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ABSTRACT

Mechanistic interpretability has made great strides in identifying neural network
features (e.g., directions in hidden activation space) that mediate concepts (e.g.,
the birth year of a Nobel laureate) and enable predictable manipulation. Dis-
tributed alignment search (DAS) leverages supervision from counterfactual data
to learn concept features within hidden states, but DAS assumes we can afford
to conduct a brute force search over potential feature locations. To address this,
we present HyperDAS, a transformer-based hypernetwork architecture that (1)
automatically locates the token-positions of the residual stream that a concept is
realized in and (2) learns features of those residual stream vectors for the concept.
In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance
on the RAVEL benchmark for disentangling concepts in hidden states. In addition,
we review the design decisions we made to mitigate the concern that HyperDAS
(like all powerful interpretabilty methods) might inject new information into the
target model rather than faithfully interpreting it.

1 INTRODUCTION

Causal interpretability methods promise to demystify the internal workings of black-box language
models (LMs), thereby helping us to more accurately control these models and predict how they will
behave. Automating such efforts is critical for interpreting our largest and most performant models,
and great strides toward this goal have been made for circuit discovery (Conmy et al., 2023; Ra-
jaram et al., 2024) and neuron / feature labeling (Bills et al., 2023; Huang et al., 2023; Schwettmann
et al., 2023; Shaham et al., 2024). In the present paper, we complement these efforts by taking the
first steps toward automating interpretability for identifying features of hidden representations (e.g.,
directions in activation space) that mediate concepts (Mueller et al., 2024; Geiger et al., 2024a).

Interventions on model-internal states are the building blocks of causal interpretability. To establish
that features of a hidden representation are mediators of a concept, a large number of interchange
intervention (Vig et al., 2020; Geiger et al., 2020; Finlayson et al., 2021) experiments are performed
on the LM. Interchange interventions change features to values they would take on if a counterfactual
input were processed. For example, if the concept is C = the birth year of a person, we can fix the
features F of an LM processing the input Albert Einstein was born in to the value they take for
Marie Curie was a chemist. If the output changes from 1879 to 1934, we have a piece of evidence
that F mediates C. The field has developed a variety of methods for learning such interventions, but
all of them require a brute-force search through all potential hidden representations.

To address this significant bottlebeck for causal interpretability, we propose HyperDAS, a method
to automate this search process via a hypernetwork, i.e., a network trained to manipulate a target
model. In the HyperDAS architecture, a transformer-based hypernetwork localizes a concept within
the residual stream of a fixed layer in a target LM by:

1. Encoding a language description (e.g., the birth year of a person) of a concept using a trans-
former that can attend to the target LM processing a base prompt (e.g., Albert Einstein was
born in) and a counterfactual prompt (e.g., Marie Curie was a chemist).

2. Pairing tokens in the base and counterfactual prompts (e.g., align “Cur” with “Ein”) with an
attention mechanism using the encoding from (1) as a query and token-pairs as keys/values.
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Figure 1: The HyperDAS framework. To find the features that mediate the concept of “country”,
(1) Encoding Intervention A natural language description of the concept, ”Localize the country of
a city,” is provided to the Hypernetwork. This Hypernetwork is a decoder-only transformer with two
additional cross-attention blocks attending to the hidden states from the target LM when prompted
by the base sentence ”Vienna is in” and the counterfactual sentence ”I love Paris.” (2) Generating
Location With the representation from step 1 as query, HyperDAS performs attention to select the
counterfactual/base token pair “nna” and “Paris” as the localization the concept of “country” (3)
Generating Feature Subspace With the representation from step 1 as encoding, HyperDAS gener-
ates an orthogonal matrix that spawns the feature for “country”. (4) Interchange Intervention With
the intervention location from step 2 and feature subspace from step 3, HyperDAS performs causal
intervention by patching the features from “Paris” into “nna” in the country subspace, resulting in
the model to predict “nna” from the base prompt ”Vienna is in”.

3. Selecting features of the residual stream via a fixed orthogonal matrix that undergoes a House-
holder transformation (Householder, 1958) using the encoding from (1).

4. Patching the selected residual stream features of aligned tokens from the base prompt to the
values they take on in the residual stream of aligned tokens from the counterfactual prompt.

We benchmark HyperDAS on the RAVEL interpretability benchmark (Huang et al., 2024), in which
concepts related to a type of entity are disentangled. For example, we might seek to separate features
for the birth year and field of study of a Nobel laureate. HyperDAS achieves state-of-the-art perfor-
mance on RAVEL with a single model. Greater gains are achieved when a separate HyperDAS is
trained for each entity type (e.g., Nobel laureates).

