
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REDAHD: TOWARD END-TO-END LLM-BASED
AUTOMATIC HEURISTIC DESIGN USING REDUCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving NP-hard combinatorial optimization problems (COPs) (e.g., traveling
salesman problems (TSPs) and capacitated vehicle routing problems (CVRPs))
in practice traditionally involves handcrafting heuristics or specifying a search
space for finding effective heuristics. The main challenges from these approaches,
however, are the sheer amount of domain knowledge and implementation efforts
required from human experts. Recently, significant progress has been made to
address these challenges, particularly by using large language models (LLMs)
to design heuristics within some predetermined generalized algorithmic frame-
work (GAF, e.g., ant colony optimization and guided local search) for building
key functions/components (e.g., a priori information on how promising it is to
include each edge in a solution for TSP and CVRP). Although existing methods
leveraging this idea have shown to yield impressive optimization performance,
they are far from being end-to-end and still require considerable manual interven-
tions. In this paper, we propose a novel framework, named RedAHD, that enables
these LLM-based heuristic design methods to operate without the need of GAFs.
More specifically, RedAHD employs LLMs to automate the process of reduction,
i.e., transforming the COP at hand into similar COPs that are better-understood,
from which LLM-based heuristic design methods can design effective heuristics
for directly solving the transformed COPs and, in turn, indirectly solving the orig-
inal COP. Our experimental results, evaluated on six COPs, show that RedAHD
is capable of designing heuristics with competitive or improved results over the
state-of-the-art methods with minimal human involvement.

1 INTRODUCTION

Solving NP-hard combinatorial optimization problems (COPs) encountered in real-world applica-
tions, such as TSPs (Matai et al., 2010) and CVRPs (Dantzig & Ramser, 1959), traditionally requires
extensive domain knowledge and manual efforts from human experts to either design approximation
algorithms with provable guarantees or handcraft problem-specific heuristics, with the latter being
a more pertinent choice in practice (Desale et al., 2015). In response, automatic heuristic design
(AHD), or hyper-heuristics (Burke et al., 2013; Pillay & Qu, 2018), was proposed as a promising
alternative, in which the goal is to find the best heuristic among several prespecified options i.e.,
the heuristic space. Among popular AHD approaches, those employing genetic programming (GP)
(Langdon & Poli, 2013), an evolutionary algorithm from machine learning, stands out due to its ef-
fectiveness in navigating the heuristic space as well as interpretability (Mei et al., 2022). However,
GP-based AHD approaches require a handcrafted set of permissible search operators for generating
new heuristics, which can be hard to construct in practice (O’Neill et al., 2010).

Figure 1: Timeline of LLM-EPS methods developed thus far.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Latest Efforts and Their Limitations. In recent years, the advent of powerful, readily accessible
large language models (LLMs) such as GPT-3.5 and its successors (Brown et al., 2020) has enabled
new approaches for AHD (Liu et al., 2024b). Among them, integrating LLMs into an evolutionary
computation (EC) procedure for iterative refinement of heuristics, also known as LLM-based evo-
lutionary program search (LLM-EPS) (Liu et al., 2024d; Dat et al., 2025), has attracted increasing
attention. As illustrated in Figure 1, in the past two years, multiple works falling into this cate-
gory have been proposed, each building upon the previous ones to yield incrementally better results.
The common idea from these works is to maintain a set of heuristics with good optimization per-
formance on an evaluation dataset of problem instances and iteratively prompt LLMs to generate
new heuristics using existing ones as references. LLM-EPS methods can not only design novel,
high-quality heuristics but also streamline the implementation process by representing heuristics as
LLM-generated code that can be applied to unseen in-distribution (ID) as well as out-of-distribution
(OOD) problem instances (Liu et al., 2024a; Ye et al., 2024; Yao et al., 2025; Zheng et al., 2025b).
Combined with the current rapid development of LLMs with improved reasoning capabilities (Zheng
et al., 2025a), this approach is expected to revolutionize how heuristics for COPs are developed and
implemented in the near future (Liu et al., 2024b).

Table 1: GAFs used for the considered COPs in existing LLM-EPS studies. Legends: IC–iterative construc-
tion; GLS–guided local search; ACO–ant colony optimization; NCO–neural combinatorial optimization (see
Section 4.1 for clarifications on COP acronyms). COPs not considered in the respective studies are shaded.

COP
Method FunSearch 2024 EoH 2024a ReEvo 2024 HSEvo 2025 MEoH 2025 MCTS-AHD 2025b RedAHD (ours)

TSP GLS IC, ACO, GLS, NCO GLS GLS IC, ACO

None
(self-contained)

OBPP IC IC IC IC IC
BPP ACO ACO
KP IC

MKP ACO ACO
CVRP ACO, NCO ACO

Table 2: Performance comparison (lower is
better) between LLM-EPS methods using IC
vs. ACO for TSP (from results in Zheng
et al. (2025b)). n is the number of nodes.
Note: Results came from different test sets
(1,000 and 64 instances for IC and ACO, re-
spectively), hence actual values might vary
slightly.

Method
Setting TSP w/ IC TSP w/ ACO

n=50 n=100 n=50 n=100
EoH 2024a 6.394 8.894 5.828 8.263
MCTS-AHD 2025b 6.225 8.684 5.801 8.179

However, despite their advantages over classical AHD ap-
proaches, existing LLM-EPS methods are far from be-
ing end-to-end (Liu et al., 2024b). That is, they only
design heuristics for building key functions/components
within some predetermined general algorithmic frame-
work (GAF), such as iterative construction (IC) (Asani
et al., 2023), ant colony optimization (ACO) (Dorigo
et al., 2007), and guided local search (GLS) (Voudouris
et al., 2010), as detailed in Table 1, rather than heuristics
for solving COPs directly. When ACO is employed for
TSP, for instance, LLM-EPS methods only aim to design
heuristics that indicate how promising it is to include each
edge in a solution. This heuristic is then used to generate a priori information within the ACO frame-
work to better guide the search/foraging behavior of ants. Thus, when applying existing LLM-EPS
methods to solve COPs in practice, human users still need to manually specify and design a suitable
GAF for directly solving the problem. Employing complex GAFs such as ACO and GLS may yield
improved performance over handcrafted heuristics, GP-based AHD methods, and even specialized
neural networks (see “NCO” in Appendix A) (Liu et al., 2024a; Ye et al., 2024; Dat et al., 2025; Yao
et al., 2025; Zheng et al., 2025b) but also requires domain knowledge and significant implementation
efforts, whereas resorting to simple GAFs such as IC may result in subpar performances (see Table
2). In either case, a tailored GAF must be implemented for each COP (see Appendix C for compar-
ison between ACO code for TSP vs. CVRP). Then, individual components for LLM prompting in
accordance with the built GAF, e.g., the (sub)problem description, the heuristic description, and the
function signature, are carefully designed (see Table S9). Given these limitations, LLM-EPS with
enhanced automation warrants more attention to advance the field of AHD (Liu et al., 2024b).

Our Contributions. In this paper, we initiate the first attempt toward end-to-end AHD via LLM-
EPS. We summarize our contributions as follows:

• We introduce a novel general framework, named Reduction-based Automatic Heuristic Design
(RedAHD), that enables existing LLM-EPS methods to function independently without the need

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of GAFs. RedAHD operates based on the simple-yet-powerful idea of reduction in algorithm
design (Crescenzi, 1997) (also formally defined in Section 2), in which a COP of interest is trans-
formed into a similar COP that is better-understood. This process is automated by prompting
the LLM to devise a reduction and implement two corresponding functions (as code) that convert
instances and solutions of one COP to another. By this means, existing LLM-EPS methods can
be utilized to design novel heuristics for directly solving the transformed COP and, in turn, in-
directly solving the original COP. RedAHD not only enhances automation in LLM-based AHD,
substantially reducing the manual efforts involved, but also potentially brings fresh insights to the
COP at hand by uncovering uncharted heuristic space (to be elaborated in Section 3.2) and yields
improved optimization performance over state-of-the-art methods.

• We incorporate a mechanism within RedAHD that automatically refines reduction functions (for
mapping instances and solutions of one COP to another) whenever the search process stagnates
and seemingly converges to local optima (within the landscape defined by the objective function
of the COP). This extension, in turn, enables RedAHD to yield good performance even when the
initial reductions are not adequately implemented by the LLM.

• We empirically show in our experiments that when integrating the most representative LLM-EPS
method, EoH (Liu et al., 2024a), into RedAHD to attempt end-to-end AHD for six COPs, the
designed heuristics achieve competitive or better optimization performances compared to existing
LLM-EPS methods even when operated under advanced GAFs such as ACO. Moreover, these
impressive performances are further improved when we employ (i) a more powerful LLM (o3-
mini) or (ii) more sophisticated LLM-EPS methods (ReEvo (Ye et al., 2024) and MEoH (Yao
et al., 2025)).

Outline. We provide the preliminaries in Section 2. Section 3 describes the proposed RedAHD
framework. We evaluate its efficacy through various experiments in Section 4 and conclude our
work in Section 5. We defer related work to Appendix A and further discussions (e.g., resource
consumption, limitations and future works, and advantage scope of RedAHD) to Appendix D.

2 LANGUAGE REDUCTION FOR COMBINATORIAL OPTIMIZATION

In this section, we first revisit the LLM-based AHD task as considered in previous LLM-EPS works,
which helps better identify their shared flaw and motivate our approach, then formally define the
concept of reduction and language reduction upon which our framework is built.

Let A be a COP of interest, x be an instance of A, y be a feasible solution of x, and h(x) = y
be a heuristic for A. The (supposed) task of LLM-EPS is to search for an optimal heuristic h∗ in a
heuristic space H (characterized by prior knowledge from LLMs) such that its expected performance
on solving A is maximized, i.e.,

h∗ ∈ argmax
h∈H

Ex∼D
[
q(x, h(x))

]
(1)

where D is an arbitrary distribution over problem instances of A and q(x, y) is the objective function
for A (defined in Appendix B for each of our considered COPs). However, existing LLM-EPS
methods (Romera-Paredes et al., 2024; Liu et al., 2024a; Ye et al., 2024; Dat et al., 2025; Yao et al.,
2025; Zheng et al., 2025b) actually design h′(x′) = y′, which builds a subroutine within some GAF
and hence does not solve the COP on its own. Therefore, in reality, the task of these methods is to
search for

h∗ ∈ argmax
h′∈H′

Ex∼D

[
q
(
x, g(h′(f(x)))

)]
(2)

where f(x) = x′ maps an instance of A to an instance of a subproblem B and g(y′) = y maps a
solution of B to a solution of A, both of which are given by the manually specified GAF, and H ′ is
the heuristic space for B.

We approach the task by noticing that the tuple (f, g) resembles the following concept of reduction.

Definition 1 (Reduction (Crescenzi, 1997)) Let A and B be two COPs. A reduction from A to B
is a pair of polynomial-time computable functions (f, g), such that:

• f maps an instance x of A into an instance x′ of B, i.e., f(x) = x′.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of RedAHD. First, the designer LLM generates a set of LRs, encoded as two reduction
functions (one for mapping instances of A to B and the other for mapping solutions of B to A, see Figure
S7-center for an example). The LRs are then used to generate a set of heuristics (exemplified in Figure S8)
that are iteratively refined using existing LLM-EPS methods, in which offspring heuristics of an LR may be
generated using algorithmic ideas from heuristics of any other LRs. When the overall performance of the
heuristics associated with an LR stagnates, the LR is automatically refined by the LLM.

• g maps a solution y′ of B to a solution y of A, i.e., g(y′) = y.

Motivated by this observation, our goal in this paper is thus to automate the design of f and g
(Definition 1), which eliminates the need of GAFs and thereby enhance automation in LLM-based
AHD. We hereby introduce a novel variant of reduction as follows.

