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Abstract

Matrix completion aims to estimate missing entries in a data matrix, using the
assumption of a low-complexity structure (e.g., low rank) so that imputation is pos-
sible. While many effective estimation algorithms exist in the literature, uncertainty
quantification for this problem has proved to be challenging, and existing methods
are extremely sensitive to model misspecification. In this work, we propose a
distribution-free method for predictive inference in the matrix completion problem.
Our method adapts the framework of conformal prediction, which provides confi-
dence intervals with guaranteed distribution-free validity in the setting of regression,
to the problem of matrix completion. Our resulting method, conformalized matrix
completion (cmc), offers provable predictive coverage regardless of the accuracy
of the low-rank model. Empirical results on simulated and real data demonstrate
that cmc is robust to model misspecification while matching the performance of
existing model-based methods when the model is correct.

1 Introduction

Matrix completion, the task of filling in missing entries in a large data matrix, has a wide range
of applications such as gene-disease association analysis in bioinformatics (Natarajan and Dhillon,
2014), collaborative filtering in recommender systems (Rennie and Srebro, 2005), and panel data
prediction and inference in econometrics (Amjad et al., 2018; Bai and Ng, 2021; Athey et al., 2021).
If the underlying signal is assumed to be low-rank, a range of estimation algorithms have been
proposed in the literature, including approaches based on convex relaxations of rank (Candes and
Plan, 2010; Candès and Tao, 2010; Koltchinskii et al., 2011; Foygel and Srebro, 2011; Negahban
and Wainwright, 2012; Yang and Ma, 2022) and nonconvex optimization over the space of low-rank
matrices (Keshavan et al., 2010; Jain et al., 2013; Sun and Luo, 2016; Ma et al., 2020).

While the problem of estimation has been explored through many different approaches in the literature,
the question of uncertainty quantity for matrix completion remains challenging and under-explored.
Cai et al. (2016) and Carpentier et al. (2018) construct confidence intervals for the missing entries
using order-wise concentration inequalities, which could be extremely loose. Chen et al. (2019)
proposes a de-biased estimator for matrix completion and characterizes its asymptotic distribution,
which then yields entrywise confidence intervals are then derived for the underlying incoherent matrix
with i.i.d. Gaussian noise. See also Xia and Yuan (2021); Farias et al. (2022) for related approaches.

The effectiveness of the aforementioned uncertainty quantification methods rely heavily on the
exact low-rank structure as well as assumptions on the tail of the noise. In practice, the low-rank
assumption can only be met approximately, and heavy-tailed noise is quite common in areas such as
macroeconomics and genomics (Nair et al., 2022). Without exact model specifications, the solution
to the matrix completion algorithm is hard to interpret and the asymptotic distribution of the obtained
estimator is no longer valid. The dependence of model-based approaches on exact model assumptions
motivates us to answer the question: can we construct valid and short confidence intervals for the
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missing entries that are free of both model assumptions and of constraints on which estimation
algorithms we may use?

1.1 Conformal prediction for distribution-free uncertainty quantification

Our proposed method is built on the idea of conformal prediction. The conformal prediction
framework, developed by Vovk et al. (2005) and Shafer and Vovk (2008), has drawn significant
attention in recent years in that it enables the construction of distribution-free confidence intervals
that are valid with exchangeable data from any underlying distribution and with any “black-box”
algorithm. To reduce computation in full conformal prediction, variants exist based on data splitting
(Vovk et al., 2005; Lei et al., 2018), leave-one-out (Barber et al., 2021), cross-validation (Vovk, 2015;
Barber et al., 2021), etc.

When distribution shift is present, with covariate shift as a special case, the exchangeability is violated,
and Tibshirani et al. (2019) proposes a more general procedure called weighted conformal prediction
that guarantees the validity under the weighted exchangeability of data. Barber et al. (2022) further
relaxes the exchangeability assumption on the data and characterizes the robustness of a generalized
weighted approach via an upper bound for the coverage gap. Other related works (Lei and Candès,
2020; Candès et al., 2021; Jin et al., 2023) adapt the conformal framework to applications in causal
inference, survival analysis, etc., and study the robustness of weighted conformal prediction with
estimated weights.

1.2 Main contributions

In this paper, we adapt the framework of conformal prediction for the problem of matrix completion,
and make the following contributions:

1. We construct distribution-free confidence intervals for the missing entries in matrix completion via
conformal prediction. The validity is free of any assumption on the underlying matrix and holds
regardless of the choice of estimation algorithms practitioners use. To achieve this, we prove the
(weighted) exchangeability of unobserved and observed units when they are sampled (possibly
nonuniformly) without replacement from a finite population.

2. When the sampling mechanism is unknown, we develop a provable lower bound for the coverage
rate which degrades gracefully as the estimation error of the sampling probability increases.

3. In addition, to improve computational efficiency when faced with a large number of missing
entries, we propose a one-shot conformalized matrix completion approach that only computes the
weighted quantile once for all missing entries.

2 Problem setup

In this section, we formulate the matrix completion problem and contrast our distribution-free setting
with the model-based settings that are more common in the existing literature. For a partially-observed
d1 × d2 matrix, the subset S ⊆ [d1]× [d2] denotes the set of indices where data is observed—that is,
our observations consist of (Mij)(i,j)∈S . In much of the matrix completion literature, it is common
to assume a signal-plus-noise model for the observations,

Mij =M∗
ij + Eij ,

where M∗ = (M∗
ij)(i,j)∈[d1]×[d2] is the “true” underlying signal while (Eij)(i,j)∈S denotes the

(typically zero-mean) noise. Frequently, it is assumed that M∗ is low-rank, or follows some other
latent low-dimensional structure, so that recovering M∗ from the observed data is an identifiable
problem. In works of this type, the goal is to construct an estimator M̂ that accurately recovers the
underlying M∗. In contrast, in a more model-free setting, we may no longer wish to hypothesize a
signal-plus-noise model, and can instead assume that we are observing a random subset of entries of
a deterministic matrix M; in this setting, estimating M itself becomes the goal.

For both frameworks, many existing results focus on the problem of estimation (either of M∗ or of
M), with results establishing bounds on estimation errors under various assumptions. For instance,
see Candes and Plan (2010); Candès and Tao (2010); Negahban and Wainwright (2012); Chen et al.
(2020) for results on estimating M∗ (under stronger conditions, e.g., a low-rank and incoherent signal,
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and zero-mean sub-Gaussian noise), or Srebro and Shraibman (2005); Foygel and Srebro (2011) for
results on estimating M (under milder conditions); note that in the latter case, it is common to instead
refer to predicting the entries of M, e.g., temperature or stock market returns, since we often think of
these as noisy observations of some underlying signal. On the other hand, relatively little is known
about the problem of uncertainty quantification for these estimates: given some estimator M̂, can we
produce a confidence interval around each M̂ij that is (asymptotically) guaranteed to contain the
target with some minimum probability?

The results of Chen et al. (2019) address this question under strong assumptions, namely, a low-rank
and incoherent signal M∗, plus i.i.d. Gaussian noise (Eij)(i,j)∈[d1]×[d2]. Zhao and Udell (2020)
proposes another inferential procedure under the Gaussian copula assumption for the data. In this
work, we provide a complementary answer that instead addresses the model-free setting: without
relying on assumptions, we aim to produce a provably valid confidence interval for the entries Mij

of M (not of M∗, because without assuming a low-rank model, there is no meaningful notion of an
“underlying signal”).

