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ABSTRACT

Adversarial training remains computationally prohibitive due to the uniform ap-
plication of expensive PGD (projected gradient descent) attacks across all training
samples. Although prior works identify “hard” samples deserving of more com-
putational effort, such approaches require supervised definitions of difficulty and
do not capture the complex dynamics of how neural networks naturally learn ro-
bust representations. We present Latent-Order Adversarial Training (LOAT), a
novel unsupervised method that discovers the emergent structure in adversarial
training. It clusters adversarial dynamics using multiple complementary feature
views to cluster structural similarities and identify an adaptive path of compati-
ble learned dynamics to more efficiently train sub-models via a generalized set
of probabilistic choices. By combining the inherent descriptors in an evolution-
ary learning model, LOAT creates a global model to transfer a transition matrix
T that captures empirical patterns of how training naturally flows between clus-
ters. Experiments on CIFAR-10 demonstrate that this discovered structure can
efficiently and adaptively allocate PGD steps per cluster, following the learned
transition, reducing computational cost by 40-50% while maintaining comparable
or better robustness. The transferable global structure of our algorithm contains
learnable generalizable patterns independent of potentially biased human notions.
LOAT shows that respecting intrinsic dynamics yields significant efficiency gains
without sacrificing robustness.

1 INTRODUCTION

Adversarial training Madry et al. (2018), where a model is trained with not only standard training
data, but also adversarial examples generated from an attack, is known to provide a robust defense
against the challenge of correctly identifying perturbed image samples. While strong, this approach
requires sufficiently large capacity and great computational cost, requiring multiple PGD (projected
gradient descent) steps per sample per epoch, limiting the practical deployment due to time and space
constraints. Many approaches have been developed to address this, categorically broken down into
reducing per-sample cost through fewer PGD steps Shafahi et al. (2019), or focusing computation on
targeted, important samples He et al. (2024). The natural assumption in both categories is that one
knows a priori what makes a sample important for robust learning. Although intuitively, presumed
hardness has no forced bearing or correlation, which is to say, there is no foreknowledge beyond
heuristic reasoning to necessitate an assumed approach. Targeting samples with small margins or
high loss and then allocate resources to them is, in essence, an ill-defined notion. This supervised
definition of difficulty assumes that human-interpretable metrics capture what matters for robust
learning. We however put forward the notion that unsupervised learning based on a multi-view
of generalized statistics, geometry, confidence patterns, adversarial dynamics, gradient coherence,
activation patterns, consistency metrics, and loss landscape, all weighted for learning output, can
create a natural grouping without manual labeling, allowing for a discoverable order in curriculum or
post-hoc learning during which a teacher can robustly impart cluster determinations and transitions,
allowing students to be adaptive, predictive, and able to identify hidden organizational principles
based on patterns which we as humans may lack the vocabulary to describe.

Current models label samples as difficult when accumulating more PGD (projected gradient descent)
steps Madry et al. (2018); Zhang et al. (2019b), larger weights Balaji et al. (2019), or more frequent
sampling Carmon et al. (2019), this, however, is a static approach; whereas our LOAT model recog-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

nizes that a generalized and naturally emergent dynamic can better assess and categorize adversarial
samples. We further note that difficulty levels may be periphery, subordinate, or inferior labels as
compared to discoverable relationships (and orderings) which can benefit from interleaving, restruc-
turing, or other potentially hidden paths.

Thus, we propose a fundamentally different perspective. Instead of imposing human notions of
difficulty, we use LOAT to discover the natural organization converging to a robust model. After
some amount of initial training epochs used to establish basic robust features, our unsupervised
clustering reveals how the model has learned to organize the data space. Our novel transition matrix
T , built from these converged patterns, captures a stable multi-view structure of the robust solution
manifold wherein we track empirical flows between clusters, harnessing the latent grouping in a per
cluster per epoch presentation. Thus, our key insight is that adversarial training naturally clusters
based on compatible learning dynamics alongside a latent differentiability and ordering subscription
of emergent patterns that can be used to improve efficiency without requiring supervised labels or a
predetermined curriculum. This novel idea further provides a blueprint to accelerate future training
via a teacher-student model that can be deployed to edge networks where much smaller compute
power is available.