Finally, we address the issue of whether HyperDAS is faithful to the target model. As we use more
complex machine learning tools for interpretability, there is an increasing concern that we are not
uncovering latent causal structure, but instead injecting new information to steer or edit a model
(Meng et al., 2022; Ghandeharioun et al., 2024). If we allow our supervised interpretability models
too much power, we run the risk of false-positive signals. Thus, we conclude with a discussion of
how our decisions about architecture, training, and evaluation were made in order to mitigate these
concerns for HyperDAS.

2 BACKGROUND

Automating Interpretability Workflows The growing size and complexity of language mod-
els demands scalable techniques for interpretability. Two major directions include localizing task-
specific information flow to connected model components (Conmy et al., 2023; Marks et al., 2024;
Rajaram et al., 2024; Ferrando & Voita, 2024) and finding feature subspaces that capture human-
interpretable concepts (Geiger et al., 2024b; Wu et al., 2024; Huben et al., 2024; Braun et al., 2024).
Depending on how the feature space is discovered, some methods also require an additional step of
automating feature labeling with natural language descriptions (Mu & Andreas, 2021; Hernandez
et al., 2022; Bills et al., 2023; Huang et al., 2023; Shaham et al., 2024). In this work, we focus on the
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second direction, taking a step towards automating the workflow of localizing human-interpretable
concepts in the feature subspaces of LLMs.

Identifying Features that Mediate Concepts Interchange interventions (Vig et al., 2020; Geiger
et al., 2020) is a method to identify neural representations that are causal mediators of high-level
concepts. Geiger et al. (2024b); Wu et al. (2024) further extend interchange interventions to localiz-
ing concepts in subspaces. However, these methods require an exhaustive search over all layers and
tokens to measure causal effects at each position. In practice, the lack of an effective search method
leads to heuristics in token selection. For examples, in knowledge editing and model inspection,
a widely held assumption is that the entity information is localized to the last entity token (Meng
et al., 2022; 2023; Hernandez et al., 2024; Geva et al., 2023; Ghandeharioun et al., 2024), which
does not hold for all entities (Meng et al., 2022). Our purposed method directly addresses this prob-
lem by using an end-to-end optimization to automatically learn to select the intervention site across
all tokens, conditioned on the entity and concept to localize.

The RAVEL Dataset The RAVEL benchmark evaluates how well an interpretability method can
localize and disentangle entity attributes through causal interventions. An example consists of a
base prompt that queries a specific attribute of an entity (e.g., Albert Einstein studied the field), a
counterfactual prompt containing a different entity of the same type (e.g., Poland declared 2011 the
Year of Marie Curie), an attribute targeted for intervention (e.g., fields of study or birth year), and a
counterfactual label for the base prompt. The label would be physics if the targeted attribute is birth
year, i.e., the intervention should not affect the field of study attribute, and it would be chemistry if
the targeted attribute is field of study.

Distributed Interchange Interventions Counterfactual inputs in the RAVEL dataset exist to sup-
port evaluations with distributed interchange interventions on the features of a hidden representation
H that encode an attribute in the original model M. In our experiments, features will be lines in
activation space encoded in a low-rank orthogonal matrix R. We perform an intervention that fixes
the linear subspace spanned by R to the value it takes for counterfactual input x̂:

H ← h̄ +R
T (R(ĥ) −R(h̄)) (1)

where h̄ and ĥ are the values that variable H has when the model M is run on x̄ and x̂, respectively.

RAVEL Metrics The metric from the RAVEL dataset has two components. The Cause score is
the proportion of interchange interventions that successfully change the attribute that was targeted,
and the Iso score is the proportion of interchange interventions that successfully do not change an
attribute that was not targeted. The Disentangle score is the average of these two.

Distributed Alignment Search The RAVEL evaluations use distributed alignment search (DAS;
Geiger et al. 2024b) as a baseline for learning the features of a hidden representation that mediate
an attribute. A rotation matrix is optimized on RAVEL examples with base input x̄, counterfactual
input x̂, and counterfactual label y using the following loss:

LDAS = ∑CE(M
H←h̄+RT (R(ĥ)−R(h̄))(x̄), y) (2)

where Mγ(x̄) is the output of the model M run on input x̄ with an intervention γ. Only the
parameters R are updated.

3 HYPERDAS

To localize a concept in a LM M, a HyperDAS architecture consists of a hypernetwork H that takes
in a text specification x of the target concept and dynamically selects the hidden representations
h̄ = M(x̄) and ĥ = M(x̂) for base input x̄ and counterfactual input x̂ and learns linear features
R, at the l-th layer, that mediate the target concept. Our specific model is as follows.
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Target Concept Embedding A token sequence x of length K that specifies the concept to local-
ize, e.g., the country a city is in, is encoded with the embeddings of the target model M to form the
zeroth layer of the residual stream for the hypernetwork h

0
= Emb(x) ∈ RK×d.

