

000 001 002 003 004 005 LOAT: LATENT-ORDER ADVERSARIAL TRAINING FOR 006 EFFICIENT AND TRANSFERABLE ROBUSTNESS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027 ABSTRACT 028

029 Adversarial training is computationally prohibitive because projected gradient de-
030 scent (PGD) is applied uniformly across all samples. Existing efficiency methods
031 focus on “hard” examples but rely on supervised heuristics that fail to capture
032 the emergence of robust representations. We introduce Latent-Order Adversarial
033 Training (LOAT), a fully unsupervised framework that uncovers the latent clus-
034 tering structure of adversarial dynamics. LOAT learns a multi-view clustering
035 of samples and creates a transition matrix describing how training flows between
036 clusters, enabling cluster-adaptive PGD budgets that allocate computation where
037 it is most effective. The teacher’s discovered structure is transferable and amor-
038 tized across student models, eliminating repeated profiling costs. On CIFAR-10,
039 LOAT achieves up to 2 \times higher robustness per PGD call than standard adversar-
040 ial training and, under matched compute, consistently improves robust accuracy.
041 Ablations confirm that both the clusters and the latent order encode meaningful
042 structure. LOAT shows that exploiting geometric emergent organization enables
043 practical, robust adversarial training under real-world compute constraints.
044
045

046 1 INTRODUCTION 047

048 Adversarial training Madry et al. (2018), where a model is trained with not only standard training
049 data, but also adversarial examples generated from an attack, is known to provide a robust defense
050 against the challenge of correctly identifying perturbed image samples. While strong, this approach
051 requires sufficiently large capacity and great computational cost, requiring multiple PGD (projected
052 gradient descent) steps per sample per epoch, limiting the practical deployment due to time and space
053 constraints. Many approaches have been developed to address this, categorically broken down into
054 reducing per-sample cost through fewer PGD steps Shafahi et al. (2019), or focusing computation on
055 targeted, important samples He et al. (2024). The natural assumption in both categories is that one
056 knows *a priori* what makes a sample important for robust learning. Although intuitively, presumed
057 hardness has no forced bearing or correlation, which is to say, there is no foreknowledge beyond
058 heuristic reasoning to necessitate an assumed approach. Targeting samples with small margins or
059 high loss and then allocate resources to them is, in essence, an ill-defined notion. This supervised
060 definition of difficulty assumes that human-interpretable metrics capture what matters for robust
061 learning. We however put forward the notion that unsupervised learning based on a multi-view
062 of generalized statistics, geometry, confidence patterns, adversarial dynamics, gradient coherence,
063 activation patterns, consistency metrics, and loss landscape, all weighted for learning output, can
064 create a natural grouping without manual labeling, allowing for a discoverable order in curriculum or
065 post-hoc learning during which a teacher can robustly impart cluster determinations and transitions,
066 allowing students to be adaptive, predictive, and able to identify hidden organizational principles
067 based on patterns which we as humans may lack the vocabulary to describe.
068

069 Current models label samples as difficult when accumulating more PGD (projected gradient descent)
070 steps Madry et al. (2018); Zhang et al. (2019b), larger weights Balaji et al. (2019), or more frequent
071 sampling Carmon et al. (2019), this, however, is a static approach; whereas our LOAT model recog-
072 nizes that a generalized and naturally emergent dynamic can better assess and categorize adversarial
073 samples. We further note that difficulty levels may be periphery, subordinate, or inferior labels as
074 compared to discoverable relationships (and orderings) which can benefit from interleaving, restruc-
075 turing, or other potentially hidden paths.
076

054 Thus, we propose a fundamentally different perspective. Instead of imposing human notions of
 055 difficulty, we use LOAT to discover the natural organization converging to a robust model via un-
 056 supervised learning. After some amount of initial training epochs used to establish basic robust
 057 features, our unsupervised clustering reveals how the model has learned to organize the data space.
 058 Our novel transition matrix T , built from these converged patterns, captures a stable multi-view
 059 structure of the robust solution manifold wherein we track empirical flows between clusters, har-
 060 nessing the latent grouping in a per cluster per epoch presentation. Thus, our key insight is that
 061 adversarial training naturally clusters based on compatible learning dynamics alongside a latent dif-
 062 ferentiability and ordering subscription of emergent patterns that can be used to improve efficiency
 063 without requiring supervised labels or a predetermined curriculum. This novel idea further provides
 064 a blueprint to accelerate future training via a teacher-student model that can be deployed to edge
 065 networks where much smaller compute power is available.
 066

067 Unlike prior adversarial training approaches, which focus solely on maximizing robustness, our
 068 goal is fundamentally different: maximize robustness per unit compute. The efficiency metric
 069 $E = \text{RobustAcc}/\text{PGD}$ formalizes this objective and reflects practical constraints of real-world
 070 deployment where compute, not accuracy, is the dominant limitation. LOAT is designed for edge
 071 computing, for practitioners who cannot afford 10–20-step PGD-based adversarial training. Rather
 072 than compressing a full PGD pipeline, LOAT restructures the compute itself, enabling practical AT
 073 on limited hardware while preserving robustness.
 074

075 In summary, we demonstrate that adversarial training dynamics exhibit discoverable latent struc-
 076 ture, challenging the assumption that training samples are exchangeable and should receive uniform
 077 attack budgets. LOAT is a teacher-student framework that discovers structure via unsupervised clus-
 078 tering and transfers it as a compact recipe, enabling 2 \times efficiency improvements over standard AT
 079 under matched robustness constraints. We introduce the efficiency-robustness frontier as a frame-
 080 work for evaluating AT methods under resource constraints, and demonstrate that LOAT occupies a
 081 Pareto-optimal region previously unexplored by existing methods.
 082

083 2 RELATED WORK

084 One of the most highly relevant topics to our model is that of curriculum training, an approach
 085 that systematically increases the difficulty of adversarial examples presented during the training
 086 process, where weak attacks mitigate catastrophic forgetting and help with generalization, building
 087 to stronger attacks in a learned fashion, Cai et al. (2018). Another important idea is that of adaptive
 088 early stopping Al-Rimy et al. (2023), wherein different heuristic approaches are used to identify cut-
 089 off points, with some form of customized budgets per sample Cheng et al. (2020) taking the form
 090 of early stopping based on misclassification Zhang et al. (2020) or based on gradient alignment
 Sitawarin et al. (2020).

091 State of the art models focus on hardness He et al. (2024) but often target some metric such as
 092 accuracy in exchange for efficiency, or the opposite, that of boosting speed with less robustness
 093 Goodfellow et al. (2015). The TRADES model Zhang et al. (2020) uses a theoretical upper bound
 094 minimization algorithm for adversarial training, a concept that many (including us) harness, with
 095 others Ding et al. (2018) noticing the importance of misclassified examples in training, adding prob-
 096 abilities of prediction as a way to smoothly combine samples Wang et al. (2020). Unlike ASTrA
 097 Chhipa et al. (2025), which adapts attack parameters via a learnable strategy network, LOAT dis-
 098 covers latent ordering/clusters and allocates budgets accordingly; thus our contribution is orthogonal
 099 (or complementary).

100 In terms of efficiency, the most comparable model to LOAT is Free-AT Shafahi et al. (2019). In
 101 Free-AT one does a forward pass on a clean example and a backward pass to get gradients, and
 102 then simultaneously updates both the model parameters and input perturbation. The free part is the
 103 reuse of the same gradient for both model updates and adversarial perturbation. It achieves similar
 104 robustness to standard PGD adversarial training while being roughly as fast as natural training. It
 105 was demonstrated similarly on CIFAR-10.