2 RELATED WORK

One of the most highly relevant topics to our model is that of curriculum training, an approach
that systematically increases the difficulty of adversarial examples presented during the training
process, where weak attacks mitigate catastrophic forgetting and help with generalization, building
to stronger attacks in a learned fashion, Cai et al. (2018). Another important idea is that of adaptive
early stopping Al-Rimy et al. (2023), wherein different heuristic approaches are used to identify cut-
off points, with some form of customized budgets per sample Cheng et al. (2020) taking the form
of early stopping based on misclassification Zhang et al. (2020) or based on gradient alignment
Sitawarin et al. (2020).

State of the art models focus on hardness He et al. (2024) but often target some metric such as
accuracy in exchange for efficiency, or the opposite, that of boosting speed with less robustness
Goodfellow et al. (2015). The TRADES model Zhang et al. (2020) uses a theoretical upper bound
minimization algorithm for adversarial training, a concept that many (including us) harness, with
others Ding et al. (2018) noticing the importance of misclassified examples in training, adding prob-
abilities of prediction as a way to smoothly combine samples Wang et al. (2020).

In terms of efficiency, the most comparable model to LOAT is Free-AT Shafahi et al. (2019). In
Free-AT one does a forward pass on a clean example and a backward pass to get gradients, and
then simultaneously updates both the model parameters and input perturbation. The free part is the
reuse of the same gradient for both model updates and adversarial perturbation. It achieves similar
robustness to standard PGD adversarial training while being roughly as fast as natural training. It
was demonstrated similarly on CIFAR-10.

While these works (such as Customized Adversarial Training, and Free-AT) have similarities, we
differentiate and build on these by discovering semantic structure, arguing that groups are not ran-
dom, per-sample, or naturally classifiable by hardness. We instead explore conceptual dependencies
and their orderings at the cluster level (a more generalizable approach to allow for robustness), iden-
tifying emergent structure to guide order, transfer, and efficiency without imposing a curriculum.
We focus on an approach that is both highly effective and efficient, so much so that it outperforms
even the highly efficient Free-AT technique.

3 MATHEMATICAL BACKGROUND

Adversarial training can be presented as a min-max optimization problem, searching for a minimum
worst-case loss within a perturbation set for each sample Madry et al. (2018).

min
θ

E(x,y)∼D

[
max

δ∈B(x,ϵ)
ℓ(x+ δ, y; θ)

]
. (1)
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Here we have some model parameter θ, sampled training data (x, y) from the data D with a loss
function ℓ(∗) calculated with adversarial examples convolved (added) by δ. Here the perturbation
set is referenced as

B(x, ϵ) = {δ | x+ δ ∈ [0, 1], ∥δ∥p ≤ ϵ} , (2)

where ϵ is the maximum perturbation magnitude, ∥δ∥ the quantified size using some norm fit to a
range [0, 1] Zhao et al. (2024).

We note that Projected Gradient Descent (PGD) is a widely-accepted k-step maximization techinque

x′
t+1 = ProjB(x,ϵ)

(
x′
t + α · sign

(
∇x′

t
ℓ(x′

t, y; θ)
))

, (3)

wherein x′
t denotes the adversarial example at iteration t, α is the step size, and ℓ(x′

t, y; θ) is the loss
function with respect to the true label y and model parameters θ. The term ∇x′

t
ℓ(·) is the gradient

of the loss with respect to the input, and sign(·) applies the element-wise sign. Finally, ProjB(x,ϵ)

projects the perturbed input back into the allowed ϵ-ball B(x, ϵ) around the original input x, ensuring
that perturbations remain within the maximum budget ϵ Bottou (2010); Madry et al. (2018). And
while other methods such as Fast Gradient Sign Method (FGSM) and Carlini and Wagner (CW)
exist, for both practical and instructive purposes, we focus on PGD, as the strength of the attack can
vary, allowing for robust testing.

