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ABSTRACT

Machine learning (ML) may be oblivious to human bias but it is not immune to
its perpetuation. Marginalisation and iniquitous group representation are often
traceable in the very data used for training, and may be reflected or even enhanced
by the learning models. In the present work, we aim at clarifying the role played
by data geometry in the emergence of ML bias. We introduce an exactly solvable
high-dimensional model of data imbalance, where parametric control over the many
bias-inducing factors allows for an extensive exploration of the bias inheritance
mechanism. Through the tools of statistical physics, we analytically characterise
the typical properties of learning models trained in this synthetic framework and
obtain exact predictions for the observables that are commonly employed for
fairness assessment. Despite the simplicity of the data model, we retrace and
unpack typical unfairness behaviour observed on real-world datasets. We also
obtain a detailed analytical characterisation of a class of bias mitigation strategies.
We first consider a basic loss-reweighing scheme, which allows for an implicit
minimisation of different unfairness metrics, and quantify the incompatibilities
between some existing fairness criteria. Then, we consider a novel mitigation
strategy based on a matched inference approach, consisting in the introduction of
coupled learning models. Our theoretical analysis of this approach shows that the
coupled strategy can strike superior fairness-accuracy trade-offs.

1 INTRODUCTION

Machine Learning (ML) systems are actively being integrated in multiple aspects of our lives, from
face recognition systems on our phones, to applications in the fashion industry, to high stake scenarios
like healthcare. Together with the advantages of automatising these processes, however, we must
also face the consequences of their — often hidden — failures. Recent studies Buolamwini & Gebru
(2018); Weidinger et al. (2021) have shown that these systems may have significant disparity in
failure rates across the multiple sub-populations targeted in the application. ML systems appear to
perpetuate discriminatory behaviours that align with those present in our society Benjamin (2019);
Noble (2018); Eubanks (2018); Broussard (2018). Discrimination over marginalised groups could
originate at many levels in the ML pipeline, from the very problem definition, to data collection, to
the training and deployment of the ML algorithm Suresh & Guttag (2021).

Data represents a critical source of bias Perez (2019). In some cases, the dataset can contain a record
of a history of discriminatory behaviour, causing complex dependencies that are hardly eradicated
even when the explicit discriminatory attribute is removed. In other cases (or even concurrently), the
root of the discrimination can be found in the data collection process, and is related to the structural
properties of the dataset. Heterogeneous representations of different sub-populations typically induce
major bias in the ML predictions. Drug testing provides a historically significant example: substantial
evidence Hughes (2007); Perez (2019) shows that the scarcity of data points corresponding to women
individuals in drug-efficiency studies resulted in a larger number of side effects in their group.

In spite of a vast empirical literature, a large gap remains in the theoretical understanding of the
bias-induction mechanism. A better theoretical grasp of this issue could help raise awareness and
design more theoretically grounded and effective solutions. In this work, we aim to address this gap
by introducing a novel synthetic data model, offering a controlled setting where data imbalances and
the emergence of bias become more transparent and can be better understood.
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To the best of our knowledge, the present study constitutes the first attempt to explore and exactly
characterise by analytical means the complex phenomenology of ML fairness.
Summary of main results. We devise a novel synthetic model of data, the Teacher-Mixture (T-M),
to obtain a theoretical analysis of the bias-induction mechanism. The geometrical properties of the
model are motivated by common observations on the data structure in realistic datasets, concerning
the coexistence of non-trivial correlations at the level of the inputs and between inputs and labels
(some empirical observations can be found in appendix B). In particular, we focus on the role played
by the presence of different sub-populations in the data, both from the point of view of the input
distribution and from that of the labelling rule. Surprisingly, this simple structural feature is sufficient
for producing a rich and realistic ML fairness phenomenology.

The parameters of the T-M can be tuned to emulate disparate learning regimes, allowing for an
exploration of the impact of each bias-inducing factor and for an assessment of the effectiveness of a
tractable class of mitigation strategies. In summary, in the present work we:

• Derive, through a statistical physics approach, an analytical characterisation of the typical
performance of solutions of the T-M problem in the high-dimensional limit. The obtained
learning curves are found to be in perfect agreement with numerical simulations in the
same synthetic settings (as shown in the central panel in Fig. 1), and produce unfairness
behaviours that are closely reminiscent of the results seen on real data.