Definition 2 (Language reduction) A language reduction (LR) is an approximate reduction from
A to B where f, g are generated by LLMs. The reduction is “approximate” in the sense that g does
not necessarily preserve some guarantee of the performance ratio of y with respect to x (Crescenzi,
1997).

3 THE REDAHD FRAMEWORK

In this section, we propose RedAHD, which aims to address the stated flaw of existing LLM-EPS
methods via LRs. In essence, RedAHD only takes A’s specifications as input and outputs h∗ de-
fined in Equation 2 with minimal human involvement. It maintains a set P of N LLM-generated
heuristics, denoted as P = {h′

1, . . . , h
′
N}1, by adopting some LLM-EPS method to iteratively find

heuristics with better objective values subject to a finite set of D > 0 problem instances drawn from
D. Each heuristic h′

i ∈ P is associated with an LR rj ∈ R = {r1, . . . , rM}, which transforms A
into another COP, Bj . The LRs are automatically refined as needed to avoid premature convergence
at locally optimal heuristics. Figure 2 illustrates the schematic of RedAHD, which comprises three
steps: (i) reduction initialization, (ii) multi-problem LLM-EPS, and (iii) reduction refinement. The
following subsections elaborate each step. Our designed prompts are detailed in Appendix D.1.

3.1 REDUCTION INITIALIZATION

LR Representation. We start by describing the components to represent an LR, which include:

1. The natural-language problem description of B in a few sentences.

2. The code snippet for implementing (f, g) in accordance with A and B’s descriptions. It should
follow a predefined format, referred to as “reduction template”, so that it can be seamlessly
combined with existing LLM-EPS methods. 2

1For clarity, h′ denotes heuristics for an arbitrary B and h(j) denotes heuristics for a specific Bj .
2In the experiments, we choose to implement f and g as two Python functions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3. The code template based on the implemented (f, g), which is used by the employed LLM-EPS
method to design h′ for B. In prior works, this component must be manually designed in accor-
dance with the underlying GAF (see “Function signature” in Table S9).

4. Each LR is assigned a score to quantify its performance on A, which is used for selection and
stagnation tracking (to be elaborated in Section 3.3). We will define this score shortly.

We provide illustrative examples of LRs in Appendix D.4.

Candidate LR Generation. Given A’s description, RedAHD first prompts the LLM to provide
a list of Minit ≥ M descriptions for the respective candidate COPs, {Bj}Minit

j=1 . For each Bj ,
RedAHD generates (fj , gj) by prompting the LLM with its description and the reduction template
as input, then uses these functions to prompt the LLM again for the code template associated with
Bj . We do not combine these two sequential calls into one to prevent hallucinations from LLMs
(Huang et al., 2025).

Heuristic Initialization. We initialize a set of heuristics for each Bj , denoted as Pj , by providing
the LLM with Bj’s description and its corresponding code template. Once a heuristic h

(j)
i

1 is
generated, its optimization performance, or fitness value, is computed as follows:

Q
(
h
(j)
i

)
=

1

D

D∑
k=1

q(x(k), y(k))

where q is the objective function for A (e.g., minus tour length for TSP) and y(k) =

gj
(
h
(j)
i (fj(x

(k)))
)
. We repeat this process ⌈N/M⌉ times to obtain Pj = {h(j)

1 , . . . , h
(j)
⌈N/M⌉}.

Selection. We define the score of an LR, denoted as sj , as the average fitness values of its top-
l associated heuristics. After evaluating all M init candidate LRs, we select M LRs with highest
scores. Consequently, the initial set of heuristics is P =

⋃M
j=1 Pj , for a total of at least N heuristics.

Note that for any LR rj , we do not explicitly check the correctness of (fj , gj). As long as the
solutions y(k) returned from the resulting heuristic h(j)

i are valid (e.g., for TSP, the tour must traverse
all nodes without revisiting non-starting nodes) for all respective instances x(k), rj is deemed valid.
We elaborate on our strategy to consistently obtain valid LRs in Appendix D.1.

3.2 MULTI-PROBLEM LLM-EPS

Once the set of LRs R and the resulting set of heuristics P are initialized, the evolutionary search
procedure in RedAHD follows existing LLM-EPS methods, which typically consists of: (i) selecting
parent heuristic(s) from P (either randomly or based on Q), (ii) applying variation operators on these
heuristics via LLM prompting to search for new heuristics in H ′ (as elaborated in Appendix D.1),
and (iii) managing the size of P to be within N by only keeping the fittest heuristics. However, since
there are now multiple options for H ′, it is important to apply these works such that the expanded
heuristic space can be efficiently explored without incurring extra costs. Therefore, we extend LLM-
EPS methods to multi-problem settings where any heuristic from P , regardless of which COP it is
intended to solve, may be indiscriminately selected as parent when designing new heuristics for a
given COP. That is, a heuristic h(j)

i for Bj can be used as algorithmic reference to generate offspring
heuristics for Bj′ , j

′ ̸= j. The advantages of this technique over designing heuristics for each
Bj separately are twofold. First, it prevents situations where one LR performs significantly better
than others and hence all heuristics in P are designed for a single COP, making the search for
heuristics for other COPs futile. More importantly, it facilitates the discovery of novel heuristics
from uncharted heuristic space, which may result in improved performance. Figure 3 illustrates a
supporting example for this claim during heuristic design for TSP.

In the following, we describe the multi-problem LLM-EPS procedure using EoH (Liu et al., 2024a)
as the reference LLM-EPS method given its close resemblance to traditional evolutionary algorithms
and proven significance to the field of LLM-based AHD, but the same concept can be applied to other
LLM-EPS methods (as detailed in Appendix D.1 for ReEvo (Ye et al., 2024) and MEoH (Yao et al.,
2025)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: A demonstration of multi-problem LLM-EPS for TSP, in which the parent heuristic (blue) during
EoH mutation (Liu et al., 2024a) is not intended to solve the COP at hand (“Problem B3”). As a result, the
offspring heuristic for B3 (green) is generated with the novel idea of 2-opt edge swap and hence yields better
performance.

LR ration. At each iteration or generation in EoH, each variation operator (e.g., crossover and
mutation) is applied N times to generate N new heuristics for B. In multi-problem LLM-EPS, each
variation operator now creates heuristics for different COPs in {Bj}Mj=1. To maintain the number
of newly generated heuristics in a generation, each variation operator is applied to generate only
0 < Nj < N heuristics for Bj so that

∑M
j=1 Nj = N . The exact numbers are determined as

follows.

LR selection. The number of times Bj is considered for generating new heuristics is determined
by sampling N times from R with probability pj ∝ 1/|sj | if q(x, y) < 0 (e.g., TSP) and pj ∝ sj
if q(x, y) ≥ 0 (e.g., knapsack problems), which resembles the selection method in EoH (Liu et al.,
2024a) for selecting parent heuristics. Thus, better-performing reductions are more likely to have
larger Nj .

3.3 REDUCTION REFINEMENT

During evolution, one LR may drastically outperform others (e.g., due to inadequate implementa-
tions), securing large ration and in turn monopolizing nearly all heuristics in P . Since the search
now effectively collapses to typical LLM-EPS, this behavior may lead to premature convergence
at local optima (Zheng et al., 2025b). To avoid this, RedAHD automatically refines LRs whenever
their score stagnates. In particular, for each rj when sj does not improve for T consecutive units
of evaluation budget (e.g., number of generations or fitness evaluations), the reduction functions
(fj , gj) as well as the corresponding code template for Bj are updated by prompting the LLM with
both A and Bj’s descriptions along with their current version. Once updated, the fitness values of
the heuristics associated with rj are recomputed (through the new (fj , gj)), which in turn updates
sj . RedAHD keeps the update for rj only if sj is improved. The exact prompt used is detailed in
Appendix D.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

We start this section by describing the experimental settings and the considered baselines in Sec-
tion 4.1. Section 4.2 presents results on six COPs for evaluating the efficacy of RedAHD. Finally,
we provide several ablation studies in Section 4.3 to grasp its individual components’ impact on
optimization performance. Appendix D includes all implementation details and missing results.

4.1 EXPERIMENTAL SETUPS

To our best knowledge, the current state-of-the-art LLM-EPS method is MCTS-AHD (Zheng et al.,
2025b). Therefore, we follow their setups whenever possible, including the considered COPs, the
evaluation dataset for each COP, and the respective baselines (from handcrafted heuristics, tradi-
tional AHD methods, NCO methods, and other LLM-EPS methods). The COPs consist of TSPs,
CVRPs, 0/1 knapsack problems (KPs), multiple knapsack problems (MKPs), and online and offline
bin packing problems (OBPPs and BPPs, respectively). For RedAHD, we set M = 3, Minit = 10,
and l = 3. We use EoH (Liu et al., 2024a) as the default LLM-EPS method, in which we use only
two variation operators, one for crossover and the other for mutation, instead of five as in the original
work (see prompt specifications and our justifications in Appendix D.1). We set T , the number of
generations in EoH context, to 3. Unless otherwise specified, GPT-4o-mini with temperature fixed
at 1 is employed as the designer LLM for generating both LRs and heuristics, with each run of
RedAHD repeated three times and we report the average performance of h∗.

4.2 MAIN RESULTS

Recall that existing LLM-EPS methods necessitate some predetermined GAF to operate. Hence, we
compare RedAHD with LLM-EPS methods when integrated within the IC and ACO frameworks.

Iterative Construction (IC). This GAF, also known as step-by-step construction, constructs the
solution components of a given COP one by one (Asani et al., 2023). By this means, when dealing
with TSP for example, LLM-EPS methods only need to design h′ that takes the distance matrix and
the currently visiting and unvisited nodes as input and returns the next node to visit. It has been
considered in all known LLM-EPS works (see Table 1), particularly for TSP, KP, and OBPP. Table
3 shows the performance of RedAHD on these COPs with respect to the baselines. We see that
for TSP and KP, RedAHD not only outperforms EoH, the underlying LLM-EPS, but also achieves
the best or second best performance on all test sets. For OBPP, despite surpassing the handcrafted
heuristics “Best Fit” and “First Fit” in nearly all settings, RedAHD performs rather unremarkably
compared to LLM-EPS methods. We attribute this decrease in relative performance to the fact that
for OBPP in particular, the additional constraint that each item must be packed sequentially without
knowledge on future items greatly restricts H ′ and hence exploring novel heuristics via the proposed
multi-problem LLM-EPS is less beneficial. We show in Section 4.3 that RedAHD can still excel with
more capable LLMs.
Table 3: Comparative results for (left) TSP & KP and (right) OBPP when LLM-EPS methods (denoted by
an asterisk) employ the IC framework. We use the results reported in Zheng et al. (2025b) for the baselines.
n is the number of nodes to visit for TSP and number of items to consider for KP and OBPP, and W is the
knapsack capacity for KP and bin size for OBPP. ID settings are underlined while OOD settings are not. The
best-performing LLM-based method (with GPT-4o-mini) is shaded, and the overall best method is bolded.