To do so, we will treat the matrix M as deterministic, while the randomness arises purely from the
random subset of entries that are observed. More specifically, we assume

Zij = 1 {(i, j) is observed} ∼ Bern(pij), independently for all (i, j) ∈ [d1]× [d2], (1)

and let S = {(i, j) ∈ [d1] × [d2] : Zij = 1} be the subset of observed locations. We consider
the setting where the sample probabilities pij’s are nonzero. After observing MS = (Mij)(i,j)∈S ,
our goal is to provide confidence intervals {Ĉ(i, j)}(i,j)∈Sc for all unobserved entries, with 1− α
coverage over the unobserved portion of the matrix—that is, we would like our confidence intervals
to satisfy

E
[
AvgCov(Ĉ;M,S)

]
≥ 1− α, (2)

where

AvgCov(Ĉ;M,S) = 1

|Sc|
∑

(i,j)∈Sc
1

{
Mij ∈ Ĉ(i, j)

}
(3)

measures the “average coverage rate” of the confidence intervals.1 The goal of this work is to provide
an algorithm for constructing confidence intervals {Ĉ(i, j)}(i,j)∈Sc based on the observed entries
MS , satisfying (2) with no assumptions on M. In particular, given the strong success of various
matrix completion algorithms for the problem of estimation, we would like to be able to provide
uncertainty quantification around any base estimator—i.e., given any algorithm for producing an
estimate M̂, our method constructs confidence intervals {Ĉ(i, j)}(i,j)∈Sc around this initial estimate.

Notation. For a matrix A = (Aij) ∈ Rm1×m2 , we define ∥A∥∞ := max(i,j)∈[m1]×[m2] |Aij |, and
∥A∥1 :=

∑
(i,j)∈[m1]×[m2]

|Aij |. We use Ai,· and A·,j to refer to the ith row and jth column of A,
respectively. For any t ∈ R, δt denotes the distribution given by a point mass at t.

3 Conformalized matrix completion

We next present our method, conformalized matrix completion (cmc). Our procedure adapts the
split conformal prediction method (Vovk et al., 2005) to the problem at hand. As is standard in
the conformal prediction framework, the goal of cmc is to provide uncertainty quantification (i.e.,
confidence intervals) around the output of any existing estimation procedure that the analyst chooses
to use—this is a core strength of the conformal methodology, as it allows the analyst to use state-of-
the-art estimation procedures without compromising on the validity of inference. At a high level, the
cmc procedure will output a confidence interval of the form

Ĉ(i, j) = M̂ij ± q̂ · ŝij
for the matrix value Mij at each unobserved entry (i, j). Here, after splitting the observed entries into
a training set and a calibration set, the training set is used to produce M̂ij (a point estimate for the

1To handle the degenerate case where S = [d1]× [d2] (i.e., we happen to have observed the entire matrix)
and thus Sc = ∅, we simply define AvgCov(Ĉ;M,S) ≡ 1.
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target value Mij) and ŝij (a scaling parameter that estimates our uncertainty for this point estimate);
then, the calibration set is used to tune the scalar q̂, to adjust the width of these confidence intervals
and ensure coverage at the desired level 1− α.2

Algorithm 1 Conformalized matrix completion (cmc)

1: Input: target coverage level 1− α; data splitting proportion q ∈ (0, 1); observed entries MS .
2: Split the data: draw Wij

i.i.d.∼ Bern(q), and define training and calibration sets

Str = {(i, j) ∈ S :Wij = 1}, and Scal = {(i, j) ∈ S :Wij = 0}.

3: Using the training data MStr
indexed by Str ⊆ [d1]× [d2], compute:

• An initial estimate M̂ using any matrix completion algorithm (with M̂ij estimating the
target Mij);

• Optionally, a local uncertainty estimate ŝ (with ŝij estimating our relative uncertainty in the
estimate M̂ij), or otherwise set ŝij ≡ 1;

• An estimate P̂ of the observation probabilities (with p̂ij estimating pij , the probability of
entry (i, j) being observed).

4: Compute normalized residuals on the calibration set, Rij =
|Mij−M̂ij |

ŝij
, (i, j) ∈ Scal.

5: Compute estimated odds ratios for the calibration set and test set, ĥij =
1−p̂ij

p̂ij
, (i, j) ∈ Scal∪Sc,

and then compute weights for the calibration set and test point,

ŵij =
ĥij∑

(i′,j′)∈Scal̂

hi′j′ + max
(i′,j′)∈Sc

ĥi′j′
, (i, j) ∈ Scal, ŵtest =

max
(i,j)∈Sc

ĥij∑
(i′,j′)∈Scal̂

hi′j′ + max
(i′,j′)∈Sc

ĥi′j′
. (4)

6: Compute threshold q̂ = Quantile1−α

(∑
(i,j)∈Scal

ŵij · δRij + ŵtest · δ+∞

)
.

7: Output: confidence intervals Ĉ(i, j) = M̂ij ± q̂ · ŝij for each unobserved entry (i, j) ∈ Sc.

3.1 Exchangeability and weighted exchangeability

We split the set of observed indices S into a training and a calibration set S = Str ∪ Scal as is shown
in Algorithm 1. We should notice that the sampling without replacement may introduce implicit
dependence as well as a distribution shift from the i.i.d. sampling. Thus the two sets are dependent,
which is different from the split conformal methods in regression problems. Before we present the
coverage guarantees for our method, we first examine the role of (weighted) exchangeability in this
method, to build intuition for how the method is constructed.

3.1.1 Intuition: the uniform sampling case

First, for intuition, consider the simple case where the entries are sampled with constant probability,
pij ≡ p. If this is the case, then the set of calibration samples and the test point are exchangeable—
that is, for (i∗, j∗) denoting the test point that is drawn uniformly from Sc, if we are told that the
combined set Scal ∪ {(i∗, j∗)} is equal to {(i1, j1), . . . , (incal+1, jncal+1)} in no particular order
(where ncal = |Scal|), then the test point location (i∗, j∗) is equally likely to be at any one of these
ncal + 1 locations. Consequently, by exchangeability, the calibration residuals {Rij : (i, j) ∈ Scal},
defined in Algorithm 1 above, are exchangeable with the test residualRi∗j∗ = |Mi∗j∗−M̂i∗j∗ |/ŝi∗j∗ ;
as a result, we can construct our confidence interval Ĉ(i∗, j∗) with q̂ determined by the (1 − α)-
quantile of the calibration residuals {Rij : (i, j) ∈ Scal}.

2More generally, cmc can be implemented with any choice of a nonconformity score that determines the
shape of the resulting confidence intervals—and indeed, this generalization allows for categorical rather than
real-valued matrix entries Mij . We will address this extension in the Supplementary Material, as well as a
version of cmc based on full conformal rather than split conformal, in order to avoid data splitting.
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Indeed, this is exactly what cmc does in this case: if we are aware that sampling is uniform, it
would naturally follow that we estimate p̂ij ≡ p̂0 by some (potentially data-dependent) scalar p̂0;
consequently, all the weights are given by ŵij ≡ 1

ncal+1 and ŵtest = 1
ncal+1 , and thus q̂ is the

(unweighted) (1− α)-quantile of the calibration residuals (with a small correction term, i.e., the term
+ŵtest · δ+∞ appearing in the definition of q̂, to ensure the correct probability of coverage at finite
sample sizes).

3.1.2 Weighted exchangeability for the matrix completion problem

Next, we move to the general case, where now the sampling may be highly nonuniform. First suppose
the sampling probabilities pij are known, and suppose again that we are told that the combined set
Scal ∪ {(i∗, j∗)} is equal to {(i1, j1), . . . , (incal+1, jncal+1)} in no particular order. In this case, the
test point (i∗, j∗) is not equally likely to be at any one of these ncal + 1 locations. Instead, we have
the following result:
Lemma 3.1. Following the notation defined above, if (i∗, j∗) | S ∼ Unif(Sc), it holds that

P
{
(i∗, j∗) = (ik, jk) | Scal ∪ {(i∗, j∗)} = {(i1, j1), . . . , (incal+1, jncal+1)},Str

}
= wikjk ,

where we define the weights wikjk =
hikjk∑ncal+1

k′=1
hi

k′ jk′
for odds ratios given by hij =

1−pij

pij
.