• Isolate the different sources of bias (shown in the left panel of Fig. 1) and evaluate their
interplay in the bias-induction mechanism. This analysis also allows us to highlight how
unfairness can emerge in settings where the data distribution is apparently balanced.

• Trace a positive transfer effect between the different sub-populations, which implies that,
despite their distinctions, an overall similarity can be exploited for achieving better perfor-
mance on each group.

• Analyse the trade-offs between the different definitions of fairness, by studying the effects
of a sample reweighing mitigation strategy, which can be encompassed in the theoretical
framework proposed in this work and thus characterised analytically.

• Propose a model-matched mitigation strategy, where two coupled networks are simultane-
ously trained and can specialise on different sub-populations while mutually transferring
useful information. We analytically characterise its effectiveness, finding that with this
method, in the T-M, the competition between accuracy and different fairness metrics be-
comes negligible. Preliminary positive results are also reported on real data.

Further related works. In the past decade, algorithmic fairness has been receiving growing
attention, spurred by the increasing number of ML applications in highly consequential social and
economic areas Datta et al. (2015); Metz & Satariano (2020); Angwin et al. (2016). A central
question in the field is on the proper mathematical definition of bias: the plethora of alternative
fairness criteria includes measures of group fairness, e.g. statistical parity Corbett-Davies et al.
(2017); Dwork et al. (2012); Kleinberg et al. (2016), disparate impact Calders & Verwer (2010);
Feldman et al. (2015); Zafar et al. (2017b); Chouldechova (2017), equality of opportunity Hardt
et al. (2016), calibration within groups Kleinberg et al. (2016), disparate mistreatment Zafar et al.
(2017a), as well as measures of individual fairness Speicher et al. (2018); Castelnovo et al. (2022).
We focus on group fairness in the following, since it is well-defined also in the high-dimensional limit
considered in our theoretical framework. Recent works have highlighted incompatibilities between
some of these fairness measures Kleinberg et al. (2016); Corbett-Davies & Goel (2018); Barocas et al.
(2019), e.g. calibration and error disparity Pleiss et al. (2017), and their instability with respect to
fluctuations in the training dataset Friedler et al. (2019); Castelnovo et al. (2022). Our work is the first
to allow an exact quantification of the intrinsic trade-offs between these notions of group-fairness.

A second major topic in the field of algorithmic fairness is that of bias mitigation. In this work, we
focus on in-processing strategies Arrieta et al. (2020), where the training process is altered in order to
include fairness as a secondary optimisation objective for the learning model. These methods range
from including ad hoc regularisation terms to the loss function Kamishima et al. (2012); Huang &
Vishnoi (2019), to formulating fair classification as a constrained optimisation problem and deriving
reduction-based algorithms Agarwal et al. (2018; 2019); Celis et al. (2019). Other possible strategies
include adversarial training Zhang et al. (2018), where a fairness-arbiter model can drive learning
towards a sough fairness criterion, and distributionally robust optimisation Słowik & Bottou (2021),
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Figure 1: T-M model. Often we can distinguish sub-populations as clusters in a dataset according to
some features. The label, e.g. effectiveness of a drug, is given by some rule acting on the data an may
differ for the two subpopulations. In the T-M model, (Left), the two sub-populations are drawn from
two Gaussians around the two centres (green and orange triangles). The labels (plus and minus) are
associated according to the hyper-planes WWW+

T , WWW−
T . In this 2D drawing we can see that the group +

(green) has 3 samples while group − (orange) has 7 samples, so ρ = 0.3. The two hyper-planes are
highly overlapping (qT ≈ 1) and weakly aligned with the shift vector (m+ ≈ 0, m− ≈ 0). Finally,
we see that sub-population + is less spread than sub-population − (∆+ < ∆−). (Centre) For this
model, the test error can be calculated exactly, shown here as a function of ρ (solid curve). Numerical
simulations (dots) closely match the analytical results. The panel exemplify the importance of ρ in
creating bias against one sub-population or the other. (Right) Effect of changing one of the model
parameter in terms of test accuracy gap, starting the from the set-up of the central panel with ρ = 0.2.

where one accounts for worst-case unfairness scenarios across the sub-populations in the data. In
this work, we analyse two simple schemes whose performance can be analytically traced in our
framework. First, an approach Kamiran & Calders (2012); Plecko & Meinshausen (2020); Lum
& Johndrow (2016) based on loss-reweighing according to the associated subgroup and label of
each data point. Second, we propose –and analyse– a novel method based on the introduction of
coupled learning models, which can be interpreted as a modification of the ”two naive Bayes” model
in Calders & Verwer (2010).

