
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SURROGATE-BASED QUANTIFICATION OF POLICY
UNCERTAINTY IN GENERATIVE FLOW NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative flow networks are able to sample, via sequential construction, high-
reward, complex objects according to a reward function. However, such reward
functions are often estimated approximately from noisy data, leading to epistemic
uncertainty in the learnt policy. We present an approach to quantify this uncer-
tainty by constructing a surrogate model composed of a polynomial chaos expan-
sion, fit on a small ensemble of trained flow networks. This model learns the
relationship between reward functions, parametrised in a low-dimensional space,
and the probability distributions over actions at each step along a trajectory of the
flow network. The surrogate model can then be used for inexpensive Monte Carlo
sampling to estimate the uncertainty in the policy given uncertain rewards. We il-
lustrate the performance of our approach on a discrete and continuous grid-world,
symbolic regression, and a Bayesian structure learning task.

1 INTRODUCTION

Generative artifical intelligence (AI) describes the subclass of techniques which learn a probabilis-
tic model of the data-generating process. This yields advantages such as the ability to sample new
data and to estimate the confidence in a model’s output. Generative architectures such as genera-
tive flow networks (GFNs)1 [Bengio et al. (2021)], transformers [Vaswani et al. (2017)], variational
autoencoders (VAEs) [Kingma & Welling (2013)], diffusion models [Sohl-Dickstein et al. (2015)],
and generative adversarial networks (GANs) [Goodfellow et al. (2014)] have become state-of-the-
art approaches with a host of traditional and blue-sky applications. Due to the probabilistic nature
of such models, it is common to describe them as ‘uncertainty aware’, as they are typically able
to compute the likelihood of each sample. It is important to note that this aleatoric uncertainty in
a model’s prediction or output is that which stems from the probabilistic process that the model
has learnt, but assumes that the generative model is precise and exactly correct. However, models
learn a generative process from finite data or through self-play, via stochastic optimisation. This
implies that an additional form of uncertainty at the level of the model itself, so-called epistemic
uncertainty, can arise, as a variety of generating processes can be learnt given alternative data or
realisations of a stochastic input [Gal (2016)]. Quantifying this model uncertainty is key to under-
standing the capabilities and limitations of a given generative model and its predictions [Chakraborti
et al. (2025)]. Two well-known deep learning paradigms for quantifying such uncertainty are the
use of Bayesian neural networks, where network weights are random variables whose posterior esti-
mates are updated during training [Blundell et al. (2015); MacKay (1995)], and Monte-Carlo (MC)
sampling/dropout, where training an ensemble of identical models with stochastic variation in input
data yields an empirical distribution in the space of generative processes [Gal & Ghahramani (2016);
Lakshminarayanan et al. (2017)]. However, Bayesian methods are complicated to implement and
do not scale to large models, whereas for the MC approach, repeated training is computationally
expensive and prohibitively slow.

For an alternative approach, we turn to an analogous situation that is common in a variety of com-
putational engineering problems with stochastic input [Conti et al. (2024)], where repeated, high-
fidelity simulations are computationally intractable, yet an understanding of the output uncertainty
is desired. Such problems have led to the development of the field of uncertainty quantification (UQ)

1Also known as GFlowNets.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

[Sullivan (2015)]. A cornerstone approach in UQ is to construct computationally-efficient ‘surro-
gate’ models using an array of techniques such as polynomial chaos expansions (PCEs) [Wiener
(1938); Xiu & Karniadakis (2002)], machine learning (ML) models [Conti et al. (2024); Vlachas
et al. (2022)], Gaussian processes [Rasmussen & Williams (2006)], or a combination of these ap-
proaches [Shustin et al. (2022)]. Typically, these methods approximate an input-output relationship
by fitting to a limited number of examples obtained from the high-fidelity, ‘black-box’ model. Fi-
nally, performing MC sampling from the surrogate model allows model uncertainty to be quanti-
fied efficiently [Sullivan (2015)]. Similarly, the training procedure of a large generative AI model
functions as a black-box. Repeated training of models with different input data, spanning the full
distribution, is akin to MC sampling from a high-fidelity model, and therefore is computationally
prohibitive. To address this problem, we investigate surrogate-modelling approaches for generative
models, focusing on GFNs in situations where the reward is uncertain, thus producing uncertainty
in the learnt policy. This paper is structured as follows. We present a brief introduction to GFNs
with uncertain rewards, as well as to PCE. We then illustrate the performance of our approach on
various example problems, including discrete and continuous grid-worlds, symbolic regression, and
a Bayesian structure learning task.