Consequently, while the test point’s residual Ri∗j∗ = |Mi∗j∗ − M̂i∗j∗ | / ŝi∗j∗ is not exchangeable
with the calibration set residuals {Rij : (i, j) ∈ Scal}, the framework of weighted exchangeability
(Tibshirani et al., 2019) tells us that we can view Ri∗j∗ as a draw from the weighted distribution that
places weight wikjk on each residual Rikjk—and in particular,

P
{
Mi∗j∗ ∈ M̂i∗j∗ ± q∗i∗,j∗ · ŝi∗j∗

}
= P

{
Ri∗j∗ ≤ q∗i∗,j∗

}
≥ 1− α,

where q∗i∗,j∗ = Quantile1−α

(∑ncal+1
k=1 wikjk · δRikjk

)
. Noting that this threshold q∗i∗,j∗ may depend

on the test location (i∗, j∗), to accelerate the computation of prediction sets for all missing entries,
we instead propose a one-shot weighted conformal approach by upper bounding the threshold
uniformly over all test points: q∗i∗,j∗ ≤ q∗ := Quantile1−α

(∑
(i,j)∈Scal

w∗
ij · δRij

+ w∗
test · δ+∞

)
,

for (i, j) ∈ Scal,

w∗
ij =

hij∑
(i′,j′)∈Scal

hi′j′ + max
(i′,j′)∈Sc

hi′j′
, w∗

test =

max
(i,j)∈Sc

hij∑
(i′,j′)∈Scal

hi′j′ + max
(i′,j′)∈Sc

hi′j′
. (5)

Now the threshold q∗ no longer depends on the location (i∗, j∗) of the test point3. If the true
probabilities pij were known, then, we could define “oracle” conformal confidence intervals

Ĉ∗(i, j) = M̂ij ± q∗ · ŝij , (i, j) ∈ Sc.

As we will see in the proofs below, weighted exchangeability ensures that, if we do have oracle
knowledge of the pij’s, then these confidence intervals satisfy the goal (2) of 1− α average coverage.
Since the pij’s are not known in general, our algorithm simply replaces the oracle weights w∗ in (5)
with their estimates ŵ defined in (4), using p̂ij as a plug-in estimate of the unknown pij .

3.2 Theoretical guarantee

In the setting where the pij’s are not known but instead are estimated, our cmc procedure simply
repeats the procedure described above but with weights ŵ calculated using p̂ij’s in place of pij’s.
Our theoretical results therefore need to account for the errors in our estimates p̂ij , to quantify the
coverage gap of conformal prediction with the presence of these estimation errors. To do this, we
define an estimation gap term

∆ =
1

2

∑
(i,j)∈Scal∪{(i∗,j∗)}

∣∣∣∣∣ ĥij∑
(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′

− hij∑
(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′

∣∣∣∣∣ , (6)

3Comparison between the one-shot weighted approach and the exact weighted approach (Algorithm 3) is
conducted in Section B.1
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where (i∗, j∗) denotes the test point. Effectively, ∆ is quantifying the difference between the “oracle”
weights, w∗

ij , defined in (5), and the estimated weights, ŵij , defined in (4), except that ∆ is defined
relative to a specific test point, while the weights ŵ (and w∗, for the oracle version) provide a “one-
shot” procedure that is universal across all possible test points, and is thus slightly more conservative.

Theorem 3.2. Let M̂, ŝ, and P̂ be estimates constructed using any algorithms, which depend on
the data only through the training samples MStr

at locations Str. Then, under the notation and
definitions above, conformalized matrix completion (cmc) satisfies

E
[
AvgCov(Ĉ;M,S)

]
≥ 1− α− E[∆].

In the homogeneous case, where we are aware that sampling is uniform (i.e., pij ≡ p for some
potentially unknown p ∈ (0, 1)), our error in estimating the weights is given by ∆ ≡ 0 (since hij
is constant across all (i, j), and same for ĥij—and therefore, the true and estimated weights are
all equal to 1

ncal+1 ). In this setting, therefore, we would achieve the exact coverage goal (2), with

E
[
AvgCov(Ĉ;M,S)

]
guaranteed to be at least 1− α.

3.3 Examples for missingness

To characterize the coverage gap explicitly, we present the following concrete examples for P and
show how the coverage gap ∆ can be controlled. Technical details are shown in the Supplementary
Material.

3.3.1 Logistic missingness

Suppose that the missingness follows a logistic model, with log(pij/(1 − pij)) = − log (hij) =
ui + vj for some u ∈ Rd1 and v ∈ Rd2 , where we assume u⊤1 = 0 for identifiability. This model
is closely related to logistic regression with a diverging number of covariates (Portnoy, 1988; He and
Shao, 2000; Wang, 2011). Following Chen et al. (2023), we estimate u, v via maximum likelihood,

û, v̂ = argmax
u,v

L(u,v) subject to 1⊤u = 0.

Here the log-likelihood is defined by

L(u,v) =
∑

(i,j)∈[d1]×[d2]

{− log (1 + exp(−ui − vj)) + 1(i,j)∈Sc
tr
log (1− q + exp(−ui − vj))}.

Consequently, we define the estimate of pij as p̂ij = (1 + exp(−ûi − v̂j))
−1, for which one can

show that E[∆] ≲
√

log(max{d1,d2})
min{d1,d2} . The proof of this upper bound is shown in Section A.3.1.

3.3.2 Missingness with a general link function

More broadly, we can consider a general link function, where we assume log(pij/(1 − pij)) =
− log (hij) = ϕ(Aij), where ϕ is a link function and A ∈ Rd1×d2 is the model parameter. The
logistic model we introduced above corresponds to the case when ϕ is the identity function and
A = u1⊤ + 1v⊤ is a rank-2 matrix. In this general setup, if rank(A) = k∗ and ∥A∥∞ ≤ τ , we
can apply one-bit matrix completion (Davenport et al., 2014) to estimate {pij}. More precisely, we
define the log-likelihood

LStr
(B) =

∑
(i,j)∈Str

log(ψ(Bij)) +
∑

(i,j)∈Sc
tr

log(1− ψ(Bij)),

where ψ(t) = q(1 + e−ϕ(t))−1 (here rescaling by the constant q is necessary to account for subsam-
pling the training set Str from the observed data indices S), and solve the following optimization
problem

Â = argmax
B

LStr
(B) subject to ∥B∥∗ ≤ τ

√
k∗d1d2, ∥B∥∞ ≤ τ, (7)

where ∥B∥∗ is the nuclear norm of B. Consequently, we let ĥij = exp(−ϕ(Âij)), which leads to
E[∆] ≲ min{d1, d2}−1/4. The proof of this upper bound is shown in Section A.3.2.
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4 Simulation studies

In this section, we conduct numerical experiments to verify the coverage guarantee of conformalized
matrix completion (cmc) using both synthetic and real datasets. As the validity of cmc is independent
of the choice of base algorithm, we choose alternating least squares (als) (Jain et al., 2013) as
the base algorithm (results using a convex relaxation (Fazel et al., 2004; Candes and Recht, 2012;
Chen et al., 2020) are shown in the Supplementary Material). We use cmc-als to refer to this
combination. We use AvgCov(Ĉ) (the average coverage, defined in (3)), and average confidence
interval length, AvgLength(Ĉ) = 1

|Sc|
∑

(i,j)∈Sc length
(
Ĉ(i, j)

)
, to evaluate the performance of

different methods. All the results in this section can be replicated with the code available at https:
//github.com/yugjerry/conf-mc.

4.1 Synthetic dataset

Throughout the experiments, we set the true rank r∗ = 8, the desired coverage rate 1− α = 0.90,
and report the average results over 100 random trials.

Data generation. In the synthetic setting, we generate the data matrix by M = M∗ + E, where
M∗ is a rank r∗ matrix, and E is a noise matrix (with distribution specified below). The low-rank
component M∗ is generated by M∗ = κU∗V∗⊤, where U∗ ∈ Rd1×r∗ is the orthonormal basis of a
random d1 × r∗ matrix consisting of i.i.d. entries from a certain distribution Pu,v (specified below)
and V∗ ∈ Rd2×r∗ is independently generated in the same manner. In addition, the constant κ is
chosen such that the average magnitude of the entries |M∗

ij | is 2. Following the observation model (1),
we only observe the entries in the random set S.