Alternative classes of debiasing approaches, which cannot be analysed within our framework, include
pre-processing strategies Calmon et al. (2017); Feldman et al. (2015), learning unbiased represen-
tations Zemel et al. (2013), and post-processing techniques based on Decision Theory and Causal
Reasoning Kamiran et al. (2012); Plecko & Meinshausen (2020).

2 MODELLING DATA IMBALANCE

The Teacher-Mixture model, sketched in Fig. 1, combines aspects of two common modelling frame-
works for supervised learning, namely the Gaussian-Mixture (GM) and the Teacher-Student (TS)
setups. The GM is a simple model of clustered input data, where each data point is sampled from
one of a small set of –possibly overlapping– high-dimensional Gaussian distributions, while the
TS provides a simple model of input-label correlation, where the ground-truth labels are obtained
from a random ”teacher” neural network and the ”student” learning model tries to reproduce sim-
ilar outputs. While retaining analytical tractability, the novel T-M data model allows for a richer
phenomenology than the previous models, retracing the main features of real data with multiple
coexisting sub-populations. For simplicity, the results discussed in this paper will focus on the case
of two groups, but the analysis could be extended to multiple sub-populations.

More formally, we consider a synthetic dataset of n samples D = {xµ, yµ}nµ=1, with xµ ∈ Rd,
yµ ∈ {0, 1}. We define the O(1) ratio α = n/d and we refer to it as the data scarsity parameter.
Each input vector is i.i.d. sampled from a mixture of two symmetric Gaussians with variances
∆ = {∆+,∆−}, x ∼ N (±v/

√
d,∆±Id×d), with respective probabilities ρ and (1− ρ). The shift

vector v is a Gaussian vector with i.i.d. entries with zero mean and variance 1. The 1/
√
d scaling

corresponds to the high-noise noise regime, where the two Gaussian clouds are overlapping and
hard to disentangle Mignacco et al. (2020); Saglietti & Zdeborová (2022), e.g. as in the case of

3



Under review as a conference paper at ICLR 2023

CelebA and MEPS shown in appendix C. The ground-truth labels, instead, are provided by two
i.i.d. Gaussian teacher vectors, namely W+

T and W−
T , with components of zero mean and variance

1. Each teacher produces labels for the inputs with the corresponding group-membership, namely
yµ = sign

(
W±

T · xµ
± + b±

T

)
. The thresholds b±

T correspond to the teacher bias terms, included in
the model to control the fraction of positive and negative samples within the two sub-populations.
Overall, the geometric picture of the data distribution (a sketch in Fig. 1) is summarised by the
following overlaps:

m̃± =
1

d
WWW±

T · vvv qT =
1

d
WWW+

T ·WWW−
T , (1)

that respectively quantify the alignment of the teacher decision boundaries with respect to the shift
vector, controlling the group-label correlation, and the overlap between the teacher vectors, controlling
the correlation between labels assigned to similar inputs belonging to different communities.

Given the synthetic dataset D, we study the properties of a single-layer network W trained via
empirical risk minimization (ERM) of the loss:

L(w) =
∑
µ∈D

ℓ

(
W cµ

T · xµ

√
d

+ b̃cµ ,
W · xµ

√
d

+ bs

)
+

λ

2

(
d∑

i=1

w2
i

)
(2)

where ℓ(y, ŷ) is assumed to be convex, λ is an external parameter that regulates the intensity of the
L2 regularisation, and the index cµ ∈ {+,−} denotes the group membership of data point µ.