Cross-attention Decoder Layers After embedding the target concept, we run a transformer with
N decoder layers. Besides the standard multi-headed self-attention (MHA) and feed-forward layers
(MLP), each decoder block has two additional cross-attention modules to incorporate information
from the base and counterfactual runs.

Let h̄ ∈ RB×L×d and ĥ ∈ RS×L×d be the stacks of base and counterfactual hidden states from the
base and the counterfactual input, where L is the total number of sublayers of M, d is the hidden
dimension, and B and S are the sequence length of the base and source example, respectively. Two
multi-headed cross-attention modules ¯MHA and ˆMHA allow H to attend to h̄ and ĥ. Each layer of
the hypernetwork H can attend to the residual stream at every layer of the target model.

For the p-th decoder layer, of the hypernetwork H, the three attention mechanisms are as follows

h
′
p = MHA(Q(hp),K(hp),V(hp)) (3)

h
′′
p = ¯MHA(Q̄(h′

p), K̄(h̄), V̄(h̄)) (4)

hp+1 = ˆMHA(Q̂(h′′
p), K̂(ĥ), V̂(ĥ)) (5)

After the final transformer block is applied, the residual stream vector for the at the last token
position h

(N)
K ∈ Rd, encodes information about the concept targeted for intervention and the target

model’s base and counterfactual runs. This representation is used to generate pairwise token position
scores and feature subspace rotation matrix.

Pairwise Token Position Scores To localize the position of the intervention, we compute an inter-
vention score matrix G, which quantifies the extent of intervention for each pair of base-token and
counterfactual-token. The values in G range from 0 to 1, where 0 indicates no intervention and 1
signifies a full intervention. As above, B and S are the sequence lengths of the base and counterfac-
tual inputs, respectively, making G a matrix of dimensions (B,S + 1). The element Gb

s denotes the
score for replacing the b-th base token with the s-th counterfactual token. The additional row G

b
S+1

corresponds to the score for retaining the b-th base token without any intervention. Each column G
b

forms a probability distribution that adds up to 1, ensuring that each base token is influenced by at
most one source in sum. In Figure 1, only the token “nna” (the last token of the entity “Vienna”) in
the base input receives an intervention score of 1 when paired with the token “Paris” from the coun-
terfactual input. All other base tokens are paired with themselves at the extra row [self], indicating
no intervention. This demonstrates that the concept of “country” is localized to the last token of city
entities in this example.

To encode each base-counterfactual token pair in G at the layer l of the target LM, we define h̄
(l)
b

and ĥ
(l)
s to be the l-th layer residual stream representation of the target model at b-th token and s-th

token of the base and counterfactual input, respectively. We represent the token pair by:

h̃(b,s) = F ([h̄(l)
b ; ĥ

(l)
s ]) (6)

where F (.) ∶ R2d
→ Rd is a linear projection that condenses the concatenated representation into

the original dimension d. For the extra row representing retaining the base token, the representation
is simply the original base token representation:

h̃(b,S+1) = h̄
(l)
b (7)

Using h
(N)
K ∈ Rd from the previous step as the argument to the query Q and the token pair rep-

resentations h̃ as the argument to the key K, a multi-head attention weight, softmaxing at every
column of the matrix, is calculated to be the pairwise token position scores after averaging across
all N attention heads:
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G = ColumnSoftmax
⎛
⎝
∑Q(h(N)

K )K(h̃)T

N
√
d

⎞
⎠ (8)

Dynamically Learning a Subspace to Intervene On In addition to pairing token positions for
token-level localization, HyperDAS also localizes the target concept to a hidden representation sub-
space. First, we apply a multi-layer perceptron to h

(N)
K ∈ Rd in order to produce into a new vector

v = MLP(h(N)
K ) ∈ Rd that will be used to dynamically select a subspace that mediates the target

concept. In DAS, there is a fixed low-rank matrix with orthogonal columns R represents a fixed
subspace targeted for intervention. We use a linear algebra operation known as the householder
transformation to transform R conditional on v into a new matrix R

′. Given a non-zero vector
v ∈ Rd, the Householder transformation H is defined as:

H = I − 2
vv

⊤

v⊤v
(9)

where I is the identity matrix. The matrix H is orthogonal and R has orthogonal columns, which
means RH has orthogonal columns. Utilizing this property, we can dynamically select the subspace
with based on the intervention representation h

K
N by computing R

′
= RH.

