
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOAT: LATENT-ORDER ADVERSARIAL TRAINING FOR
EFFICIENT AND TRANSFERABLE ROBUSTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial training is computationally prohibitive because projected gradient de-
scent (PGD) is applied uniformly across all samples. Existing efficiency methods
focus on “hard” examples but rely on supervised heuristics that fail to capture
the emergence of robust representations. We introduce Latent-Order Adversarial
Training (LOAT), a fully unsupervised framework that uncovers the latent clus-
tering structure of adversarial dynamics. LOAT learns a multi-view clustering
of samples and creates a transition matrix describing how training flows between
clusters, enabling cluster-adaptive PGD budgets that allocate computation where
it is most effective. The teacher’s discovered structure is transferable and amor-
tized across student models, eliminating repeated profiling costs. On CIFAR-10,
LOAT achieves up to 2× higher robustness per PGD call than standard adversar-
ial training and, under matched compute, consistently improves robust accuracy.
Ablations confirm that both the clusters and the latent order encode meaningful
structure. LOAT shows that exploiting geometric emergent organization enables
practical, robust adversarial training under real-world compute constraints.

1 INTRODUCTION

Adversarial training Madry et al. (2018), where a model is trained with not only standard training
data, but also adversarial examples generated from an attack, is known to provide a robust defense
against the challenge of correctly identifying perturbed image samples. While strong, this approach
requires sufficiently large capacity and great computational cost, requiring multiple PGD (projected
gradient descent) steps per sample per epoch, limiting the practical deployment due to time and space
constraints. Many approaches have been developed to address this, categorically broken down into
reducing per-sample cost through fewer PGD steps Shafahi et al. (2019), or focusing computation on
targeted, important samples He et al. (2024). The natural assumption in both categories is that one
knows a priori what makes a sample important for robust learning. Although intuitively, presumed
hardness has no forced bearing or correlation, which is to say, there is no foreknowledge beyond
heuristic reasoning to necessitate an assumed approach. Targeting samples with small margins or
high loss and then allocate resources to them is, in essence, an ill-defined notion. This supervised
definition of difficulty assumes that human-interpretable metrics capture what matters for robust
learning. We however put forward the notion that unsupervised learning based on a multi-view
of generalized statistics, geometry, confidence patterns, adversarial dynamics, gradient coherence,
activation patterns, consistency metrics, and loss landscape, all weighted for learning output, can
create a natural grouping without manual labeling, allowing for a discoverable order in curriculum or
post-hoc learning during which a teacher can robustly impart cluster determinations and transitions,
allowing students to be adaptive, predictive, and able to identify hidden organizational principles
based on patterns which we as humans may lack the vocabulary to describe.

Current models label samples as difficult when accumulating more PGD (projected gradient descent)
steps Madry et al. (2018); Zhang et al. (2019b), larger weights Balaji et al. (2019), or more frequent
sampling Carmon et al. (2019), this, however, is a static approach; whereas our LOAT model recog-
nizes that a generalized and naturally emergent dynamic can better assess and categorize adversarial
samples. We further note that difficulty levels may be periphery, subordinate, or inferior labels as
compared to discoverable relationships (and orderings) which can benefit from interleaving, restruc-
turing, or other potentially hidden paths.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Thus, we propose a fundamentally different perspective. Instead of imposing human notions of
difficulty, we use LOAT to discover the natural organization converging to a robust model via un-
supervised learning. After some amount of initial training epochs used to establish basic robust
features, our unsupervised clustering reveals how the model has learned to organize the data space.
Our novel transition matrix T , built from these converged patterns, captures a stable multi-view
structure of the robust solution manifold wherein we track empirical flows between clusters, har-
nessing the latent grouping in a per cluster per epoch presentation. Thus, our key insight is that
adversarial training naturally clusters based on compatible learning dynamics alongside a latent dif-
ferentiability and ordering subscription of emergent patterns that can be used to improve efficiency
without requiring supervised labels or a predetermined curriculum. This novel idea further provides
a blueprint to accelerate future training via a teacher-student model that can be deployed to edge
networks where much smaller compute power is available.

Unlike prior adversarial training approaches, which focus solely on maximizing robustness, our
goal is fundamentally different: maximize robustness per unit compute. The efficiency metric
E = RobustAcc/PGD formalizes this objective and reflects practical constraints of real-world
deployment where compute, not accuracy, is the dominant limitation. LOAT is designed for edge
computing, for practitioners who cannot afford 10–20-step PGD-based adversarial training. Rather
than compressing a full PGD pipeline, LOAT restructures the compute itself, enabling practical AT
on limited hardware while preserving robustness.

In summary, we demonstrate that adversarial training dynamics exhibit discoverable latent struc-
ture, challenging the assumption that training samples are exchangeable and should receive uniform
attack budgets. LOAT is a teacher-student framework that discovers structure via unsupervised clus-
tering and transfers it as a compact recipe, enabling 2× efficiency improvements over standard AT
under matched robustness constraints. We introduce the efficiency-robustness frontier as a frame-
work for evaluating AT methods under resource constraints, and demonstrate that LOAT occupies a
Pareto-optimal region previously unexplored by existing methods.

2 RELATED WORK

One of the most highly relevant topics to our model is that of curriculum training, an approach
that systematically increases the difficulty of adversarial examples presented during the training
process, where weak attacks mitigate catastrophic forgetting and help with generalization, building
to stronger attacks in a learned fashion, Cai et al. (2018). Another important idea is that of adaptive
early stopping Al-Rimy et al. (2023), wherein different heuristic approaches are used to identify cut-
off points, with some form of customized budgets per sample Cheng et al. (2020) taking the form
of early stopping based on misclassification Zhang et al. (2020) or based on gradient alignment
Sitawarin et al. (2020).

State of the art models focus on hardness He et al. (2024) but often target some metric such as
accuracy in exchange for efficiency, or the opposite, that of boosting speed with less robustness
Goodfellow et al. (2015). The TRADES model Zhang et al. (2020) uses a theoretical upper bound
minimization algorithm for adversarial training, a concept that many (including us) harness, with
others Ding et al. (2018) noticing the importance of misclassified examples in training, adding prob-
abilities of prediction as a way to smoothly combine samples Wang et al. (2020). Unlike ASTrA
Chhipa et al. (2025), which adapts attack parameters via a learnable strategy network, LOAT dis-
covers latent ordering/clusters and allocates budgets accordingly; thus our contribution is orthogonal
(or complementary).

In terms of efficiency, the most comparable model to LOAT is Free-AT Shafahi et al. (2019). In
Free-AT one does a forward pass on a clean example and a backward pass to get gradients, and
then simultaneously updates both the model parameters and input perturbation. The free part is the
reuse of the same gradient for both model updates and adversarial perturbation. It achieves similar
robustness to standard PGD adversarial training while being roughly as fast as natural training. It
was demonstrated similarly on CIFAR-10.