Given this framework, we derive a theoretical characterisation of the asymptotics of this learning
model and consider the possible implications from a ML fairness perspective. In particular, we aim
at studying the role of data geometry and cardinality in the training of a fair classifier. To quantify
the level of bias in the predictions of the trained model, we need to choose a metric of fairness. We
will diffusely employ disparate impact (DI) Feldman et al. (2015), a ML analogous of the 80% rule
Commission et al. (1979), which allows a simple assessment of the over-specialisation of the classifier
on one of the sub-populations. In principle, in the T-M there is no preferable realisation of the target
attribute so we can adopt a symmetric version of DI = p(ŷ = y|+)/p(ŷ = y|−), defined as the ratio
between test accuracy in sub-population + and sub-population −. How to measure bias is itself an
active line of research and the DI measure is imperfect. In Sec. 4 we compare with other metrics.

Note that the T-M has, at the same time, the advantage of being simple, allowing better understand-
ing of the many facets of ML bias, and the disadvantage of being simple, since some modelling
assumptions might not reflect the complexity of real-world data. For example, we ignore any type
of correlation among the inputs other than the clustering structure. The goal of this modelling work
continues a long tradition of research in statistical physics, which has shown that theoretical insights
gained in prototypical settings can often be helpful to disentangle and interpret the complexity of real
world behaviour.

Remark 1 By looking at the available degrees of freedom in the T-M, several possible sources of
bias naturally emerge from the model:

• the relative representation, ρ = n+/(n+ + n−), with nc the number of points in group c.

• the group variance, ∆c, determining the width of the clusters.

• the label frequencies, controlled through the bias terms bc.

• the group-label correlation, mc.

• the labelling rule similarity, qT , which measures the alignment between the two teachers, i.e.
the linear discriminators that assign the labels to the two groups of inputs.

• the data scarcity, α, representing the ratio between dataset size and input dimension.

Theoretical analysis in high-dimensions. In principle, solving Eq. 2 requires finding the minimiser
of a complex non-linear, high-dimensional, quenched random function. Fortunately, statistical physics
Mézard et al. (1987) showed that in the limit n, d → ∞, n/d = α, a large class of problems, including
the T-M model, becomes analytically tractable. In fact, in this proportional high-dimensional
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regime, the behaviour of the learning model becomes deterministic and trackable due to the strong
concentration properties of a narrow set of descriptors that specify the relevant geometrical properties
of the ERM estimator. The original high-dimensional learning problem can be reduced to a simple
system of equations that depends on a set of scalar overlaps:

Q =
1

d
WWW ·WWW, m =

1

d
WWW · vvv R± =

1

d
WWW ·WWW±

T , (3)

representing the typical norm of the trained estimator, its magnetisation in the direction of the cluster
centres, and its overlap with the two teachers of the T-M.

Analytical result 1 In the high dimensional limit when n, d → ∞ at a fixed ratio α = n/d, the
scalar descriptors Θ = {Q,m,R±, δq} of the vector w obtained by the empirical risk minimisation
of Eq. 2 with a convex loss, and their Lagrange multipliers Θ̂ = {Q̂, m̂, R̂±, δq̂}, converge to
deterministic quantities given by the unique fixed point of the system:

Q = −2
∂s(Θ̂;λ)

∂ δq̂
; m =

∂s(Θ̂;λ)

∂ m̂
; R± =

∂s(Θ̂;λ)

∂ R̂±
; δq = 2

∂s(Θ̂;λ)

∂ Q̂
; (4)

Q̂ = 2α
∂e(Θ;∆)

∂ δq
; m̂ = α

∂e(Θ;∆)

∂ m
; R̂± = α

∂e(Θ;∆±)

∂ R±
; δq̂ = 2α

∂e(Θ;∆)

∂ Q
; (5)

with:

s(Θ̂;λ) =
Q̂+

(
m̂+

∑
c=± m̃cR̂c

)2
+
∑

c=±(1− m̃2
c)R̂

2
c + 2

(
qT −

∏
c=± m̃c

)∏
c=± R̂c

2 (δq̂ + λ)
(6)

e(Θ;∆) = Ec

[
Ez

∑
y=±1

H

(
−y

√
Q(c m̃c + b̃c) +

√
∆cRcz√

∆c(Q−R2
c)

)
v(y, c,Θ)

]
(7)

where c ∈ {+,−} ∼ Bernoulli(ρ), z ∼ N (0, 1), H(·) = 1
2erfc(·/

√
2) is the Gaussian tail function,

w is the solution of:

v(y, c,Θ) = max
w

[
−w2

2
− ℓ

(
y,
√
∆cδqw +

√
∆cQz + cm+ b

)]
(8)

and the bias b implicitly solves the equation ∂be(Θ;∆) = 0.