106 While these works (such as Customized Adversarial Training, and Free-AT) have similarities, we
 107 differentiate and build on these by discovering semantic structure, arguing that groups are not ran-
 108 dom, per-sample, or naturally classifiable by hardness. We instead explore conceptual dependencies

108 and their orderings at the cluster level (a more generalizable approach to allow for robustness), identifying emergent structure to guide order, transfer, and efficiency without imposing a curriculum.
 109 We focus on an approach that is both highly effective and efficient, so much so that it outperforms
 110 even the highly efficient Free-AT technique.
 111

113 3 MATHEMATICAL BACKGROUND

116 Adversarial training is typically framed as a min–max optimization problem in which the model
 117 minimizes the worst-case loss over allowable perturbations, following the standard formulation of
 118 Madry et al. Madry et al. (2018). These perturbations are usually constrained to ℓ_p , bounded region
 119 of radius ϵ , a setting widely adopted across adversarial training methods and surveys such as Zhao
 120 et al. Zhao et al. (2024). In this work, we rely on this conventional formulation and focus instead
 121 on uncovering the latent structure that emerges during adversarial training. Projected Gradient Descent
 122 (PGD) is used as the standard multi-step adversarial example generator in adversarial training,
 123 iteratively updating inputs by following the sign of the loss gradient and projecting them back into
 124 the allowed perturbation region Bottou (2010); Madry et al. (2018). This widely adopted procedure
 125 defines the inner maximization in nearly all modern adversarial training pipelines, including ours,
 126 and serves as the attack mechanism over which LOAT discovers latent structure. And while other
 127 methods such as Fast Gradient Sign Method (FGSM) and Carlini and Wagner (CW) exist, for both
 128 practical and instructive purposes, we focus on PGD, as the strength of the attack can vary, allowing
 129 for robust testing.

130 Our loss model function, with sample x , true label y , and adversarial example x' is generated using
 131 a cluster-adaptive budget for cluster c with difficulty score D_c . The LOAT objective is

$$132 \quad \mathcal{L}_{\text{LOAT}} = \underbrace{\alpha_c \text{CE}(f_\theta(x), y) + \beta_c \text{CE}(f_\theta(x'), y)}_{\text{Robust risk}} + \underbrace{\lambda_{\text{trans}} R(T, c, p_\theta(x'))}_{\text{Transition regularizer}}. \quad (1)$$

136 where $f_\theta(x)$ is the model with parameter θ , $p_\theta(x) = \text{softmax}(f_\theta(x))$ is the predictive distribution,
 137 $\text{CE}(\cdot, \cdot)$ is the cross-entropy loss, x' is the adversarial example of x , generated with a cluster-specific
 138 number of PGD steps proportional to difficulty D_c . α_c and β_c are cluster-adaptive weights to balance
 139 clean vs. adversarial loss, T is the learned transition matrix between clusters, $R(T, c, p_\theta(x'))$ is the
 140 generic transition-based regularizer that encourages consistency with the structure encoded in T ,
 141 and λ_{trans} is the weight on the transition regularizer. We note that the form of $R(\cdot)$ can vary. In our
 142 implementation, transition structure is enforced implicitly via cluster-aware sampling and adaptive
 143 attack budgets. The cluster-adaptive attacks and early stopping naturally lead to efficiency in the
 144 sampling. Other choices (e.g. divergence penalties such as KL) could also be used, but we emphasize
 145 that R is a general placeholder for any transition-consistency mechanism.

146 We further note that the knowledge-distillation term $\lambda_{\text{KD}}(D_c) \text{KL}(p_T(\cdot|x'), p_\theta(x'))$ can be added if
 147 a teacher distribution p_T is available. Our main goal in the student-teacher AT model is to transfer
 148 learning and measure it by computational efficiency. We define an efficiency score as

$$150 \quad \mathcal{E} = \frac{\text{Robust Accuracy} (\%)}{\text{PGD Calls (in millions)}}, \quad (2)$$

153 where robust accuracy is evaluated under a fixed adversarial budget, and PGD calls denote the total
 154 number of inner attack steps used during training. This metric normalizes robustness by computa-
 155 tional effort, enabling direct comparison across methods with different attack step allocations.

157 4 METHODOLOGY

160 Our approach consists of two main phases: (1) teacher training for discovery, and (2) student training
 161 with the transferred curriculum. In LOAT, the teacher finds the latent structure, while the student
 inherits a compact recipe for efficient and robust training.

162 4.1 PHASE 1: TEACHER TRAINING WITH DISCOVERY
163

164 We initialize a teacher model f_T and train it with adversarial examples generated by projected
165 gradient descent (PGD). For inputs x_i and perturbation radius ϵ , with step size α and maximum budget
166 S_{\max} : $x^{adv} = \text{PGD}(x_i; \epsilon, \alpha, S_{\max})$.

167 The teacher is initialized with several known optimal algorithms and parameters thereof. Our model
168 uses the TRADES objective Zhang et al. (2019b), beginning with a SimCLR encoder for feature
169 stabilization during pre-training, followed by an adversarially-trained autoencoder A_ϕ to produce
170 robust latent embeddings. We use these embeddings to provide a stable basis for profiling and
171 reduce noise in feature clustering.

172 Our multi-view feature extraction consists of several parts, each well known but heretofore not
173 integrated together in an unsupervised model. For each batch B_i , we compute complementary feature
174 sets of the (1) statistics (entropy distributions, adversarial vulnerability metrics, and gradient
175 norms under weak perturbations), (2) geometry features (Bag-of-Embeddings, sliced Wasserstein
176 distances to prototypes, low-rank covariance spectra, FFT-based frequency signatures, and Gram
177 matrix eigenvalues from intermediate layers), (3) confidence patterns (prediction stability and
178 entropy under noise), (4) adversarial dynamics (response curves across multiple ϵ values), (5) gradient
179 coherence (gradient alignment and diversity metrics), (6) activation patterns (layer-wise activation
180 statistics), (7) consistency metrics (prediction variance under input perturbations), and (8) loss landscape
181 (local loss geometry through directional sampling).

182 We take these features and input them into a model to assess optimal learning weights via differential
183 evolution optimization to learn continuous weights $[0, 1]$ for each feature where clustering
184 quality takes into account a weighted combination of silhouette scores (cluster separation), Calinski-
185 Harabasz index (between/within variance ratio), diversity metric (inter-cluster distinction), learning
186 gradient potential (trainability differences), and robustness variance.

$$188 \max_{\mathbf{w}} \sum_{v=1}^V w_v q_v \quad \text{s.t.} \quad \sum_{v=1}^V w_v = 1, \quad w_v \geq 0. \quad (3)$$

192 where q_v is the quality metric (e.g., silhouette, Calinski-Harabasz, etc.) for view v , and w_v are
193 continuous weights optimized via differential evolution.

194 In short, the optimization discovers which feature combinations create the most learnable distinctions.
195 For epochs 1-15 the teacher continually improves the model, and for epochs 16-30 the teacher
196 tracks transitions between clusters, building a T matrix:

$$198 \quad T_{ij} = \frac{C_{ij}}{\sum_j C_{ij}}, \quad (4)$$

202 where C_{ij} counts empirical transitions from cluster i to cluster j ; rows are normalized to probabilities,
203 with $T[i, j]$ representing the pedagogical value of teaching cluster i before cluster j , capturing
204 the natural learning progression, prerequisite relationships, and synergistic cluster pairs. We use our
205 clusters to target specific patterns that can be learned, latent presentations in the data that is not cat-
206 egorized in preemptive notions, along with potential orderings that provide more efficient learning
207 for edge computation.

208 Thus, the LOAT teacher distillation outputs feature weights, the T transition matrix, difficulty profiles
209 for adaptive training, and proven paths that consistently improved learning.