Interchange Intervention With the pairwise token position scores and feature subspace rotation
matrix, HyperDAS could perform a interchange intervention that adheres to the principles of causal
mediation analysis. For the b-th token position base hidden states h̄l

b, the source hidden states is:

h̃
(l)
b = G(b,S+1)h̄

(l)
b +

S

∑
s=1

G(b,s)ĥ
(l)
s (10)

With each column Gb of the matrix being a probability distribution sums up to 1, the source hidden
states remain identical to the base hidden states when G(b,S+1) = 1. This condition indicates that no
intervention occurs at the b-th token. Conversely, If G(b,s) = 1 for a specific position s, the source
hidden states are exactly those from the s-th counterfactual token.

For the hidden states at l-th layer, we construct a differentiable weighted interchange intervention
with the source hidden states h̃(l) and low-rank orthogonal matrix R

′. At each token position b:

H
(l)
b ← h̄

(l)
b +R

′T (R′(h̃(l)
b ) −R

′(h̄(l)
b )) (11)

3.1 TRAINING

We train HyperDAS on the RAVEL dataset with a two-component loss: a training loss which mea-
sures success on the intervention task, and a sparsity loss which incentivizes the model to select
unique token-pairings.

Training Loss A RAVEL example consists of a base input x̄, counterfactual input x̂, target con-
cept input x, and a counterfactual label y. When the target concept matches the attribute queried in
the base input, the label y is the attribute of x̂. Otherwise, y is x̄. The loss is given as:

LDAS = ∑CE( M
H

(l)
b ←h̄

(l)
b +RT (R(h̄(l)

b )−R(h̃(l)
b ))(x̄),y) (12)

Sparse Attention Loss Note that the columnwise softmax from Equation 8 only constrains the
number of tokens paired with each base token, which allows the each counterfactual token to be
paired with multiple base tokens. Thus, we include a sparse attention loss that penalizes cases
where one counterfactual token attends strongly to multiple base tokens in each row of matrix G:

Lsparse =
1

S

S

∑
s=1

{Sum(Gs) if Sum(Gs) > 1

0 if Sum(Gs) ≤ 1
(13)
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Figure 2: The intervention location while intervening from the counterfactual sentence “People in
Paris speak French. People in Christchurch speak” to “city: Pula, country: ”. The attribute targeted
for intervention is country, so the output should be New Zealand. A weighted intervention (left) that
constructs a counterfactual representation with a weighted sum, a one-to-many intervention (middle)
that snaps each base token to a counterfactual token, and a one-to-one intervention (right) that snaps
each base token to a unique counterfactual token.

The final loss is given as L = LRAVEL + λLsparse. λ is a hyperparameter scheduled during training.

3.2 EVALUATION

HyperDAS is end-to-end differentiable because discrete operations like aligning base and counter-
factual tokens are “softened” using softmax operators and sparsity loss constraints. During evalua-
tion, we force these discrete decisions. As the left-most Figure in 2 shows, the matrix G contains
weights for multiple tokens in the counterfactual sentence. First, each column of the intervention
ratio matrix is argmaxed to obtain the counterfactual-base tokens pair with the most weight:

G(b,s) = {1 if G(b,s) = max(Gb)
0 if G(b,s) ≠ max(Gb)

(14)

This is the One-to-Many Intervention setting, because multiple base tokens can be aligned with a
single counterfactual token. For One-to-One Intervention setting, each counterfactual token is only
and fully aligned with the base token with the highest weight on top of the One-to-Many setting.

4 EXPERIMENTS

We benchmark HyperDAS on RAVEL with Llama3-8B (Meta, 2024) as a target model. We train
a separate HyperDAS model for each of the five entity domains in the RAVEL benchmark, i.e.,
cities, Nobel laureates, occupations, physical objects, and verbs. We experimented with initializ-
ing the transformer hypernetwork from pre-trained parameters, but found there were no significant
advantage in preliminary evaluations.

Multi-task DAS (MDAS) Baseline The current state-of-the-art method on RAVEL is MDAS,
which uses a multi-task learning objective to satisfy multiple high-level causal criteria. MDAS,
however, relies on manually selected layer and token position for interventions, and it also requires
supervision on the attribute. We follow Huang et al. (2024) to intervene on the last entity token of
the middle layer, i.e., layer 15 in Llama3-8B.