Note that this result was obtained through the non rigorous yet exact replica method from statistical
physics Mézard et al. (1987); Engel & Van den Broeck (2001); Zdeborová & Krzakala (2016). The
derivation details are deferred to appendix D. We remark that several analytic results obtained through
the replica method have been subsequently proved rigorously. In particular, the proofs presented by
Thrampoulidis et al. (2015); Mignacco et al. (2020); Loureiro et al. (2021) in settings similar to the
present one suggest that an extension for the T-M case could be derived. However, this is left for
future work. In this manuscript, we verify the validity of our theory by comparison with numerical
simulations, as shown e.g. in the central panel of Fig. 1.

The obtained fixed point for the scalar descriptors Θ can be used to evaluate simple expressions for
common model evaluation metrics, such as the confusion matrix or the generalisation error.

Analytical result 2 In the same limit as in Analytical result 1, the entries of the confusion matrix,
representing the probability of classifying as ŷ an instance sampled from sub-population c with true
label y, are given by:

p (ŷ | y; c) = Ez

[
Heav

(
y
(√

∆cz + c m̃c + b̃c

))
H

(
−ŷ

(cm+ b) +
√
∆cRcz√

∆c(Q−R2
c)

)]
, (9)

where z ∼ N (0, 1) and Heav(·) is the Heaviside step function. The generalization error, representing

the fraction of wrongly labelled instances, can then be obtained as ϵg = Ec

[∑
ŷ ̸=y p(ŷ | y; c)

]
.
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Figure 2: Bias under different parametric settings. Impact of several parameters on the Disparate
Impact (DI) of the model. From left to right. (Panel 1) Phase diagram where each point represents the
DI (red indicates a worse accuracy on group +) for different values of rule similarity qT (x-axis) and
the relative representation ρ (y-axis). The dotted grey line denotes the 80% threshold for disparate
impact. (Panel 2) Accuracy of group + (dashed lines) and group − (dot-dashed lines), in a cut across
the first phase diagram at qT = 0.8. The different colours indicate different levels of group-label
correlation m±. (Panel 3) Phase diagram of the DI at fixed qT = 1, as the group-label correlation
m± (x-axis) and ρ are varied. (Panel 4) Role of the dataset size (α), at a cut m± = 0.5 of the diagram
in panel 3.

This second result provides us with a fully deterministic estimate of the accuracy of the trained
model on the different data sub-populations. These scores will be used in the following sections to
investigate the possible presence of bias in the classification output of the model. Note that theorems
1 and 2 allow for an extremely efficient and exact evaluation of the learning performance in the T-M,
remapping the original high-dimensional optimisation problem onto a system of deterministic scalar
equations that can be easily solved by recursion.

3 INVESTIGATING THE SOURCES OF BIAS

With these analytical results at hand, we now turn to systematically investigating the effect of the
sources of bias identified in remark 1, which potentially mine the design of a fair classifier. We
consider three separate experiments to summarise some distinctive features of the fairness behaviour
in the T-M: namely, the impact of the correlation between the labelling rules and the group structure,
the interplay between relative representation and group variance, and the positive transfer effect in
the data-scarse regime. The parameters of the experiments, if not specified in the caption, are detailed
in appendix E.1.

Group-label correlation. In the two left panels of Fig. 2, we consider a scenario where the labelling
rules for the two groups are not perfectly aligned, i.e. WWW+

T ̸= WWW−
T (and/or b+ ̸= b−). Note that in

this case we have a clear mismatch between the learning model, a single linear classifier, and the
true input-output structure in the data: the learning model cannot reach perfect generalisation for
both sub-populations at the same time. For simplicity, we set an equal correlation between the two
teacher vectors and the shift vector, m+ = m− > 0, and isolate the role of rule similarity qT . The
first panel shows a phase diagram of the DI (DI< 1 indicating a lower accuracy on group +), as
function of the similarity of the teachers and the fraction of + samples in the dataset. As intuitively
expected, the induced bias exceed the 80% rule when the labelling rules are misaligned and the group
sizes are numerically unbalanced (small qT and ρ). Indeed, in the cut displayed in the second panel,
by lowering the group-label correlation m± the gap between the measured accuracies on the two
sub-populations becomes smaller. However:

Remark 2 Even when qT = 1 and the task is solvable (i.e. the classifier can learn the input-output
mapping), the trained model can still be biased.