210 As an addendum, we note that the teacher phase incurs a one-time, reusable cost, similar to self-
211 supervised pretraining or dataset-level profiling used in efficient training pipelines, in contrast, base-
212 lines such as full PGD or TRADES incur the same (or greater) compute every time the model is
213 trained. For LOAT, this cost is not part of the iterative adversarial training loop, once the latent
214 structure is extracted, it can be reused for any number of student trainings, architectures, or hyper-
215 parameter sweeps. The student, which is the repeated, budget-limited component, is where LOAT's
efficiency gains apply. For transparency, we report teacher and student costs separately.

216 4.2 PHASE 2: STUDENT TRAINING WITH TRANSFERRED CURRICULUM
217

218 The student (an edge machine) receives the teacher’s recipe to assign new batches to clusters without
219 re-discovery, using the learned feature weights and distilled information to adaptively train against
220 adversarial samples. It uses different transition strengths to adapt, requiring less PGD steps for
221 stronger conceptual paths, with savings potentially up to 60% while maintaining robustness, creating
222 greater efficiency for learned patterns. Student learning uses “difficulty” profiles D_c which are
223 updated with an exponential moving average of robust error and PGD usage, guiding adaptive attack
224 budgets per cluster.

$$225 \quad 226 \quad D_c^{(t)} = \beta D_c^{(t-1)} + (1 - \beta) \left(\hat{e}_c^{(t)} + \lambda \hat{s}_c^{(t)} \right), \quad 227 \quad (5)$$

228 where $D_c^{(t)}$ is the updated difficulty for cluster c at epoch t , $\hat{e}_c^{(t)}$ is the robust error rate, $\hat{s}_c^{(t)}$ is the
229 normalized average PGD steps, and $\beta \in [0, 1]$ is the smoothing factor.

230 In order to account for variation, the student also employs UCB (upper confidence bound) reward,
231 where cluster selection is balanced in exploration and exploitation targeting efficiency as robust
232 accuracy per PGD call, as described by Equation 2.

233 UCB is a calculated value that guides the agent’s decision-making by combining the estimated average
234 reward of an action with an exploration bonus, where $\text{Acc}_{\text{robust}}(b)$ is robust accuracy on batch
235 b , and $\text{PGD}_{\text{calls}}(b)$ is the total attack calls used, with UCB updates following the classical UCB1
236 algorithm of Auer et al. Auer et al. (2002) for the cluster selection. This is applied to our LOAT
237 reward signal (robust accuracy normalized by PGD calls), enabling compute-efficient exploration of
238 cluster dynamics.

239 We note that teacher learning can occur at different stages, either as a continuously learned cur-
240 riculum or as a post-hoc analysis only starting at later epochs, with approaches varying based on
241 the dataset. We test many cases, including, LOAT with curriculum and cluster-reuse, LOAT with
242 curriculum but no reuse, and a Uniform version that retains LOAT’s teacher-discovered clusters,
243 difficulty profiles, and adaptive PGD budgets but samples clusters uniformly (i.e., without using
244 the transition matrix), allowing us to separately assess the contributions of clustering and ordering.
245 Thus we present our novel unsupervised discovery model wherein we have a plethora of weighted
246 metrics to classify without assumptions. LOAT is multi-scale and adaptive, able to identify patterns
247 in adversarial samples, creating an online continuously refined curriculum that is learned during
248 training wherein the teacher transfers the latent-ordering of knowledge to the student, allowing for
249 an efficient presentation in a data-driven discovery of scaffolding perspectives to create the natural
250 grouping of datasets.

251 4.3 TIME AND SPACE COMPLEXITY
252

253 **Teacher Discovery.** Clustering has complexity $O(N \cdot d \cdot K_f)$, where N is the number of samples,
254 d is feature dimension, and K_f is the number of clusters.

255 **Student Training.** Comparable to standard AT but with reduced PGD steps: $O\left(E_s \cdot N \cdot \overline{K(c)}\right)$,
256 where $\overline{K(c)} \ll S_{\text{max}}$ is the expected PGD steps per cluster.

257 5 NUMERICAL ANALYSIS AND RESULTS
258

259 **Teacher Model** We trained the LOAT teacher model on CIFAR-10 with a ResNet-18 backbone,
260 a standard test data set for adversarial training. We used 30 epochs to learn, a batch size of 128,
261 discovery intervals of 10 epochs, 5 clusters, a TRADES beta of 6.0, a simCLR of 50 epochs, an
262 autoencoder trainer of 20 epochs, and during cluster discovery we profiled varying degrees of PGD
263 steps (2-30) to establish difficulty fingerprints. In the training phase, we used a fixed PGD of 10
264 steps, in the evaluation phase we used 20 steps with 2 restarts, and for the profiling (discovery)
265 phase we tested with [2,3,5,7,10,15,20,30] to characterize discovery and create the proper clusters.

270 The matrix was built in epochs 15-30, with a low entropy of 0.154, indicating that there are structured
 271 patterns. Our teacher had a test clean accuracy of 0.798, a test robustness of 0.462, and an efficiency
 272 score (which is intentionally low for the model building) of 0.003. 12.78 million PGD calls were
 273 used in training and the transition matrix had the strongest paths for self-reference (e.g. 0 → 0, 1 →
 274 1, etc.), respectively, 0.793, 0.823, 0.806, 0.799, and 0.790, showing that the clusters were indeed
 275 learned and different.

276 The final cluster difficulties were 0: 0.455, 1: 0.465, 2: 0.458, 3: 0.435, 4: 0.443. This indicates that
 277 the difficulty associated with the clusters was well distributed, suggesting good conceptual grouping,
 278 with no outliers to the data set.

279 We reference Table 1, showing that as the model matured, the best combination score went down
 280 minimally, with epoch 30 unreported in the logs and epoch 10 outperforming the others. The most
 281 important factors for CIFAR-10 were consistency, loss landscape, adaptive dynamics, and confi-
 282 dence, with moderate weights being statistics, geometry, and activations; while gradient coherence
 283 (in epoch 10) had little relevance.

284
 285 **Student Models** Our student model aimed for fast and effective computation that could be de-
 286 ployed at the edge. We used 10 epochs as a base (although we tested 30 epochs against standard
 287 methods), looking for efficiency from our models more than any other metric. We tested (1) full
 288 adaptive/curriculum-based LOAT with no resampling, preferring looping in the same cluster with
 289 an 80% probability, but switching clusters once samples were finished, (2) the same as above but
 290 using resampling within the clusters, (3) LOAT without curriculum learning (i.e. uniform choice of
 291 cluster), and (4) a baseline of no LOAT (with TRADES, PGD10, or Free-AT).

292 We also tested comparable state-of-the-art models such as CAT (Customized Adversarial Training)
 293 and found that despite being an excellent model, it took longer to run than even our teacher, was
 294 not transferable to the edge, and had $> 3.5M$ PGD calls (on a comparative basis) versus the LOAT
 295 student which took ≈ 25 minutes on a NVIDIA GeForce RTX 4070 Ti Super GPU, had $< 2M$
 296 PGD calls, and slightly better robustness. In general, models such as CAT, TRADES and others
 297 have understandably less efficiency at 10 epochs, with comparable or less robustness ($\approx 20\%$) and
 298 millions more PGD calls ($\approx 4M$) Liu et al. (2023), versus LOAT which uses a student-teacher
 299 distillation, able to efficiently learn with less than half of the PGD calls.

300 In terms of efficiency, Fast-AT has the best raw compute efficiency for state-of-the-art algorithms,
 301 but lower and often less stable robustness since Fast-AT is known to suffer from catastrophic over-
 302 fitting unless carefully tuned Zhao et al. (2023) versus LOAT, which is not as efficient as Fast-AT
 303 but has much better robustness-to-cost ratio and stability. Thus, due to its instability, we did not run
 304 comparable 10-epoch studies on Fast-AT, as it is known to be unreliable. However, we did compare
 305 our model to Free-AT, as described earlier and shown in Table ??.