2 GENERATIVE FLOW NETWORKS WITH UNCERTAIN REWARDS

GFNs are a novel and powerful architecture at the interface between generative and reinforcement
learning, and have been used for generating molecular structures [Bengio et al. (2021)], solving
combinatorial optimisation problems [Zhang et al. (2023)], Bayesian structure learning [Deleu et al.
(2022)], and biological sequence design [Jain et al. (2022)]. Variants exist for both continuous re-
ward functions [Lahlou et al. (2023)] and stochastic transition graphs [Pan et al. (2023)]. A GFN
learns a policy for iteratively constructing a trajectory in the flow network according to a given
reward function. Whilst the policy encodes the probability of each transition through the flow net-
work, a GFN is unable to express the level of uncertainty in the policy itself. In particular, in many
applications, such as molecular candidate sampling or Bayesian structure learning, the reward func-
tion is estimated from noisy experimental data, and/or expressed by a neural network (NN) [Bengio
et al. (2021); Deleu et al. (2022)]. As a result, there is inherent uncertainty in the reward function
estimation, leading to epistemic uncertainty in the learnt policy that GFNs fail to express. Whilst
there have been some attempts to encode such uncertainty by considering a distribution of GFNs
[Jain et al. (2022); Zhang et al. (2024); Liu et al. (2023)], this remains an open problem.

2.1 FLOW NETWORKS

A flow network is defined by a pair (G,F). Here G = (S, E) is a directed acyclic graph (DAG)
with a finite number of vertices, which each represent a state s ∈ S, and where each edge e = (s →
s′) ∈ E is a directed connection representing a possible transition between states. The flow function
F : T → R+ is a positively-valued function, defined on T , the set of all trajectories through the
state-space DAG. For a function F to define a valid flow network, one can derive that it must satisfy
the flow matching condition,

F (s) =
∑

(s′′→s)∈E

F (s′′ → s) =
∑

(s→s′)∈E

F (s → s′), (1)

for all s ∈ S , which ensures that the flow is ‘consistent’. The set of states for which there are no
possible forward transitions is denoted terminating states, Sf ⊆ S. Assuming that our flow network
is Markovian2, a valid flow function yields a stochastic process over S with forward and backward
transition probabilities given by,

Pf (s
′|s) = F (s → s′)∑

s′′:(s→s′′)∈E F (s → s′′)
, Pb(s

′|s) = F (s′ → s)∑
s′′:(s′′→s)∈E F (s′′ → s)

, (2)

which, given the state s, are the probabilities of transitioning to state s′ forwards, Pf , or backwards,
Pb, respectively. Finally, we define PT (s) to be the terminating probability of each terminating

2Given the state s, Markovianity implies that each transition in our flow network is sampled stochastically
according to the relative flow along each edge s → s′, independent of the previous states along the trajectory
[Bengio et al. (2023)].