While these works (such as Customized Adversarial Training, and Free-AT) have similarities, we
differentiate and build on these by discovering semantic structure, arguing that groups are not ran-
dom, per-sample, or naturally classifiable by hardness. We instead explore conceptual dependencies

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and their orderings at the cluster level (a more generalizable approach to allow for robustness), iden-
tifying emergent structure to guide order, transfer, and efficiency without imposing a curriculum.
We focus on an approach that is both highly effective and efficient, so much so that it outperforms
even the highly efficient Free-AT technique.

3 MATHEMATICAL BACKGROUND

Adversarial training is typically framed as a min–max optimization problem in which the model
minimizes the worst-case loss over allowable perturbations, following the standard formulation of
Madry et al. Madry et al. (2018). These perturbations are usually constrained to ℓp, bounded region
of radius ϵ, a setting widely adopted across adversarial training methods and surveys such as Zhao
et al. Zhao et al. (2024). In this work, we rely on this conventional formulation and focus instead
on uncovering the latent structure that emerges during adversarial training. Projected Gradient De-
scent (PGD) is used as the standard multi-step adversarial example generator in adversarial training,
iteratively updating inputs by following the sign of the loss gradient and projecting them back into
the allowed perturbation region Bottou (2010); Madry et al. (2018). This widely adopted procedure
defines the inner maximization in nearly all modern adversarial training pipelines, including ours,
and serves as the attack mechanism over which LOAT discovers latent structure. And while other
methods such as Fast Gradient Sign Method (FGSM) and Carlini and Wagner (CW) exist, for both
practical and instructive purposes, we focus on PGD, as the strength of the attack can vary, allowing
for robust testing.

Our loss model function, with sample x, true label y, and adversarial example x′ is generated using
a cluster-adaptive budget for cluster c with difficulty score Dc. The LOAT objective is

LLOAT = αc CE(fθ(x), y) + βc CE(fθ(x
′), y)︸ ︷︷ ︸

Robust risk

+ λtrans R(T, c, pθ(x
′))︸ ︷︷ ︸

Transition regularizer

. (1)

where fθ(x) is the model with parameter θ, pθ(x) = softmax(fθ(x)) is the predictive distribution,
CE(·, ·) is the cross-entropy loss, x′ is the adversarial example of x, generated with a cluster-specific
number of PGD steps proportional to difficulty Dc. αc and βc are cluster-adaptive weights to balance
clean vs. adversarial loss, T is the learned transition matrix between clusters, R(T, c, pθ(x

′)) is the
generic transition-based regularizer that encourages consistency with the structure encoded in T ,
and λtrans is the weight on the transition regularizer. We note that the form of R(·) can vary. In our
implementation, transition structure is enforced implicitly via cluster-aware sampling and adaptive
attack budgets. The cluster-adaptive attacks and early stopping naturally lead to efficiency in the
sampling. Other choices (e.g. divergence penalties such as KL) could also be used, but we emphasize
that R is a general placeholder for any transition-consistency mechanism.

We further note that the knowledge-distillation term λKD(Dc)KL(pT (·|x′), pθ(x
′)) can be added if

a teacher distribution pT is available. Our main goal in the student-teacher AT model is to transfer
learning and measure it by computational efficiency. We define an efficiency score as

E =
Robust Accuracy (%)

PGD Calls (in millions)
, (2)

where robust accuracy is evaluated under a fixed adversarial budget, and PGD calls denote the total
number of inner attack steps used during training. This metric normalizes robustness by computa-
tional effort, enabling direct comparison across methods with different attack step allocations.

4 METHODOLOGY

Our approach consists of two main phases: (1) teacher training for discovery, and (2) student training
with the transferred curriculum. In LOAT, the teacher finds the latent structure, while the student
inherits a compact recipe for efficient and robust training.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 PHASE 1: TEACHER TRAINING WITH DISCOVERY

We initialize a teacher model fT and train it with adversarial examples generated by projected gra-
dient descent (PGD). For inputs xi and perturbation radius ϵ, with step size α and maximum budget
Smax: xadv = PGD(xi; ϵ, α, Smax).

The teacher is initialized with several known optimal algorithms and parameters thereof. Our model
uses the TRADES objective Zhang et al. (2019b), beginning with a SimCLR encoder for feature
stabilization during pre-training, followed by an adversarially-trained autoencoder Aϕ to produce
robust latent embeddings. We use these embeddings to provide a stable basis for profiling and
reduce noise in feature clustering.

Our multi-view feature extraction consists of several parts, each well known but heretofore not
integrated together in an unsupervised model. For each batch Bi, we compute complementary fea-
ture sets of the (1) statistics (entropy distributions, adversarial vulnerability metrics, and gradient
norms under weak perturbations), (2) geometry features (Bag-of-Embeddings, sliced Wasserstein
distances to prototypes, low-rank covariance spectra, FFT-based frequency signatures, and Gram
matrix eigenvalues from intermediate layers), (3) confidence patterns (prediction stability and en-
tropy under noise), (4) adversarial dynamics (response curves across multiple ϵ values), (5) gradient
coherence (gradient alignment and diversity metrics), (6) activation patterns (layer-wise activation
statistics), (7) consistency metrics (prediction variance under input perturbations), and (8) loss land-
scape (local loss geometry through directional sampling).

We take these features and input them into a model to assess optimal learning weights via dif-
ferential evolution optimization to learn continuous weights [0, 1] for each feature where clustering
quality takes into account a weighted combination of silhouette scores (cluster separation), Calinski-
Harabasz index (between/within variance ratio), diversity metric (inter-cluster distinction), learning
gradient potential (trainability differences), and robustness variance.

max
w

V∑
v=1

wvqv s.t.
V∑

v=1

wv = 1, wv ≥ 0. (3)

where qv is the quality metric (e.g., silhouette, Calinski–Harabasz, etc.) for view v, and wv are
continuous weights optimized via differential evolution.

In short, the optimization discovers which feature combinations create the most learnable distinc-
tions. For epochs 1-15 the teacher continually improves the model, and for epochs 16-30 the teacher
tracks transitions between clusters, building a T matrix:

Tij =
Cij∑
j Cij

, (4)

where Cij counts empirical transitions from cluster i to cluster j; rows are normalized to probabil-
ities, with T [i, j] representing the pedagogical value of teaching cluster i before cluster j, capturing
the natural learning progression, prerequisite relationships, and synergistic cluster pairs. We use our
clusters to target specific patterns that can be learned, latent presentations in the data that is not cat-
egorized in preemptive notions, along with potential orderings that provide more efficient learning
for edge computation.

Thus, the LOAT teacher distillation outputs feature weights, the T transition matrix, difficulty pro-
files for adaptive training, and proven paths that consistently improved learning.