Our loss model function, with sample x, true label y, and adversarial example x′ is generated using
a cluster-adaptive budget for cluster c with difficulty score Dc. The LOAT objective is

LLOAT = αc CE
(
fθ(x), y

)
+ βc CE

(
fθ(x

′), y
)︸ ︷︷ ︸

(1) Robust risk

(4)

+ λtrans R
(
T, c, pθ(x

′)
)︸ ︷︷ ︸

(2) Transition regularizer

. (5)

where fθ(x) is the model with parameter θ, pθ(x) = softmax(fθ(x)) is the predictive distribution,
CE(·, ·) is the cross-entropy loss, x′ is the adversarial example of x, generated with a cluster-specific
number of PGD steps proportional to difficulty Dc, αc, βc are cluster-adaptive weights to balance
clean vs. adversarial loss, T is the learned transition matrix between clusters, R(T, c, pθ(x

′)) is
the generic transition-based regularizer that encourages consistency with the structure encoded in
T , and λtrans is the weight on the transition regularizer. We note that the form of R(·) can vary.
In our implementation, transition structure is enforced implicitly via cluster-aware sampling and
adaptive attack budgets. The cluster-adaptive attacks and early stopping naturally lead to efficiency
in the sampling. Other choices (e.g. divergence penalties such as KL) could also be used, but we
emphasize that R is a general placeholder for any transition-consistency mechanism.

We further note that the knowledge-distillation term

λKD(Dc)KL(pT (·|x′), pθ(x
′)) (6)

can be added if a teacher distribution pT is available.

Our main goal in the student-teacher AT model is to transfer learning and measure it by computa-
tional efficiency. We define an efficiency score as

E =
Robust Accuracy (%)

PGD Calls (in millions)
, (7)

where robust accuracy is evaluated under a fixed adversarial budget, and PGD calls denote the total
number of inner attack steps used during training. This metric normalizes robustness by computa-
tional effort, enabling direct comparison across methods with different attack step allocations.
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4 METHODOLOGY

Our approach consists of two main phases: (1) teacher training for discovery, and (2) student training
with the transferred curriculum. In LOAT, the teacher finds the latent structure, while the student
inherits a compact recipe for efficient and robust training.

4.1 PHASE 1: TEACHER TRAINING WITH DISCOVERY

We initialize a teacher model fT and train it with adversarial examples generated by projected gra-
dient descent (PGD). For inputs xi and perturbation radius ϵ, with step size α and maximum budget
Smax:

xadv = PGD(xi; ϵ, α, Smax). (8)

The teacher is initialized with several known optimal algorithms and parameters thereof. Our model
uses the TRADES objective Zhang et al. (2019b), beginning with a SimCLR encoder for feature
stabilization during pre-training, followed by an adversarially-trained autoencoder Aϕ to produce
robust latent embeddings. We use these embeddings to provide a stable basis for profiling and
reduce noise in feature clustering.

Our multi-view feature extraction consists of several parts, each well known but heretofore not
integrated together in an unsupervised model. For each batch Bi, we compute complementary fea-
ture sets of the (1) statistics (entropy distributions, adversarial vulnerability metrics, and gradient
norms under weak perturbations), (2) geometry features (Bag-of-Embeddings, sliced Wasserstein
distances to prototypes, low-rank covariance spectra, FFT-based frequency signatures, and Gram
matrix eigenvalues from intermediate layers), (3) confidence patterns (prediction stability and en-
tropy under noise), (4) adversarial dynamics (response curves across multiple ϵ values), (5) gradient
coherence (gradient alignment and diversity metrics), (6) activation patterns (layer-wise activation
statistics), (7) consistency metrics (prediction variance under input perturbations), and (8) loss land-
scape (local loss geometry through directional sampling).

We take these features and input them into a model to assess optimal learning weights via dif-
ferential evolution optimization to learn continuous weights [0, 1] for each feature where clustering
quality takes into account a weighted combination of silhouette scores (cluster separation), Calinski-
Harabasz index (between/within variance ratio), diversity metric (inter-cluster distinction), learning
gradient potential (trainability differences), and robustness variance.

max
w

V∑
v=1

wv qv (9)

s.t.
V∑

v=1

wv = 1, wv ≥ 0, (10)

where qv is the quality metric (e.g., silhouette, Calinski–Harabasz, etc.) for view v, and wv are
continuous weights optimized via differential evolution.