Masking of the Base Prompt As the hypernetwork has access to the target attribute informa-
tion from the instruction and the base attribute information from the base model states, a trivial
solution the hypernetwork can learn is to condition the intervention location on whether the target
attribute matches the base attribute, namely if the two attributes match, attending to a location that
has causal effect on the output, otherwise, attending to the extra [self] row (See Appendix A.3 for
an example). This solution, however, does not find the actual concept subspace. To prevent the hy-
pernetwork from learning this trivial solution, we apply attention mask on the base prompt to mask
out the attribute information. With the masking, the hypernetwork no longer has access to the base
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Methods City Nobel Laureate Occupation Physical Object Verb Average
Causal Iso Causal Iso Causal Iso Causal Iso Causal Iso Disentangle

MDAS 55.8 77.9 56.0 93.5 50.7 88.1 85.0 97.9 74.3 79.6 76.0
HyperDAS 70.8 93.9 55.4 95.1 50.4 99.1 92.7 97.2 93.0 98.9 84.7
- All Domains 58.8 90.5 47.6 92.0 75.7 82.1 92.9 94.5 86.9 95.8 80.7

(a) Main results of HyperDAS on five domains of RAVEL with Llama3-8B. HyperDAS achieves the state-of-
the-art attribute disentangling performance across the board.
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(b) The causal/iso/disentangle score of the baseline method and HyperDAS for the entity type of “city” across
the layers of Llama3-8B. For the MDAS baseline, the highest Cause Score also happens at L19.

Figure 3: RAVEL benchmark results. HyperDAS establishes a new state-of-the-art.

attribute information, hence the localization prediction is only conditioned on the target attribute in
the natural language instruction.

Crucial Hyperparameters We use 8 decoder block for the hypernetwork and 32 attention heads
for computing the pairwise token position attention. The sparsity loss weight is scheduled to linearly
scheduled = from 0 to 1.5, starting at 50% of the total steps. A learning rate between 2 × 10

4 to
2 × 10

5 is chosen depends on the dataset. Discussion of choices about the sparsity loss is in Sec
4.2. For the feature subspace, we experiment with dimension from 32 up to 2048 (out of 4096
dimensions) and use a subspace of dimension 128 for both the HyperDAS and the MDAS baseline.

Results In Table 3a, we show results on RAVEL for layer 15 of Llama3-8B. In Figure 3b, we also
run HyperDAS targeting every 2 layers in Llama3-8Bstarting from the embedding layer. The peak
performance of attribute disentanglement for both MDAS and the HyperDAS is around layer 15.

HyperDAS Variants We experiment with a variety of architecture design choices, reporting re-
sults in Table 5.

Symmetric We enforce symmetry between base and counterfactual inputs during token selection by
randomly flipping the order of the concatenation between base and counterfactual hidden represen-
tations in Equation 6. No Hypernetwork Instead of encoding concepts with a transformer and using
the resulting vector encoding, we simply learn a vector representation for each target concept in a
look-up table. No DAS We no longer use a rotation matrix at all, and intervene on the entire hidden
representation of the selected tokens. No Cross Attention We remove attention heads, cutting the
hypernetwork’s access to the original’s model hidden states on the base and counterfactual inputs.

4.1 LAYER-SPECIFIC INTERVENTION BEHAVIORS OF HYPERDAS

HyperDAS searched for an optimal location to intervene within the target hidden state in one layer.
We evaluate MDAS and HyperDAS on 16 layers across the model (Figure 3b) and chose an early
layer, middle layer, and deep layer for detailed study: Layer 7, Layer 15, and Layer 29. Layer 7 is
the earliest at which HyperDAS achieves peak performance with the weighted intervention. Layer
15 is recognized by both methods as offering the optimal performance, while Layer 29 demonstrates
effectiveness in one-to-one interventions.
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Figure 4: The intervention location, in coun-
terfactual and base sentence, picked by Hyper-
DAS when targeting shallow (7), middle (15)
and deep (29) decoder layers.

Ablation Causal Iso Disentangle
HyperDAS 70.8 93.9 82.4
-Symmetric 60.2 98.2 79.2
-No Cross Attention 68.2 83.9 76.1
-No DAS 0.8 97.4 49.1
-No Hypernetwork 15.1 46.9 31.0

Figure 5: Ablation results for HyperDAS. No
DAS has no rotation matrix and intervenes on en-
tire hidden representations. Symmetric random-
izes the concatenation order of base and coun-
terfactual hidden representations. No Hypernet-
work replaces concept encoding via transformer
with a vector lookup. No Cross Attention re-
moves attention head submodules connecting the
hypernetwork and target model.