306 Our baseline of 10 epochs gave a model with slightly higher robustness (at 0.368) but used $> 4.7M$
 307 PGD calls to achieve this, giving an efficiency score of 0.007, with the rest of the outputs compared
 308 in Table ???. We note that at least three random initializations were used for each case in Table 4 and
 309 that LOAT with no-resampling vs Free-AT had a t-statistic of 10.39, a p-value of .0000297 (highly
 310 significant), and Cohen's d of 5.61 (extremely large positive effect size). To show LOAT's strength,
 311 we tested CIFAR-10, CIFAR-100, STL-10, and Tiny ImageNet, with the full results in Table 2.
 312 We include an ablation study, cases with and without SimCLR, testing different K values, testing
 313 different epsilons, dataset generalizations, and baselines. Overall we find that our instantiation of
 314 LOAT (with curriculum, AE, UCB, etc.) outperformed *per compute* against every baseline. We also
 315 note that our stability ensured that LOAT did not collapse against Tiny ImageNet, while Free-AT
 316 did; that 8/255 is an optimal epsilon; that $K = 5$ (for CIFAR-10) is optimal, not being to coarse or
 317 refined; and that AE, UCB, and curriculum all contributed within LOAT's larger framework. This
 318 shows that LOAT is more effective and stable than current methods for edge computing.

319 We note that LOAT does not aim to surpass state-of-the-art robustness under unconstrained compute
 320 budgets. LOAT is explicitly designed for fixed or practical training budgets, where the central objec-
 321 tive is robustness per unit compute. Under matched or near-matched robustness levels, LOAT con-
 322 sistently achieves higher efficiency (RobustAcc / PGD-calls) than competing baselines. This directly
 323 addresses scenarios where compute is the bottleneck rather than accuracy saturation. Furthermore,
 to ensure fairness, we note that when restricted to a matched robustness window (typically $\pm 1\text{--}2\%$

robust accuracy), LOAT produces significantly higher efficiency, demonstrating that the gains are not a by-product of weaker adversarial strength but a result of improved allocation of PGD budget. In terms of amortization of cost (if one includes the teacher), the teacher cost is incurred once and amortized across all subsequent student trainings. After training 3-4 student models, LOAT breaks even with baselines in wall-time (see Table 7). After this, LOAT student’s savings continue to grow. This is analogous to pretraining in transfer learning where the upfront cost enables downstream efficiency.

While LOAT without resampling performed comparable to a uniform student baseline (suggesting that clusters might not provide strong signal), our ablation analysis reveals the opposite. By systematically removing individual clusters, we found that excluding any one cluster consistently produced more efficient models than those in Table 4. We see from Table 5 that removal of any cluster was beneficial for the model and that relative removal had a high significance (with respect to Cohen’s d and p-values) as seen in Table 6, Appendix B, showing that the clusters encompass fundamental information and meaningful structure, not noise; and that removing them yields measurably stronger and more efficient models. We note that while some clusters capture useful structure, others introduce negative transfer, likely due to conflicting gradient signals or optimization conflicts. The ability to identify and down-weight such clusters is precisely the strength of our approach. In other words, the clusters are meaningful in that they reveal that not all training examples contribute equally to adversarial robustness and removing the harmful subsets directly improves both robustness and efficiency. In terms of other datasets, such as CIFAR-100, SimCLR degrades LOAT performance because contrastive representations struggle with the low per-class sample count and high inter-class similarity of CIFAR-100. This produces less stable feature geometry and reduces teacher cluster quality. LOAT without SimCLR performs better because the multi-view adversarial features alone provide a more stable clustering signal.

We note that although “No-Reuse” superficially resembles uniform sampling (which is LOAT without curriculum), the underlying cluster structure remains meaningful, as can be seen in the ablations. Removing or permuting individual clusters significantly disrupts both the transition geometry and the difficulty curriculum, and these disruptions demonstrably degrade the efficiency of the student specifically for transfer and interpretability. This shows that LOAT’s latent structure is not arbitrary and contributes directly to compute allocation. Separately, while SimCLR raises the absolute accuracy of all methods, it is orthogonal to LOAT’s efficiency. LOAT’s compute allocation is governed by the latent cluster structure and the adaptive PGD schedule discovered by the teacher, not by the choice of pretraining. As shown in Table 2, LOAT without SimCLR remains competitive with PGD-10 in efficiency and, for K=3, substantially exceeds it. Adding SimCLR to baselines improves their accuracy but does not address their fixed per-sample PGD cost, so the fundamental efficiency gap remains.

We further mention that for fairness, we report standard adversarial training baselines using their canonical 30-epoch schedules: PGD-10 requires 1.96 hours at 0.0033 efficiency, TRADES ($\beta=6.0$) requires 1.95 hours at 0.0034 efficiency, and Free-AT ($m=4$) requires 30 minutes at 0.0125 efficiency on our hardware. By contrast, the complete LOAT pipeline (teacher + student) requires 5.35 hours for a single deployment, and when amortized across multiple students the per-model cost is 4–6x lower (than TRADES and PGD10) while maintaining comparable robustness and stability (unlike Free-AT, such as where it fails entirely for Tiny ImageNet). This shows that LOAT achieves substantially higher robustness-per-compute even when compared against fully powered baselines.

6 REVIEW AND SUMMARY

In this work, we introduced Latent-Order Adversarial Training (LOAT), a novel unsupervised approach to adversarial training that discovers emergent structure in the data and adapts attack budgets accordingly. Our experiments showed that CIFAR-10 (CIFAR-100, STL-10, and Tiny ImageNet) naturally cluster into five stable groups, clearly differentiated. Our structure was robust enough to guide efficient training and to export the learned order to a student model. Unlike curriculum learning methods that require predefined hardness labels, LOAT learns directly from inherent features, discovering a landscape weighted via an evolutionary algorithm. We showed that compared to the baseline (which used double the PGD calls) and compared to state-of-the-art methods such as Free-

378

379

Table 1: Optimized feature weights across epochs.

380

381

Feature	Epoch 1	Epoch 10	Epoch 20
Statistics	0.899	0.638	0.157
Geometry	0.001	0.468	0.069
Confidence	0.421	0.747	0.517
Adv_dynamics	0.321	0.785	0.007
Grad_coherence	0.544	0.007	0.463
Activations	0.371	0.430	0.163
Consistency	0.130	0.798	0.914
Loss_landscape	0.087	0.786	0.457
Best combo score	0.643	0.687	0.668

389

390

391

392

Table 2: Complete Efficiency Analysis: LOAT Variants and Baselines. The strongest efficiencies are bold. Unless otherwise stated, all tests were done for 10 epochs.