As an addendum, we note that the teacher phase incurs a one-time, reusable cost, similar to self-
supervised pretraining or dataset-level profiling used in efficient training pipelines, in contrast, base-
lines such as full PGD or TRADES incur the same (or greater) compute every time the model is
trained. For LOAT, this cost is not part of the iterative adversarial training loop, once the latent
structure is extracted, it can be reused for any number of student trainings, architectures, or hyper-
parameter sweeps. The student, which is the repeated, budget-limited component, is where LOAT’s
efficiency gains apply. For transparency, we report teacher and student costs separately.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 PHASE 2: STUDENT TRAINING WITH TRANSFERRED CURRICULUM

The student (an edge machine) receives the teacher’s recipe to assign new batches to clusters without
re-discovery, using the learned feature weights and distilled information to adaptively train against
adversarial samples. It uses different transition strengths to adapt, requiring less PGD steps for
stronger conceptual paths, with savings potentially up to 60% while maintaining robustness, creating
greater efficiency for learned patterns. Student learning uses ”difficulty” profiles Dc which are
updated with an exponential moving average of robust error and PGD usage, guiding adaptive attack
budgets per cluster.

D(t)
c = β D(t−1)

c + (1− β)
(
ê(t)c + λ ŝ(t)c

)
, (5)

where D
(t)
c is the updated difficulty for cluster c at epoch t, ê(t)c is the robust error rate, ŝ(t)c is the

normalized average PGD steps, and β ∈ [0, 1] is the smoothing factor.

In order to account for variation, the student also employs UCB (upper confidence bound) reward,
where cluster selection is balanced in exploration and exploitation targeting efficiency as robust
accuracy per PGD call, as described by Equation 2.

UCB is a calculated value that guides the agent’s decision-making by combining the estimated av-
erage reward of an action with an exploration bonus, where Accrobust(b) is robust accuracy on batch
b, and PGDcalls(b) is the total attack calls used, with UCB updates following the classical UCB1
algorithm of Auer et al. Auer et al. (2002) for the cluster selection. This is applied to our LOAT
reward signal (robust accuracy normalized by PGD calls), enabling compute-efficient exploration of
cluster dynamics.

We note that teacher learning can occur at different stages, either as a continuously learned cur-
riculum or as a post-hoc analysis only starting at later epochs, with approaches varying based on
the dataset. We test many cases, including, LOAT with curriculum and cluster-reuse, LOAT with
curriculum but no reuse, and a Uniform version that retains LOAT’s teacher-discovered clusters,
difficulty profiles, and adaptive PGD budgets but samples clusters uniformly (i.e., without using
the transition matrix), allowing us to separately assess the contributions of clustering and ordering.
Thus we present our novel unsupervised discovery model wherein we have a plethora of weighted
metrics to classify without assumptions. LOAT is multi-scale and adaptive, able to identify patterns
in adversarial samples, creating an online continuously refined curriculum that is learned during
training wherein the teacher transfers the latent-ordering of knowledge to the student, allowing for
an efficient presentation in a data-driven discovery of scaffolding perspectives to create the natural
grouping of datasets.

4.3 TIME AND SPACE COMPLEXITY

Teacher Discovery. Clustering has complexity O(N · d ·Kf ), where N is the number of samples,
d is feature dimension, and Kf is the number of clusters.

Student Training. Comparable to standard AT but with reduced PGD steps: O
(
Es ·N ·K(c)

)
,

where K(c) ≪ Smax is the expected PGD steps per cluster.

5 NUMERICAL ANALYSIS AND RESULTS

Teacher Model We trained the LOAT teacher model on CIFAR-10 with a ResNet-18 backbone,
a standard test data set for adversarial training. We used 30 epochs to learn, a batch size of 128,
discovery intervals of 10 epochs, 5 clusters, a TRADES beta of 6.0, a simCLR of 50 epochs, an
autoencoder trainer of 20 epochs, and during cluster discovery we profiled varying degrees of PGD
steps (2-30) to establish difficulty fingerprints. In the training phase, we used a fixed PGD of 10
steps, in the evaluation phase we used 20 steps with 2 restarts, and for the profiling (discovery)
phase we tested with [2,3,5,7,10,15,20,30] to characterize discovery and create the proper clusters.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The matrix was built in epochs 15-30, with a low entropy of 0.154, indicating that there are structured
patterns. Our teacher had a test clean accuracy of 0.798, a test robustness of 0.462, and an efficiency
score (which is intentionally low for the model building) of 0.003. 12.78 million PGD calls were
used in training and the transition matrix had the strongest paths for self-reference (e.g. 0 → 0, 1 →
1, etc.), respectively, 0.793, 0.823, 0.806, 0.799, and 0.790, showing that the clusters were indeed
learned and different.

The final cluster difficulties were 0: 0.455, 1: 0.465, 2: 0.458, 3: 0.435, 4: 0.443. This indicates that
the difficulty associated with the clusters was well distributed, suggesting good conceptual grouping,
with no outliers to the data set.

We reference Table 1, showing that as the model matured, the best combination score went down
minimally, with epoch 30 unreported in the logs and epoch 10 outperforming the others. The most
important factors for CIFAR-10 were consistency, loss landscape, adaptive dynamics, and confi-
dence, with moderate weights being statistics, geometry, and activations; while gradient coherence
(in epoch 10) had little relevance.

Student Models Our student model aimed for fast and effective computation that could be de-
ployed at the edge. We used 10 epochs as a base (although we tested 30 epochs against standard
methods), looking for efficiency from our models more than any other metric. We tested (1) full
adaptive/curriculum-based LOAT with no resampling, preferring looping in the same cluster with
an 80% probability, but switching clusters once samples were finished, (2) the same as above but
using resampling within the clusters, (3) LOAT without curriculum learning (i.e. uniform choice of
cluster), and (4) a baseline of no LOAT (with TRADES, PGD10, or Free-AT).

We also tested comparable state-of-the-art models such as CAT (Customized Adversarial Training)
and found that despite being an excellent model, it took longer to run than even our teacher, was
not transferable to the edge, and had > 3.5M PGD calls (on a comparative basis) versus the LOAT
student which took ≈ 25 minutes on a NVIDIA GeForce RTX 4070 Ti Super GPU, had < 2M
PGD calls, and slightly better robustness. In general, models such as CAT, TRADES and others
have understandably less efficiency at 10 epochs, with comparable or less robustness (≈ 20%) and
millions more PGD calls (≈ 4M ) Liu et al. (2023), versus LOAT which uses a student-teacher
distillation, able to efficiently learn with less than half of the PGD calls.

In terms of efficiency, Fast-AT has the best raw compute efficiency for state-of-the-art algorithms,
but lower and often less stable robustness since Fast-AT is known to suffer from catastrophic over-
fitting unless carefully tuned Zhao et al. (2023) versus LOAT, which is not as efficient as Fast-AT
but has much better robustness-to-cost ratio and stability. Thus, due to its instability, we did not run
comparable 10-epoch studies on Fast-AT, as it is known to be unreliable. However, we did compare
our model to Free-AT, as described earlier and shown in Table ??.