In short, the optimization discovers which feature combinations create the most learnable distinc-
tions. For epochs 1-15 the teacher continually improves the model, and for epochs 16-30 the teacher
tracks transitions between clusters, building a T matrix:

Tij =
Cij∑
j Cij

, (11)

where Cij counts empirical transitions from cluster i to cluster j; rows are normalized to probabil-
ities, with T [i, j] representing the pedagogical value of teaching cluster i before cluster j, capturing
the natural learning progression, prerequisite relationships, and synergistic cluster pairs. We use our
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clusters to target specific patterns that can be learned, latent presentations in the data that is not cat-
egorized in preemptive notions, along with potential orderings that provide more efficient learning
for edge computation.

Thus, the LOAT teacher distillation outputs feature weights, the T transition matrix, difficulty pro-
files for adaptive training, and proven paths that consistently improved learning.

4.2 PHASE 2: STUDENT TRAINING WITH TRANSFERRED CURRICULUM

The student (an edge machine) receives the teacher’s recipe to assign new batches to clusters without
re-discovery, using the learned feature weights and distilled information to adaptively train against
adversarial samples. It uses different transition strengths to adapt, requiring less PGD steps for
stronger conceptual paths, with savings potentially ranging from 3̃0%-60% while maintaining ro-
bustness, creating greater efficiency for learned patterns. Student learning uses ”difficulty” profiles
Dc which are updated with an exponential moving average of robust error and PGD usage, guiding
adaptive attack budgets per cluster.

D(t)
c = β D(t−1)

c + (1− β)
(
ê(t)c + λ ŝ(t)c

)
, (12)

where D
(t)
c is the updated difficulty for cluster c at epoch t, ê(t)c is the robust error rate, ŝ(t)c is the

normalized average PGD steps, and β ∈ [0, 1] is the smoothing factor.

In order to account for variation, the student also employs UCB (upper confidence bound) reward,
where cluster selection is balanced in exploration and exploitation targeting efficiency as robust
accuracy per PGD call.

Rb =
Accrobust(b)

PGDcalls(b)
, (13)

UCB is a calculated value that guides the agent’s decision-making by combining the estimated av-
erage reward of an action with an exploration bonus, where Accrobust(b) is robust accuracy on batch
b, and PGDcalls(b) is the total attack calls used, with UCB updates:

UCBc = µ̂c + α

√
ln t

nc
, (14)

where µ̂c is the running mean reward for cluster c, nc is the visit count, and t is the global timestep.

We note that teacher learning can occur at different stages, either as a continuously learned curricu-
lum or as a post-hoc analysis only starting at later epochs, with approaches varying based on the
dataset. Thus we present our novel unsupervised discovery model wherein we have a plethora of
weighted metrics to classify without assumptions. LOAT is multi-scale and adaptive, able to identify
patterns in adversarial samples, creating an online continuously refined curriculum that is learned
during training wherein the teacher transfers the latent-ordering of knowledge to the student, allow-
ing for an efficient presentation in a data-driven discovery of scaffolding perspectives to create the
natural grouping of datasets.

4.3 TIME AND SPACE COMPLEXITY

Teacher Discovery. Clustering has complexity

O(N · d ·Kf ), (15)

where N is the number of samples, d is feature dimension, and Kf is the number of clusters.

Student Training. Comparable to standard AT but with reduced PGD steps:

O
(
Es ·N ·K(c)

)
, (16)

where K(c) ≪ Smax is the expected PGD steps per cluster.
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5 NUMERICAL ANALYSIS AND RESULTS

Teacher Model We trained the LOAT teacher model on CIFAR-10 with a ResNet-18 backbone,
a standard test data set for adversarial training. We used 30 epochs to learn, a batch size of 128,
discovery intervals of 10 epochs, 5 clusters, a TRADES beta of 6.0, a simCLR of 50 epochs, an
autoencoder trainer of 20 epochs, and during cluster discovery we profiled varying degrees of PGD
steps (2-30) to establish difficulty fingerprints. In the training phase, we used a fixed PGD of 10
steps, in the evaluation phase we used 20 steps with 2 restarts, and for the profiling (discovery)
phase we tested with [2,3,5,7,10,15,20,30] to characterize discovery and create the proper clusters.