Analysis presented in Figure 4 reveals that HyperDAS consistently targets the entity token in the
counterfactual input across all layers, suggesting robust detection of attribute information in the en-
tity token’s residual stream from an early stage. However, the choice of intervention location within
the base input shows significant variation. For each example in the “city” entity split, we catego-
rize the base and counterfactual token pair that gets the largest intervention weight, and classify
them into the following categories: (1) BOS Token represents the beginning-of-sentence token. (2)
Entity Token refers to tokens representing entities. (3) JSON Syntax includes special characters
and syntactic tokens typical of JSON formatted text (e.g., opening curly brace “{”). (4) Others
comprises all tokens irrelevant to the current analysis, with “is” following the entity token being a
common example in both shallow (36%) and deep (29%) layer bases.

At very early layers, HyperDAS displays turbulent behavior, targeting random or even beginning-
of-sentence tokens in the base sentence. By the middle layers, the model consistently favors the
entity token for intervention, aligning with findings from Huang et al. (2024); Geva et al. (2023).
In contrast, at deeper layers, the hypernetwork learns to intervene on unintuitive positions such as
syntax tokens within a JSON-formatted prompt, which were previously unknown to store attributes.

4.2 DISCUSSION

HyperDAS establishes a new state-of-the-art performance on RAVEL Our results show that
HyperDAS outperforms MDAS, the previous state-of-the-art, across all entity splits at layer 15 in
Llama3-8B and across all layers of Llama3-8B for the “cities” entity split.

HyperDAS requires more compute than MDAS. HyperDAS is more powerful than MDAS, but
also more computationally expensive. Training our HyperDAS model for one epoch on disentan-
gling the country attribute in the city domain takes 468923 TeraFLOPs while training an MDAS
model for one epoch on the same task takes 193833. HyperDAS requires roughly 2.4x compute.
Our target Llama model requires 16GB of RAM while the HyperDAS model requires 52GB more
and MDAS requires 4.1GB more per attribute. The memory usage of HyperDAS does not go up
with additional attributes, so when trained on all of RAVEL together (23 attributes), MDAS (23*4.1
+ 16 = 110.3GB) would exceeds the memory usage of HyperDAS (52 + 16 = 68GB).

Householder vectors analysis provides a window into attribute features. To analyze the House-
holder vectors generated by the model, we collected vectors from each test example and categorized
them according to their respective attributes. For each attribute category, a subset of 1,000 sam-
ples was randomly selected. We then computed the similarity scores between pairs of attributes by
calculating the average cosine similarity across these 1,000 pairs of selected Householder vectors.

We analyze the geometry of the learned householder vectors, with the PCA projection shown in
Figure 6. We also compute the average pairwise cosine similarity of householder vectors sampled
from within the same attribute or cross two different attributes, as shown in Figure 7. Despite an
overall high cosine similarity among all householder vectors associated with the same entity type,
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Figure 6: The relative position between the
Householder vector (after PCA) of attributes for
all the correct predictions in city domain. The
clustering indicates that HyperDAS learns dif-
ferent feature subspace for each attribute.
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Householder vectors of different attributes in the
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tively learns a highly similar feature subspace
for the attributes ‘Longitude’ and ‘Latitude’.
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Figure 8: Intervention locations for a base/counterfactual sentences pair with Occupation entity-type
selected by HyperDAS trained with different amounts of sparsity loss. This comparison illustrates
the intervention locations generated by HyperDAS when trained under three different sparsity loss
conditions. All three models achieved a Disentangle Score ≈ 94.0% using weighted interventions.
With no sparsity loss (middle), HyperDAS tends to intervene from the last subject token in the
counterfactual sentence to most tokens in the base sentence, which yields adequate performance
under many-to-one constraints but not under strict one-to-one constraints. With too much sparsity
loss (right), the pairwise token selection attention within HyperDAS fails, resulting in interventions
that blend all hidden states. Although this approach achieves a near-perfect disentangle score with
weighted intervention, the model’s does not have interpretable intervention patterns and fails entirely
during test time when masks are snapped to align base and source tokens one-to-one.

the household vectors associated with the same attribute form a tighter cluster, with a higher cosine
similarity score than pairs of vectors associated with two different attributes. These per-attribute
clusters might explain why the learned feature subspace can disentangle different attributes of the
same entity, as different attributes are localized into different subspaces of the entity representation.

How do we know HyperDAS uncovers actual causal structures faithful to the target model?
On one hand, we should leverage the power of supervised machine learning to develop increasingly
sophisticated interpretability methods. On the other hand, such methods are incentivized to “hack”
evaluations without uncovering actual causal structure in the target model. We have taken several
steps to maintain fidelity to the underlying model structures when training and evaluating Hyper-
DAS, by constraining optimization flexibility to prevent inadvertently steering or editing the model
with out-of-distribution interventions.