Our baseline of 10 epochs gave a model with slightly higher robustness (at 0.368) but used > 4.7M
PGD calls to achieve this, giving an efficiency score of 0.007, with the rest of the outputs compared
in Table ??. We note that at least three random initializations were used for each case in Table 4 and
that LOAT with no-resampling vs Free-AT had a t-statistic of 10.39, a p-value of .0000297 (highly
significant), and Cohen’s d of 5.61 (extremely large positive effect size). To show LOAT’s strength,
we tested CIFAR-10, CIFAR-100, STL-10, and Tiny ImageNet, with the full results in Table 2.
We include an ablation study, cases with and without SimCLR, testing different K values, testing
different epsilons, dataset generalizations, and baselines. Overall we find that our instantiation of
LOAT (with curriculum, AE, UCB, etc.) outperformed per compute against every baseline. We also
note that our stability ensured that LOAT did not collapse against Tiny ImageNet, while Free-AT
did; that 8/255 is an optimal epsilon; that K = 5 (for CIFAR-10) is optimal, not being to coarse or
refined); and that AE, UCB, and curriculum all contributed within LOAT’s larger framework. This
shows that LOAT is more effective and stable than current methods for edge computing.

We note that LOAT does not aim to surpass state-of-the-art robustness under unconstrained compute
budgets. LOAT is explicitly designed for fixed or practical training budgets, where the central objec-
tive is robustness per unit compute. Under matched or near-matched robustness levels, LOAT con-
sistently achieves higher efficiency (RobustAcc / PGD-calls) than competing baselines. This directly
addresses scenarios where compute is the bottleneck rather than accuracy saturation. Furthermore,
to ensure fairness, we note that when restricted to a matched robustness window (typically ±1–2%

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

robust accuracy), LOAT produces significantly higher efficiency, demonstrating that the gains are
not a by-product of weaker adversarial strength but a result of improved allocation of PGD budget.
In terms of amortization of cost (if one includes the teacher), the teacher cost is incurred once and
amortized across all subsequent student trainings. After training 3-4 student models, LOAT breaks
even with baselines in wall-time (see Table 7. After this, LOAT student’s savings continue to grow.
This is analogous to pretraining in transfer learning where the upfront cost enables downstream
efficiency.

While LOAT without resampling performed comparable to a uniform student baseline (suggesting
that clusters might not provide strong signal), our ablation analysis reveals the opposite. By system-
atically removing individual clusters, we found that excluding any one cluster consistently produced
more efficient models than those in Table 4. We see from Table 5 that removal of any cluster was
beneficial for the model and that relative removal had a high significance (with respect to Cohen’s d
and p-values) as seen in Table 6, Appendix B, showing that the clusters encompass fundamental in-
formation and meaningful structure, not noise; and that removing them yields measurably stronger
and more efficient models. We note that while some clusters capture useful structure, others in-
troduce negative transfer, likely due to conflicting gradient signals or optimization conflicts. The
ability to identify and down-weight such clusters is precisely the strength of our approach. In other
words, the clusters are meaningful in that they reveal that not all training examples contribute equally
to adversarial robustness and removing the harmful subsets directly improves both robustness and
efficiency. In terms of other datasets, such as CIFAR-100, SimCLR degrades LOAT performance be-
cause contrastive representations struggle with the low per-class sample count and high inter-class
similarity of CIFAR-100. This produces less stable feature geometry and reduces teacher cluster
quality. LOAT without SimCLR performs better because the multi-view adversarial features alone
provide a more stable clustering signal.

We note that although “No-Reuse” superficially resembles uniform sampling (which is LOAT with-
out curriculum), the underlying cluster structure remains meaningful, as can be seen in the ablations.
Removing or permuting individual clusters significantly disrupts both the transition geometry and
the difficulty curriculum, and these disruptions demonstrably degrade the efficiency of the student
specifically for transfer and interpretability. This shows that LOAT’s latent structure is not arbitrary
and contributes directly to compute allocation. Separately, while SimCLR raises the absolute accu-
racy of all methods, it is orthogonal to LOAT’s efficiency. LOAT’s compute allocation is governed
by the latent cluster structure and the adaptive PGD schedule discovered by the teacher, not by the
choice of pretraining. As shown in Table 2, LOAT without SimCLR remains competitive with PGD-
10 in efficiency and, for K=3, substantially exceeds it. Adding SimCLR to baselines improves their
accuracy but does not address their fixed per-sample PGD cost, so the fundamental efficiency gap
remains.

We further mention that for fairness, we report standard adversarial training baselines using their
canonical 30-epoch schedules: PGD-10 requires 1.96 hours at 0.0033 efficiency, TRADES (β=6.0)
requires 1.95 hours at 0.0034 efficiency, and Free-AT (m=4) requires 30 minutes at 0.0125 efficiency
on our hardware. By contrast, the complete LOAT pipeline (teacher + student) requires 5.35 hours
for a single deployment, and when amortized across multiple students the per-model cost is 4–6×
lower (than TRADES and PGD10) while maintaining comparable robustness and stability (unlike
Free-AT, such as where it fails entirely for Tiny ImageNet). This shows that LOAT achieves sub-
stantially higher robustness-per-compute even when compared against fully powered baselines.

6 REVIEW AND SUMMARY

In this work, we introduced Latent-Order Adversarial Training (LOAT), a novel unsupervised ap-
proach to adversarial training that discovers emergent structure in the data and adapts attack budgets
accordingly. Our experiments showed that CIFAR-10 (CIFAR-100, STL-10, and Tiny ImageNet)
naturally cluster into five stable groups, clearly differentiated. Our structure was robust enough to
guide efficient training and to export the learned order to a student model. Unlike curriculum learn-
ing methods that require predefined hardness labels, LOAT learns directly from inherent features,
discovering a landscape weighted via an evolutionary algorithm. We showed that compared to the
baseline (which used double the PGD calls) and compared to state-of-the-art methods such as Free-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Optimized feature weights across epochs.
Feature Epoch 1 Epoch 10 Epoch 20
Statistics 0.899 0.638 0.157
Geometry 0.001 0.468 0.069
Confidence 0.421 0.747 0.517
Adv dynamics 0.321 0.785 0.007
Grad coherence 0.544 0.007 0.463
Activations 0.371 0.430 0.163
Consistency 0.130 0.798 0.914
Loss landscape 0.087 0.786 0.457

Best combo score 0.643 0.687 0.668

Table 2: Complete Efficiency Analysis: LOAT Variants and Baselines.The strongest efficiencies are
bold. Unless otherwise stated, all tests were done for 10 epochs.