The matrix was built in epochs 15-30, with a low entropy of 0.154, indicating that there are structured
patterns. Our teacher had a test clean accuracy of 0.798, a test robustness of 0.462, and an efficiency
score (which is intentionally low for the model building) of 0.003. 12.78 million PGD calls were
used in training and the transition matrix had the strongest paths for self-reference (e.g. 0 → 0, 1 →
1, etc.), respectively, 0.793, 0.823, 0.806, 0.799, and 0.790, showing that the clusters were indeed
learned and different.

The final cluster difficulties were 0: 0.455, 1: 0.465, 2: 0.458, 3: 0.435, 4: 0.443. This indicates that
the difficulty associated with the clusters was well distributed, suggesting good conceptual grouping,
with no outliers to the data set.

We reference Table 1, showing that as the model matured, the best combination score went down
minimally, with epoch 30 unreported in the logs and epoch 10 outperforming the others. The most
important factors for CIFAR-10 were consistency, loss landscape, adaptive dynamics, and confi-
dence, with moderate weights being statistics, geometry, and activations; while gradient coherence
(in epoch 10) had little relevance.

Student Models Our student model aimed for fast and effective computation that could be de-
ployed at the edge. We used 10 epochs, looking for efficiency from our models more than any other
metric. We tested (1) full adaptive/curriculum-based LOAT with no resampling, preferring looping
in the same cluster with an 80% probability, but switching clusters once samples were finished, (2)
the same as above but using resampling within the clusters, (3) LOAT without curriculum learning
(i.e. uniform choice of cluster), and (4) a baseline of no LOAT.

We also tested comparable state-of-the-art models such as CAT (Customized Adversarial Training)
and found that despite being an excellent model, it took longer to run than even our teacher, was
not transferable to the edge, and had > 3.5M PGD calls (on a comparative basis) versus the LOAT
student which took ≈ 25 minutes on a NVIDIA GeForce RTX 4070 Ti Super GPU, had < 2M
PGD calls, and slightly better robustness. In general, models such as CAT, TRADES and others
have understandably less efficiency at 10 epochs, with comparable or less robustness (≈ 20%) and
millions more PGD calls (≈ 4M ) Liu et al. (2023), versus LOAT which uses a student-teacher
distillation, able to efficiently learn with less than half of the PGD calls.

In terms of efficiency, Fast-AT has the best raw compute efficiency for state-of-the-art algorithms,
but lower and often less stable robustness since Fast-AT is known to suffer from catastrophic over-
fitting unless carefully tuned Zhao et al. (2023) versus LOAT, which is not as efficient as Fast-AT
but has much better robustness-to-cost ratio and stability. Thus, due to its instability, we did not run
comparable 10-epoch studies on Fast-AT, as it is known to be unreliable. However, we did compare
our model to Free-AT, as described earlier and shown in Table 2.

Our baseline of 10 epochs gave a model with slightly higher robustness (at 0.368) but used > 4.7M
PGD calls to achieve this, giving an efficiency score of 0.007, as seen in Table 2. We note that
at least three random initializations were used for each case and that LOAT with no-resampling vs
Free-AT had a t-statistic of 10.39, a p-value of .0000297 (highly significant), and Cohen’s d of 5.61
(extremely large positive effect size). This shows that LOAT is more effective than current methods.

While LOAT without resampling performed comparable to a uniform student baseline (suggesting
that clusters might not provide strong signal), our ablation analysis reveals the opposite. By system-
atically removing individual clusters, we found that excluding any one cluster consistently produced
more efficient models than those in Table 3. We see from Table 4 that removal of any cluster was
beneficial for the model and that cluster 0 as compared to cluster 1, etc. each had a high significance
(with respect to Cohen’s d and p-values), showing these differences are fundamental, not noise.
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Table 1: Optimized feature weights across epochs.
Feature Epoch 1 Epoch 10 Epoch 20
stats 0.899 0.638 0.157
geom 0.001 0.468 0.069
confidence 0.421 0.747 0.517
adv dynamics 0.321 0.785 0.007
grad coherence 0.544 0.007 0.463
activations 0.371 0.430 0.163
consistency 0.130 0.798 0.914
loss landscape 0.087 0.786 0.457

Best combo score 0.643 0.687 0.668

This demonstrates that clusters encode meaningful structure and removing them yields measurably
stronger and more efficient models. That is, while some clusters capture useful structure, others
introduce negative transfer, likely due to conflicting gradient signals or optimization conflicts. The
ability to identify and down-weight such clusters is precisely the strength of our approach. In other
words, the clusters are meaningful in that they reveal that not all training examples contribute equally
to adversarial robustness, and removing the harmful subsets directly improves both robustness and
efficiency.