The weighted interchange interventions used in training hacks the objective without soft con-
straints via loss terms. The loss term Lsparse is crucial for ensuring that HyperDAS learns a one-
to-one alignment between base tokens and counterfactual tokens (Fig 8). When no sparsity loss is
applied, the model aligns the final entity token (e.g., “nna” from Figure 1) to many tokens in the
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Figure 9: The count of intervention location picked by HyperDAS at the counterfactual prompt
(upper) v.s. at the base prompt (bottom) across all the attributes in the city domain on entities with
three tokens. The asymmetric variant (right) of HyperDAS favors getting the attribute information
from the last entity token for the majority of the counterfactual prompts (≥ 95%), and intervene on
the second last entity token. The symmetric variant (left) favors last entity token consistently for
both base and counterfactual prompt.

base sentence. These solutions fail during evaluations where token alignments are snapped to be
one-to-one. Conversely, with excessive sparsity loss, the model constructs a counterfactual hidden
representation that is the linear combination of many hidden states, resulting in a high flexibility
optimization scheme that is closer to model steering or editing. This also fails during one-to-one
evaluations. See Figure 8 for an example of these pathological settings.

Often only one token is aligned between base and counterfactual inputs. The MDAS baseline
performes well on the RAVEL benchmark by one token in the base and one token in the source.
However, our new state-of-the-art HyperDAS model will select multiple tokens 53% of the time.

Asymmetric HyperDAS targets different tokens for base and counterfactual examples. In-
tuitively, if we have localized a concept, then “get” operations that retrieve the concept and “set”
operations that fix the concept should both target the same features and hidden representations. For
this reason, we consider a variant of HyperDAS that enforces symmetry in the localization of base
and counterfactual prompts, which is introduced as Symmetric in Sec 4. Figure 9 shows the to-
kens selected by the symmetric and asymmetric variants of HyperDAS. When allowed asymmetric
parametrization, networks break symmetry in positional assignments; for a single input prompt, Hy-
perDAS will select different tokens depending on whether that input is the base or counterfactual.

5 CONCLUSION

In this work, we introduced HyperDAS, a novel hypernetwork-based approach for automating causal
interpretability methods. HyperDAS achieves state-of-the-art performance on the RAVEL bench-
mark, demonstrating its effectiveness in localizing and disentangling entity attributes through causal
interventions. Our method’s ability to dynamically select hidden representations and learn linear fea-
tures that mediate target concepts represents a significant advancement in interpretability techniques
for language models. We are optimistic that HyperDAS will open new avenues for understanding
and interpreting the internal workings of complex language models.

Limitations HyperDAS will only be successful if the target concept is mediated by linear features,
however there is emerging evidence that non-linear mediators are a possibility (Csordás et al., 2024;
Engels et al., 2024). As discussed extensively in the main text, applying supervised machine learning
to interpretability has the potential to lead to false positive results. While we have taken steps to
maintain fidelity to underlying model structures, future work should continue to explore the delicate
balance between uncovering latent causal relationships and the risk of model steering.

Reproducibility Statement Hyperparameters are provided in Section 4. For transparency and
ease of replication, we have included all relevant code and experiments as supplementary material.
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Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper files/paper/2023/hash/
34e1dbe95d34d7ebaf99b9bcaeb5b2be-Abstract-Conference.html.
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A APPENDIX

A.1 HYPERDAS OVER ALL DOMAINS

Our results at Table 3a show that we can train HyperDAS to achieve state of the art performance
on the RAVEL benchmark by training a separate model for each entity type split, which is the set
up used to train the previous state of the art MDAS. To test the scalibility and generalizability of
HyperDAS, we train a single model across all the entity type splits and evaluate its performance.

Experiment Set-up We aggregate the training split of the dataset from all 5 domains and train
HyperDAS for 5 epochs. We adjuste the learning rate from 2 × 10

−5 to 5 × 10
−4 and schedule the

sparsity weight λ ranging from 0.75 to 1.5 starting after 50% of the total steps. This set-up allows
the model to first find a stable solution across all domains with soft intervention before forcing it to
converge to a single token selection.

Result We report the performance of HyperDAS trained over all entity type split in Table 3a.
The model performs better than MDAS but slightly worse than HyperDAS trained on individual
entity type split by 4.0%. Specifically, HyperDAS-All-Domain performs worse over city and nobel
laureate split, better over occupation split, and on-par over physical object and verb split.