393

394

395

Method	Dataset	K	Config	Clean	Robust	PGD (M)	Efficiency
<i>CIFAR-10: K Ablation with/without SimCLR</i>							
LOAT Student	CIFAR-10	3	No SimCLR	0.418	0.254	2.0	0.0127
LOAT Student	CIFAR-10	3	With SimCLR	0.482	0.258	2.4	0.0108
LOAT Student (Canonical)	CIFAR-10	5	With SimCLR	0.641	0.323	1.9	0.0174
LOAT Student	CIFAR-10	5	No SimCLR	0.542	0.2941	3.8	0.0076
LOAT Student	CIFAR-10	7	No SimCLR	0.270	0.173	3.4	0.0051
LOAT Student	CIFAR-10	7	With SimCLR	0.518	0.282	3.3	0.0083
<i>CIFAR-10: K=5 Component Ablations</i>							
LOAT (no curriculum)	CIFAR-10	5	Uniform	0.592	0.292	1.9	0.0155
LOAT (with reuse)	CIFAR-10	5	Resampling	0.615	0.311	2.2	0.0138
LOAT (no AE)	CIFAR-10	5	SimCLR only	0.538	0.280	3.4	0.0082
LOAT (no UCB)	CIFAR-10	5	SimCLR only	0.584	0.311	3.9	0.0079
<i>CIFAR-10: Different Epsilon Values (K=5 Canonical)</i>							
LOAT K=5	CIFAR-10	5	$\epsilon=4/255$	0.648	0.426	4.0	0.0107
LOAT K=5	CIFAR-10	5	$\epsilon=8/255$	0.641	0.323	1.9	0.0174
LOAT K=5	CIFAR-10	5	$\epsilon=16/255$	0.487	0.160	4.3	0.0038
<i>CIFAR-100: Dataset Generalization (K=5)</i>							
LOAT Student	CIFAR-100	5	No SimCLR	0.329	0.143	3.85	0.0037
LOAT Student	CIFAR-100	5	With SimCLR	0.286	0.1264	2.99	0.0042
<i>Dataset Generalization (K=5)</i>							
LOAT Student	Tiny ImageNet	5	30 epochs	0.470	0.150	9.2	0.0016
Free-AT	Tiny ImageNet	5	30 epochs	0.004	0.00	12	0.0000
LOAT Student	STL-10	5	30 epochs	0.373	0.228	.75	0.0030
Free-AT	STL-10	5	30 epochs	0.610	0.221	.65	0.0033
<i>Baselines (CIFAR-10, $\epsilon=8/255$)</i>							
PGD-10	CIFAR-10	-	30 epochs	0.805	0.469	13.5	0.0033
PGD-10	CIFAR-10	-	10 epochs	0.659	0.359	4.5	0.0079
Free-AT (m=4)	CIFAR-10	-	30 epochs	0.835	0.452	6.0	0.0075
Free-AT (m=4)	CIFAR-10	-	10 epochs	0.704	0.398	2.4	0.0165
TRADES ($\beta=6.0$)	CIFAR-10	-	30 epochs	0.804	0.468	13.5	0.0034
TRADES ($\beta=6.0$)	CIFAR-10	-	10 epochs	0.661	0.357	4.5	0.0079

424

425

AT (which had less efficiency and stability), via the T matrix, our transferable model preserved robustness while reducing computational overhead.

426

427

We note that while five clusters provided meaningful differentiation, our tests indicated that three and seven clusters did not provide the same robustness or efficiency. Future work could test larger datasets to see the specific dynamics and hyperparameter choices therein. Furthermore, our study focused on CIFAR-10 and CIFAR-100, which is standard in adversarial training research and offers clear comparability to prior work. We showed that LOAT excels in transferability, cluster identi-

Method	Dataset	ϵ	PGD-20	AutoAttack	Gap
<i>CIFAR-10 ($\epsilon=8/255$), 10 epochs</i>					
LOAT K=5 Canonical	CIFAR-10	8/255	0.323	0.294	0.029
PGD-10 Baseline	CIFAR-10	8/255	0.359	0.334	0.025
Free-AT	CIFAR-10	8/255	0.398	0.362	0.036
TRADES $\beta=6.0$	CIFAR-10	8/255	0.357	0.332	0.025
<i>CIFAR-10 ($\epsilon=8/255$), 30 epochs</i>					
LOAT K=5 Canonical	CIFAR-10	8/255	0.426	0.401	0.025
PGD-10 Baseline	CIFAR-10	8/255	0.469	0.440	0.029
Free-AT	CIFAR-10	8/255	0.452	0.417	0.035
TRADES $\beta=6.0$	CIFAR-10	8/255	0.466	0.440	0.026
<i>CIFAR-100 ($\epsilon=8/255$), 10 epochs</i>					
LOAT K=5 Canonical	CIFAR-100	8/255	0.122	0.101	0.021
PGD-10 Baseline	CIFAR-100	8/255	0.177	0.147	0.030
Free-AT	CIFAR-100	8/255	0.225	0.188	0.037
TRADES $\beta=6.0$	CIFAR-100	8/255	0.178	0.146	0.032
<i>CIFAR-100 ($\epsilon=8/255$), 30 epochs</i>					
LOAT K=5 Canonical	CIFAR-100	8/255	0.202	0.173	0.029
PGD-10 Baseline	CIFAR-100	8/255	0.256	0.224	0.032
Free-AT	CIFAR-100	8/255	0.197	0.156	0.041
TRADES $\beta=6.0$	CIFAR-100	8/255	0.256	0.225	0.031
<i>Different Epsilon (CIFAR-10, K=5, 10 epochs)</i>					
LOAT K=5	CIFAR-10	4/255	0.426	0.425	0.001
LOAT K=5	CIFAR-10	16/255	0.160	0.114	0.046
<i>Dataset Generalization (K=5, $\epsilon=8/255$)</i>					
Free-AT (30 epochs)	STL-10	8/255	0.221	0.201	0.020
LOAT K=5 (30 epochs)	STL-10	8/255	0.228	0.196	0.032

Table 4: Efficiency results across methods (CIFAR-10, $\epsilon = 8/255$). Higher is better.

Method	Mean	Std Dev	N	95% CI
Baseline	0.00772	0.00003	3	[0.00768, 0.00775]
Free AT (m=4)	0.01278	0.00009	3	[0.01268, 0.01288]
LOAT (no curriculum)	0.01555	0.00013	3	[0.01540, 0.01569]
LOAT (no reuse)	0.01559	0.00070	7	[0.01507, 0.01611]
LOAT (reuse)	0.01383	0.00012	3	[0.01370, 0.01396]

ification, adaptive allocation, and stability, strong properties in edge computation. Baseline models such as TRADES and PGD10 were much weaker in efficiency, while Free-AT collapsed in complicated situations (such as in Tine ImageNet), having known weaknesses under high imbalance, high resolution, domain shifts, or lower epsilon. LOAT evaluated robustness using PGD-20 with random restarts, a strong and widely adopted protocol that provides a fast, repeatable proxy for adversarial strength. We also studied AuotAttack, with LOAT having less degradation under difficult datasets than baselines. Our study focused on robustness per unit of training compute, so using PGD-20 consistently across all methods allows us to compare efficiency at scale. Our goal is not to establish state-of-the-art absolute robustness but to measure efficiency trade-offs, we thus report PGD-based results for the full experimental grid.

In summary, our novel approach combines unsupervised discovery with adaptive efficiency. LOAT offers a middle ground between heavy PGD-based adversarial training and more efficient but unstable Fast/Free-AT methods. LOAT's emphasis on robust efficiency makes it a promising candidate

486
 487 Table 5: Cluster ablation results. Reported are means, with 95% confidence intervals (CI) for effi-
 488 ciency. Removing different clusters yields distinct efficiency and robustness profiles vis-a-vis effi-
 489 ciency, indicating that clusters encode meaningful structure.