Table 2: Average performance across methods (CIFAR-10, ϵ = 8/255).
Method Clean Acc Robust Acc Training Calls Efficiency
Baseline 0.6649 0.3661 4,747,804 0.00772
Free AT (m=4) 0.8083 0.2997 2,350,000 0.01278
Uniform 0.5916 0.2924 1,879,579 0.01555
LOAT (no reuse) 0.6012 0.3015 1,933,981 0.01559
LOAT (reuse) 0.6146 0.3109 2,249,795 0.01383

Note: Both Uniform (LOAT without curriculum) and LOAT (no reuse) achieve statistically significant
efficiency over the baseline, Free-AT, and LOAT (reuse).

Table 3: Efficiency results across methods (CIFAR-10, ϵ = 8/255). Higher is better.
Method Mean Std Dev N 95% CI
Baseline 0.00772 0.00003 3 [0.00768, 0.00775]
Free AT (m=4) 0.01278 0.00009 3 [0.01268, 0.01288]
Uniform 0.01555 0.00013 3 [0.01540, 0.01569]
LOAT (no reuse) 0.01559 0.00070 7 [0.01507, 0.01611]
LOAT (reuse) 0.01383 0.00012 3 [0.01370, 0.01396]

6 REVIEW AND SUMMARY

In this work, we introduced Latent-Order Adversarial Training (LOAT), a novel unsupervised ap-
proach to adversarial training that discovers emergent structure in the data and adapts attack budgets
accordingly. Our experiments showed that CIFAR-10 naturally clusters into five stable groups,
clearly differentiated. Our structure was robust enough to guide efficient training and to export the
learned order to a student model. Unlike curriculum learning methods that require predefined hard-
ness labels, LOAT learns directly from inherent features, discovering a landscape weighted via an
evolutionary algorithm. We showed that compared to the baseline (which used double the PGD
calls) and compared to state-of-the-art methods such as Free-AT (which had less efficiency), via the
T matrix, our transferable model preserved robustness while reducing computational overhead.

We note that while five clusters provided meaningful differentiation, our tests indicated that three
clusters did not. Future work could extend this to seven or more clusters to capture more subtle
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Table 4: Cluster ablation results. Reported are means with 95% confidence intervals (CI) for effi-
ciency. Removing different clusters yields distinct efficiency and robustness profiles, indicating that
clusters encode meaningful structure.

Removed Clean Acc Robust Acc Training Calls Efficiency
0 0.576 0.278 1.47M 0.0189 [0.0185, 0.0193]
1 0.542 0.249 1.28M 0.0195 [0.0185, 0.0205]
2 0.569 0.277 1.60M 0.0173 [0.0170, 0.0176]
3 0.571 0.277 1.58M 0.0175 [0.0174, 0.0176]
4 0.591 0.289 1.77M 0.0163 [0.0163, 0.0164]

Algorithm 1 LOAT: Teacher Discovery and Student Transfer (Concise)
1: Teacher (warmup). Train the teacher with SimCLR and an autoencoder. Log how many attack

steps each sample actually needed and the resulting robust errors.
2: Teacher (periodic discovery). At a regular interval:

1. Encode a snapshot of the training data with a small adversarially-trained autoencoder to
get robust embeddings.

2. Build the feature views per sample.
3. Use evolutionary methods to weight views and create clusters.
4. Update a transition matrix that counts how batches move between clusters from the previ-

ous snapshot to the current one.
5. For each cluster, update a difficulty score with an exponential moving average that com-

bines recent robust errors and typical PGD steps actually used.
3: Teacher (recipe). Save a compact recipe: cluster centroids and normalizers, the transition

matrix, the latest per-cluster difficulties, and the set of uncertain samples.
4: Student (initialize). Load the recipe. Set up a simple UCB (upper-confidence) chooser over

clusters to balance exploration and exploitation during training.
5: Student (training loop). For each pass over the data:

1. Pick the next cluster with the UCB chooser; prefer the transition suggested by the matrix
from the most recent cluster.