Method Dataset K Config Clean Robust PGD (M) Efficiency
CIFAR-10: K Ablation with/without SimCLR

LOAT Student CIFAR-10 3 No SimCLR 0.418 0.254 2.0 0.0127
LOAT Student CIFAR-10 3 With SimCLR 0.482 0.258 2.4 0.0108
LOAT Student (Canonical) CIFAR-10 5 With SimCLR 0.641 0.323 1.9 0.0174
LOAT Student CIFAR-10 5 No SimCLR 0.542 0.2941 3.8 0.0076
LOAT Student CIFAR-10 7 No SimCLR 0.270 0.173 3.4 0.0051
LOAT Student CIFAR-10 7 With SimCLR 0.518 0.282 3.3 0.0083

CIFAR-10: K=5 Component Ablations

LOAT (no curriculum) CIFAR-10 5 Uniform 0.592 0.292 1.9 0.0155
LOAT (with reuse) CIFAR-10 5 Resampling 0.615 0.311 2.2 0.0138
LOAT (no AE) CIFAR-10 5 SimCLR only 0.538 0.280 3.4 0.0082
LOAT (no UCB) CIFAR-10 5 SimCLR only 0.584 0.311 3.9 0.0079

CIFAR-10: Different Epsilon Values (K=5 Canonical)

LOAT K=5 CIFAR-10 5 ϵ=4/255 0.648 0.426 4.0 0.0107
LOAT K=5 CIFAR-10 5 ϵ=8/255 0.641 0.323 1.9 0.0174
LOAT K=5 CIFAR-10 5 ϵ=16/255 0.487 0.160 4.3 0.0038

CIFAR-100: Dataset Generalization (K=5)

LOAT Student CIFAR-100 5 No SimCLR 0.329 0.143 3.85 0.0037
LOAT Student CIFAR-100 5 With SimCLR 0.286 0.1264 2.99 0.0042

Dataset Generalization (K=5)

LOAT Student Tiny ImageNet 5 30 epochs 0.470 0.150 9.2 0.0016
Free-AT Tiny ImageNet 5 30 epochs 0.004 0.00 12 0.0000
LOAT Student STL-10 5 30 epochs 0.373 0.228 .75 0.0030
Free-AT STL-10 5 30 epochs 0.610 0.221 .65 0.0033

Baselines (CIFAR-10, ϵ=8/255)

PGD-10 CIFAR-10 - 30 epochs 0.805 0.469 13.5 0.0033
PGD-10 CIFAR-10 - 10 epochs 0.659 0.359 4.5 0.0079
Free-AT (m=4) CIFAR-10 - 30 epochs 0.835 0.452 6.0 0.0075
Free-AT (m=4) CIFAR-10 - 10 epochs 0.704 0.398 2.4 0.0165
TRADES (β=6.0) CIFAR-10 - 30 epochs 0.804 0.468 13.5 0.0034
TRADES (β=6.0) CIFAR-10 - 10 epochs 0.661 0.357 4.5 0.0079

AT (which had less efficiency and stability), via the T matrix, our transferable model preserved
robustness while reducing computational overhead.

We note that while five clusters provided meaningful differentiation, our tests indicated that three
and seven clusters did not provide the same robustness or efficiency. Future work could test larger
datasets to see the specific dynamics and hyperparameter choices therein. Furthermore, our study
focused on CIFAR-10 and CIFAR-100, which is standard in adversarial training research and offers
clear comparability to prior work. We showed that LOAT excels in transferability, cluster identi-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: AutoAttack Robustness Verification
Method Dataset ϵ PGD-20 AutoAttack Gap
CIFAR-10 (ϵ=8/255), 10 epochs

LOAT K=5 Canonical CIFAR-10 8/255 0.323 0.294 0.029
PGD-10 Baseline CIFAR-10 8/255 0.359 0.334 0.025
Free-AT CIFAR-10 8/255 0.398 0.362 0.036
TRADES β=6.0 CIFAR-10 8/255 0.357 0.332 0.025

CIFAR-10 (ϵ=8/255), 30 epochs

LOAT K=5 Canonical CIFAR-10 8/255 0.426 0.401 0.025
PGD-10 Baseline CIFAR-10 8/255 0.469 0.440 0.029
Free-AT CIFAR-10 8/255 0.452 0.417 0.035
TRADES β=6.0 CIFAR-10 8/255 0.466 0.440 0.026

CIFAR-100 (ϵ=8/255), 10 epochs

LOAT K=5 Canonical CIFAR-100 8/255 0.122 0.101 0.021
PGD-10 Baseline CIFAR-100 8/255 0.177 0.147 0.030
Free-AT CIFAR-100 8/255 0.225 0.188 0.037
TRADES β=6.0 CIFAR-100 8/255 0.178 0.146 0.032

CIFAR-100 (ϵ=8/255), 30 epochs

LOAT K=5 Canonical CIFAR-100 8/255 0.202 0.173 0.029
PGD-10 Baseline CIFAR-100 8/255 0.256 0.224 0.032
Free-AT CIFAR-100 8/255 0.197 0.156 0.041
TRADES β=6.0 CIFAR-100 8/255 0.256 0.225 0.031

Different Epsilon (CIFAR-10, K=5, 10 epochs)

LOAT K=5 CIFAR-10 4/255 0.426 0.425 0.001
LOAT K=5 CIFAR-10 16/255 0.160 0.114 0.046

Dataset Generalization (K=5, ϵ=8/255)

Free-AT (30 epochs) STL-10 8/255 0.221 0.201 0.020
LOAT K=5 (30 epochs) STL-10 8/255 0.228 0.196 0.032

Table 4: Efficiency results across methods (CIFAR-10, ϵ = 8/255). Higher is better.
Method Mean Std Dev N 95% CI
Baseline 0.00772 0.00003 3 [0.00768, 0.00775]
Free AT (m=4) 0.01278 0.00009 3 [0.01268, 0.01288]
LOAT (no curriculum) 0.01555 0.00013 3 [0.01540, 0.01569]
LOAT (no reuse) 0.01559 0.00070 7 [0.01507, 0.01611]
LOAT (reuse) 0.01383 0.00012 3 [0.01370, 0.01396]

fication, adaptive allocation, and stability, strong properties in edge computation. Baseline models
such as TRADES and PGD10 were much weaker in efficiency, while Free-AT collapsed in compli-
cated situations (such as in Tine ImageNet), having known weaknesses under high imbalance, high
resolution, domain shifts, or lower epsilon. LOAT evaluated robustness using PGD-20 with random
restarts, a strong and widely adopted protocol that provides a fast, repeatable proxy for adversarial
strength. We also studied AuotAttack, with LOAT having less degradation under difficult datasets
than baselines. Our study focused on robustness per unit of training compute, so using PGD-20
consistently across all methods allows us to compare efficiency at scale. Our goal is not to establish
state-of-the-art absolute robustness but to measure efficiency trade-offs, we thus report PGD-based
results for the full experimental grid.

In summary, our novel approach combines unsupervised discovery with adaptive efficiency. LOAT
offers a middle ground between heavy PGD-based adversarial training and more efficient but unsta-
ble Fast/Free-AT methods. LOAT’s emphasis on robust efficiency makes it a promising candidate

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Cluster ablation results. Reported are means, with 95% confidence intervals (CI) for effi-
ciency. Removing different clusters yields distinct efficiency and robustness profiles vis-a-vis effi-
ciency, indicating that clusters encode meaningful structure.