Implementation. First, when implementing als, we adopt r as the hypothesized rank of the
underlying matrix. For model-based methods (Chen et al., 2019), by the asymptotic distributional
characterization M̂ij−M∗

ij
d→ N (0, θ2ij) andEij ⊥ (M̂ij−M∗

ij), one has M̂ij−Mij
d→ N (0, θ2ij+

σ2). Consequently, the confidence interval for the model-based methods can be constructed as

M̂ij ± q1−α/2

√
θ̂2ij + σ̂2,

where qβ is the βth quantile of N (0, 1). The estimates are obtained via σ̂2 = ∥MStr − M̂Str∥2F/|Str|
and θ̂2ij = (σ̂2/p̂)(∥Ûi,·∥2 + ∥V̂j,·∥2) with the SVD M̂ = ÛΣ̂V̂⊤. For cmc-als, we obtain M̂, ŝ
from MStr

by running als on this training set (and taking ŝij = (θ̂2ij + σ̂2)1/2). The probabilities
p̂ij’s are estimated via p̂ij ≡ (d1d2q)

−1|Str| for this setting where the pij’s are homogeneous.

4.1.1 Homogeneous missingness

In the homogeneous case, we consider the following four settings with d1 = d2 = 500:

• Setting 1: large sample size + Gaussian noise. p = 0.8, Pu,v = N (0, 1), and Eij ∼ N (0, 1).

• Setting 2: small sample size + Gaussian noise. p = 0.2, Pu,v = N (0, 1), and Eij ∼ N (0, 1).

• Setting 3: large sample size + heavy-tailed noise. p = 0.8, Pu,v = N (0, 1), and Eij ∼ 0.2 t1.2,
where tν denotes the t distribution with ν degrees of freedom.

• Setting 4: violation of incoherence. p = 0.8, Pu,v = t1.2, and Eij ∼ N (0, 1).

Figure 1 displays the results (i.e., the coverage rate and the interval length) for both cmc-als and
als when we vary the hypothesized rank r from 2 to 40. The oracle length is the difference between
the (1 − α/2)-th and (α/2)-th quantiles of the underlying distribution for Eij . As can be seen,
cmc-als achieves nearly exact coverage regardless of the choice of r across all four settings. When
the hypothesized rank r is chosen well, cmc-als is often able to achieve an average length similar to
that of the oracle.

For the model-based method als, when we underestimate the true rank (r < r∗), we may still see
adequate coverage since σ̂ tends to over-estimate σ by including the remaining r∗− r factors as noise.
However, if we overestimate the rank (r > r∗), then als tends to overfit the noise with additional
factors and under-estimate σ regardless of the choice of r, leading to significant undercoverage
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(a) Setting 1: large sample size + Gaussian noise
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(b) Setting 2: small sample size + Gaussian noise
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(c) Setting 3: large sample size + heavy-tailed noise
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(d) Setting 4: violation of incoherence

Figure 1: Comparison between cmc-als and als.
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noise: r = r∗ = 8
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(b) Large sample size + Gaussian
noise: r∗ = 8 < 50 = r
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6 < 8 = r∗

Figure 2: Histogram of standardized scores for als and prediction lower and upper bounds for 50
distinct unobserved entries.

in Settings 1, 2 and 4. In Setting 3 with heavy-tailed noise, als tends to be conservative due to
overestimating σ. Overall, Figure 1 confirms our expectation that the validity of the model-based
estimates relies crucially on a well specified model, and it fails to hold when sample size is small
(cf. Figure 1b), when noise is heavy tailed (cf. Figure 1c), and when the underlying matrix is not
incoherent (cf. Figure 1d).

In Figure 2, we present the histogram of standardized scores (M̂ij − Mij)/
√
θ̂2ij + σ̂2 and the

plot of the upper and lower bounds for three settings. In Figure 2a, when the model assumptions
are met and r = r∗, the scores match well with the standard Gaussian and the prediction bounds
produced by als and cmc-als are similar. With the same data generating process, when the rank is
overparametrized, the distribution of scores cannot be captured by the standard Gaussian, thus the
quantiles are misspecified. As we can see from the confidence intervals, als tends to have smaller
intervals which lead to the undercoverage. In the last setting, the underlying matrix is no longer
incoherent. When the rank is underestimated, the r∗ − r factors will be captured by the noise term
and the high heterogeneity in the entries will further lead to overestimated noise level. As a result,
the intervals by als are much larger while the conformalized intervals are more adaptive to the
magnitude of entries.

4.1.2 Heterogeneous missingness

Now we move on to the case with heterogeneous missingness, where the observed entries are no
longer sampled uniformly. To simulate this setting, we draw {ail : i ≤ d1, l ≤ k∗} i.i.d. from
Unif(0, 1) and {blj : l ≤ k∗, j ≤ d2} i.i.d. from Unif(−0.5, 0.5), and define sampling probabilities
by

log(pij/(1− pij)) =
∑k∗

l=1
ailblj .
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(a) Gaussian noise: k∗ = 1.
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(b) Gaussian noise: k∗ = 5.
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(c) Adversarial heterogeneous noise: k∗ = 1.
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(d) Adversarial heterogeneous noise: k∗ = 5.
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(e) Random heterogeneous noise: k∗ = 1.
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(f) Random heterogeneous noise: k∗ = 5.

Figure 3: Comparison between cmc with true and estimated weights under heterogeneous missingness.

We consider two settings with k∗ = 1 and k∗ = 5, respectively. In both settings, p̂ij is constructed by
estimating âil and b̂lj via constrained maximum likelihood estimation as is shown in Example 3.3.2.

To analyze the effect of estimation error predicted by Theorem 3.2, we consider three matrix
generation processes for each choice of k∗, where M∗ is generated in the same way as in Section 4.1.1
with d1 = d2 = d = 500, Pu,v = N (0, 1):

• Gaussian homogeneous noise: Eij ∼ N (0, 1) independently.

• Adversarial heterogeneous noise: Eij ∼ N (0, σ2
ij) independently, where we take σij = 1/2pij .

For this setting, note that the high-noise entries (i.e., those entries that are hardest to predict) occur
in locations (i, j) that are least likely to be observed during training.

• Random heterogeneous noise: Eij ∼ N (0, σ2
ij) independently, where (σij)(i,j)∈[d1]×[d2] is

drawn from the same distribution as (1/2pij)(i,j)∈[d1]×[d2].

We write cmc∗-als to denote the conformalized method (with als as the base algorithm) where
we use oracle knowledge of the true pij’s for weighting, while cmc-als uses estimates p̂ij . The
results are shown in Figures 3, for the settings k∗ = 1 and k∗ = 5 (i.e., the rank of P). Under
both homogeneous noise and random heterogeneous noise, both cmc∗-als and cmc-als achieve the
correct coverage level, with nearly identical interval length. For adversarial heterogeneous noise,
on the other hand, cmc∗-als achieves the correct coverage level as guaranteed by the theory, but
cmc-als shows some undercoverage due to the errors in the estimates p̂ij (since now the variance
of the noise is adversarially aligned with these errors); nonetheless, the undercoverage is mild. In
Section B.2 in the appendix, the local coverage of cmc-als conditioning pij = p0 for varying p0 is
presented.

4.2 Real data application

We also compare conformalized approaches with model-based approaches using the Rossmann sales
dataset4 (Farias et al., 2022). This real data provides the underlying fixed matrix M; the missingness
pattern is generated artificially, as detailed below. We focus on daily sales (the unit is 1K dollar) of
1115 drug stores on workdays from Jan 1, 2013 to July 31, 2015 and hence the underlying matrix has
dimension 1115× 780. The hypothesized rank r is varied from 5 to 60 with step size 5 and we set

4https://www.kaggle.com/c/rossmann-store-sales
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(a) als vs cmc-als: homogeneous missingness.
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(b) als vs cmc-als: logistic missingness.

Figure 4: Comparison between conformalized and model-based matrix completion with sales dataset.

the target level to be 1− α = 0.9. We apply random masking for 100 independent trials and report
the average for AvgCov and AvgLength in Figure 4.

• Homogeneous pij . For each entry, we first apply random masking 1 − Zij ∼ Bern(0.2) inde-
pendently. In Figure 4a, conformalized approach has exact coverage at 1− α but als tends to be
conservative when r is small and loses coverage when r increases to 50.