490	Removed	Clean Acc	Robust Acc	Training Calls	Efficiency
491	0	0.576	0.278	1.47M	0.0189 [0.0185, 0.0193]
492	1	0.542	0.249	1.28M	0.0195 [0.0185, 0.0205]
493	2	0.569	0.277	1.60M	0.0173 [0.0170, 0.0176]
494	3	0.571	0.277	1.58M	0.0175 [0.0174, 0.0176]
495	4	0.591	0.289	1.77M	0.0163 [0.0163, 0.0164]

496 **Algorithm 1** LOAT: Teacher Discovery and Student Transfer (Concise)

- 497 1: **Teacher (warmup).** Train the teacher with SimCLR and an autoencoder. Log how many attack
 498 steps each sample actually needed and the resulting robust errors.
- 499 2: **Teacher (periodic discovery).** At a regular interval:
- 500 1. Encode a snapshot of the training data with a small adversarially-trained autoencoder to
 501 get robust embeddings.
- 502 2. Build the feature views per sample.
- 503 3. Use evolutionary methods to weight views and create clusters.
- 504 4. Update a transition matrix that counts how batches move between clusters from the previ-
 505 ous snapshot to the current one.
- 506 5. For each cluster, update a difficulty score with an exponential moving average that com-
 507 bines recent robust errors and typical PGD steps actually used.
- 508 3: **Teacher (recipe).** Save a compact recipe: cluster centroids and normalizers, the transition
 509 matrix, the latest per-cluster difficulties, and the set of uncertain samples.
- 510 4: **Student (initialize).** Load the recipe. Set up a simple UCB (upper-confidence) chooser over
 511 clusters to balance exploration and exploitation during training.
- 512 5: **Student (training loop).** For each pass over the data:
- 513 1. Pick the next cluster with the UCB chooser; prefer the transition suggested by the matrix
 514 from the most recent cluster.
- 515 2. Draw a batch from that cluster. Set an attack budget per batch based on the cluster diffi-
 516 culty (e.g., small budget for “easy,” medium for “moderate,” larger for “hard,” largest for
 517 “uncertain”). Always keep per-sample early stopping.
- 518 3. Generate adversarial examples with the chosen budget and train the student (e.g., TRADES
 519 or cross-entropy on the adversarial batch).
- 520 4. Compute a simple efficiency reward (robust accuracy achieved per total PGD calls for this
 521 batch). Update the UCB statistics.
- 522 5. Refresh the cluster’s difficulty score with an exponential moving average using the latest
 523 robust errors and median step usage.
- 524 6: **Output.** The trained student and the (optionally updated) recipe.
-

526
 527 for deployment in real-world applications where both adversarial robustness and computational fea-
 528 sibility are critical.

530 **REFERENCES**

- 532 B. A. S. Al-Rimy, F. Saeed, M. Al-Sarem, A. M. Albarak, and S. N. Qasem. An adaptive early stop-
 533 ping technique for densenet169-based knee osteoarthritis detection model. *Diagnostics (Basel)*,
 534 13(11):1903, May 2023. doi: 10.3390/diagnostics13111903.
- 535 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
 536 problem. *Machine Learning*, 47(2-3):235–256, 2002.
- 538 Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adversarial training: Improved
 539 accuracy tradeoffs in neural nets. *arXiv preprint*, 2019.

- 540 Léon Bottou. Large-scale machine learning with stochastic gradient descent. In *Proceedings of*
 541 *COMPSTAT'2010: 19th International Conference on Computational Statistics*, pp. 177–186,
 542 Paris, France, 2010. Springer.
- 543
- 544 Q. Cai, C. Liu, and D. Song. Curriculum adversarial training. *Proceedings of the Twenty-Seventh*
 545 *International Joint Conference on Artificial Intelligence*, pp. 3740–3747, 2018. doi: 10.24963/
 546 ijcai.2018/520.
- 547 Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C. Duchi. Unlabeled
 548 data improves adversarial robustness. In *Advances in Neural Information Processing Systems*
 549 (*NeurIPS*), volume 32, pp. 11192–11203, 2019.
- 550
- 551 Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit Dhillon, and Cho-Jui Hsieh. Cat: Customized adver-
 552 sarial training for improved robustness, 2020.
- 553
- 554 Prakash Chandra Chhipa, Gautam Vashishtha, Jithamanyu Settur, Rajkumar Saini, Mubarak Shah,
 555 and Marcus Liwicki. Astra: Adversarial self-supervised training with adaptive-attacks. In
 556 *International Conference on Learning Representations (ICLR) 2025*, 2025. URL <https://openreview.net/forum?id=ZbkqhKbggH>. Poster.
- 557
- 558 Pablo de Jorge Aranda, Amirhossein Bibi, Riccardo Volpi, Amartya Sanyal, Philip Torr, Guillem Ro-
 559 gez, and Puneet Dokania. Make some noise: Reliable and efficient single-step adversarial training.
 560 In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp. 12881–12893,
 561 2022.
- 562
- 563 Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Max-margin adversar-
 564 ial (mma) training: Direct input space margin maximization through adversarial training. *arXiv*
 565 *preprint arXiv:1812.02637*, 2018.
- 566
- 567 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 568 examples. In *International Conference on Learning Representations (ICLR)*, 2015.
- 569
- 570 Ham et al. Robust distillation for adversarial training. In *Advances in Neural Information Processing*
 571 *Systems (NeurIPS)*, 2024.
- 572
- 573 Shiyuan He, Jiwei Wei, Chaoning Zhang, Xing Xu, Jingkuan Song, Yang Yang, and Heng Tao
 574 Shen. Boosting adversarial training with hardness-guided attack strategy. *IEEE Transactions on*
 575 *Multimedia*, 26:7748–7760, 2024. doi: 10.1109/TMM.2024.3371211.
- 576
- 577 Binghui Li and Yuanzhi Li. Adversarial training can provably improve robustness: Theoretical
 578 analysis of feature learning process under structured data, 2025.
- 579
- 580 Xingbin Liu, Huafeng Kuang, Xiamming Lin, Yongjian Wu, and Rongrong Ji. Cat:collaborative
 581 adversarial training, 2023. URL <https://arxiv.org/abs/2303.14922>.
- 582
- 583 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 584 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 585 *Learning Representations (ICLR)*, 2018.
- 586
- 587 Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learning, 2020.
 588 URL <https://arxiv.org/abs/2002.11569>.
- 589
- 590 Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S.
 591 Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! *arXiv preprint*,
 592 (arXiv:1904.12843), 2019.
- 593
- 594 N. D. Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for imangenet: Ar-
 595 chitectures, training and generalization across threat models. In *Advances in Neural Information*
 596 *Processing Systems (NeurIPS)*, volume 36, 2024.
- 597
- 598 Chawin Sitawarin, Supriyo Chakraborty, and David Wagner. Improving adversarial robustness
 599 through progressive hardening. *arXiv preprint*, (arXiv:2003.09347), 2020.

- 594 Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
 595 convergence and robustness of adversarial training. In *Proceedings of the 36th International*
 596 *Conference on Machine Learning (ICML)*, pp. 6586–6595, 2019.
- 597
- 598 Yisen Wang, Difan Zou, Xingjun Ma, James Bailey, and Quanquan Gu. Improving adversarial ro-
 599 bustness requires revisiting misclassified examples. In *International Conference on Learning Rep-*
 600 *resentations (ICLR)*, 2020. URL <https://openreview.net/forum?id=rklOg6EFwS>.
- 601 Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training,
 602 2020. URL <https://arxiv.org/abs/2001.03994>.
- 603
- 604 Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V. Le. Smooth adversarial training.
 605 *arXiv preprint arXiv:2006.14536*, 2020.
- 606
- 607 Dongxian Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
 608 once: Accelerating adversarial training via maximal principle. In *Advances in Neural Information*
 609 *Processing Systems (NeurIPS)*, pp. 227–238, 2019a.
- 610 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jor-
 611 dan. Theoretically principled trade-off between robustness and accuracy. In *Proceedings of the*
 612 *36th International Conference on Machine Learning (ICML)*, volume 97, pp. 7472–7482. PMLR,
 613 2019b.
- 614
- 615 Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankan-
 616 halli. Attacks which do not kill training make adversarial learning stronger, 2020.
- 617 Mengnan Zhao, Lihe Zhang, Yuqiu Kong, and Baocai Yin. Fast adversarial training with smooth
 618 convergence, 2023. URL <https://arxiv.org/abs/2308.12857>.
- 619
- 620 Mengnan Zhao, Lihe Zhang, Jingwen Ye, Huchuan Lu, Baocai Yin, and Xinchao Wang. Adversarial
 621 training: A survey, 2024.
- 622
- 623 Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient adversarial
 624 training with transferable adversarial examples. In *Proceedings of the IEEE/CVF Conference on*
 625 *Computer Vision and Pattern Recognition (CVPR)*, June 2020.
- 626 Zhu et al. Fine-tuned adversarial training for robust generalization. In *Proceedings of the IEEE/CVF*
 627 *International Conference on Computer Vision (ICCV)*, 2023.
- 628
- 629

630 A AI ASSISTANCE DISCLOSURE

631

632 We used AI tools to assist in the code generation, table building, and polishing of the writing. All
 633 choices, designs points, and final claims were made and verified by the authors. The authors take
 634 full responsibility for the paper’s content, including any errors, and affirm that this does not diminish
 635 the originality of the paper.