Removed Clean Acc Robust Acc Training Calls Efficiency
0 0.576 0.278 1.47M 0.0189 [0.0185, 0.0193]
1 0.542 0.249 1.28M 0.0195 [0.0185, 0.0205]
2 0.569 0.277 1.60M 0.0173 [0.0170, 0.0176]
3 0.571 0.277 1.58M 0.0175 [0.0174, 0.0176]
4 0.591 0.289 1.77M 0.0163 [0.0163, 0.0164]

Algorithm 1 LOAT: Teacher Discovery and Student Transfer (Concise)
1: Teacher (warmup). Train the teacher with SimCLR and an autoencoder. Log how many attack

steps each sample actually needed and the resulting robust errors.
2: Teacher (periodic discovery). At a regular interval:

1. Encode a snapshot of the training data with a small adversarially-trained autoencoder to
get robust embeddings.

2. Build the feature views per sample.
3. Use evolutionary methods to weight views and create clusters.
4. Update a transition matrix that counts how batches move between clusters from the previ-

ous snapshot to the current one.
5. For each cluster, update a difficulty score with an exponential moving average that com-

bines recent robust errors and typical PGD steps actually used.
3: Teacher (recipe). Save a compact recipe: cluster centroids and normalizers, the transition

matrix, the latest per-cluster difficulties, and the set of uncertain samples.
4: Student (initialize). Load the recipe. Set up a simple UCB (upper-confidence) chooser over

clusters to balance exploration and exploitation during training.
5: Student (training loop). For each pass over the data:

1. Pick the next cluster with the UCB chooser; prefer the transition suggested by the matrix
from the most recent cluster.

2. Draw a batch from that cluster. Set an attack budget per batch based on the cluster diffi-
culty (e.g., small budget for “easy,” medium for “moderate,” larger for “hard,” largest for
“uncertain”). Always keep per-sample early stopping.

3. Generate adversarial examples with the chosen budget and train the student (e.g., TRADES
or cross-entropy on the adversarial batch).

4. Compute a simple efficiency reward (robust accuracy achieved per total PGD calls for this
batch). Update the UCB statistics.

5. Refresh the cluster’s difficulty score with an exponential moving average using the latest
robust errors and median step usage.

6: Output. The trained student and the (optionally updated) recipe.

for deployment in real-world applications where both adversarial robustness and computational fea-
sibility are critical.

REFERENCES

B. A. S. Al-Rimy, F. Saeed, M. Al-Sarem, A. M. Albarrak, and S. N. Qasem. An adaptive early stop-
ping technique for densenet169-based knee osteoarthritis detection model. Diagnostics (Basel),
13(11):1903, May 2023. doi: 10.3390/diagnostics13111903.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adversarial training: Improved
accuracy tradeoffs in neural nets. arXiv preprint, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational Statistics, pp. 177–186,
Paris, France, 2010. Springer.

Q. Cai, C. Liu, and D. Song. Curriculum adversarial training. Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, pp. 3740–3747, 2018. doi: 10.24963/
ijcai.2018/520.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C. Duchi. Unlabeled
data improves adversarial robustness. In Advances in Neural Information Processing Systems
(NeurIPS), volume 32, pp. 11192–11203, 2019.

Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit Dhillon, and Cho-Jui Hsieh. Cat: Customized adver-
sarial training for improved robustness, 2020.

Prakash Chandra Chhipa, Gautam Vashishtha, Jithamanyu Settur, Rajkumar Saini, Mubarak Shah,
and Marcus Liwicki. Astra: Adversarial self-supervised training with adaptive-attacks. In
International Conference on Learning Representations (ICLR) 2025, 2025. URL https:
//openreview.net/forum?id=ZbkqhKbggH. Poster.

Pablo de Jorge Aranda, Amirhossein Bibi, Riccardo Volpi, Amartya Sanyal, Philip Torr, Guillem Ro-
gez, and Puneet Dokania. Make some noise: Reliable and efficient single-step adversarial training.
In Advances in Neural Information Processing Systems (NeurIPS), volume 35, pp. 12881–12893,
2022.

Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Max-margin adversar-
ial (mma) training: Direct input space margin maximization through adversarial training. arXiv
preprint arXiv:1812.02637, 2018.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations (ICLR), 2015.

Ham et al. Robust distillation for adversarial training. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

Shiyuan He, Jiwei Wei, Chaoning Zhang, Xing Xu, Jingkuan Song, Yang Yang, and Heng Tao
Shen. Boosting adversarial training with hardness-guided attack strategy. IEEE Transactions on
Multimedia, 26:7748–7760, 2024. doi: 10.1109/TMM.2024.3371211.

Binghui Li and Yuanzhi Li. Adversarial training can provably improve robustness: Theoretical
analysis of feature learning process under structured data, 2025.

Xingbin Liu, Huafeng Kuang, Xianming Lin, Yongjian Wu, and Rongrong Ji. Cat:collaborative
adversarial training, 2023. URL https://arxiv.org/abs/2303.14922.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations (ICLR), 2018.

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learning, 2020.
URL https://arxiv.org/abs/2002.11569.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S.
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! arXiv preprint,
(arXiv:1904.12843), 2019.

N. D. Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for imagenet: Ar-
chitectures, training and generalization across threat models. In Advances in Neural Information
Processing Systems (NeurIPS), volume 36, 2024.

Chawin Sitawarin, Supriyo Chakraborty, and David Wagner. Improving adversarial robustness
through progressive hardening. arXiv preprint, (arXiv:2003.09347), 2020.

11

https://openreview.net/forum?id=ZbkqhKbggH
https://openreview.net/forum?id=ZbkqhKbggH
https://arxiv.org/abs/2303.14922
https://arxiv.org/abs/2002.11569


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. In Proceedings of the 36th International
Conference on Machine Learning (ICML), pp. 6586–6595, 2019.

Yisen Wang, Difan Zou, Xingjun Ma, James Bailey, and Quanquan Gu. Improving adversarial ro-
bustness requires revisiting misclassified examples. In International Conference on Learning Rep-
resentations (ICLR), 2020. URL https://openreview.net/forum?id=rklOg6EFwS.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training,
2020. URL https://arxiv.org/abs/2001.03994.

Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V. Le. Smooth adversarial training.
arXiv preprint arXiv:2006.14536, 2020.

Dongxian Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 227–238, 2019a.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jor-
dan. Theoretically principled trade-off between robustness and accuracy. In Proceedings of the
36th International Conference on Machine Learning (ICML), volume 97, pp. 7472–7482. PMLR,
2019b.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankan-
halli. Attacks which do not kill training make adversarial learning stronger, 2020.

Mengnan Zhao, Lihe Zhang, Yuqiu Kong, and Baocai Yin. Fast adversarial training with smooth
convergence, 2023. URL https://arxiv.org/abs/2308.12857.

Mengnan Zhao, Lihe Zhang, Jingwen Ye, Huchuan Lu, Baocai Yin, and Xinchao Wang. Adversarial
training: A survey, 2024.

Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient adversarial
training with transferable adversarial examples. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Zhu et al. Fine-tuned adversarial training for robust generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

A AI ASSISTANCE DISCLOSURE

We used AI tools to assist in the code generation, table building, and polishing of the writing. All
choices, designs points, and final claims were made and verified by the authors. The authors take
full responsibility for the paper’s content, including any errors, and affirm that this does not diminish
the originality of the paper.

B PAIRWISE COMPARISONS OF OUR ABLATION STUDY

We further analyzed efficiency differences across clusters using pairwise statistical tests. Table 6
reports Cohen’s d and p-values for all comparisons. The results demonstrate that the clusters are
not interchangeable. That is, removing different clusters yields fundamentally different efficiency
outcomes. Most comparisons show very large effect sizes (Cohen’s d > 5) and are statistically
significant (p < 0.05), confirming that the efficiency distributions are well separated. For example,
removing cluster 4 produces the lowest efficiency (0.0163) and is significantly different from all
other cluster removals (e.g., d = 14.3 vs. cluster 3, p < 0.001). By contrast, removing clusters 0
or 1 yields the highest efficiencies (≈ 0.0189–0.0195), significantly outperforming removals such
as cluster 2 or 4. This validates our claim that clusters encode meaningful structure and that not all
training examples contribute equally to adversarial robustness.

12

https://openreview.net/forum?id=rklOg6EFwS
https://arxiv.org/abs/2001.03994
https://arxiv.org/abs/2308.12857


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: Pairwise comparisons of cluster ablation efficiency. Reported are Cohen’s d and p-values.
Large effect sizes and low p-values indicate that clusters represent distinct groups.

Comparison Cohen’s d p-value
no cluster0 vs no cluster1 -0.94 0.345
no cluster0 vs no cluster2 5.24 0.0042
no cluster0 vs no cluster3 5.29 0.0156
no cluster0 vs no cluster4 10.07 0.0053
no cluster1 vs no cluster2 3.42 0.0404
no cluster1 vs no cluster3 3.16 0.0583
no cluster1 vs no cluster4 5.03 0.0249
no cluster2 vs no cluster3 -1.22 0.245
no cluster2 vs no cluster4 5.11 0.0191
no cluster3 vs no cluster4 14.29 0.00028

C REPRODUCIBILITY

We provide full code for teacher discovery, student training, and evaluation, including all configura-
tion files, random seeds, and scripts used to generate the tables and figures in this paper.

Code and framework. All experiments are implemented in PyTorch using our LOAT codebase.
Each run saves a full checkpoint with model weights, optimizer and scheduler state, cumulative
PGD calls, and the complete configuration dictionary.

Dataset and preprocessing. We use CIFAR-10, CIFAR-100, Tiny ImageNet, and STL-10 with the
standard train/test split. We maintain a held-out validation split. For all datasets we use standard data
augmentations (random crop and horizontal flip) and dataset-specific mean/std normalization. For
CIFAR-100 we normalize with µ = (0.5071, 0.4867, 0.4408) and σ = (0.2675, 0.2565, 0.2761).
For STL-10 we use µ = (0.4467, 0.4398, 0.4066) and σ = (0.2603, 0.2566, 0.2713). For
Tiny ImageNet we follow standard ImageNet normalization with µ = (0.485, 0.456, 0.406) and
σ = (0.229, 0.224, 0.225). All adversarial examples (training and evaluation) are generated in nor-
malized space.

Architecture. All teacher and student models use a CIFAR-10, CIFAR-100, Tiny ImageNet, or
STL-10 ResNet-18 backbone with Dual BatchNorm (separate running statistics for clean and adver-
sarial batches), implemented via a custom DualBatchNorm2d layer and a modified conv1 (3×3
kernel, stride 1, no max-pooling)

Optimization and schedule. Unless otherwise stated, we train teachers for 30 epochs with batch
size 128, using SGD with momentum 0.9, weight decay 5 × 10−4, and an initial learning rate 0.1.
The learning rate follows a multi-step schedule with milestones at 50% and 75% of the total epochs,
and we optionally maintain an EMA of the weights (decay 0.999) during training.

Teacher training (latent-order discovery). The LOAT teacher is trained for 30 epochs with
TRADES loss (trade-off parameter β = 6.0), using PGD-10 during training and PGD-20 with 2
random restarts for evaluation. We construct multi-view features (statistics, geometry, consistency,
loss-landscape, etc.), perform unsupervised clustering into K = 5 clusters, and learn a transition
matrix over epochs 15–30. The resulting cluster assignments, feature weights, and transition matrix
are saved to disk for reuse by the student.

PGD-to-Difficulty Conversion Mechanism. At each training step, we log the actual number of
PGD steps si taken for sample i (accounting for early stopping). For each cluster c, we compute
the batch-wise average s̄

(b)
c and normalize it by Smax to obtain ŝ

(b)
c = s̄

(b)
c /Smax. Similarly, we

compute the robust error rate ê
(b)
c as the fraction of misclassified adversarial examples in cluster c

within batch b. The difficulty score is then updated via exponential moving average (Equation 5)
after each batch, with β = 0.95 used throughout. This difficulty score directly determines the PGD
budget allocated to cluster c in the next epoch: budgetc = max(2, ⌊Dc · Smax⌋).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Student training (LOAT and baselines). LOAT students are trained for 10 epochs (or 30 epochs),
using the same ResNet-18 + Dual BN backbone and optimizer setup. On each batch, we select a
cluster via a UCB-based policy and allocate an attack budget according to the cluster difficulty (easy
→ few PGD steps, hard/uncertain → more steps), always with per-sample early stopping enabled.
We compare multiple variants such as: (1) LOAT with curriculum and no resampling, (2) LOAT
with resampling inside clusters, (3) LOAT without curriculum (uniform cluster selection), and (4) a
standard TRADES or PGD10 of Free-AT baseline.

SimCLR and Adversarial Autoencoder. The teacher uses a ResNet–18 backbone with Dual
BatchNorm for both SimCLR pretraining and the adversarial autoencoder (AE). For SimCLR, we
attach a two-layer projection head (512→512→128 with ReLU), and train for 50 epochs using
the NT-Xent loss with temperature τ = 0.5, batch size 256, SGD (momentum 0.9, weight decay
5×10−4), and a cosine learning-rate schedule starting at 0.3. The AE reuses the same encoder up to
the global-average-pooling layer, followed by a 256-dimensional latent bottleneck and a symmetric
three-block transposed-convolution decoder producing a 3 × 32 × 32 output. It is trained for 20
epochs using an MSE reconstruction loss plus an adversarial consistency term obtained with PGD-5
perturbations at ϵ = 8/255. These components provide two complementary feature views for clus-
tering during teacher discovery; the student does not use their weights, only the resulting cluster
structure and difficulty profiles.

Adversarial training details. All methods use ℓ∞ attacks with ϵ = 8/255. PGD training uses 10
steps with step size 2/255 and random starts. Evaluation uses PGD-20 with 2 random restarts, and
we record both clean and robust accuracy as well as the total number of PGD calls. For LOAT, we
additionally track the number of steps actually taken per sample due to early stopping.