• Heterogeneous pij . After drawing pij’s from log(pij/(1 − pij)) = − log (hij) = ϕ(Aij) in
Section 4.1.2 with k∗ = 1, P̂ is obtained via the constrained maximum likelihood estimator in
Example 3.3.2. In Figure 4b, cmc-als has coverage around 1− α and in comparison, when r is
greater than 40, als fails to guarantee the coverage and AvgCov decreases to 0.75.

5 Discussion

In this paper, we introduce the conformalized matrix completion method cmc, which offers a finite-
sample coverage guarantee for all missing entries on average and requires no assumptions on the
underlying matrix or any specification of the algorithm adopted, relying only on an estimate of
the entrywise sampling probabilities. Given an estimate of the entrywise sampling probability, we
provide an upper bound for the coverage gap and give the explicit form with examples of the logistic
as well as the general one-bit low-rank missingness. In the implementation, an efficient one-shot
weighted conformal approach is proposed with the provable guarantee and achieves nearly exact
coverage.

We can compare our findings to a few related results in the literature. The work of Chernozhukov
et al. (2021) applies conformal prediction to counterfactual and synthetic control methods, where they
include matrix completion as an example with a regression-type formulation. However, their approach
relies on a test statistic that is a function of estimated residuals. Consequently, their method requires
the assumption of stationarity and weak dependence of errors. Furthermore, the validity of their
approach is contingent upon the estimator being either consistent or stable. Additionally, Wieczorek
(2023) studies conformal prediction with samples from a deterministic and finite population, but the
validity under the sampling without replacement remains an open question in their work.

Our results suggest a number of questions for further inquiry. In the setting of matrix completion,
while the results are assumption-free with regard to the matrix M itself, estimating the sampling
probabilities P that determine which entries are observed remains a key step in the procedure; while
our empirical results suggest the method is robust to estimation error in this step, studying the
robustness properties more formally is an important open question. More broadly, our algorithm
provides an example of how the conformal prediction framework can be applied in a setting that
is very different from the usual i.i.d. sampling regime, and may lend insights for how to develop
conformal methodologies in other applications with non-i.i.d. sampling structure.
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A Proofs

The section collects the proofs for the technical results in the main text. Section A.1 and A.2 are
devoted to the proof of Lemma 3.1 and Theorem 3.2, respectively. In the end, Section A.3 provides
proofs for the coverage gap bounds in the two examples in Section 3.3.

A.1 Proof of Lemma 3.1

Fix a set of locations B := {(i1, j1), . . . , (incal+1, jncal+1)}, and an index 1 ≤ m ≤ ncal +1. By the
definition of conditional probability, we have

P ((i∗, j∗) = (im, jm) | Scal ∪ {(i∗, j∗)} = B, Str = S0)

=
P ((i∗, j∗) = (im, jm),Scal = B\{(im, jm)} | Str = S0, |S| = n)

P (Scal ∪ {(i∗, j∗)} = B | Str = S0, |S| = n)

=
P ((i∗, j∗) = (im, jm),Scal = B\{(im, jm)} | Str = S0, |S| = n)∑ncal+1
l=1 P ((i∗, j∗) = (il, jl),Scal = B\{(il, jl)} | Str = S0, |S| = n)

.

It then boils down to computing P (Scal = S1, (i∗, j∗) = (il, jl) | Str = S0, |S| = n) for any fixed
set S1 and fixed location (il, jl) /∈ S0 ∪ S1. To this end, we have the following claim (we defer its
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proof to the end of this section)

P (Scal = S1, (i∗, j∗) = (il, jl) | Str = S0, |S| = n)

=
1

d1d2 − n
·

∏
(i,j)∈S1

pij

1−pij∑
A∈ΩStr,n

∏
(i′,j′)∈A

pi′j′

1−pi′j′

, (8)

where ΩStr,n = {A ⊆ [d1]× [d2] : |A| = n− |Str|, A ∩ Str = ∅}. As a result, we obtain

P ((i∗, j∗) = (im, jm) | Scal ∪ {(i∗, j∗)} = B, Str = S0)

=

∏
(i,j)∈B\{(im,jm)}

pij

1−pij∑ncal+1
l=1

∏
(i,j)∈B\{(il,jl)}

pij

1−pij

=
him,jm∑ncal+1

l=1 hil,jl
, (9)

where hij = (1− pij)/pij . This finishes the proof.

Proof of Equation (8). Denote W the matrix consisting of entries Wij defined in Algorithm 1. The
matrix Z consists ofZij which are the indicators of non-missingness, i.e. Zij = 1{(i, j) is observed}.
Fix any two disjoint subsets S0,S1 ⊆ [d1]× [d2] with |S0|+ |S1| = n. We have

P (Scal = S1,Str = S0 | |S| = n)

=P (supp(Z) = S0 ∪ S1,S0 ⊆ supp(W),S1 ⊆ supp(W)c | |S| = n) .

Since W and Z are independent, one further has

P (supp(Z) = S0 ∪ S1,S0 ⊆ supp(W),S1 ⊆ supp(W)c | |S| = n)

=P (S0 ⊆ supp(W),S1 ⊆ supp(W)c) · P (supp(Z) = S0 ∪ S1 | |S| = n)

=q|S0|(1− q)|S1| · P (supp(Z) = S0 ∪ S1 | |S| = n)

=
q|S0|(1− q)|S1|

P(|S| = n)

∏
(i′,j′)∈[d1]×[d2]

(1− pi′j′)
∏

(i,j)∈S0∪S1

pij
1− pij

, (10)

where the last two identities are based on direct computations.

Based on (10), one can further compute

P (Str = S0 | |S| = n)

=
∑

A∈ΩStr,n

P (Scal = A,Str = S0 | |S| = n)

=
q|S0|(1− q)n−|S0|

P(|S| = n)

∑
A∈ΩStr,n

∏
(i′,j′)∈[d1]×[d2]

(1− pi′j′)
∏

(i,j)∈S0∪A

pij
1− pij

, (11)

where the last identity uses Equation (10).

Now we are ready to prove (8). Recall that the new data point (i∗, j∗) | S is drawn uniformly from
Unif(Sc). Therefore one has

P (Scal = S1, (i∗, j∗) = (in+1, jn+1) | Str = S0, |S| = n)

=
P (Scal = S1,Str = S0, (i∗, j∗) = (in+1, jn+1) | |S| = n)

P (Str = S0 | |S| = n)

=
P ((i∗, j∗) = (in+1, jn+1) | S = S1 ∪ S0)P (Scal = S1,Str = S0 | |S| = n)

P (Str = S0 | |S| = n)

=
1

d1d2 − n
·

∏
(i,j)∈S1

pij

1−pij∑
A∈ΩStr,n

∏
(i′,j′)∈A

pi′j′

1−pi′j′

, (12)

where the last line follows from (10) and (11).
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A.2 Proof of Theorem 3.2

First, fix any a ∈ [0, 1]. Lemma 3.1, together with the weighted conformal prediction framework of
Tibshirani et al. (2019), implies that

P
(
Mi∗j∗ ∈ M̂i∗j∗ ± q∗i∗j∗(a) · ŝi∗j∗

∣∣∣Str,Scal ∪ {(i∗, j∗)}
)
≥ 1− a,

where

q∗i∗j∗(a) = Quantile1−a

 ∑
(i,j)∈Scal∪{(i∗,j∗)}

wij · δRij

 ,

and
wij =

hij∑
(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′

.

Indeed, here a can be any function of the random variables we are conditioning on—that is, a may
depend on n, on Str, and on Scal ∪ {(i∗, j∗)}.

Next define a = α+∆ where ∆ is defined as in (6). We observe that, since each ĥij is a function of
Str, then ∆ (and thus also a) can therefore be expressed as a function of n, Str, and Scal ∪ {(i∗, j∗)}.
Therefore, applying the work above, we have

P
(
Mi∗j∗ ∈ M̂i∗j∗ ± q∗i∗j∗(α+∆) · ŝi∗j∗

∣∣∣Str,Scal ∪ {(i∗, j∗)}
)
≥ 1− α−∆

and thus, after marginalizing,

P
(
Mi∗j∗ ∈ M̂i∗j∗ ± q∗i∗j∗(α+∆) · ŝi∗j∗

)
≥ 1− α− E[∆].