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

state s ∈ Sf , i.e. the probability of a trajectory ending in that terminating state. Flow networks
are particularly useful in the case where we have a reward function, R : Sf → R+, defined on the
terminating states. Given some total amount of flow in the network, Z =

∑
s∈Sf

R(s), and the
constraint that F (s) = R(s) for s ∈ Sf , then PT (s) = R(s)/Z ∝ R(s) for s ∈ Sf , i.e. a valid flow
will sample terminating states in proportion to their relative reward. This property is true for any
valid flow, which may not be unique. As a result, flow networks become an attractive method for
sampling high-reward candidates from the set Sf . Given a DAG and a target reward function, R(s),
constructing a valid flow is a non-trivial problem. Instead, we use a NN, which acts as a function
approximator, and seek to minimise the error in some flow consistency condition. For details on the
loss functions associated with these conditions, see App. A.1.

2.2 CONTINUOUS GENERATIVE FLOW NETWORKS

GFNs can be extended to continuous state-spaces, offering a host of novel applications. The theory
of continuous GFN (cGFN) naturally, but non-trivially, generalises the definitions in Sec. 2.1. Here
we will introduce only a minimal theory of a cGFN which is sufficient for a continuous ‘grid’3

environment that an agent explores. For a more general mathematical theory, we point the reader
to Lahlou et al. (2023). We consider a continuous, measurable domain Ω, where any state ω ∈ Ω
can be both an intermediate or terminating state and where each state is reachable from all others.
Therefore, a reward function R : Ω → R+ is defined on the whole domain. Next, we define a
forward and backward policy, Pf (ω → ω′) and Pb(ω → ω′), which represents the density of a
transition from ω → ω′ for every pair ω, ω′ ∈ Ω, forwards or backwards, respectively. Given the
pair F = (µ, Pf), where µ is a measure defined on Ω, the flow matching condition is met if for any
bounded measurable function u : Ω → R that satisfies u(s0) = 0, we have that,∫

Ω

u(ω′)µ(dω′) =

∫∫
Ω2

u(ω′)µ(dω)Pf (ω → ω′)dω′, (3)

where F is said to be a flow. The reward matching condition is then given by,

R(ω) =

∫
Ω

Pf (ω
′ → ω)µ(dω′). (4)

2.3 UNCERTAIN REWARDS AND UNCERTAIN POLICIES

We focus on the situation of an uncertain reward function, R, sampled from a distribution, R ∼
R(E[R]), where E[R] is the true (expected) reward. This variation can arise from measurement error
or epistemic uncertainty in the reward itself, with examples such as rewards which are parametrised
by NNs, or those calculated from noisy experimental data. A GFN trained on a sampled reward
function learns the flow Fθ(·|R) which is a sample from the distribution over possible flow functions
given a particular architecture and training objective. The goal of UQ in this scenario is to build
up a picture of the marginal distribution over policies obtained by integrating over R, for a fixed
architecture and objective. The space of all possible trajectories is prohibitively large; thus, we focus
on the policy along a trajectory. Given a trajectory, τ = s0 → ... → sn, sampled from a GFN (or
an ensemble of GFNs), we are interested in the distribution and expected value of the policy along
that trajectory, which defines a collection of random variables (RV) {Pθ(·|st), t = 0, 1, ..., n − 1},
where each is a distribution over the set of states that are reachable in one step from st. In the case of
the cGFN, this is a probability density function (PDF) defined by a set of parameters, i.e. mean and
variance for a Gaussian policy. We say that the distribution P (·|st) is a sample from the distribution
over policies P(st).

3 SURROGATE MODELLING WITH POLYNOMIAL CHAOS EXPANSIONS

In order to perform surrogate modelling, we assume that there is a mapping Λt : supp(R) →
supp(P(st)), between the set of all reward functions and set of possible policies at each step in the
trajectory. We approximate Λt with a flexible model that is easy to fit using only a few realisations,

3We call this a ‘grid world’ to remain consistent with the literature in discrete settings [Bengio et al. (2021)].
However, we are referring to a continuous domain.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and which allows for fast sampling, eschewing the need to retrain a great number of GFNs. However,
supp(R) is a space of functions, which may be high-dimensional and challenging to parametrise.
When an obvious parameterisation is not available, we must learn a latent representation of the input
space using dimensionality reduction such as principal component analysis (PCA), or for nonlinear
data, a VAE. Moreover, the VAE is able to project complex, high-dimensional distributions to a more
Gaussian representation. This defines a mapping ϕ : Γ → supp(R) where ϕ(µ) = R and µ ∈ Γ is
a (low-dimensional) set of parameters that represent the reward function. The surrogate model then
learns the mapping Λt ◦ ϕ(µ) = P (·|st), which maps between the input space Γ where each point
represents a reward function, and the set of policies at step st.