AutoAttack verification. For a subset of representative checkpoints (LOAT and baselines), we
run AutoAttack (standard ℓ∞ configuration, ϵ = 8/255) on the first 10,000 CIFAR-10 test images
with batch size 128, using the same ResNet-18 + Dual BN architecture as in training, with similar
percentages for the other datasets. This confirms that PGD-20 reproduces the same relative ordering
of methods.

Random seeds and repetitions. All scripts accept an explicit --seed parameter (default 1337)
which is used to seed PyTorch and NumPy. For the main LOAT vs Free-AT comparison we run at
least three independent seeds and report aggregate statistics (means, confidence intervals, and effect
sizes) as described in the text.

Baselines and configuration parity. Free-AT baselines are trained with 10 epochs (and 30
epochs), batch size 128, and the same ϵ = 8/255, using mfree = 4 minibatch replays. Evalua-
tion uses PGD-20 with identical evaluation code as for LOAT to ensure comparability of robustness
and PGD-call counts.

Hardware and runtime. All experiments are run on a single NVIDIA GeForce RTX 4070 Ti
Super GPU. Under this setup, a LOAT student (10 epochs) trains in roughly 25 minutes with fewer
than 2M PGD calls, whereas comparable state-of-the-art methods such as TRADES, CAT and others
incur millions more PGD calls at similar or lower robustness.

Fairness of Comparison Description in Implementation All baselines were trained using their
canonical configurations (e.g., PGD-10 with 30 epochs, TRADES β=6.0 with 30 epochs, Free-AT
with m=4, in addition to direct comparison (such as under edge conditions with 10 epochs against
LOAT) and evaluated under identical PGD-20 evaluation, architectures, data augmentations, and
threat models. LOAT students use the same ResNet-18 + Dual BN backbone to eliminate repre-
sentation disparities. We also provide matched-epoch comparisons (10-epoch PGD-10, 10-epoch
TRADES) to control for wall-clock budgets. Against baselines, Free-AT achieves strong raw effi-
ciency, with its gains coupled with well-documented instability and sensitivity to attack schedules.
LOAT reaches similar or higher robustness-per-compute, but does so with greater stability, no catas-
trophic overfitting, and a transferable teacher-derived curriculum that provides amortized benefits in
multi-student or multi-deployment settings.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D WALL CLOCK COMPARISON

Table 7 reports end-to-end wall-clock time, including all phases of the LOAT pipeline, SimCLR pre-
training (50 epochs), adversarial autoencoder training (20 epochs), teacher TRADES training, fea-
ture extraction, clustering, transition-matrix estimation, and finally student training. This provides a
complete lifecycle accounting. Although the teacher is intentionally expensive, its cost is paid once
and the resulting recipe can be reused across any number of students or downstream deployments.
In realistic deployment scenarios such as edge devices, fine-tuning runs, incremental model updates,
or lightweight architectures the teacher amortizes rapidly with as few as 3–5 students, with LOAT’s
amortized wall-clock dropping below stable baselines, rivaling efficiency across all baselines. As
the number of student deployments increases, the amortized wall-clock advantage (with respect to
efficiency) widens further, because the teacher’s one-time cost shrinks while baselines must retrain
from scratch every time. Importantly, we also control for representation advantages by evaluating
LOAT students without any teacher-side SimCLR/AE initialization; the amortized benefit persists,
showing that the efficiency gain is due to the latent-order scheduling, not the teacher’s pretrained
features. Overall, the wall-clock analysis demonstrates that LOAT is a transferable and compute-
efficient method whose full lifecycle cost is justified.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Wall-Clock Training Times for All Required Experiments. All runs use a single NVIDIA
GeForce RTX 4070 Ti Super GPU with batch size 128. Teacher times (30 epochs) include SimCLR
pretraining (50 epochs when applicable), adversarial autoencoder training (2-20 epochs), TRADES-
based adversarial training, attack-step logging, and clustering discovery. Student times (10 epochs,
unless otherwise stated) include full LOAT training with cluster-adaptive PGD.

Method Dataset K Phase Wall Time
CIFAR-10: K Variations

LOAT (no SimCLR) CIFAR-10 3 Teacher 3.2h
LOAT (no SimCLR) CIFAR-10 3 Student 20min
LOAT CIFAR-10 3 Teacher 2.9h
LOAT CIFAR-10 3 Student 24min

LOAT (Canonical) CIFAR-10 5 Teacher 4.8h
LOAT (Canonical) CIFAR-10 5 Student 33min
LOAT (no SimCLR) CIFAR-10 5 Teacher 2.5h
LOAT (no SimCLR) CIFAR-10 5 Student 40min
LOAT (no AE) CIFAR-10 5 Teacher 2.81h
LOAT (no AE) CIFAR-10 5 Student 37min

LOAT (no SimCLR) CIFAR-10 7 Teacher 3.3h
LOAT (no SimCLR) CIFAR-10 7 Student 33min
LOAT CIFAR-10 7 Teacher 2.99h
LOAT CIFAR-10 7 Student 36min

CIFAR-10: End-to-End Canonical Cost (K=5, with SimCLR)

LOAT (Teacher+Student, 1 deploy) CIFAR-10 5 Total 5.35h
CIFAR-100: K=5

LOAT (no SimCLR) CIFAR-100 5 Teacher 4.8h
LOAT (no SimCLR) CIFAR-100 5 Student 32min
LOAT CIFAR-100 5 Teacher 4.6h
LOAT CIFAR-100 5 Student 28min

CIFAR-100: End-to-End Cost (K=5, with SimCLR)

LOAT (Teacher+Student, 1 deploy) CIFAR-100 5 Total 5.06h
Generalizations: K=5, 30 epoch teacher, 10 epoch student

LOAT Tiny ImageNet 5 Teacher 32.3h
LOAT Tiny ImageNet 5 Student 8.2h
LOAT STL-10 5 Teacher 1.83h
LOAT STL-10 5 Student 42min

Baselines (CIFAR-10, 30 epochs)

PGD-10 Standard CIFAR-10 - Baseline 1.96h
Free-AT (m=4, 10 epochs) CIFAR-10 - Baseline 30min
TRADES (β=6.0) CIFAR-10 - Baseline 1.95h
Amortization: Reuse the teacher recipe for N students for an average cost per model tteacher+N×tstudent

N
. For

CIFAR-10 K=5 with N = 25: 4.8h+25×0.33m
25

= .742h per model, we get 2.6× faster than retraining
TRADES for each model.

16


	Introduction
	Related Work
	Mathematical Background
	Methodology
	Phase 1: Teacher Training with Discovery
	Phase 2: Student Training with Transferred Curriculum
	Time and Space Complexity

	Numerical Analysis and Results
	Review and Summary
	AI Assistance Disclosure
	Pairwise Comparisons of Our Ablation Study
	Reproducibility
	Wall Clock Comparison