637 B PAIRWISE COMPARISONS OF OUR ABLATION STUDY

638

639 We further analyzed efficiency differences across clusters using pairwise statistical tests. Table 6
 640 reports Cohen’s d and p -values for all comparisons. The results demonstrate that the clusters are
 641 not interchangeable. That is, removing different clusters yields fundamentally different efficiency
 642 outcomes. Most comparisons show very large effect sizes (Cohen’s $d > 5$) and are statistically
 643 significant ($p < 0.05$), confirming that the efficiency distributions are well separated. For example,
 644 removing cluster 4 produces the lowest efficiency (0.0163) and is significantly different from all
 645 other cluster removals (e.g., $d = 14.3$ vs. cluster 3, $p < 0.001$). By contrast, removing clusters 0
 646 or 1 yields the highest efficiencies (≈ 0.0189 – 0.0195), significantly outperforming removals such
 647 as cluster 2 or 4. This validates our claim that clusters encode meaningful structure and that not all
 training examples contribute equally to adversarial robustness.

648

649
650
Table 6: Pairwise comparisons of cluster ablation efficiency. Reported are Cohen’s d and p -values.
Large effect sizes and low p -values indicate that clusters represent distinct groups.

651	Comparison	Cohen’s d	p -value
652	no cluster0 vs no cluster1	-0.94	0.345
653	no cluster0 vs no cluster2	5.24	0.0042
654	no cluster0 vs no cluster3	5.29	0.0156
655	no cluster0 vs no cluster4	10.07	0.0053
656	no cluster1 vs no cluster2	3.42	0.0404
657	no cluster1 vs no cluster3	3.16	0.0583
658	no cluster1 vs no cluster4	5.03	0.0249
659	no cluster2 vs no cluster3	-1.22	0.245
660	no cluster2 vs no cluster4	5.11	0.0191
661	no cluster3 vs no cluster4	14.29	0.00028

661

662

C REPRODUCIBILITY

663

664
665 We provide full code for teacher discovery, student training, and evaluation, including all configura-
666 tion files, random seeds, and scripts used to generate the tables and figures in this paper.

667

668

669 **Code and framework.** All experiments are implemented in PyTorch using our LOAT codebase.
670 Each run saves a full checkpoint with model weights, optimizer and scheduler state, cumulative
PGD calls, and the complete configuration dictionary.

671

672

673 **Dataset and preprocessing.** We use CIFAR-10, CIFAR-100, Tiny ImageNet, and STL-10 with the
674 standard train/test split. We maintain a held-out validation split. For all datasets we use standard data
675 augmentations (random crop and horizontal flip) and dataset-specific mean/std normalization. For
676 CIFAR-100 we normalize with $\mu = (0.5071, 0.4867, 0.4408)$ and $\sigma = (0.2675, 0.2565, 0.2761)$.
677 For STL-10 we use $\mu = (0.4467, 0.4398, 0.4066)$ and $\sigma = (0.2603, 0.2566, 0.2713)$. For
678 Tiny ImageNet we follow standard ImageNet normalization with $\mu = (0.485, 0.456, 0.406)$ and
679 $\sigma = (0.229, 0.224, 0.225)$. All adversarial examples (training and evaluation) are generated in nor-
680 malized space.

681

682

683 **Architecture.** All teacher and student models use a CIFAR-10, CIFAR-100, Tiny ImageNet, or
684 STL-10 ResNet-18 backbone with Dual BatchNorm (separate running statistics for clean and adver-
685 sarial batches), implemented via a custom DualBatchNorm2d layer and a modified conv1 (3×3
686 kernel, stride 1, no max-pooling)

687

688

689 **Optimization and schedule.** Unless otherwise stated, we train teachers for 30 epochs with batch
690 size 128, using SGD with momentum 0.9, weight decay 5×10^{-4} , and an initial learning rate 0.1.
691 The learning rate follows a multi-step schedule with milestones at 50% and 75% of the total epochs,
692 and we optionally maintain an EMA of the weights (decay 0.999) during training.

693

694

695 **Teacher training (latent-order discovery).** The LOAT teacher is trained for 30 epochs with
696 TRADES loss (trade-off parameter $\beta = 6.0$), using PGD-10 during training and PGD-20 with 2
697 random restarts for evaluation. We construct multi-view features (statistics, geometry, consistency,
698 loss-landscape, etc.), perform unsupervised clustering into $K = 5$ clusters, and learn a transition
699 matrix over epochs 15–30. The resulting cluster assignments, feature weights, and transition matrix
700 are saved to disk for reuse by the student.

701

702

703 **PGD-to-Difficulty Conversion Mechanism.** At each training step, we log the actual number of
704 PGD steps s_i taken for sample i (accounting for early stopping). For each cluster c , we compute
705 the batch-wise average $\bar{s}_c^{(b)}$ and normalize it by S_{\max} to obtain $\hat{s}_c^{(b)} = \bar{s}_c^{(b)} / S_{\max}$. Similarly, we
706 compute the robust error rate $\hat{e}_c^{(b)}$ as the fraction of misclassified adversarial examples in cluster c
707 within batch b . The difficulty score is then updated via exponential moving average (Equation 5)
708 after each batch, with $\beta = 0.95$ used throughout. This difficulty score directly determines the PGD
709 budget allocated to cluster c in the next epoch: $\text{budget}_c = \max(2, \lfloor D_c \cdot S_{\max} \rfloor)$.

702 **Student training (LOAT and baselines).** LOAT students are trained for 10 epochs (or 30 epochs),
 703 using the same ResNet-18 + Dual BN backbone and optimizer setup. On each batch, we select a
 704 cluster via a UCB-based policy and allocate an attack budget according to the cluster difficulty (easy
 705 → few PGD steps, hard/uncertain → more steps), always with per-sample early stopping enabled.
 706 We compare multiple variants such as: (1) LOAT with curriculum and no resampling, (2) LOAT
 707 with resampling inside clusters, (3) LOAT without curriculum (uniform cluster selection), and (4) a
 708 standard TRADES or PGD10 of Free-AT baseline.

709 **SimCLR and Adversarial Autoencoder.** The teacher uses a ResNet-18 backbone with Dual
 710 BatchNorm for both SimCLR pretraining and the adversarial autoencoder (AE). For SimCLR, we
 711 attach a two-layer projection head (512→512→128 with ReLU), and train for 50 epochs using
 712 the NT-Xent loss with temperature $\tau = 0.5$, batch size 256, SGD (momentum 0.9, weight decay
 713 5×10^{-4}), and a cosine learning-rate schedule starting at 0.3. The AE reuses the same encoder up to
 714 the global-average-pooling layer, followed by a 256-dimensional latent bottleneck and a symmetric
 715 three-block transposed-convolution decoder producing a $3 \times 32 \times 32$ output. It is trained for 20
 716 epochs using an MSE reconstruction loss plus an adversarial consistency term obtained with PGD-5
 717 perturbations at $\epsilon = 8/255$. These components provide two complementary feature views for clus-
 718 tering during teacher discovery; the student does not use their weights, only the resulting cluster
 719 structure and difficulty profiles.