Method

Problem
setting

TSP (Obj. ↓) KP (Obj. ↑)

n=50 n=100 n=200 n=50
W=12.5

n=100
W=25

n=200
W=25

Greedy 1977 6.959 9.706 13.461 19.985 40.225 57.395
POMO 2020 5.697 8.001 12.897 19.612 39.676 57.271
Funsearch* 6.357 8.850 12.372 19.988 40.227 57.398
EoH* 6.394 8.894 12.437 19.993 40.231 57.399
MCTS-AHD* 6.225 8.684 12.120 20.015 40.252 57.423
RedAHD 5.767 8.006 11.164 20.006 40.248 57.416

OBPP (% optimality gap ↓)
n 1k 1k 5k 5k 10k 10k
W 100 500 100 500 100 500

Best Fit 4.77 0.25 4.31 0.55 4.05 0.47
First Fit 5.02 0.25 4.65 0.55 4.36 0.50
Funsearch* 2.45 0.66 1.30 0.25 1.05 0.21
EoH* 2.69 0.25 1.63 0.53 1.47 0.45
ReEvo* 3.94 0.50 2.72 0.40 2.39 0.31
HSEvo* 2.64 1.07 1.43 0.32 1.13 0.21
MCTS-AHD* 2.45 0.50 1.06 0.32 0.74 0.26
RedAHD 3.78 0.99 2.82 0.55 2.61 0.40

Table 4 shows additional results on TSPLib (Reinelt, 1991), a standard real-world TSP benchmark.
Following prior LLM-EPS works (Liu et al., 2024a; Ye et al., 2024; Zheng et al., 2025b), we use
the best-performing heuristic among the three runs of RedAHD to report its performance. Since this
heuristic (depicted in Appendix D.4 under “TSP”) was found to randomly select a starting node,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

we run it three times for each TSPLib instance and report the average performance. Clearly, the
heuristic from RedAHD outperforms all baselines on every instance, achieving small optimality gap
even on very large instances with over 1,500 nodes (shaded in green). On the other hand, LLM-
EPS methods often fail to surpass handcrafted heuristics (e.g., Christofides (Christofides, 2022)),
particularly on larger instances with a few hundred nodes or more.
Table 4: Results (% optimality gap) on TSPLib when LLM-EPS methods (denoted by an asterisk) employ the
IC framework. The number from each instance’s name corresponds to the number of nodes. We use the results
reported in Duflo et al. (2019); Ye et al. (2024); Zheng et al. (2025b) for the baselines. The best baseline is
shaded in gray, and the overall best is bolded.

TSPLib
instance Christofides 2022 Greedy 2015 Nearest

insertion
Nearest

neighbor 1977 GPHH-best 2019 EoH* ReEvo* MCTS-AHD* RedAHD

ts225 5.67 5.38 19.93 16.82 7.71 5.57 6.56 10.84 2.29 ± 0.21
rat99 9.43 22.30 21.05 21.79 14.09 18.78 12.41 10.46 3.47 ± 0.08
rl1889 7.60 19.44 24.34 23.74 21.09 - 17.5 - 6.87 ± 0.61
u1817 14.15 19.78 24.07 22.20 21.21 - 16.6 - 6.42 ± 0.16
d1655 12.65 16.31 21.35 23.86 18.69 - 17.5 - 7.10 ± 0.34
bier127 13.03 19.50 23.05 23.25 15.64 14.05 10.79 7.56 2.32 ± 0.38
lin318 13.80 18.75 24.44 25.78 14.30 14.03 16.63 14.07 5.39 ± 0.17
eil51 15.18 13.03 16.14 31.96 10.20 8.37 6.47 15.98 2.29 ± 0.48
d493 9.52 16.68 20.39 24.00 15.58 12.41 13.43 11.73 3.83 ± 0.28
kroB100 9.82 16.59 21.53 26.26 14.06 13.46 12.20 11.43 2.12 ± 0.84
kroC100 9.08 12.94 24.25 25.76 16.22 16.85 15.88 8.27 3.64 ± 0.24
ch130 10.09 28.40 19.21 25.66 14.77 12.26 9.40 10.18 4.51 ± 0.69
pr299 11.23 31.42 25.05 31.42 18.24 23.58 20.63 11.23 5.45 ± 0.33
fl417 15.57 12.64 25.52 32.42 22.72 20.47 19.15 10.20 3.43 ± 0.52
d657 10.41 15.76 22.84 29.74 16.30 - 16.0 - 5.34 ± 0.61
kroA150 13.44 20.24 19.09 26.08 15.59 18.36 11.62 10.08 3.62 ± 0.31
fl1577 8.84 15.60 24.17 25.01 17.60 - 12.1 - 3.17 ± 0.38
u724 12.04 17.20 25.58 28.45 15.54 - 16.9 - 5.08 ± 0.38
pr264 11.28 11.89 34.28 17.87 23.96 18.03 16.78 12.27 4.97 ± 1.05
pr226 14.17 21.44 28.02 24.65 15.51 19.90 18.02 7.15 1.97 ± 1.13
pr439 11.16 20.08 24.67 27.36 21.36 21.96 19.25 15.12 5.65 ± 0.50

Ant Colony Optimization (ACO). ACO (Dorigo et al., 2007) is an advanced and well-known
GAF that had been applied to more complex COPs such as CVRP and MKP (which are respectively
more general COPs than TSP and KP). Under this framework, LLM-EPS methods only need to
design heuristics for estimating the potential of each solution component, which is then used as prior
information to bias the stochastic sampling of solutions (Ye et al., 2024; Zheng et al., 2025b). Our
results for RedAHD on TSP, CVRP, MKP, and BPP with respect to baselines employing ACO are
shown in Table 5. Being self-contained, RedAHD still outperforms LLM-EPS methods in nearly all
OOD settings and yields competitive performance against them in ID settings. RedAHD also stays
competitive against DeepACO (Ye et al., 2023), a representative NCO method based on ACO, in all
COPs except CVRP. We show in Section 4.3 that the lackluster performance of RedAHD on CVRP,
which we believe to be due to the lack of domain knowledge from GPT-4o-mini, can be significantly
improved and even tops DeepACO with more capable LLMs.
Table 5: Comparative results for TSP, CVRP, MKP, and BPP when LLM-EPS methods (denoted by an asterisk)
employ the ACO framework. We use the results reported in Zheng et al. (2025b) for the baselines. n: number
of nodes to visit for TSP and CVRP and number of items to consider for MKP and BPP; C: vehicle capacity
for CVRP; m: number of knapsacks for MKP; W : bin size for BPP. ID settings are underlined while OOD
settings are not. The best-performing LLM-based method (with GPT-4o-mini) is shaded, and the overall best
method is bolded.

Method

Problem
setting

TSP (Obj. ↓) CVRP (Obj. ↓) MKP (Obj. ↑) BPP (Obj. ↓)

n=50 n=100 n=50
C=50

n=100
C=50

n=100
m=5

n=200
m=5

n=500
W=150

n=1,000
W=150

ACO 2007 5.992 8.948 11.355 18.778 22.738 40.672 208.828 417.938
DeepACO 2023 5.842 8.282 8.888 14.932 23.093 41.988 203.125 405.172
EoH* 5.828 8.263 9.359 15.681 23.139 41.994 204.646 408.599
ReEvo* 5.856 8.340 9.327 16.092 23.245 42.416 206.693 413.510
MCTS-AHD* 5.801 8.179 9.286 15.782 23.269 42.498 204.094 407.323
RedAHD 5.819 8.039 9.826 15.726 23.164 42.682 203.344 405.359

4.3 ABLATION STUDIES

Reduction Refinement. In our experiments, for T = 3, the reduction refinement step in RedAHD
was called at least once up to three times. We validate the necessity of this step by rerunning the
experiments in Table 5 without it. As shown in Table 6, RedAHD exhibits a decrease in perfor-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mance across all COPs and barely surpasses EoH. This performance drop is likely due to premature
convergence at local optima during search as discussed in Section 3.3.

Table 6: Ablation of the reduction refinement step. Results from EoH in Table 5 are used as references.

Method

Problem
setting

TSP (Obj. ↓) CVRP (Obj. ↓) MKP (Obj. ↑) BPP (Obj. ↓)

n=50 n=100 n=50
C=50

n=100
C=50

n=100
m=5

n=200
m=5

n=500
W=150

n=1,000
W=150

EoH* 5.828 8.263 9.359 15.681 23.139 41.994 204.646 408.599
RedAHD (w/o reduction refinement) 5.847 8.322 10.218 16.175 23.126 41.978 204.561 407.639
RedAHD 5.819 8.039 9.826 15.726 23.164 42.682 203.344 405.359

The Designer LLM. The impressive performance from RedAHD across multiple COPs up to this
point was achieved using GPT-4o-mini, a lightweight general-purpose LLM that had been shown
to be poor at algorithmic reasoning (Yang et al., 2025). Therefore, we should expect RedAHD to
improve when more capable LLMs, particularly reasoning models such as o3-mini, are employed.
Table 7 verifies our claim, where the originally unremarkable performance from RedAHD on OBPP
and CVRP is significantly improved and even surpasses the best baseline on multiple settings. No-
tably, for the OOD setting of CVRP (N = 100 and C = 50), RedAHD yields objective values
even better than those returned from OR-Tools, an optimization library dedicated for vehicle routing
problems (Furnon & Perron).

Table 7: Ablation of the designer LLM. Truncated results from Tables 3 and 5 are used as references.

OBPP (% optimality gap ↓)
n (number of items) 1k 1k 5k 5k 10k 10k
W (bin capacity) 100 500 100 500 100 500

Best baseline 2.45 0.25 1.06 0.25 0.74 0.21
EoH* 2.69 0.25 1.63 0.53 1.47 0.45
RedAHD (GPT-4o-mini) 3.78 0.99 2.82 0.55 2.61 0.40
RedAHD (o3-mini) 3.13 0.00 2.33 0.30 2.02 0.20

CVRP (Obj. ↓)
n (number of nodes) 50 100
C (vehicle capacity) 50 50

OR-Tools (Furnon & Perron) 8.314 13.948
Best baseline (DeepACO) 8.888 14.932
EoH* 9.359 15.681
RedAHD (GPT-4o-mini) 9.826 15.726
RedAHD (o3-mini) 8.348 13.516

Table 8: Ablation of the underlying LLM-
EPS method. Truncated results from Table
5 are used as references. RedAHD[EoH]
is RedAHD reported in earlier results.
For RedAHD[MEoH], which also optimizes
runtime, we report the average performance
from heuristics that yield the best objective
values.

TSP (Obj. ↓)
n (number of nodes) 50 100
Best baseline 5.801 8.179
EoH* 5.828 8.263
ReEvo* 5.856 8.340
RedAHD[EoH] 5.819 8.039
RedAHD[ReEvo] 5.835 8.251
RedAHD[MEoH] 5.730 7.883

The LLM-EPS Method. We demonstrate that
RedAHD can work with LLM-EPS methods other than
EoH, namely ReEvo (Ye et al., 2024) and MEoH (Yao
et al., 2025). As shown in Table 8, RedAHD improves
the performance of the corresponding LLM-EPS meth-
ods even without the need of GAFs. In particular,
RedAHD[EoH] and RedAHD[ReEvo] respectively
outperform EoH and ReEvo, where the latter two operate
under the ACO framework. Moreover, as LLM-EPS
methods improve, exemplified here by MEoH (which
extends EoH to multi-objective heuristic search with
runtime as the additional fitness criterion), RedAHD may
yield further improvement, now outperforming the best
baseline in the ID setting of TSP (N = 50). This result
verifies the applicability of our proposed framework in
the emerging field of LLM-based AHD.

5 CONCLUSION

In this paper, we propose RedAHD, the first framework toward end-to-end automatic design of
heuristics with LLMs. RedAHD leverages the concept of reduction for enabling contemporary
LLM-EPS methods to operate without the need of GAFs, which significantly reduces manual ef-
forts from human designers. Furthermore, RedAHD facilitates the discovery of novel heuristics
from uncharted heuristic space, resulting in improved optimization performance over state-of-the-
art methods. As the capabilities of LLMs and LLM-EPS methods continue to grow, we envision the
efficacy of RedAHD in solving COPs would be more evident.

6 REPRODUCIBILITY STATEMENT

We refer readers to Section 4.1 as well as Appendix D.1 for complete details on reproducing our
results. We also include the code for our work in the supplemental material.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel O Asani, Aderemi E Okeyinka, and Ayodele Ariyo Adebiyi. A computation investi-
gation of the impact of convex hull subtour on the nearest neighbour heuristic. In 2023 Inter-
national Conference on Science, Engineering and Business for Sustainable Development Goals
(SEB-SDG), volume 1, pp. 1–7. IEEE, 2023.

Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evolutionary computation.
Release, 97(1):B1, 1997.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Judith Brecklinghaus and Stefan Hougardy. The approximation ratio of the greedy algorithm for the
metric traveling salesman problem. Operations Research Letters, 43(3):259–261, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of the Op-
erational Research Society, 64(12):1695–1724, 2013.

Herbert G Campbell, Richard A Dudek, and Milton L Smith. A heuristic algorithm for the n job, m
machine sequencing problem. Management science, 16(10):B–630, 1970.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta
neural heuristic for multi-objective combinatorial optimization. Advances in Neural Information
Processing Systems, 36:56825–56837, 2023.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. In
Operations Research Forum, volume 3, pp. 20. Springer, 2022.

Pierluigi Crescenzi. A short guide to approximation preserving reductions. In Proceedings of Com-
putational Complexity. Twelfth Annual IEEE Conference, pp. 262–273. IEEE, 1997.

George B Dantzig and John H Ramser. The truck dispatching problem. Management science, 6(1):
80–91, 1959.

Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. Hsevo: Elevating automatic heuristic
design with diversity-driven harmony search and genetic algorithm using llms. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pp. 26931–26938, 2025.

Sachin Desale, Akhtar Rasool, Sushil Andhale, and Priti Rane. Heuristic and meta-heuristic algo-
rithms and their relevance to the real world: a survey. Int. J. Comput. Eng. Res. Trends, 351(5):
2349–7084, 2015.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2007.

John H Drake, Ahmed Kheiri, Ender Özcan, and Edmund K Burke. Recent advances in selection
hyper-heuristics. European Journal of Operational Research, 285(2):405–428, 2020.

Gabriel Duflo, Emmanuel Kieffer, Matthias R Brust, Grégoire Danoy, and Pascal Bouvry. A gp
hyper-heuristic approach for generating tsp heuristics. In 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 521–529. IEEE, 2019.

Agoston E Eiben and Jim Smith. From evolutionary computation to the evolution of things. Nature,
521(7553):476–482, 2015.

Hamilton Emmons and George Vairaktarakis. Flow shop scheduling: theoretical results, algorithms,
and applications, volume 182. Springer Science & Business Media, 2012.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Victor Fernandez-Viagas and Jose M Framinan. On insertion tie-breaking rules in heuristics for the
permutation flowshop scheduling problem. Computers & Operations Research, 45:60–67, 2014.

Vincent Furnon and Laurent Perron. Or-tools routing library. URL https://developers.
google.com/optimization/routing/.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

Jatinder ND Gupta. A functional heuristic algorithm for the flowshop scheduling problem. Journal
of the Operational Research Society, 22(1):39–47, 1971.

Erik Hemberg, Stephen Moskal, and Una-May O’Reilly. Evolving code with a large language model.
Genetic Programming and Evolvable Machines, 25(2):21, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Brian Kallehauge, Jesper Larsen, Oli BG Madsen, and Marius M Solomon. Vehicle routing problem
with time windows. In Column generation, pp. 67–98. Springer, 2005.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help planning
in llm-modulo frameworks. In Forty-first International Conference on Machine Learning, 2024.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

William B Langdon and Riccardo Poli. Foundations of genetic programming. Springer Science &
Business Media, 2013.

Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 579–582,
2024.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of evolutionary machine learning, pp. 331–366.
Springer, 2023.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024a.

Fei Liu, Yiming Yao, Ping Guo, Zhiyuan Yang, Xi Lin, Xialiang Tong, Mingxuan Yuan, Zhichao Lu,
Zhenkun Wang, and Qingfu Zhang. A systematic survey on large language models for algorithm
design. arXiv preprint arXiv:2410.14716, 2024b.

Fei Liu, Rui Zhang, Zhuoliang Xie, Rui Sun, Kai Li, Xi Lin, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Llm4ad: A platform for algorithm design with large language model. 2024c.
URL https://arxiv.org/abs/2412.17287.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024d.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining Ma,
and Zhiguang Cao. Metabox: A benchmark platform for meta-black-box optimization with re-
inforcement learning. Advances in Neural Information Processing Systems, 36:10775–10795,
2023.

11

https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/
https://openreview.net/forum?id=ZG3RaNIsO8
https://arxiv.org/abs/2412.17287

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and
Evelina Fedorenko. Dissociating language and thought in large language models. Trends in
cognitive sciences, 2024.

Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem: an
overview of applications, formulations, and solution approaches. Traveling salesman problem,
theory and applications, 1(1):1–25, 2010.

Yi Mei, Qi Chen, Andrew Lensen, Bing Xue, and Mengjie Zhang. Explainable artificial intelligence
by genetic programming: A survey. IEEE Transactions on Evolutionary Computation, 27(3):
621–641, 2022.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover,
and Joel Lehman. Language model crossover: Variation through few-shot prompting. ACM
Transactions on Evolutionary Learning, 4(4):1–40, 2024.

Muhammad Nawaz, E Emory Enscore Jr, and Inyong Ham. A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983.

Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, and Wolfgang Banzhaf. Open issues in
genetic programming. Genetic Programming and Evolvable Machines, 11:339–363, 2010.

Zixiao Pan, Ling Wang, Jingjing Wang, and Jiawen Lu. Deep reinforcement learning based opti-
mization algorithm for permutation flow-shop scheduling. IEEE Transactions on Emerging Topics
in Computational Intelligence, 7(4):983–994, 2021.

Nelishia Pillay and Rong Qu. Hyper-heuristics: theory and applications. Springer, 2018.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several heuristics
for the traveling salesman problem. SIAM journal on computing, 6(3):563–581, 1977.

Marcus Tantakoun, Christian Muise, and Xiaodan Zhu. Llms as planning formalizers: A survey
for leveraging large language models to construct automated planning models. In Findings of the
Association for Computational Linguistics: ACL 2025, pp. 25167–25188, 2025.

Christos Voudouris, Edward PK Tsang, and Abdullah Alsheddy. Guided local search. In Handbook
of metaheuristics, pp. 321–361. Springer, 2010.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. PlanGenLLMs: A modern
survey of LLM planning capabilities. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 19497–19521, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.958. URL https://aclanthology.org/2025.acl-long.958/.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation
in the era of large language model: Survey and roadmap. IEEE Transactions on Evolutionary
Computation, 2024.

Chang Yang, Ruiyu Wang, Junzhe Jiang, Qi Jiang, Qinggang Zhang, Yanchen Deng, Shuxin Li,
Shuyue Hu, Bo Li, Florian T. Pokorny, Xiao Huang, and Xinrun Wang. Nondeterministic
polynomial-time problem challenge: An ever-scaling reasoning benchmark for llms, 2025. URL
https://arxiv.org/abs/2504.11239.

12

https://aclanthology.org/2025.acl-long.958/
https://arxiv.org/abs/2504.11239

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunhao Yang and Andrew Whinston. A survey on reinforcement learning for combinatorial opti-
mization. In 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), pp.
131–136. IEEE, 2023.

Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
evolution of heuristic using large language model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 27144–27152, 2025.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. Advances in neural information processing systems, 36:
43706–43728, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution. In
Advances in Neural Information Processing Systems, 2024. https://github.com/ai4co/
reevo.

Qi Zhao, Qiqi Duan, Bai Yan, Shi Cheng, and Yuhui Shi. Automated design of metaheuristic
algorithms: A survey. arXiv preprint arXiv:2303.06532, 2023.

Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A review on
edge large language models: Design, execution, and applications. ACM Computing Surveys, 57
(8):1–35, 2025a.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified
neural divide-and-conquer framework for large-scale combinatorial optimization problems. arXiv
preprint arXiv:2407.00312, 2024.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for com-
prehensive exploration in llm-based automatic heuristic design. In Forty-Second International
Conference on Machine Learning, 2025b.

A RELATED WORK

Automatic Heuristic Design (AHD). The field of AHD, or hyper-heuristics (Pillay & Qu, 2018),
aims to provide more generalized approaches for solving COPs via selecting the best-performing
heuristic from a predefined set (Drake et al., 2020) or generating new heuristics through the com-
bination of simpler heuristic components (Duflo et al., 2019; Zhao et al., 2023). By this means,
human experts are only required to specify the heuristic space rather than handcrafting heuristics
from scratch. However, traditional AHD approaches such as those employing GP (Langdon & Poli,
2013) necessitate substantial domain knowledge and implementation efforts (Pillay & Qu, 2018;
O’Neill et al., 2010).

LLMs for AHD. Recent advances in LLMs have enabled new approaches for AHD. (Please refer
to the latest survey by Liu et al. (2024b)) for a comprehensive review.) Since standalone LLMs
with prompt engineering are arguably incapable of producing novel algorithmic ideas beyond their
encoded knowledge (Mahowald et al., 2024), most active research in this area focuses on integrating
LLMs into an evolutionary computation (EC) procedure to iteratively refine a set of heuristics. EC
is a generic optimization principle inspired by natural evolution (Bäck et al., 1997; Eiben & Smith,
2015). Its idea involves iteratively improving a set of candidate solutions through score-based selec-
tion (i.e., identifying the “fittest” candidate solutions subject to a so-called fitness function such as
the optimality gap) and stochastic variation operators (e.g., crossover and mutation among the fittest
candidate solutions as inspired by biological evolution). In recent years, LLMs have been employed
via prompt engineering to emulate these variation operators (Lehman et al., 2023; Meyerson et al.,
2024; Lange et al., 2024), with already widespread applications in code generation (Hemberg et al.,
2024), text generation (Guo et al., 2024), planning (Kambhampati et al., 2024), as well as AHD,
known in the literature as LLM-based evolutionary program search (LLM-EPS) (Liu et al., 2024d;
Dat et al., 2025). Representative LLM-EPS methods include FunSearch (Romera-Paredes et al.,
2024), EoH (Liu et al., 2024a), ReEvo (Ye et al., 2024), HSEvo (Dat et al., 2025), MeoH (Yao et al.,

13

https://github.com/ai4co/reevo
https://github.com/ai4co/reevo

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

2025), and most recently MCTS-AHD (Zheng et al., 2025b) (Figure 1). Despite generally outper-
forming handcrafted heuristics and GP-based AHD methods while reducing manual interventions,
as mentioned in Section 1, they rely on some predetermined GAF such as IC and ACO to operate,
which still involves domain knowledge and implementation efforts from human users, and hence are
far from being end-to-end. In response, our work enables existing LLM-EPS methods to circumvent
this limitation and potentially improves their performance in the process.

Neural Combinatorial Optimization (NCO). NCO is an end-to-end AHD approach that employs
neural networks to search for the optimal parameter settings within a parameterized heuristic space
(Bengio et al., 2021; Yang & Whinston, 2023). Despite not requiring domain knowledge and being
applicable to multiple COPs (Chen et al., 2023; Ma et al., 2023), compared to LLM-EPS methods,
they are resource-intensive (Kwon et al., 2020), hard to implement (Zheng et al., 2024), and may
yield subpar results in various experimental settings (Liu et al., 2024a; Ye et al., 2024; Zheng et al.,
2025b), being outperformed by the state-of-the-art LLM-EPS method, MCTS-AHD, even under the
simple IC framework when solving TSP and the 0/1 knapsack problem (Zheng et al., 2025b) for
instance. (Please refer to existing LLM-EPS works for a more comprehensive comparison with
NCO methods.)

B CONSIDERED COPS

In this appendix, we introduce the considered COPs and define the objective function for each (q in
Equations 1 and 2). We follow the problem definitions and setups from Zheng et al. (2025b) (which
followed Ye et al. (2024)). TSP, CVRP, BPP, and OBPP are minimization problems while KP and
MKP are maximization problems.