This is shown in the two panels on the right of Fig. 2, where a large high-bias region (DI< 80%)
exists. In particular, the third panel shows the cause of this effect in the presence of a non-zero
group-label correlation m±, and in the fourth panel we see how this effect is more pronounced in
the data-scarse regime. In all four panels, as ρ reaches 0.5, the two sub-populations become equally
represented and the classifier achieves the same accuracy for both.
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Figure 3: Bias in equally represented subpopulations. We show the disparate impact as the
distribution of the two subpopulations is changed by altering their variances (∆+ and ∆−). The
diagonal line gives the configurations where the two subpopulations have the same variance. The
three panels consider different levels of representation, from left to right ρ = 0.1, 0.3, 0.5. The latter
is the situation with both subpopulations being equally represented in the dataset. We use the red and
blue colours to quantify the disparate bias against sub-population + and − (respectively).

Bias and variance. In Fig. 3, we plot the DI as a function of the group variances ∆±, for different
values of the fraction of + samples. One finds that the model might need a disproportionate number
of samples in the two groups to obtain comparable accuracies. We can see that:

Remark 3 Balancing the group relative representation does not guarantee a fair training outcome.

In fact, the quality of a group’s representation in the dataset can increase if the number of points is
kept constant but the group variance is reduced. The blue regions in the first two panels indicate a
higher accuracy for the minority group even if the dataset only contains 10% and 30% of samples
belonging to it. This exemplifies the fact that a very focused distribution (low ∆±) actually requires
less samples. The last panel (ρ = 0.5) shows the scenario one would expect a priori: on the diagonal
line the DI is balanced, but by setting ∆+ > ∆− (or viceversa) one induces a bias in the classification.

Positive transfer. If mixing different sub-populations in the same dataset can induce unfair be-
haviour, one could think of splitting the data and train independent models. In Fig. 4, we show that a
positive transfer effect Gerace et al. (2022) can yet be traced between the two groups when the rules
are sufficiently similar.

Remark 4 The performance on the smaller group tends to further deteriorate if the dataset is split
according to the sub-group structure.

To clarify this point, we plot the DI as a function the data scarcity α, for several values of the rule
similarity qT and at fixed ρ. We also compare the accuracies on each sub-population of a classifier
trained on the full dataset and of a baseline classifier trained only on the respective data subsets (+ in
the second figure, − in the third). If the rules are sufficiently similar (large qT ), we can observe a
positive transfer and using the dataset in his entirety leads to a performance and fairness improvement.
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Figure 4: Positive transfer effect. Given a fixed proportion of the two sub-populations, we compare
different levels of rule similarity (qT ) as the size of the dataset is increased. The disparate impact
(first figure) may mislead into thinking that the accuracy in one sub-population is decreasing as the
other increases, instead the accuracy is steadily increasing (second figure) for both sub-populations.
Finally, the last two figures show the accuracy in the sub-population + and − (respectively) minus
the accuracy on the same dataset when the other sub-population is perfectly removed.
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Figure 5: Mitigation trade-off. The phase diagrams show the effect of re-weighting, biasing both:
towards low mistakes in classifying sub-population + (w+ on the x-axis) and towards low mistakes
for label +1 (w1 on the y-axis). The quantity shown in the diagrams are the mutual information for
the metrics introduced in the text (first three columns) and the accuracy on the two sub-populations
(last column). The diagrams for the mutual information also show red markers denoting where the
minimum is achieved.

As expected, positive transfer can be particularly useful in data-scarce regimes (small α) and becomes
ineffective or detrimental in large datasets (large α), as shown in the last panel.