A.2 DATASET SPECIFICATION

Domain/Attribute # of Cause Example # of IsolateExample # of Entity

City 34899/7016 49500/9930 3552/3374
Country 7925/1544 8250/1655 3528/2411
Language 6207/1252 8250/1655 3471/2221
Continent 8254/1658 8250/1655 3543/2567
Timezone 5371/1144 8250/1655 3414/1900
Latitude 3813/743 8250/1655 3107/1519
Longitude 3329/675 8250/1655 2989/1357

Nobel Laureate 39771/6754 44628/7600 928/928
Country of Birth 7218/1356 8908/1520 928/909
Award Year 11037/1904 8930/1520 928/926
Gender 854/96 8930/1520 592/149
Field 9518/1558 8930/1520 928/922
Birth Year 11144/1840 8930/1520 928/927

Occupation 54444/1582 29052/864 799/785
Work Location 24216/724 9684/288 799/708
Duty 12090/371 9684/288 785/522
Industry 18138/487 9684/288 799/600

Physical Object 49114/4659 35285/3636 563/563
Color 14707/1518 8825/909 563/563
Category 13540/1273 8820/909 563/562
Texture 14666/1265 8821/909 563/561
Size 6201/603 8819/909 563/528

Verb 70003/3806 14396/782 986/984
Past Tense 34043/1848 7188/391 986/975
Singular 35960/1958 7208/391 986/978

Table 1: The details of the dataset used for the experiment, in the format of train/test splits. For
every model in each setting. Methods are trained on the full dataset of that setting with 5 epochs.
The prompts used by the train/test splits are completely disjoint.
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A.3 DATASET PREPROCESSING

HyperDASuses attention mechanism to gather information from the hidden states of the target model
M when running the base and counterfactual sentences. This makes HyperDAS overly powerful as
it needs in some situation. Consider the following input:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Base x̄ = Vienna, known for its Imperial palaces, is a city in the country of
Counterfactual x̂ = I love Paris
Instruction x = Localize the latitude of the city

(15)

If the model works as intended, it will intervene on the ‘Latitude’ subspace, which will leave the
‘Country’ features intact and therefore the target model will predict Austria.

However, since the model can access the hidden states M(x̄), it knows that the queried attribute in
the sentence is ‘Country’, which is different than the targeted attribute ‘Latitude’. Through training,
HyperDAS learns a shortcut to a trivial solution—not doing anything when the target attribute is
different from the one mentioned in the sentence. With this shortcut, the Isolate objective no longer
works and the HyperDASfails to learn disentangled feature subspaces for different attributes.

Figure 10 shows how the HyperDAS may learn a trivial solution to the RAVEL benchmark if the
relevant information (base prompt attribute) can be accessed by the model.
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Figure 10: The trivial solution learnt by the HyperDAS on isolate examples when no mask is applied
on the attribute token in the prompt. HyperDAS learns to do no intervention at all if it sees the base
prompt attribute to be different than the attribute in the instruction.

Therefore, for each pair of prompts x̄, x̂ at training, we apply an intervention mask to all the tokens
starting from the attribute mention. The hidden states from token with intervention mask is not
visible to HyperDAS and therefore cannot be selected for intervention. The example becomes:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Base x̄ = Vienna, known for its Imperial palaces, is a city in the country of
Counterfactual x̂ = I love Paris
Instruction x = Localize the latitude of the city

(16)

where the hidden states of the red text is masked from the HyperDAS .

A.4 LOADING HYPERDAS WITH PRE-TRAINED PARAMETERS

We have also explored initializing the HyperDAS from a pretrained LM instead of initializing it from
scratch. With Llama3-8b (Meta, 2024) as the target LM, we initialize the modules of HyperDAS ,
besides the multi-head cross-attention heads and pairwise token position scores attention heads, as
the copy of the parameters from the target model. We then evaluate the performance of this variation
of the model on the city dataset of RAVEL (Huang et al., 2024).
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Figure 11: The loss drop of HyperDAS initialized from scratch or from pretrained LM while training
on the city dataset of RAVEL.

In Figure 11, we observe that there is no significant difference between the model initialized from
scratch and the model initialized from Llama3-8b parameters. However, it remains unknown how
would this difference change as the training of HyperDAS scales.

A.5 SPARSE AUTOENCODERS

We experiment with different feature subspace dimension, as shown in Figure 12. We add an trained
sparse autoencoder as another baseline. Following the exact same setting in (Huang et al., 2024),
we train sparse autoencoder that projects the target hidden states into a higher-dimensional sparse
feature space and then reconstruct the original hidden states.

A.6 INTERVENTION PATTERNS

Here we include a few demonstrations of the intervention pattern that HyperDAS generates on
RAVEL, as shown in Figure 13.
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Figure 12: Cause (x-axis) and Iso (y-axis) scores trade-off for HyperDAS, MDAS, and SAE when
using different feature size shown as the ratio %. GOAL (1, 1) indicates the score with which the
method is able to disentangle the feature subspace perfectly.
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Figure 13: Four types of intervention patterns.
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