Traveling Salesman Problem (TSP). TSP aims to find the shortest path to visit each of the n
nodes once and return to the starting node. Each TSP instance contains the Euclidean distance
matrix D where dij denotes the cost between node i and j. The solution of TSP is a permutation of
all node indices s = (s1, s2, . . . , sn). Thus, the (negated) objective function is

−

(
n−1∑
t=1

dst,st+1 + dsn,s1

)
.

Capacitated Vehicle Routing Problem (CVRP). CVRP aims to plan several capacity-
constrained vehicles starting at and returning to a depot, meeting the demands of multiple customers,
and minimizing the total travel distance. Each CVRP instance contains a depot (the 0-th node) and
n customers. Let D be the Euclidean distance matrix. The (negated) objective function is

−
∑q

j=1 C
(
ρj
)
,

C
(
ρj
)
=
∑|ρj|−1

t=0 dj
ρj
t ,ρ

j
t+1

+ dρj
nj

,ρj
0
,

s.t. 0 ≤ δi ≤ C,
∑

i∈ρj δi ≤ C, i ∈ {1, . . . , n}, j ∈ {1, . . . , q},
where s is a solution representing the complete route of vehicles and consists of q sub-routes s =

{ρ1,ρ2, . . . ,ρq}. Each sub-route ρj = (ρj
1, . . . ,ρ

j
nj
), j ∈ {1, . . . , q} starts from the depot s0

and goes back to s0; nj represents the number of customer nodes in it such that n =
∑q

j=1 nj . δi
denotes the demand of node i, and C denotes the capacity of the vehicles.

(Offline) Bin Packing Problem (BPP). BPP aims to place a set of n items with different
sizes into as few bins as possible, each of which has capacity of W . The solution of BPP is
s = {s1, s2, . . . , sK} where si is the set of item indices for the i-th bin and K is the number
of bins used. The (negated) objective function is

−K,
s.t.

∑
j∈si wj ≤ W, i ∈ {1, . . . ,K}.

Online Bin Packing Problem (OBPP). OBPP additionally requires making an immediate deci-
sion on which bin to place once a new item arrives, without any information on future items. The
objective function is similar to BPP.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0/1 Knapsack Problem (KP). KP aims to pack items of maximum total value to a knapsack with
capacity W . Each of the n available items can only be picked once. The solution of KP is the set
of indices of the selected items s ⊆ {1, 2, . . . , n}. Let wj and vj be the weight and value of item j,
respectively. The objective function is ∑

j∈s vj ,
s.t.

∑
j∈s wj ≤ W.

Multiple Knapsack Problem (MKP). MKP extends KP to m > 1 knapsacks. The solution of
MKP is now s = {s1, s2, . . . , sm} where si is the set of indices of the selected items for the i-th
knapsack. The objective function is∑m

i=1

∑
j∈si vj ,

s.t.
∑

j∈si wj ≤ Wi, i ∈ {1, . . . ,m}.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C HOW ACO IS EMPLOYED IN PRIOR LLM-EPS WORKS.

As described in Zheng et al. (2025b), ACO is an evolutionary algorithm inspired by the behavior of
ants to find the shortest route between their colony and food sources (Dorigo et al., 2007).

ACO records a pheromone matrix τ and a heuristic matrix η. Each item τij in τ indicates the
priority of including an edge (i, j) in a solution. The pheromone trails are iteratively updated based
on the quality of the solutions found, encouraging future ants to follow better paths. The heuristic
information on each edge, i.e., ηij , is a problem-specific measure that indicates the immediate benefit
of choosing a particular path. For solving TSP with ACO, for example, ηij is often set to be the
inverse of the distance between cities i and j, i.e., ηij = 1/dij . In response, LLM-EPS methods aim
to design a more effective heuristic matrix η based on the problem-specific inputs.

Given η, the virtual ants then construct solutions by moving from node to node, probabilistically
choosing the next node based on a combination of pheromone and heuristic information. After all
the ants have constructed their solutions, the pheromone levels update. An ACO iteration typically
involves solution construction, optional local search, and pheromone update. By iteratively applying
these steps, ACO algorithms can effectively explore the solution space and converge toward optimal
or near-optimal solutions for COPs.

Implementation. The following listings respectively show the Python implementation of ACO
for TSP and CVRP in both ReEvo (Ye et al., 2024) and MCTS-AHD (Zheng et al., 2025b). Albeit
using the same GAF, there are substantial differences between the two pieces of code, which means
significant manual efforts are necessary when adopting ACO (and other GAFs in general) for a
particular COP.

import torch
from torch.distributions import Categorical

class ACO():

def __init__(self,
distances,
heuristic,
n_ants=30,
decay=0.9,
alpha=1,
beta=1,
device=’cpu’
):

self.problem_size = len(distances)
self.distances = torch.tensor(distances, device=device) if not isinstance(distances, torch.Tensor) else

distances
self.n_ants = n_ants
self.decay = decay
self.alpha = alpha
self.beta = beta

self.pheromone = torch.ones_like(self.distances)
self.heuristic = torch.tensor(heuristic, device=device) if not isinstance(heuristic, torch.Tensor) else

heuristic

self.shortest_path = None
self.lowest_cost = float(’inf’)

self.device = device

@torch.no_grad()
def run(self, n_iterations):

for _ in range(n_iterations):
paths = self.gen_path(require_prob=False)
costs = self.gen_path_costs(paths)

best_cost, best_idx = costs.min(dim=0)
if best_cost < self.lowest_cost:

self.shortest_path = paths[:, best_idx]
self.lowest_cost = best_cost

self.update_pheronome(paths, costs)

return self.lowest_cost

@torch.no_grad()
def update_pheronome(self, paths, costs):

’’’
Args:

paths: torch tensor with shape (problem_size, n_ants)
costs: torch tensor with shape (n_ants,)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

’’’
self.pheromone = self.pheromone * self.decay
for i in range(self.n_ants):

path = paths[:, i]
cost = costs[i]
self.pheromone[path, torch.roll(path, shifts=1)] += 1.0/cost
self.pheromone[torch.roll(path, shifts=1), path] += 1.0/cost

@torch.no_grad()
def gen_path_costs(self, paths):

’’’
Args:

paths: torch tensor with shape (problem_size, n_ants)
Returns:

Lengths of paths: torch tensor with shape (n_ants,)
’’’
assert paths.shape == (self.problem_size, self.n_ants)
u = paths.T # shape: (n_ants, problem_size)
v = torch.roll(u, shifts=1, dims=1) # shape: (n_ants, problem_size)
assert (self.distances[u, v] > 0).all()
return torch.sum(self.distances[u, v], dim=1)

def gen_path(self, require_prob=False):
’’’
Tour contruction for all ants
Returns:

paths: torch tensor with shape (problem_size, n_ants), paths[:, i] is the constructed tour of the
ith ant

log_probs: torch tensor with shape (problem_size, n_ants), log_probs[i, j] is the log_prob of the
ith action of the jth ant

’’’
start = torch.randint(low=0, high=self.problem_size, size=(self.n_ants,), device=self.device)
mask = torch.ones(size=(self.n_ants, self.problem_size), device=self.device)
mask[torch.arange(self.n_ants, device=self.device), start] = 0

paths_list = [] # paths_list[i] is the ith move (tensor) for all ants
paths_list.append(start)

log_probs_list = [] # log_probs_list[i] is the ith log_prob (tensor) for all ants’ actions

prev = start
for _ in range(self.problem_size-1):

actions, log_probs = self.pick_move(prev, mask, require_prob)
paths_list.append(actions)
if require_prob:

log_probs_list.append(log_probs)
mask = mask.clone()

prev = actions
mask[torch.arange(self.n_ants, device=self.device), actions] = 0

if require_prob:
return torch.stack(paths_list), torch.stack(log_probs_list)

else:
return torch.stack(paths_list)

def pick_move(self, prev, mask, require_prob):
’’’
Args:

prev: tensor with shape (n_ants,), previous nodes for all ants
mask: bool tensor with shape (n_ants, p_size), masks (0) for the visited cities

’’’
pheromone = self.pheromone[prev] # shape: (n_ants, p_size)
heuristic = self.heuristic[prev] # shape: (n_ants, p_size)
dist = ((pheromone ** self.alpha) * (heuristic ** self.beta) * mask) # shape: (n_ants, p_size)
dist = Categorical(dist)
actions = dist.sample() # shape: (n_ants,)
log_probs = dist.log_prob(actions) if require_prob else None # shape: (n_ants,)
return actions, log_probs

Listing 1: Implementation of the ACO framework for TSP in ReEvo (Ye et al., 2024) and MCTS-AHD (Zheng
et al., 2025b).

import torch
from torch.distributions import Categorical
import random
import itertools
import numpy as np

class ACO():
def __init__(self, # 0: depot

distances, # (n, n)
demand, # (n,)
heuristic, # (n, n)
capacity,
n_ants=30,
decay=0.9,
alpha=1,
beta=1,
device=’cpu’,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

):

self.problem_size = len(distances)
self.distances = torch.tensor(distances, device=device) if not isinstance(distances, torch.Tensor) else

distances
self.demand = torch.tensor(demand, device=device) if not isinstance(demand, torch.Tensor) else demand
self.capacity = capacity

self.n_ants = n_ants
self.decay = decay
self.alpha = alpha
self.beta = beta

self.pheromone = torch.ones_like(self.distances)
self.heuristic = torch.tensor(heuristic, device=device) if not isinstance(heuristic, torch.Tensor) else

heuristic

self.shortest_path = None
self.lowest_cost = float(’inf’)

self.device = device

@torch.no_grad()
def run(self, n_iterations):

for _ in range(n_iterations):
paths = self.gen_path()
costs = self.gen_path_costs(paths)

best_cost, best_idx = costs.min(dim=0)
if best_cost < self.lowest_cost:

self.shortest_path = paths[:, best_idx]
self.lowest_cost = best_cost

self.update_pheronome(paths, costs)

return self.lowest_cost

@torch.no_grad()
def update_pheronome(self, paths, costs):

’’’
Args:

paths: torch tensor with shape (problem_size, n_ants)
costs: torch tensor with shape (n_ants,)

’’’
self.pheromone = self.pheromone * self.decay
for i in range(self.n_ants):

path = paths[:, i]
cost = costs[i]
self.pheromone[path[:-1], torch.roll(path, shifts=-1)[:-1]] += 1.0/cost

self.pheromone[self.pheromone < 1e-10] = 1e-10

@torch.no_grad()
def gen_path_costs(self, paths):

u = paths.permute(1, 0) # shape: (n_ants, max_seq_len)
v = torch.roll(u, shifts=-1, dims=1)
return torch.sum(self.distances[u[:, :-1], v[:, :-1]], dim=1)

def gen_path(self):
actions = torch.zeros((self.n_ants,), dtype=torch.long, device=self.device)
visit_mask = torch.ones(size=(self.n_ants, self.problem_size), device=self.device)
visit_mask = self.update_visit_mask(visit_mask, actions)
used_capacity = torch.zeros(size=(self.n_ants,), device=self.device)

used_capacity, capacity_mask = self.update_capacity_mask(actions, used_capacity)

paths_list = [actions] # paths_list[i] is the ith move (tensor) for all ants

done = self.check_done(visit_mask, actions)
while not done:

actions = self.pick_move(actions, visit_mask, capacity_mask)
paths_list.append(actions)
visit_mask = self.update_visit_mask(visit_mask, actions)
used_capacity, capacity_mask = self.update_capacity_mask(actions, used_capacity)
done = self.check_done(visit_mask, actions)

return torch.stack(paths_list)

def pick_move(self, prev, visit_mask, capacity_mask):
pheromone = self.pheromone[prev] # shape: (n_ants, p_size)
heuristic = self.heuristic[prev] # shape: (n_ants, p_size)
dist = ((pheromone ** self.alpha) * (heuristic ** self.beta) * visit_mask * capacity_mask) # shape:

