Duodenum 0.871 0.999 0.001 0.836
LK 0.934 0.998 0.985 0.876
Average 0.969 0.986 0.699 0.656
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Table 7. Qualitative DSC results of baseline and baseline+SS (semi-supervised) on 50
cases in the validation dataset.

Organ baseline+SS baseline

Liver 0.9555 0.9150
RK 0.9021 0.8586
Spleen 0.9341 0.8603
Pancreas 0.8069 0.7422
Aorta 0.9487 0.9180
IVC 0.8762 0.8065
RAG 0.6678 0.6842
LAG 0.7297 0.6511
Gallbladder 0.7644 0.6652
Esophagus 0.8018 0.7412
Stomach 0.8800 0.7279
Duodenum 0.7298 0.6588
LK 0.9066 0.8663
Average 0.8387 0.7766

4.2 Segmentation efficiency results on validation set

Our docker was validated with NVIDIA QUADRO RTX5000 (16G) and 32G
RAM on 50-case validation set. The mean running time per case is 11.6 sec-
onds, the mean maximum GPU memory is 2423MB, the mean area under GPU
memory-time curve is 12287 and the mean area under CPU utilization-time
curve is 224.

4.3 Results on final testing set

On the final testing set of 200 cases with undisclosed ground truth, the average
DSC and NSD of our method were 84.97 and 89.15, respectively. In terms of
segmentation efficiency, the mean running time per case is 11.67 seconds, the
mean area under GPU memory-time curve is 12155 and the mean area under
CPU utilization-time curve is 226. The average DSC and NSD for these 13 organs
are shown in Table 8.

4.4 Limitation and future work

In this work, we separate the training pipeline into three steps. In each step,
the parameters of the discriminator and the generator are not updated at the
same time, it might cost additional training time. An end-to-end semi-supervised
learning algorithm will be our goal in the future. Due to the time limitations,
we do not find a way to perform the proper analysis of the dataset. Considering
the success of nn-UNet [5], we believe that a proper analysis might improve our
final segmentation results.
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Table 8. Average DSC and NSD of 13 organs on the final test set.

Organ DSC NSD

Liver 0.9650 0.9653
RK 0.9166 0.9075
Spleen 0.9307 0.9329
Pancreas 0.7721 0.8708
Aorta 0.9583 0.9796
IVC 0.8688 0.8727
RAG 0.7698 0.8804
LAG 0.7838 0.8794
Gallbladder 0.7705 0.7740
Esophagus 0.7590 0.8405
Stomach 0.8840 0.9040
Duodenum 0.7280 0.8474
LK 0.9396 0.9346
Average 0.8497 0.8915

5 Conclusion

In this paper, in order to use the large amount of unlabeled data, we develop an
adversarial generator-discriminator training pipeline based on EfficientSegNet.
For the generator, we employ the coarse-to-fine strategy to generate segmenta-
tion results. The labeled images and their ground truth are used to optimize
the generator. For the discriminator, we first add noise to the original unlabeled
images, then the discriminator receives the original unlabeled image or the rele-
vant noised image together with their generated segmentation results. The better
segmentation is determined by the discriminator as the pseudo label of the un-
labeled image. On the FLARE 2022 validation dataset, our method achieved an
average DSC of 0.840 and a NSD of 0.872 with an average process time of 11.6
seconds per case in the inference phase.

Acknowledgements The authors of this paper declare that the segmentation
method implemented for participation in the FLARE 2022 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention.
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