4 MITIGATION STRATEGIES

To assess the fairness of a ML model on a given data distribution, a plethora of different fairness
criteria have been designed Speicher et al. (2018); Castelnovo et al. (2022). Appendix F presents a
summary of the criteria considered in our analysis. Following the lines of Speicher et al. (2018), we
aim to quantify exactly how far is a given trained model from meeting each of these criteria. Given a
classification event E –specified by the criterion– and the group membership C, a natural measure of
their independence is provided by the Mutual Information (MI):

I(E;C) = DKL(P[E,C]
∣∣ P[E]P[C]) = E(E,C) log

P[E,C]

P[E]P[C]
. (10)

Clearly, the fairness condition is completely verified only if the joint distribution factorises, i.e.
P[E,C] = P[E]P[C], and the mutual information goes to zero. This represents the impossibility of
predicting the classification outcome of an unbiased model just from the group membership.

In the following, we consider two simple bias mitigation strategies that can be analysed within our
analytical framework. The required generalisations of the replica results are detailed in appendix D.
First, we study the de-biasing effect of a sample reweighing strategy where the relevance of each
sample is varied based on its label and group membership Kamiran & Calders (2012); Plecko &
Meinshausen (2020); Lum & Johndrow (2016). By adjusting the weights, one can indirectly minimise
the MI relative to any given fairness measure. We use the simultaneous quantitative predictions on the
various metrics to assess the compatibility between different fairness definitions. Then, we propose
a theory-based mitigation protocol, along the lines of protocols used in the context of multi-task
learning Rusu et al. (2016).

Loss Reweighing. Recent literature shows that some fairness constraints cannot be satisfied si-
multaneously. ML systems are instead forced to accept trade-offs between them Kleinberg et al.
(2016). This sort of compromise is well-captured in the simple framework of the T-M model. Fig. 5
shows, in form of phase diagrams, the MI measured with respect to the various fairness criteria while
varying the two reweighing parameters, w1 and w+, which up-weigh data points with true label 1
and in group +, respectively. E.g., the loss term associated to a label 1-group + sample will be
weighed w+w1, while that of a label 0-group − data point will receive weight (1 − w+)(1 − w1).
By changing these relative weights one can force the model to pay more attention to some types
of errors and re-establish a balance between the accuracies on the two sub-populations. The red
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Figure 6: Mitigation trade-off in the coupled architecture. The first two figures represent a one
dimensional version of Fig. 5 for the coupled architecture set up. On the left panel, the mutual
information of the different fairness measures (statistical parity, equal opportunities, equal accuracy,
equal odds, predicted parity 1, predicted parity 10) is plot as function of the coupling-strength
parameter γ, observe that the minima of the curves are much closer. Furthermore, the second panel
shows a better accuracy trade-off between subpopulation + and subpopulation −. The remaining two
figures, show an example from the CelebA dataset splitting and classifying according to the attributs
”Wearing Lipstick” and ”Wavy Hair” respectively, more details are provided in appendix B and C.
The observations made for the synthetic model applies also in this real-world case.

crosses in the phase diagrams identify the points where the MI reaches its minimum value for each
fairness metric. Notably, some minima are found to lie in different regions of the phase diagram (at
the opposite extremes), and they often align only in correspondence of trivial classification, where
fairness is achieved but at the expense of accuracy. These results are in agreement with rigorous
results in the literature Barocas et al. (2019), but also show how the incompatibilities between the
different constraints extend to regimes where the fairness criteria are not exactly satisfied.

Coupled Networks. The emergence of classification bias in the T-M could be lead back to the
clear mismatch between the generative model of data and the learning model. In order to move
towards a matched inference setting, we need to enhance the learning model to account for the
presence of multiple sub-populations and labelling rules. This inspires a novel mitigation strategy –
called coupled neural networks. The strategy consists in the simultaneous training of multiple neural
networks, each one seeing a different subset of the data associated with a different sub-population.
The networks exchange information by means of an elastic penalty that mutually attracts them, and
the intensity of this elastic interaction is obtained by cross-validation. This approach is close in spirit
to other methods already present in the literature Calders & Verwer (2010); Saglietti et al. (2021);
Zenke et al. (2017).