(n_ants, p_size)
dist = Categorical(dist)
actions = dist.sample() # shape: (n_ants,)
return actions

def update_visit_mask(self, visit_mask, actions):
visit_mask[torch.arange(self.n_ants, device=self.device), actions] = 0
visit_mask[:, 0] = 1 # depot can be revisited with one exception
visit_mask[(actions==0) * (visit_mask[:, 1:]!=0).any(dim=1), 0] = 0 # one exception is here
return visit_mask

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

def update_capacity_mask(self, cur_nodes, used_capacity):
’’’
Args:

cur_nodes: shape (n_ants,)
used_capacity: shape (n_ants,)
capacity_mask: shape (n_ants, p_size)

Returns:
ant_capacity: updated capacity
capacity_mask: updated mask

’’’
capacity_mask = torch.ones(size=(self.n_ants, self.problem_size), device=self.device)
update capacity
used_capacity[cur_nodes==0] = 0
used_capacity = used_capacity + self.demand[cur_nodes]
update capacity_mask
remaining_capacity = self.capacity - used_capacity # (n_ants,)
remaining_capacity_repeat = remaining_capacity.unsqueeze(-1).repeat(1, self.problem_size) # (n_ants,

p_size)
demand_repeat = self.demand.unsqueeze(0).repeat(self.n_ants, 1) # (n_ants, p_size)
capacity_mask[demand_repeat > remaining_capacity_repeat] = 0

return used_capacity, capacity_mask

def check_done(self, visit_mask, actions):
return (visit_mask[:, 1:] == 0).all() and (actions == 0).all()

Listing 2: Implementation of the ACO framework for CVRP in ReEvo (Ye et al., 2024) and MCTS-AHD
(Zheng et al., 2025b).

Manually Designed Prompts for TSP and CVRP in Existing Works. In prior LLM-EPS works,
prompt components for calling LLMs must be designed in accordance with the employed GAF,
rather than the COP at hand. In Table S9, we compare these components when ACO is employed
for TSP vs. CVRP.
Table S9: Prompt components used in ReEvo (Ye et al., 2024) and MCTS-AHD (Zheng et al., 2025b) under
the ACO framework.

TSP

Prompt component Specification
Problem description Solving Traveling Salesman Problem (TSP) via stochastic solution sampling following “heuristics”. TSP requires finding

the shortest path that visits all given nodes and returns to the starting node.
Heuristic description The ‘heuristics’ function takes as input a distance matrix, and returns prior indicators of how promising it is to include

each edge in a solution. The return is of the same shape as the input.
Function signature def heuristics(distance_matrix: np.ndarray) -> np.ndarray:

CVRP

Prompt component Specification
Problem description Solving Capacitated Vehicle Routing Problem (CVRP) via stochastic solution sampling. CVRP requires finding the

shortest path that visits all given nodes and returns to the starting node. Each node has a demand and each vehicle has a
capacity. The total demand of the nodes visited by a vehicle cannot exceed the vehicle capacity. When the total demand
exceeds the vehicle capacity, the vehicle must return to the starting node.

Heuristic description The ‘heuristics’ function takes as input a distance matrix (shape: n by n), Euclidean coordinates of nodes (shape: n by 2),
a vector of customer demands (shape: n), and the integer capacity of vehicle capacity. It returns prior indicators of how
promising it is to include each edge in a solution. The return is of the same shape as the distance matrix. The depot node
is indexed by 0.

Function signature def heuristics(distance_matrix: np.ndarray, coordinates: np.ndarray, demands: np.ndarray,
capacity: int) -> np.ndarray:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTS AND DISCUSSIONS

D.1 COMPLETE IMPLEMENTATION DETAILS

All experiments were conducted under Ubuntu 20.04 on a Linux virtual machine equipped with
NVIDIA GeForce RTX 3050 Ti GPU and 12th Gen Intel(R) Core(TM) i7-12700H CPU @2.3GHz.
The code for our implementation in Python 3.10 is uploaded as supplementary material.

We adopt the experimental setups from MCTS-AHD (Zheng et al., 2025b), the state-of-the-art LLM-
EPS method, to better gauge the efficacy of RedAHD in solving COPs. For the evaluation datasets,
we use their publicly available data3 during both training and testing for all considered COPs.

RedAHD Settings. We set M = 3, Minit = 10, and l = 3. Prompts for LR generation and
refinement are specified in Figures S5 and S4, respectively. The running time of each heuristic on the
evaluation dataset for any COP is limited to 60 seconds. We use EoH (Liu et al., 2024a) as the default
LLM-EPS method, in which we use only two variation operators, one for crossover and the other
for mutation, instead of five as in the original work (see prompt specifications and our justifications
in EoH Settings). We set T , the number of generations in EoH context, to 3. Additionally, during
population management at early stages of evolution, we do not discard heuristics with identical
objective values if they are from different LRs. This ensures every LR has sufficient heuristics (at
least l) for obtaining a valid score. Unless otherwise specified, GPT-4o-mini with temperature fixed
at 1 is employed as the designer LLM for generating both LRs and heuristics, with each run of
RedAHD repeated three times and we report the average performance of h∗.

Because RedAHD is self-contained, solution checks are necessary to ensure the validity of the gen-
erated heuristics and LRs. That is, during fitness evaluation, we check the solution of each instance
as follows:

• TSP. All nodes must be visited exactly once.
• CVRP. (i) Each customer from a sub-route must be visited exactly once; (ii) sum of de-

mands from customers served by a sub-route must not exceed the vehicle capacity; (iii) all
customers must be visited exactly once.

• BPP. All items must be packed in one of the bins without exceeding the capacity of any
bin.

• OBPP. The selected bin must have sufficient capacity for packing the current item.
• KP. All selected items must be unique and their total weight must not exceed the knapsack

capacity.
• MKP. All selected items across all knapsacks must be unique and the total weight of the

items in any knapsack must not exceed its capacity.

Prompt for Reduction Refinement

Problem A: [Problem A Description]

I want to transform Problem A into another problem, Problem B, that can be solved efficiently while
still providing near-optimal solutions to Problem A. I have one option for Problem B as follows:

Problem description: [Problem B Description]

Please help me modify the following code for transforming Problem A to Problem B and vice versa
while remaining as efficient as possible.

Code:
[Reduction Functions]

Do not give additional explanations.

Figure S4: Prompts used for reduction refinement in RedAHD as described in Section 3.3.

3https://github.com/zz1358m/MCTS-AHD-master/tree/main

20

https://github.com/zz1358m/MCTS-AHD-master/tree/main

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Prompt for Candidate LR Initialization

Problem A: [Problem Description]

I want to transform Problem A into another problem, Problem B, that can be solved efficiently while still providing
near-optimal solutions to Problem A. Please help me devise Minit different Problem B’s. Describe each Problem B
in a sentence or two (without mentioning Problem A) and enclose it inside a double brace as follows:

{{Problem B1 involves ...}}
{{Problem B2 involves ...}}
...

Do not give additional explanations.

Prompt for Generating Reduction Functions

Problem A: [Problem A Description]

Problem B: [Problem B Description]

Implement 2 Python functions for transforming
Problem A into Problem B using the following
templates:

[Reduction Template]

Only provide me the code without any further
explanations.

Prompt for Code Template Generation

I have the following code for transforming a Problem A into a simplified
Problem B and vice versa.

Code:
[Reduction Functions]

Using this information, fill in the blanks of the following Python function
template.

Code template:
[Heuristic Template]

First, determine <INPUT B> from output of ‘convert input A to B()’.
Then, determine <SOLUTION B> from ‘solution B’ variable in ‘con-
vert solution B to A()’. Finally, complete the docstring at <ARGS> and
<RETURNS> with as detailed type hints as possible. Do not attempt to
solve the problem directly and do not give additional explanations.

import numpy as np
from typing import Tuple

def convert_input_A_to_B(coord_matrix, distance_matrix):
’’’ Convert input of Problem A into input of Problem B
Args:
[ARGS]

Returns:
input_B: A tuple storing the corresponding input of

Problem B.
’’’

Placeholder (replace with your actual implementation)
input_B = ...

return input_B

def convert_solution_B_to_A(solution_B):
’’’ Convert solution of Problem B into solution of

Problem A
Args:
solution_B: The output of Problem B.

Returns:
[RETURN]
’’’

Placeholder (replace with your actual implementation)
[PLACEHOLDER]

from typing import Tuple

def solve_B(<INPUT_B>):
’’’
Args:
<ARGS>

Returns:
<RETURNS>
’’’

return <SOLUTION_B>

Figure S5: Prompts used for candidate LR generation in RedAHD as described in Section 3.1. The chrono-
logical order for LLM prompting is (top) ▶ (center left) ▶ (center right). The (bottom left) code snippet is
the “Reduction Template”, where [ARGS], [RETURN], [PLACEHOLDER] are COP-specific and detailed in
Table S11. The (bottom right) code snippet is the “Heuristic Template”.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

EoH Settings. Following Zheng et al. (2025b), the number of generations in EoH is set to 20 and
the population size N is set to 20 for CVRP, BPP, OBPP, MKP and 10 for TSP and KP. EoH utilizes
five variation operators in total, two for crossover (E1 and E2) and three for mutation (M1, M2,
M3). RedAHD only uses E2 and M1 from EoH (see Figure S6, bottom) since we actually observed
reduced optimization performance when either E1, M2, or M3 is included (and significant increase
in runtime and API cost). In particular, we notice the heuristics generated by E1 are often erroneous
(due to e.g., code errors or returning invalid solutions). We attribute this behavior to the fact that E1
prompts the designer LLM to generate a completely new heuristic from the provided ones, which
might not be well-suited for multi-problem LLM-EPS within RedAHD that already enables ample
exploration of novel heuristics.

Prompt for Initialization

[Problem Description]

I need help design a novel efficient algorithm to solve the problem. First, describe your algorithm and
main steps in one sentence. The description must be inside a brace. Next, implement it in Python using
the following template:

[Code Template]

Do not give additional explanations.

Prompt for Crossover/Exploration

[Problem Description]

I have 2 existing algorithms with their codes as follows:
No. 1 algorithm and the corresponding code are:
[Algorithm 1 Description]
[Code 1]

No. 2 algorithm and the corresponding code are:
[Algorithm 2 Description]
[Code 2]

Please help me create a new algorithm that has a totally different
form from the given ones but can be motivated from them. First,
identify the common backbone idea in the provided algorithms.
Secondly, based on the backbone idea describe your new algo-
rithm in one sentence. The description must be inside a brace.
Thirdly, implement it in Python using the following template:

[Code Template]

Do not give additional explanations.

Prompt for Mutation/Modification

[Problem Description]

I have one algorithm with its code as follows.
Algorithm description: [Algorithm Description]
Code: [Code]

Please help me create a new algorithm that has a dif-
ferent form but can be a modified version of the pro-
vided algorithm. First, describe your new algorithm
and main steps in one sentence. The description must
be inside a brace. Next, implement it in Python using
the following template:

[Code Template]

Do not give additional explanations.

Figure S6: Prompts used for initialization, exploration, and modification in EoH. “Problem Description” and
“Code Template” are with respect to B from the LLM-generated LR (see Figure S7 for an example).

MEoH Settings. MEoH (Yao et al., 2025) extends EoH to additionally consider runtime during
fitness evaluation via the proposed dominance-dissimilarity mechanism for multi-objective parent
selection and population management. We similarly use two variation operators as detailed in EoH
Settings. Importantly, each LR now records two scores, one with respect to the objective value and
the other with respect to runtime. The latter is defined as the average runtime of its top-l associated
heuristics with best objective values. For stagnation tracking, if neither score improves after T , then
the reduction refinement step is invoked for the LR.