720 **Adversarial training details.** All methods use ℓ_∞ attacks with $\epsilon = 8/255$. PGD training uses 10
 721 steps with step size 2/255 and random starts. Evaluation uses PGD-20 with 2 random restarts, and
 722 we record both clean and robust accuracy as well as the total number of PGD calls. For LOAT, we
 723 additionally track the number of steps actually taken per sample due to early stopping.

724 **AutoAttack verification.** For a subset of representative checkpoints (LOAT and baselines), we
 725 run AutoAttack (standard ℓ_∞ configuration, $\epsilon = 8/255$) on the first 10,000 CIFAR-10 test images
 726 with batch size 128, using the same ResNet-18 + Dual BN architecture as in training, with similar
 727 percentages for the other datasets. This confirms that PGD-20 reproduces the same relative ordering
 728 of methods.

729 **Random seeds and repetitions.** All scripts accept an explicit `--seed` parameter (default 1337)
 730 which is used to seed PyTorch and NumPy. For the main LOAT vs Free-AT comparison we run at
 731 least three independent seeds and report aggregate statistics (means, confidence intervals, and effect
 732 sizes) as described in the text.

733 **Baselines and configuration parity.** Free-AT baselines are trained with 10 epochs (and 30
 734 epochs), batch size 128, and the same $\epsilon = 8/255$, using $m_{\text{free}} = 4$ minibatch replays. Evaluation
 735 uses PGD-20 with identical evaluation code as for LOAT to ensure comparability of robustness
 736 and PGD-call counts.

737 **Hardware and runtime.** All experiments are run on a single NVIDIA GeForce RTX 4070 Ti
 738 Super GPU. Under this setup, a LOAT student (10 epochs) trains in roughly 25 minutes with fewer
 739 than 2M PGD calls, whereas comparable state-of-the-art methods such as TRADES, CAT and others
 740 incur millions more PGD calls at similar or lower robustness.

741 **Fairness of Comparison Description in Implementation** All baselines were trained using their
 742 canonical configurations (e.g., PGD-10 with 30 epochs, TRADES $\beta=6.0$ with 30 epochs, Free-AT
 743 with $m=4$, in addition to direct comparison (such as under edge conditions with 10 epochs against
 744 LOAT) and evaluated under identical PGD-20 evaluation, architectures, data augmentations, and
 745 threat models. LOAT students use the same ResNet-18 + Dual BN backbone to eliminate rep-
 746 resentation disparities. We also provide matched-epoch comparisons (10-epoch PGD-10, 10-epoch
 747 TRADES) to control for wall-clock budgets. Against baselines, Free-AT achieves strong raw effi-
 748 ciency, with its gains coupled with well-documented instability and sensitivity to attack schedules.
 749 LOAT reaches similar or higher robustness-per-compute, but does so with greater stability, no catas-
 750 tropic overfitting, and a transferable teacher-derived curriculum that provides amortized benefits in
 751 multi-student or multi-deployment settings.

756 **D WALL CLOCK COMPARISON**
757758 Table 7 reports end-to-end wall-clock time, including all phases of the LOAT pipeline, SimCLR pre-
759 training (50 epochs), adversarial autoencoder training (20 epochs), teacher TRADES training, fea-
760 ture extraction, clustering, transition-matrix estimation, and finally student training. This provides a
761 complete lifecycle accounting. Although the teacher is intentionally expensive, its cost is paid once
762 and the resulting recipe can be reused across any number of students or downstream deployments.
763 In realistic deployment scenarios such as edge devices, fine-tuning runs, incremental model updates,
764 or lightweight architectures the teacher amortizes rapidly with as few as 3–5 students, with LOAT’s
765 amortized wall-clock dropping below stable baselines, rivaling efficiency across all baselines. As
766 the number of student deployments increases, the amortized wall-clock advantage (with respect to
767 efficiency) widens further, because the teacher’s one-time cost shrinks while baselines must retrain
768 from scratch every time. Importantly, we also control for representation advantages by evaluating
769 LOAT students without any teacher-side SimCLR/AE initialization; the amortized benefit persists,
770 showing that the efficiency gain is due to the latent-order scheduling, not the teacher’s pretrained
771 features. Overall, the wall-clock analysis demonstrates that LOAT is a transferable and compute-
772 efficient method whose full lifecycle cost is justified.
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812813 Table 7: Wall-Clock Training Times for All Required Experiments. All runs use a single NVIDIA
814 GeForce RTX 4070 Ti Super GPU with batch size 128. Teacher times (30 epochs) include SimCLR
815 pretraining (50 epochs when applicable), adversarial autoencoder training (2-20 epochs), TRADES-
816 based adversarial training, attack-step logging, and clustering discovery. Student times (10 epochs,
817 unless otherwise stated) include full LOAT training with cluster-adaptive PGD.

Method	Dataset	K	Phase	Wall Time
<i>CIFAR-10: K Variations</i>				
LOAT (no SimCLR)	CIFAR-10	3	Teacher	3.2h
LOAT (no SimCLR)	CIFAR-10	3	Student	20min
LOAT	CIFAR-10	3	Teacher	2.9h
LOAT	CIFAR-10	3	Student	24min
LOAT (Canonical)	CIFAR-10	5	Teacher	4.8h
LOAT (Canonical)	CIFAR-10	5	Student	33min
LOAT (no SimCLR)	CIFAR-10	5	Teacher	2.5h
LOAT (no SimCLR)	CIFAR-10	5	Student	40min
LOAT (no AE)	CIFAR-10	5	Teacher	2.81h
LOAT (no AE)	CIFAR-10	5	Student	37min
LOAT (no SimCLR)	CIFAR-10	7	Teacher	3.3h
LOAT (no SimCLR)	CIFAR-10	7	Student	33min
LOAT	CIFAR-10	7	Teacher	2.99h
LOAT	CIFAR-10	7	Student	36min
<i>CIFAR-10: End-to-End Canonical Cost (K=5, with SimCLR)</i>				
LOAT (Teacher+Student, 1 deploy)	CIFAR-10	5	Total	5.35h
<i>CIFAR-100: K=5</i>				
LOAT (no SimCLR)	CIFAR-100	5	Teacher	4.8h
LOAT (no SimCLR)	CIFAR-100	5	Student	32min
LOAT	CIFAR-100	5	Teacher	4.6h
LOAT	CIFAR-100	5	Student	28min
<i>CIFAR-100: End-to-End Cost (K=5, with SimCLR)</i>				
LOAT (Teacher+Student, 1 deploy)	CIFAR-100	5	Total	5.06h
<i>Generalizations: K=5, 30 epoch teacher, 10 epoch student</i>				
LOAT	Tiny ImageNet	5	Teacher	32.3h
LOAT	Tiny ImageNet	5	Student	8.2h
LOAT	STL-10	5	Teacher	1.83h
LOAT	STL-10	5	Student	42min
<i>Baselines (CIFAR-10, 30 epochs)</i>				
PGD-10 Standard	CIFAR-10	-	Baseline	1.96h
Free-AT (m=4, 10 epochs)	CIFAR-10	-	Baseline	30min
TRADES ($\beta=6.0$)	CIFAR-10	-	Baseline	1.95h

859 Amortization: Reuse the teacher recipe for N students for an average cost per model $\frac{t_{\text{teacher}} + N \times t_{\text{student}}}{N}$. For860 CIFAR-10 K=5 with $N = 25$: $\frac{4.8h + 25 \times 0.33m}{25} = .742h$ per model, we get $2.6 \times$ faster than retraining
861 TRADES for each model.862
863