Remark 5 The coupled neural networks method allows for higher expressivity and specialisation on
the various sub-populations, while also encouraging a positive transfer between similarly labelled
sub-groups, leading to better fairness-accuracy trade-offs

The first plot in Fig. 6, displaying the behaviour of the mutual information as a function of the
coupling parameter for different fairness metrics, shows the key advantage of using this method. We
observe is a more robust consistency among the various fairness metrics: the positions of the different
minima are now very close to each other. Moreover, the value of the coupling parameter achieving
this agreement condition is also the one that minimises the gap in terms of test accuracy between the
two sub-populations, as shown in the second plot of Fig. 6, without hindering the performance on the
larger group. Notice that this result does not contradict the impossibility theorem Barocas et al. (2019)
which states that statistical parity, equal odds, and predicted parity cannot be satisfied altogether. In
fact, our result only concerns soft minimisation of each fairness metrics. In appendices D and F.1 we
provide additional results for this method and we discuss the effect of training the networks on data
subsets that only partially correlate with the true group structure.

Despite the fact that the T-M is just a data prototype, the positive agreement with real phenomenology
suggests that this method could be effective also on real-world data. The remaining two plots in
Fig. 6 show preliminary results of the performance of the coupled neural networks strategy in the
realistic dataset from CelebA1. We stress that although the method works significantly better in the

1The illustrated chekpoints are used only to show the similarity of behavior in synthetic data and realistic
data (CelebA), and not used or recommended to use in any face recognition systems or scenarios.
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synthetic framework, real data present more complex correlations that may hinder the effectiveness
of the method. Therefore, an application of this technique on real settings requires caution. A future
research direction will be to understand the range of applicability of the coupled neural networks and,
consequently, its limitations.
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Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai. Information fusion, 58:82–115, 2020.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

Ruha Benjamin. Race after technology: Abolitionist tools for the new jim code. Social Forces, 2019.

Lynn A. Blewett, Julia A. Rivera Drew, Risa Griffin, Natalie Del Ponte, and Pat Convey. IPUMS
health surveys: Medical expenditure panel survey, version 2.1 [dataset]. Minneapolis, MN: IPUMS,
2021. URL https://doi.org/10.18128/D071.V2.1.

Meredith Broussard. Artificial unintelligence: How computers misunderstand the world. mit Press,
2018.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on fairness, accountability and transparency, pp. 77–91.
PMLR, 2018.

Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification.
Data mining and knowledge discovery, 21(2):277–292, 2010.

Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R
Varshney. Optimized pre-processing for discrimination prevention. Advances in neural information
processing systems, 30, 2017.

Alessandro Castelnovo, Riccardo Crupi, Greta Greco, Daniele Regoli, Ilaria Giuseppina Penco,
and Andrea Claudio Cosentini. A clarification of the nuances in the fairness metrics landscape.
Scientific Reports, 12(1):1–21, 2022.

L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Classification with fairness
constraints: A meta-algorithm with provable guarantees. In Proceedings of the conference on
fairness, accountability, and transparency, pp. 319–328, 2019.

10

https://www.tensorflow.org/
http://www.fairmlbook.org
https://doi.org/10.18128/D071.V2.1


Under review as a conference paper at ICLR 2023

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

US Equal Employment Opportunity Commission et al. Questions and answers to clarify and provide
a common interpretation of the uniform guidelines on employee selection procedures. US Equal
Employment Opportunity Commission: Washington, DC, USA, 1979.

Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical review of
fair machine learning. arXiv preprint arXiv:1808.00023, 2018.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision
making and the cost of fairness. In Proceedings of the 23rd acm sigkdd international conference
on knowledge discovery and data mining, pp. 797–806, 2017.

Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on ad privacy
settings. Proceedings on Privacy Enhancing Technologies, 2015(1):92–112, 2015. doi: doi:
10.1515/popets-2015-0007. URL https://doi.org/10.1515/popets-2015-0007.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Emily Denton, Ben Hutchinson, Margaret Mitchell, and Timnit Gebru. Detecting bias with generative
counterfactual face attribute augmentation. 2019.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp.
214–226, 2012.

Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cambridge
University Press, 2001.

Virginia Eubanks. Automating inequality: How high-tech tools profile, police, and punish the poor.
St. Martin’s Press, 2018.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 259–268, 2015.

Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P
Hamilton, and Derek Roth. A comparative study of fairness-enhancing interventions in machine
learning. In Proceedings of the conference on fairness, accountability, and transparency, pp.
329–338, 2019.

Federica Gerace, Luca Saglietti, Stefano Sarao Mannelli, Andrew Saxe, and Lenka Zdeborová.
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