ReEvo Settings. ReEvo (Ye et al., 2024) incorporates reflections into the evolutionary search by
prompting the designer LLM to analyze and revise previously generated heuristics. We make the
following changes to ReEvo. During parent selection, LR ration is similarly applied to maintain the
number of generated offspring heuristics from the two crossover and mutation operators. Short- and
long-term reflections are performed for each LR. For short-term reflection, the problem description
is with respect to Bj . Importantly, in accordance with our proposed multi-problem LLM-EPS in
RedAHD, the two provided heuristics can be from Bj′ , j

′ ̸= j.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

COP-Specific Prompts. Tables S10 and S11 respectively list the problem descriptions and reduc-
tion templates used in prompts. To facilitate the generation of valid LRs that can generalize to OOD
instances (i.e., instances with smaller or larger sizes than what originally encountered during train-
ing), when specifying problem descriptions and reduction templates, we ensure all COP parameters
are abstracted, such as ‘N’ instead of the actual number of nodes in training instances.

Table S10: Problem descriptions used in prompts.

COP Problem description
TSP Given a set of N nodes with their 2D coordinates, the problem involves finding the shortest route that visits each node exactly

once and returns to the starting node.
CVRP Given a set of N customers and a fleet of vehicles with limited capacity, the problem involves finding a corresponding set of

optimal routes to deliver goods to all customers.
BPP Given a set of N items with different sizes and some bins each with fixed capacity, the problem involves placing each item inside

one of the bins in a way that minimizes the number of bins used without exceeding the bin capacity.
OBPP Given an item with certain size and a set of M bins each with finite capacity, the problem involves finding a priority score for

each bin. The bin with the highest priority score will be selected for inserting the item.
KP Given a set of N items with weights and values, the problem involves selecting a subset of items that maximizes the total value

without exceeding the knapsack’s weight capacity.
MKP Given a set of N items with values and M-dimensional weights, the problem involves selecting a subset of items to maximize the

total value without exceeding the multi-dimensional maximum weight constraints.

Table S11: COP-specific components for reduction templates.

Component Specification
TSP

ARGS ’’’
coord_matrix (np.ndarray): A Nx2 matrix storing the 2D coordinates of the nodes.
distance_matrix (np.ndarray): A NxN matrix where the entry at i-th row and j-th column

(or vice versa) stores the Euclidean distance between nodes i and j.
’’’

RETURN ’’’
route: A Numpy 1D array of length N storing the unique node IDs to visit in order.
’’’

PLACEHOLDER route = ...

return route

CVRP
ARGS ’’’

coord_matrix (np.ndarray): A (N+1)-by-2 matrix storing the Euclidean coordinates of the
depot (first row) and the customers.

distance_matrix (np.ndarray): A (N+1)-by-(N+1) distance matrix.
demands (np.ndarray): An array of length N+1 storing the customer demands, where the

first entry is 0 (placeholder for the depot).
capacity (int): The capacity of each vehicle for satisfying the customer demands.
’’’

RETURN ’’’
routes (List[List[int]]): A list of routes; each route is represented as a list of

unique customer indices (1 to N) to visit in order, subject to the capacity
constraint.

’’’

PLACEHOLDER routes = []
...

return routes

BPP
ARGS ’’’

items (np.ndarray): Array of length N storing the item sizes to be considered in exact
order.

bins (np.ndarray): Array of capacities for each bin.
’’’

RETURN ’’’
packed_bins (np.ndarray): Array of remaining capacities for each bin after packing all

items.
’’’

PLACEHOLDER packed_bins = ...
...

return packed_bins

OBPP
ARGS ’’’

item_size (float): Size of the item to be added to one of the bins.
bin_caps (np.ndarray): Array of length M storing capacities of each bin.
’’’

RETURN ’’’
scores (np.ndarray): Array of priority scores for the bins.
’’’

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

PLACEHOLDER scores = ...
...

return scores

KP
ARGS ’’’

weights (np.ndarray): A 1D float array of length {problem_size} storing the item
weights.

values (np.ndarray): A 1D float array of length {problem_size} storing the associated
item values.

capacity (float): The weight capacity of the knapsack.
’’’

RETURN ’’’
items: A list storing the indices of selected items subject to the capacity constraint.
’’’

PLACEHOLDER items = []
...

return items

MKP
ARGS ’’’

values (np.ndarray): A 1D float array of length N storing the item values.
weights (np.ndarray): A (M x N) float matrix storing the multi-dimensional weights,

where each row is associated with a constraint.
constraints (np.ndarray): A 1D float array of length M storing weight constraints.
’’’

RETURN ’’’
items: A list storing the indices of selected items subject to the weight constraints.
’’’

PLACEHOLDER items = []
...

return items

D.2 ADDITIONAL RESULTS

Ablation of Multi-Problem LLM-EPS. We validate the necessity of multi-problem LLM-EPS by
limiting M to 1, which means the search now becomes typical LLM-EPS. As shown in Table S12,
compared to M = 3 as we did throughout our previous experiments, there is a significant decrease
in optimization performance across all COPs. This result supports our claims of multi-problem
LLM-EPS advantages as discussed in Section 3.2.
Table S12: Ablation of the proposed multi-problem LLM-EPS. “RedAHD (M = 3)” is RedAHD reported in
earlier results. Results from EoH in Table 5 are used as references.

Method

Problem
setting

TSP (Obj. ↓) CVRP (Obj. ↓) MKP (Obj. ↑) BPP (Obj. ↓)

n=50 n=100 n=50
C=50

n=100
C=50

n=100
m=5

n=200
m=5

n=500
W=150

n=1,000
W=150

EoH* 5.828 8.263 9.359 15.681 23.139 41.994 204.646 408.599
RedAHD (M = 1) 5.931 8.479 10.327 16.252 22.925 41.569 205.983 411.428
RedAHD (M = 3, without multi-problem LLM-EPS) 5.943 8.602 10.537 16.985 22.916 41.497 206.013 412.220
RedAHD (M = 3) 5.819 8.039 9.826 15.726 23.164 42.682 203.344 405.359

Sensitivity to Initial LRs. We investigate the sensitivity of RedAHD performance to the quality
of the initial pool of LRs. Table S13 compares the average test performance of all heuristics in the
initial generation (second column) to the test performance of the best heuristic in the final generation
(last column). Even though the quality of the initial LRs differs across runs, the final performance
of RedAHD remains consistent.
Table S13: RedAHD performance on TSP (n = 50) across five independent runs (lower values are better).

Run Quality of initial LRs Final performance
1 6.831 5.784
2 6.378 5.761
3 6.494 5.775
4 6.796 5.770
5 6.592 5.766

RedAHD for Solving Flow Shop Scheduling Problems (FSSPs). FSSP (Emmons & Vairak-
tarakis, 2012) is a complex COP considered in EoH (Liu et al., 2024a) that concerns scheduling
n jobs on m machines, where each job involves m operations that must be performed in a prede-
termined order on the respective machine. The objective is to minimize the total schedule length,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

known as the makespan. We apply RedAHD to FSSP by adopting the same experimental setups
from Liu et al. (2024a) (with consistent evaluation datasets and EoH settings) while keeping the
same RedAHD settings detailed in Appendix D.1. Table S14 shows that RedAHD attains second-
best optimization performance in nearly all settings, surpassing classical FSSP heuristics and even
dedicated deep learning solvers. Note that in the original paper, Liu et al. (2024a) employed GLS
(Voudouris et al., 2010) as the GAF for EoH, which yields the overall best performance in exchange
for additional manual efforts. For completeness, we also run EoH under the IC framework, which
seeks to design a heuristic for selecting the next operation given the current status of each machine
and job and the set of feasible operations. When employing this simple GAF, we see a substan-
tial drop in EoH performance. Our results thus demonstrate that even without relying on GAFs,
RedAHD can effectively handle complex COPs beyond vehicle routing (TSP, CVRP) and packing
problems (OBPP, BPP, KP, MKP).
Table S14: Comparative results for FSSP captured by the average (%) gap with respect to the best known
makespan (lower is better). We use the results reported in Liu et al. (2024a) for the baselines other than EoH-
IC. The best and second-best methods are respectively bolded and shaded.

n20m10 n20m20 n50m10 n50m20 n100m10 n100m20

Handcrafted

GUPTA 1971 23.42 21.79 20.11 22.78 15.03 21.00
CDS 1970 12.87 10.35 12.72 15.03 9.36 13.55
NEH 1983 4.05 3.06 3.47 5.48 2.07 3.58
NEHFF 2014 4.15 2.72 3.62 5.10 1.88 3.73

Deep learning PFSPNet 2021 14.78 14.69 11.95 16.95 8.21 16.47
PFSPNet NEH 2021 4.04 2.96 3.48 5.05 1.72 3.56

LLM-EPS EoH-GLS 0.30 0.10 0.19 0.60 0.14 0.41
EoH-IC 3.76 50.6 14.2 10.4 12.5 21.2

RedAHD 3.27 2.40 3.32 4.10 1.78 3.00

D.3 BLACK-BOX SETTINGS

Black-box settings were considered in ReEvo (Ye et al., 2024) and MCTS-AHD (Zheng et al.,
2025b), in which all information regarding the COP (e.g., the problem description, the heuristic
description, and the function signature in accordance with the designed GAF as shown in Table S9) is
not provided. The goal is to fairly evaluate the efficacy of LLM-EPS methods in designing effective
heuristics for a wide range of COPs, rather than merely retrieving code tailored to prominent COPs
from LLMs’ parameterized knowledge. Since RedAHD solves the COP at hand directly without the
need of GAFs, the proposed black-box settings in these works are not applicable to RedAHD.

To address the stated concerns regarding mere code retrieval by LLMs, in every considered COP, we
do not mention its commonly known name in the problem description (see Table S10. That is, we
do not refer to the COPs plainly as e.g., “the traveling salesman problem”, but rather vaguely “the
problem”. Moreover, when prompting the designer LLM for generating heuristics for B, we do not
leak any information on A (which also helps mitigate hallucinations (Huang et al., 2025)). By this
means, RedAHD already operates under black-box settings by default.

D.4 EXAMPLES OF DESIGNED LRS AND HEURISTICS FROM REDAHD

MKP. Figures S7 and S8 respectively show an example of the designed LR and the corresponding
heuristic for MKP.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Problem Description

Problem B1 involves selecting a subset of N items such that the total value is maximized while
ensuring that the total weights in each of the M dimensions do not exceed specific limits, using a
greedy heuristic approach based on value-to-weight ratios.

import numpy as np
from typing import Tuple, List

def convert_input_A_to_B(values: np.ndarray, weights: np.ndarray, constraints: np.ndarray) ->
Tuple[np.ndarray, np.ndarray, np.ndarray]:

’’’ Convert input of Problem A into input of Problem B
Args:
values (np.ndarray): A 1D float array of length N storing the item values.
weights (np.ndarray): A (M x N) float matrix storing the multi-dimensional weights, where each row is

associated with a constraint.
constraints (np.ndarray): A 1D float array of length M storing weight constraints.

Returns:
input_B: A tuple storing the corresponding input of Problem B.
’’’
Calculate value-to-weight ratios for each item
ratios = values / np.sqrt(np.sum(np.square(weights), axis=0)) # Changed to root of sum of squares for

better ratio
input_B = (values, weights, constraints, ratios)

return input_B

def convert_solution_B_to_A(solution_B: List[int]) -> List[int]:
’’’ Convert solution of Problem B into solution of Problem A
Args:
solution_B: The output of Problem B, which contains indices of selected items.