Next, we verify that
q̂ ≥ q∗i∗j∗(α+∆)

holds almost surely—if this is indeed the case, then we have shown that

P
(
Mi∗j∗ ∈ M̂i∗j∗ ± q̂ · ŝi∗j∗

)
≥ 1− α− E[∆],

which establishes the desired result. Thus we only need to show that q̂ ≥ q∗i∗j∗(α+∆), or equivalently,

Quantile1−α

 ∑
(i,j)∈Scal

ŵij · δRij + ŵtest · δ+∞

 ≥ Quantile1−α−∆

 ∑
(i,j)∈Scal∪{(i∗,j∗)}

wij · δRij

 .

Define

w′
ij =

ĥij∑
(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′

(13)

for all (i, j) ∈ S ∪ {(i∗, j∗)}. Then by definition of ŵ, we see that w′
ij ≥ ŵij for (i, j) ∈ S, and

therefore,

Quantile1−α

 ∑
(i,j)∈Scal

ŵij · δRij
+ ŵtest · δ+∞


≥ Quantile1−α

 ∑
(i,j)∈Scal

w′
ij · δRij

+ w′
(i∗,j∗)

· δ+∞

 ≥ Quantile1−α

 ∑
(i,j)∈Scal∪{(i∗,j∗)}

w′
ij · δRij


holds almost surely. Therefore it suffices to show that

Quantile1−α

 ∑
(i,j)∈Scal∪{(i∗,j∗)}

w′
ij · δRij

 ≥ Quantile1−α−∆

 ∑
(i,j)∈Scal∪{(i∗,j∗)}

wij · δRij


holds almost surely. Indeed, we have

dTV

 ∑
(i,j)∈Scal∪{(i∗,j∗)}

w′
ij · δRij

,
∑

(i,j)∈Scal∪{(i∗,j∗)}

wij · δRij

 ≤ 1

2

∑
(i,j)∈Scal∪{(i∗,j∗)}

|w′
ij−wij | = ∆,

where dTV denotes the total variation distance. This completes the proof.
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A.3 Proofs for examples in Section 3.3

Recall the definition of ∆:

∆ =
1

2

∑
(i,j)∈Scal∪{(i∗,j∗)}

∣∣∣∣∣ ĥij∑
(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′

− hij∑
(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′

∣∣∣∣∣ .
Note that ∆ ≤ 1 by definition. We start with stating a useful lemma to bound the coverage gap ∆

using the estimation error of ĥij .
Lemma A.1. By the definition of the coverage gap ∆, we have

∆ ≤
∑

(i,j)∈Scal∪{(i∗,j∗)} |ĥij − hij |∑
(i′,j′)∈Scal

ĥi′j′
. (14)

A.3.1 Proof for Example 3.3.1

Under the logistic model, one has for any (i, j)

P((i, j) ∈ Str) = q · pij =
q · exp(ui + vj)

1 + exp(ui + vj)
.

In this case, if û and v̂ are the constrained maximum likelihood estimators in Example 3.3.1,
Theorem 6 in Chen et al. (2023) implies that

∥û− u∥∞ = OP

(√
log d1
d2

)
, ∥v̂ − v∥∞ = OP

(√
log d2
d1

)
,

with the proviso that ∥u∥∞ + ∥v∥∞ ≤ τ < ∞, d2 ≫
√
d1 log d1 and d1 ≫ (log d2)

2. Then for
hij = exp(−ui − vj) and ĥij = exp(−ûi − v̂j), we have

max
i,j

|ĥij − hij | = max
i,j

e−ui−vj
(
e−(ûi−ui)−(v̂j−vj) − 1

)
= OP

(√
log d1
d2

+

√
log d2
d1

)
.

Further, as mini,j hi,j = mini,j exp(−ui − vj) ≥ e−τ , then with probability approaching one, for
every (i, j) ∈ [d1]× [d2], one has ĥi,j ≥ hi,j −|hij − ĥij | ≥ e−τ/2 =: h0. By the upper bound (14),
we have

∆ ≲

√
log d1
d2

+

√
log d2
d1

≍

√
logmax{d1, d2}
min{d1, d2}

.

Further, as ∆ ≤ 1, we have E[∆] ≲
√

logmax{d1,d2}
min{d1,d2} .

A.3.2 Proof of Example 3.3.2

Define the link function ψ(t) = q(1 + e−ϕ(t)), where ϕ is monotonic. Applying Theorem 1 in the
paper (Davenport et al., 2014), we obtain that with probability at least 1− C1/(d1 + d2)

1

d1d2
∥Â−A∥2F ≤

√
2C̃τ

√
k(d1 + d2)

d1d2
, (15)

with the proviso that d1d2 ≥ (d1 + d2) log(d1d2). Here C̃τ = 239/4e9/4(1 +
√
6)τLτβτ with

Lτ = sup
−τ≤t≤τ

|ψ′(t)|
ψ(t)(1− ψ(t))

, and βτ = sup
−τ≤t≤τ

ψ(t)(1− ψ(t))

|ψ′(t)|2
. (16)

Denote this high probability event to be E0. Since ∥A∥1 ≤
√
d1d2∥A∥F, on this event E0, we further

have
1

d1d2
∥Â−A∥1 ≤ Cτ

(
k(d1 + d2)

d1d2

)1/4

,
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where Cτ = ζ
√
Lτβτ and ζ is a universal constant.

Recall that hij = exp(−ϕ(Aij)) and ∥A∥∞ ≤ τ . On the same event E0, we further have

1

d1d2
∥Ĥ−H∥1 ≤ C ′

τ

(
k(d1 + d2)

d1d2

)1/4

, (17)

where C ′
τ = 2eϕ(τ)

√
C̃τ .

By the feasibility of the minimizer Â and the fact that ĥij = exp(−ϕ(Âij)), we have ĥij ≥ h0 =

e−ϕ(τ) for all (i, j). This together with the upper bound (14) implies that

∆ ≤ 1

h0ncal

∑
(i,j)∈Scal∪{(i∗,j∗)}

|hij − ĥij | ≤
1

h0ncal
∥Ĥ−H∥1.

Define a second high probability event E1 = {ncal ≥ (1 − c)(1 − q)∥P∥1}. Using the Chernoff
bound, we have P (E1) ≥ 1− C0(d1d2)

−5. Therefore, on the event E0 ∩ E1, we have

∆ ≤ d1d2
ch0(1− q)∥P∥1

C ′
τ

(
k(d1 + d2)

d1d2

)1/4

.

Under the assumptions that pij = 1/(1 + e−ϕ(Aij)), and that ∥A∥∞ ≤ τ , we know that pij ≥ C2

for some constant that only depends on τ . As a result, we have ∥P∥1 ≥ C2d1d2, which further leads
to the conclusion that

∆ ≤ 1

cC2h0(1− q)
C ′

τ

(
k(d1 + d2)

d1d2

)1/4

.

on the event E0 ∩ E1. In addition, on the small probability event (E0 ∩ E1), one trivially has ∆ ≤ 1.
Therefore simple combinations of the cases yields the desired bound on E[∆].

A.3.3 Proof of Lemma A.1

Reusing the definition of w′ (13), one has

∆ =
1

2

∑
(i,j)∈Scal∪{(i∗,j∗)}

|wij − w′
ij |

=
1

2

∑
(i,j)∈Scal∪{(i∗,j∗)}

∣∣hij∑(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′ − ĥij
∑

(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′
∣∣(∑

(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′
)(∑

(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′
)

≤ 1

2

∑
(i,j)∈Scal∪{(i∗,j∗)}

{
hij
∣∣∑

(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′ −
∑

(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′
∣∣(∑

(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′
)(∑

(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′
)

+
|ĥij − hij |

∑
(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′(∑

(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′
)(∑

(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′
)}

=
1

2

∣∣∑
(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′ −

∑
(i′,j′)∈Scal∪{(i∗,j∗)} hi′j′

∣∣(∑
(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′

) +
1

2

∑
(i,j)∈Scal∪{(i∗,j∗)} |ĥij − hij |(∑

(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′
)

≤
∑

(i,j)∈Scal∪{(i∗,j∗)} |ĥij − hij |∑
(i′,j′)∈Scal∪{(i∗,j∗)} ĥi′j′

. (18)

This completes the proof.