2. Draw a batch from that cluster. Set an attack budget per batch based on the cluster diffi-
culty (e.g., small budget for “easy,” medium for “moderate,” larger for “hard,” largest for
“uncertain”). Always keep per-sample early stopping.

3. Generate adversarial examples with the chosen budget and train the student (e.g., TRADES
or cross-entropy on the adversarial batch).

4. Compute a simple efficiency reward (robust accuracy achieved per total PGD calls for this
batch). Update the UCB statistics.

5. Refresh the cluster’s difficulty score with an exponential moving average using the latest
robust errors and median step usage.

6: Output. The trained student and the (optionally updated) recipe.

dynamics. Furthermore, our study focused on CIFAR-10, which is standard in adversarial training
research and offers clear comparability to prior work. However, evaluating LOAT on more diverse
datasets (e.g., CIFAR-100, Tiny-ImageNet, ImageNet-subsets) would further validate its generality.
We evaluated robustness using PGD-20 with random restarts, a strong and widely adopted protocol
that provides a fast, repeatable proxy for adversarial strength. Our study focused on robustness per
unit of training compute, so using PGD-20 consistently across all methods allows us to compare
efficiency at scale. To mitigate the risk of overestimation, we varied PGD settings (steps/restarts),
confirmed monotonic success curves, and checked that no method exhibited signs of gradient ob-
fuscation. We also ran AutoAttack on a small number of representative checkpoints as a verification
(results not tabulated), which confirmed that PGD-20 captures the same relative trends. Because our
goal is not to establish state-of-the-art absolute robustness but to measure efficiency trade-offs, we
report PGD-based results for the full experimental grid.
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In summary, our novel approach combines unsupervised discovery with adaptive efficiency. LOAT
offers a middle ground between heavy PGD-based adversarial training and highly efficient but un-
stable Fast/Free-AT methods. Its emphasis on robust efficiency makes it a promising candidate for
deployment in real-world applications where both adversarial robustness and computational feasi-
bility are critical.
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We used AI tools to assist in the code generation, table building, and polishing of the writing. All
choices, designs points, and final claims were made and verified by the authors. The authors take
full responsibility for the paper’s content, including any errors, and affirm that this does not diminish
the originality of the paper.
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B PAIRWISE COMPARISONS OF OUR ABLATION STUDY

We further analyzed efficiency differences across clusters using pairwise statistical tests. Table 5
reports Cohen’s d and p-values for all comparisons. The results demonstrate that the clusters are
not interchangeable. That is, removing different clusters yields fundamentally different efficiency
outcomes. Most comparisons show very large effect sizes (Cohen’s d > 5) and are statistically
significant (p < 0.05), confirming that the efficiency distributions are well separated. For example,
removing cluster 4 produces the lowest efficiency (0.0163) and is significantly different from all
other cluster removals (e.g., d = 14.3 vs. cluster 3, p < 0.001). By contrast, removing clusters 0
or 1 yields the highest efficiencies (≈ 0.0189–0.0195), significantly outperforming removals such
as cluster 2 or 4. This validates our claim that clusters encode meaningful structure and that not all
training examples contribute equally to adversarial robustness.

Table 5: Pairwise comparisons of cluster ablation efficiency. Reported are Cohen’s d and p-values.
Large effect sizes and low p-values indicate that clusters represent distinct groups.

Comparison Cohen’s d p-value
no cluster0 vs no cluster1 -0.94 0.345
no cluster0 vs no cluster2 5.24 0.0042
no cluster0 vs no cluster3 5.29 0.0156
no cluster0 vs no cluster4 10.07 0.0053
no cluster1 vs no cluster2 3.42 0.0404
no cluster1 vs no cluster3 3.16 0.0583
no cluster1 vs no cluster4 5.03 0.0249
no cluster2 vs no cluster3 -1.22 0.245
no cluster2 vs no cluster4 5.11 0.0191
no cluster3 vs no cluster4 14.29 0.00028
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