Returns:
items: A list storing the indices of selected items subject to the weight constraints.
’’’
items = list(solution_B)
return items

def convert_input_A_to_B(values, weights, constraints):
’’’ Convert input of Problem A into input of Problem B
Args:
values (np.ndarray): A 1D float array of length N storing the item values.
weights (np.ndarray): A (M x N) float matrix storing the multi-dimensional weights, where each row is

associated with a constraint.
constraints (np.ndarray): A 1D float array of length M storing weight constraints.

Returns:
input_B: A tuple storing the corresponding input of Problem B.
’’’
Calculate value-to-weight ratios for each item
ratios = values / np.sum(weights, axis=0)
input_B = (values, weights, constraints, ratios)

return input_B

def convert_solution_B_to_A(solution_B):
’’’ Convert solution of Problem B into solution of Problem A
Args:
solution_B: The output of Problem B.

Returns:
items: A list storing the indices of selected items subject to the weight constraints.
’’’
selected_items = solution_B # Assuming solution_B contains the indices of selected items
items = list(selected_items)

return items

Figure S7: Designed LR for MKP using RedAHD. (Top) Problem description of B, (center) refined and
(bottom) original implementation of (f, g) for transforming MKP to B.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

from typing import Tuple, List

def solve_B(input_B: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]) -> List[int]:
’’’
Args:
input_B (Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]): A tuple containing:

- values (np.ndarray): A 1D float array of length N storing the item values.
- weights (np.ndarray): A (M x N) float matrix storing the multi-dimensional weights, where each row is

associated with a constraint.
- constraints (np.ndarray): A 1D float array of length M storing weight constraints.
- ratios (np.ndarray): A 1D float array of length N storing the value-to-weight ratios for each item.

Returns:
List[int]: A list storing the indices of selected items subject to the weight constraints.
’’’

return solution_B

Figure S7 (cont.): Code template for solving B.

Problem Description

Problem B1 involves selecting a subset of N items such that the total value is maximized while
ensuring that the total weights in each of the M dimensions do not exceed specific limits, using a
greedy heuristic approach based on value-to-weight ratios.

Heuristic Description

A new algorithm that selects items iteratively, calculating the best score considering both value
and the remaining capacity left in multi-dimensional space, while simultaneously updating the con-
straints as items are selected.

from typing import Tuple, List
import numpy as np

def solve_B(input_B: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]) -> List[int]:
values, weights, constraints, ratios = input_B
M, N = weights.shape
selected_items = []
total_weights = np.zeros(M)

Calculate the remaining capacity to define the score more effectively
remaining_capacity = constraints.copy()

while True:
best_score = -np.inf
best_item = -1
for idx in range(N):

if idx in selected_items:
continue

item_weight = weights[:, idx]

if all(total_weights + item_weight <= constraints):
Calculate new score based on value and remaining capacity
score = values[idx] / (np.sum(item_weight / remaining_capacity) + 1e-9) # Avoid division by zero
if score > best_score:

best_score = score
best_item = idx

if best_item == -1: # No feasible item can be added
break

selected_items.append(best_item)
total_weights += weights[:, best_item]
remaining_capacity -= weights[:, best_item]

return selected_items

Figure S8: Designed heuristic using the LR for MKP in Figure S7.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

TSP. Figure S9 shows the learned heuristic whose performance was reported in Table 4.

Problem Description

Problem B7 involves applying a nearest neighbor heuristic starting from each node and selecting the
route with the least total distance as a near-optimal solution.

Heuristic Description

Repeatedly select a random starting point and build a route while ensuring that each node is added
without forming a local loop, then refine the tour using a hill-climbing strategy to find better routes.

from typing import Tuple
import numpy as np

def solve_B(input_B: Tuple[np.ndarray]) -> np.ndarray:
’’’
Args:
input_B (Tuple[np.ndarray]): A tuple containing a single np.ndarray, which is a NxN matrix where the entry

at i-th row and j-th column (or vice versa) stores the Euclidean distance between
nodes i and j.

Returns:
np.ndarray: A 1D array of length N containing the unique node IDs to visit in order, representing the

solution
of Problem B converted to the corresponding solution of Problem A.

’’’
distances = input_B[0]
num_nodes = distances.shape[0]
best_route = []
best_length = float(’inf’)

{Repeatedly select a random starting point and build a route while ensuring that each node is added
without forming a local loop,

then refine the tour using a hill-climbing strategy to find better routes.}
for _ in range(10): # Number of iterations to random start points

start_node = np.random.randint(num_nodes)
visited = [start_node]
unvisited = set(range(num_nodes))
unvisited.remove(start_node)

while unvisited:
current_node = visited[-1]
next_node = min(unvisited, key=lambda x: distances[current_node][x])
visited.append(next_node)
unvisited.remove(next_node)

Hill-climbing optimization
improvement = True
while improvement:

improvement = False
for i in range(len(visited)):

for j in range(i + 2, len(visited)):
if j == len(visited) - 1 and i == 0: # Skip the final edge to start

continue
current_cost = (distances[visited[i]][visited[(i + 1) % len(visited)]] +

distances[visited[j]][visited[(j + 1) % len(visited)]])
new_cost = (distances[visited[i]][visited[j]] +

distances[visited[(i + 1) % len(visited)]][visited[(j + 1) % len(visited)]])

if new_cost < current_cost:
visited[i + 1:j + 1] = reversed(visited[i + 1:j + 1])
improvement = True
break

if improvement:
break

current_length = sum(distances[visited[k]][visited[(k + 1) % len(visited)]] for k in
range(len(visited)))

if current_length < best_length:
best_length = current_length
best_route = visited

return np.array(best_route)

Figure S9: Designed heuristic for TSP using RedAHD.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D.5 RESOURCE CONSUMPTION

Using our employed settings (detailed in Appendix D.1), RedAHD costs at most $0.3 (GPT-4o-mini)
or $2 (o3-mini) and 1.5 hour to complete training. The authors of ReEvo argued that the efficiency
benchmarking for LLM-EPS methods should prioritize the number of fitness evaluations over the
number of LLM calls (Section 7 in Ye et al. (2024)). Additionally, the work of MCTS-AHD, which
is the latest LLM-EPS method at the time of submission, also adopted this benchmarking scheme
(Appendix D in Zheng et al. (2025b)). Therefore, we estimate the number of fitness evaluations
as follows. Since we mainly consider EoH in this work (with two variation operators), RedAHD
requires at least (Minit × ⌈N/M⌉) + (Tgen × N × 2) = (10 × ⌈20/3⌉) + (20 × 20 × 2) = 870
fitness evaluations, where Tgen is the number of generations. Each LR refinement additionally
requires Nj < N evaluations. Overall, RedAHD needs no more than 1,000 evaluations, which is
similar to or lower than the budget used in prior LLM-EPS works (Liu et al., 2024a; Zheng et al.,
2025b). In general, the actual costs from running RedAHD naturally follow the costs associated
with existing LLM-EPS methods. There are no extra incurred costs during the evolutionary search
given our proposed LR ration technique (Section 3.2). The additional number of LLM queries is
negligible: 1 + 2×Minit for reduction initialization and 1 for each refinement of an LR.

D.6 LIMITATIONS AND FUTURE WORKS

First, while RedAHD significantly reduces human involvement in LLM-based AHD for solving
COPs, it is yet to be fully end-to-end. That is, RedAHD minimally requires the manual design
of (i) prompts for candidate LR generation (Figure S5), which include COP-specific components,
and (ii) solution checks during fitness evaluation (bullet points in RedAHD Settings). We believe
works from the burgeoning field of LLM planning (Tantakoun et al., 2025; Wei et al., 2025) could
be employed to achieve full automation.

Second, effective reductions from RedAHD rely on the encoded knowledge of the designer LLM. In
the absence of relevant domain knowledge, it is possible that the designed LRs are trivial. That is, f
would simply return the input for A and g would return the raw output of the designed heuristics. In
other words, the heuristics would be designed for solving A directly without any reduction involved,
which likely results in subpar optimization performance. Thus, when encountering such behavior
in practice, we recommend using more capable LLM models during the reduction initialization step
(which should be inexpensive as stated in Appendix D.5), before switching back to more budget-
friendly models during the remaining steps of RedAHD.

Lastly, as observed in our results with OBPP in Table 3, RedAHD might not perform as well
on COPs with restricted heuristic space. To investigate this observation, we further experiment
RedAHD on the vehicle routing problem with time windows (VRPTW) (Kallehauge et al., 2005),
which is a more restrictive variant of CVRP where each customer i is only available during a specific
time window [tstarti , tendi]. VRPTW is a challenging COP with no feasibility guarantees even with
the IC framework, and hence employing LLM-EPS methods requires even more manual efforts.4
Using the library developed by Liu et al. (2024c) to generate 64 50-node training instances and 64
50-node test instances, we run RedAHD (following the aforementioned setups with GPT-4o-mini)
and notice the solutions returned from the designed heuristics are not consistently valid. As shown
in Figure S10, even after 1000 fitness evaluations, we observe violations of time window constraints
in more than 40% of the test instances. When we relax the constraints of VRPTW by lifting tstarti ,
which allows vehicles to fulfill customers’ demands early, there is a significant decrease in the per-
centage of violations, down to approximately 25%. To ensure validity of the generated heuristics
across all instances in this challenging setting, given RedAHD’s flexibility, a potential workaround
could be adopting the structure of existing GAFs from LLM-EPS methods (which guarantee fea-
sible solutions5) during fitness evaluation, at the cost of reduced automation. Future studies may
consult the EC literature (Wu et al., 2024) for devising better ways of navigating the search within
the confined heuristic space H ′.

4All prior LLM-EPS methods did not consider this COP, though we are aware of a recent Python library for
LLM-based AHD (Liu et al., 2024c) that implements a variant of the IC framework specifically for VRPTW.

5As an example, please refer to the tailored IC framework for VRPTW in the library from Liu et al. (2024c).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

200 400 600 800 1000
Number of evaluations

40

60

80

100

Pe
rc

en
ta

ge
 o

f v
io

la
tio

ns

VRPTW
VRPTW (Relaxed time windows)

Figure S10: Percentage of test instances for VRPTW in which the heuristics designed by RedAHD violate
time window constraints. The orange line considers a relaxed version of VRPTW where vehicles can arrive
and serve customers early (i.e., the time windows are [0, tend

i] for all customers i).

D.7 THE ADVANTAGE SCOPE OF REDAHD

Knowing the strengths and current limitations of RedAHD, we summarize application scenarios
where our framework would excel.

• COPs with large heuristic space. Using reductions and multi-problem LLM-EPS,
RedAHD benefits from the many alternatives for H ′, which indicates RedAHD is more
suitable for COPs with less restrictive heuristic space H (e.g., BPP). In practice, the appli-
cation scenarios could involve designing effective heuristics for a newly formulated COP
with moderate constraints.

• Well-studied COPs in need of performance enhancement. Since the quality of the designed
LRs relies on the domain knowledge of LLMs, we believe RedAHD would perform par-
ticularly well on application scenarios where the problem of interest can be formulated as
classical COPs (e.g., TSP and MKP) and available off-the-shelf methods (e.g., approxima-
tion algorithms and handcrafted heuristics) yield unsatisfactory optimization performance.

30

	Introduction
	Language Reduction for Combinatorial Optimization
	The RedAHD Framework
	Reduction Initialization
	Multi-Problem LLM-EPS
	Reduction Refinement

	Experiments
	Experimental Setups
	Main Results
	Ablation Studies

	Conclusion
	Reproducibility Statement
	Related Work
	Considered COPs
	How ACO Is Employed in Prior LLM-EPS Works.
	Additional Experiments and Discussions
	Complete Implementation Details
	Additional Results
	Black-Box Settings
	Examples of Designed LRs and Heuristics from RedAHD
	Resource Consumption
	Limitations and Future Works
	The Advantage Scope of RedAHD