B Additional numerical experiments

In this section, we provide additional simulation results. In Section B.1, we compare the proposed
one-shot weighted approach with the exact weighted conformal prediction. In Section B.2, the
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(b) Local performance of coverage given pij = p0.

local coverage of cmc-als conditioning on pij is evaluated. We present the simulation results
for the convex relaxation (cvx) and the conformalized convex method (cmc-cvx) in both settings
with homogeneous and heterogeneous missingness in Section B.3 and B.5. We further evaluate the
performance of cmc-als when the sampling probability is misspecified in Section B.6.

B.1 Comparison between one-shot and exact weighted approaches

We conduct comparison in the setting with heterogeneous missingness and Gaussian noise as shown
in Section 4.1.2 with k∗ = 12. From the result in Figure 5a, the performance of two aproaches are
essentially the same while the one-shot cmc-als is more computationally efficient.

B.2 Local coverage of cmc

In Figure 5b, we evaluate the local performance of cmc-als when conditioning on {pij = p0}, i.e. a
subpopulation determined by the value of sampling probability. We use the setting with heterogeneous
missingness and Gaussian noise as shown in Section 4.1.2 with k∗ = 12 and p0 ranging from 0.1 to
0.9 with a step size of 0.1. The conditional coverage is approximated via kernel smoothing: with
the indicators Aij for coverage, we use the weight Kij = ϕp0,h(pij) and calculate the conditional
coverage by (

∑
AijKij)/(

∑
Kij). Here ϕµ,σ is the density function of N (µ, σ2) and h = 0.05.

When p0 increases from 0.2 to 0.8, the conditional coverage increases and stays around 0.9. At
p0 = 0.1, 0.9, the coverage varies much, which is due to the small effective sample size for the edge
values of pij . Moreover, for uniform sampling, since the rows and columns are generated i.i.d., there
are no meaningful subgroups of the data to condition on.

B.3 Additional results for homogeneous misingness

In this section, we present the results for synthetic simulation with the convex relaxation cvx and
the conformalized convex matrix completion method cmc-cvx. Setting 1, 2, 3, 4 are the same as
introduced in Section4.1. The true rank is r∗ = 8 and the hypothesized rank varies from 4 to 24 with
the stepsize 4.

The conformalized methods, regardless of the based algorithm adopted, have nearly exact coverage
around 1 − α. But we can observe different behaviors between als and cvx since the convex
relaxation is free of the choice of r until the projection of M̂cvx onto the rank-r subspace (Chen et al.,
2020). As a result, when r > r∗, cvx tends to overestimate the strength of the noise. In Figure 6a, 6b
and 6d, when r > r∗, cvx has coverage rate higher than the target level and the confidence interval
is more conservative than conformalized methods. Since the accuracy of cvx is based on the large
sample size, in Figure 6b, when the effective sample size is insufficient with small pij , the residuals
from cvx have a large deviation from the standard distribution and the intervals are much larger than
the oracle ones. Besides, in Figure 6c, when the noise has heavy tails than Gaussian variables, cvx
overestimates the noise strength similar to als and is conservative in coverage. When the incoherence
condition is violated in Figure 6d, if r < r∗, both cvx and als fit the missed factor by overestimating
the noise strength and produce extremely large intervals.

B.4 Estimation error for one-bit matrix estimation

The estimation error in p̂ij can be visualized from the following heatmaps comparing P and P̂. Here
the entries are sorted by the order of pij for each row and each column.
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(a) Setting 1: Large sample size + Gaussian noise
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(b) Setting 2: Small sample size+Gaussian noise
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(c) Setting 3: Large sample size + heavy-tailed noise
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(d) Setting 4: Violation of incoherence

Figure 6: Comparison between conformalized and model-based matrix completion approaches.

(a) k∗ = 1: d1 = d2 = 500. (b) k∗ = 1: d1 = d2 = 2000.

(c) k∗ = 5: d1 = d2 = 500. (d) k∗ = 5: d1 = d2 = 2000.

Figure 7: Heatmaps for P and P̂.

B.5 Additional results for heterogeneous missingness

In Figure 8, we present the results for synthetic simulation with the convex relaxation cvx as the
base algorithm, where we denote cmc-cvx and cmc∗-cvx as the conformalized matrix completion
method with estimated weights and true weights, respectively. Three settings with heterogeneous
missingness are the same as Figure 3.

B.6 Misspecified sampling probability

We consider the following four settings:

(a) The underlying missingness follows the rank-one model where pij = aibj , both ai and bj
are generated i.i.d. from Unif(0.2, 1). The noise is adversarial. But we estimate pij via the
one-bit matrix completion based on the logistic model (working model with hypothesized
rank k = 5).

(b) The underlying missingness follows the logistic model as in Example 3.3.2 with k∗ = 5
and we adopt the adversarial noise. But pij is estimated under the assumption of uniform
sampling (working model), i.e. p̂ij = p̂.
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(a) Gaussian noise: k∗ = 1.
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(b) Gaussian noise: k∗ = 5.
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(c) Adversarial heterogeneous noise: k∗ = 1.
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(d) Adversarial heterogeneous noise: k∗ = 5.
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(e) Random heterogeneous noise: k∗ = 1.
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(f) Random heterogeneous noise: k∗ = 5.

Figure 8: Comparison under heterogenous missingness.
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(a) Estimating rank-1 model with logistic model (ad-
versarial noise).
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(b) Estimating logistic model with uniform sampling
(adversarial noise).
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(c) Estimating rank-1 model with logistic model (ran-
dom noise).
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(d) Estimating logistic model with uniform sampling
(random noise).

(c) Same as (a) except that we use the random heterogeneous noise.

(d) Same as (b) except that we use the random heterogeneous noise.

From the results, we can see that when the noise is generated following the random heterogeneous
model, where the values of entries are independent of the sampling probabilities, the misspecification
of the sampling model only slightly affects the coverage. Moreover, when the noise is generated in
the adversarial way, where the values of entries depend on pij’s, we can see that the coverage with
a misspecified sampling model is lower than the target level, but is above 0.85 in practice, which
depends on the divergence between the true and the working sampling models.
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B.7 Additional results for the sales dataset

Denote M the underlying matrix in the sales dataset. In Figure 10a, we plot singular values of M
and top-5 singular values contain a large proportion of the information. In Figure 10b, we plot the
histogram of entries Mij’s of the underlying matrix, and the sales dataset has the range from 0 to
over 20 thousand with a heavy tail.
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(a) Singular values of the underlying matrix M.
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(b) Histogram of entries in M.

Figure 10: Descriptive plots for the underlying matrix M.

B.7.1 Comparison under misspecified missingness

We consider the sales dataset where the missingness occurs in the way that: for weekdays, each entry
is observed with p = 0.8. On weekends, as the stores are likely to be operated by less experienced
interns or are less frequent to report the sales data, each entry is observed with a lower probability,
e.g. 0.8/3. Moreover, as there could be a subgroup of stores that are less frequent in sales reporting,
200 stores are randomly sampled, for which p = 0.8/3. We use the logistic model with k = 5 to
estimate pij . Comparison between als and cmc-als is shown in Figure 11.

B.7.2 Results with convex optimization

In Figure 12, cmc-cvx has nearly exact coverage at 1 − α, but cvx tends to have higher coverage
than the target level. Besides, the convex approach has much larger intervals when r is large, which
can be caused by the overfitting of the observed entries. As conformalized approach leaves out a
proportion of observed entries as the training set, intervals produced by cmc-cvx are less accurate
than cvx due to the poorly behaved base algorithm.
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Figure 11: Sales dataset with heterogeneous and misspecified missingness.
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(a) Homogeneous missingness.
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(b) Heterogeneous missingness with k∗ = 1.

Figure 12: Comparison between conformalized and model-based matrix completion with sales
dataset.

C Additional details of algorithms and extensions

C.1 Extension to likelihood-based scores and categorical matrices

We will show in this section that cmc can also be applied to categorical matrix completion (Cao and
Xie, 2015) or a more general setting in (19), the validity of which is also guaranteed by the presented
theorem.

Setup To formulate the problem, consider an underlying parameter matrix M∗ ∈ [d1]× [d2] and
the observations {Mij : i ∈ [d1], j ∈ [d2]} are drawn from the distribution

Mij |M∗
ij ∼ PM∗

ij
, (19)

where {Pθ}θ∈Θ can be a family of parametric distributions with probability density pθ. The cat-
egorical matrix completion is a specific example where the support of Mij is finite or countable.
For example, a Poisson matrix is generated by Mij ∼ Pois(M∗

ij), where M∗
ij is the Poisson mean.

Similar to the previous setup, we treat M as deterministic, and entries in the subset S ⊆ [d1]× [d2]
are available. Here S is sampled in the same manner as before with the matrix P ∈ [d1]× [d2].

Split conformal approach Consider the split approach with the partition S = Str ∪ Scal as in
Algorithm 1. With the training set Mtr, we obtain an estimated likelihood function π̂(m; i, j) such
that

π̂(m; i, j) = p̂M∗
ij
(m),

which is an estimate for the true likelihood of Mij at m. The estimation can be feasible given
certain low-complexity structures. For example, if a hypothesized distribution family {Qθ}θ∈Θ with
probability density qθ is given and the underlying mean matrix M∗ is assumed to be low-rank. Then,
M can be viewed as a perturbation of M∗ and we can estimate M∗ via matrix completion algorithms
with entries in Mtr. Denote M̂ as the estimate for M∗, then we have the estimated likelihood

π̂(m; i, j) = q
M̂ij

(m).

The odds ratios are also estimated from the training set, i.e. ĥij , from which we compute the weights

ŵij =
ĥij∑

(i′,j′)∈Scal

ĥi′j′ + max
(i′,j′)∈Sc

ĥi′j′
, (i, j) ∈ Scal, ŵtest =

ĥi∗j∗∑
(i′,j′)∈Scal

ĥi′j′ + max
(i′,j′)∈Sc

ĥi′j′
.

For each (i, j) ∈ Scal, calculate the likelihood-based nonconformity score
Rij = −π̂(Mij ; i, j).

Then, for any test point (i∗, j∗) ∈ Sc, we can construct the confidence interval

Ĉ(i∗, j∗) = {m ∈ [K] : π̂(m; i∗, j∗) ≤ q̂} ,
where q̂ is the weighted quantile

q̂ = Quantile1−α

 ∑
(i,j)∈Scal

ŵij · δRij
+ ŵtest · δ+∞

 .

More examples of conformal methods for classification are shown in Romano et al. (2020), An-
gelopoulos et al. (2020), etc.
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C.2 Full conformalized matrix completion

In Algorithm 2, the procedure of the full conformalized matrix completion (full-cmc) is presented.
This full conformal version of cmc offers the same coverage guarantee as given in Theorem 3.2 for
the split version of cmc (except with the entire observed set S in place of Scal, when defining ∆(ŵ);
the formal proof of this bound for full conformal is very similar to the proof of Theorem 3.2, using
an analogous weighted exchangeability argument as in Lemma 3.1, and so we omit it here.

To define this algorithm, we need some notation: given the observed data MS , plus a test point
location (i∗, j∗) and a hypothesized value m for the test point Mi∗j∗ , define a matrix M(m) with
entries

M
(m)
ij =


Mij , (i, j) ∈ S,
m, (i, j) = (i∗, j∗),

∅, otherwise,
(20)

where, abusing notation, “Mij = ∅” denotes that no information is observed in this entry.

Algorithm 2 full-cmc: full conformalized matrix completion

1: Input: target level 1− α; partially observed matrix MS .
2: Using the training data MS , compute an estimate P̂ of the observation probabilities (with p̂ij

estimating pij , the probability of entry (i, j) being observed).
3: for (i∗, j∗) in Sc do
4: for m ∈ M do
5: Augment MS with one additional hypothesized entry, {Mi∗,j∗ = m}, to obtain M(m)

defined as in (20).
6: Using the imputed matrix M

(m)
S , compute:

• An initial estimate M̂(m) using any matrix completion algorithm (with M̂ (m)
ij estimating

the target Mij);

• Optionally, a local uncertainty estimate ŝ(m) (with ŝ(m)
ij estimating our relative uncertainty

in the estimate M̂ (m)
ij ), or otherwise set ŝ(m)

ij ≡ 1;

• An estimate P̂ of the observation probabilities (with p̂ij estimating pij , the probability of
entry (i, j) being observed).

7: Compute normalized residuals for (i, j) ∈ S ∪ {(i∗, j∗)},

R
(m)
ij =

|Mij − M̂
(m)
ij |

ŝ
(m)
ij

.

8: Compute weights

ŵij =
ĥij∑

(i′,j′)∈S∪{(i∗,j∗)} ĥi′j′
, ĥij =

1− p̂ij
p̂ij

, (i, j) ∈ S ∪ {(i∗, j∗)}.

9: Compute the weighted quantile

q̂(m)(i∗, j∗) = Quantile1−α

 ∑
(i,j)∈S

ŵijδR(m)
ij

+ ŵi∗j∗δ+∞

 (21)

10: end for
11: end for
12: Output:

{
Ĉ (i∗, j∗) =

{
m ∈ M : R

(m)
i∗j∗

≤ q̂(m)(i∗, j∗)
}
: (i∗, j∗) ∈ Sc

}
We note that, when M = R (or an infinite subset of R), the computation of the prediction set
is impossible in most of the cases. In that case, our algorithm can be modified via a trimmed or
discretized approximation; these extensions are presented for the regression setting in the work of
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Chen et al. (2016, 2018), and can be extended to the matrix completion setting in a straightforward
way.

C.3 Exact split conformalized matrix completion

In Algorithm 3, we present the exact split approach, which is less conservative than our one-shot
approach given in Algorithm 1, but may be less computationally efficient. In this version of the
algorithm, the quantile q̂ = q̂(i∗, j∗) needs to be computed for each missing entry since the weight
vector ŵ depends on the value of p̂i∗,j∗ .

Algorithm 3 split-cmc: split conformalized matrix completion

1: Input: target coverage level 1− α; data splitting proportion q ∈ (0, 1); observed entries MS .
2: Split the data: draw Wij

i.i.d.∼ Bern(q), and define training and calibration sets,

Str = {(i, j) ∈ S :Wij = 1}, Scal = {(i, j) ∈ S :Wij = 0}.

3: Using the training data MStr
indexed by Str ⊆ [d1]× [d2], compute:

• An initial estimate M̂ using any matrix completion algorithm (with M̂ij estimating the
target Mij);

• Optionally, a local uncertainty estimate ŝ (with ŝij estimating our relative uncertainty in the
estimate M̂ij), or otherwise set ŝij ≡ 1;

• An estimate P̂ of the observation probabilities (with p̂ij estimating pij , the probability of
entry (i, j) being observed).

4: Compute normalized residuals on the calibration set,

Rij =

∣∣Mij − M̂ij

∣∣
ŝij

, (i, j) ∈ Scal.

5: Compute estimated odds ratios for the calibration set and test set,

ĥij =
p̂ij

1− p̂ij
, (i, j) ∈ Scal ∪ Sc,

6: for (i∗, j∗) ∈ Sc do
7: Compute weights for the calibration set and test point,

ŵij =
ĥij∑

(i′,j′)∈Scal

ĥi′j′ + ĥi∗j∗
, (i, j) ∈ Scal, ŵtest =

ĥi∗j∗∑
(i′,j′)∈Scal

ĥi′j′ + ĥi∗j∗
.

8: Compute threshold

q̂(i∗, j∗) = Quantile1−α

 ∑
(i,j)∈Scal

ŵij · δRij
+ ŵtest · δ+∞

 ,

where δt denotes the point mass at t.
9: end for

10: Output: confidence intervals

Ĉ(i∗, j∗) = M̂i∗j∗ ± q̂(i∗, j∗) · ŝi∗j∗
for each unobserved entry (i∗, j∗) ∈ Sc.
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