3.1 POLYNOMIAL CHAOS EXPANSIONS

PCEs are flexible and inexpensive surrogate models for approximating input-output data [Wiener
(1938); Xiu & Karniadakis (2002)]. A random variable, Y ∈ R, with finite variance, can be ex-
pressed as a polynomial function of a random vector, X ∈ Rm,

Y =
∑
j∈Nm

cjφj(X), (5)

where cj are coefficients and φj form an orthonormal basis of polynomials (see App. B). For typical
distributions, such as Gaussian or uniform, the set of orthonormal polynomials that achieves optimal
convergence is well known (Hermite and Legendre polynomials, respectively [Xiu & Karniadakis
(2002)]). Given input-output data (X,Y), where X = {x1, ...,xn} with xi ∈ Rm and Y =
(y1, ..., yn) with yi ∈ R, a surrogate model can be constructed by estimating the coefficients cj which
best fit this data. A simple approach to fitting these coefficients is to perform (regularised) regression
[Hastie et al. (2009)]. In the case that the output is multidimensional, i.e. Y = (y1, ...,yn), then we
can fit a PCE to each output variable in turn. When the output is a discrete probability distribution,
we first apply the logit transformation to outputs before fitting the PCE as polynomial functions
are unbounded (see App. B.1). We then transform this back into a distribution using the soft-max
[Goodfellow et al. (2016)].

3.2 INTEGRATING PCES INTO GFNS

We begin by training a distinct ‘training’ and ‘testing’ ensemble of GFNs on the same task, each
with a stochastically sampled reward function. Given a trajectory of interest, {s0, ..., sn}, at each
step st, we extract the policy, a distribution over actions, from each GFN in the training ensemble,
labelled as l ∈ {1, ..., L}. Given the low-dimensional representation of each reward function, µl,
from a known distribution, we fit a distinct PCE, using the orthonormal basis associated with the
distribution4. For each action and step, we find the set of coefficients, cj, by optimising

cj = argminc̃j

L∑
l=1

∥∥∥∥∥∥
∑
j∈Θ

c̃jφj(µl)− logit(plk(st))

∥∥∥∥∥∥
2

, (6)

where plk(st) is the probability of action k at state st from model l in the training ensemble, and Θ
are the truncated indices of the expansion. Sampling new inputs from the low-dimensional reward
space, we can use the PCE to sample surrogate policies along this trajectory. We compare these
samples to the testing ensemble, which was not used to fit the PCE.

4 NUMERICAL EXPERIMENTS

In this section, we focus on implementations of the UQ framework applied to a number of example
problems; specifically, a discrete and continuous grid-world, symbolic regression, and Bayesian
structure learning.

4.1 DISCRETE GRID-WORLD WITH UNCERTAIN REWARDS

We begin with a 10×10 grid where each square is assigned a low, mid, or high reward (R(x) = 0.1,
40 or 200, respectively), as shown in Panel a), Fig. 1. Starting at a random initial position, the GFN

4For example, when using the β-VAE, we assume the latent space is a Gaussian distribution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a) b) c)

d)

e)

f)

Figure 1: Discrete grid-world with uncertain rewards. a) Ground-truth reward function defined
on 10 × 10 grid. b) Example trajectory terminating at a high-reward location. c) Random samples
from the distribution over possible reward functions. d) Policy along the trajectory from b) for a
single model. e) Distribution over policies from an ensemble of 50 models trained on sampled vari-
ations of the reward grid. f) Empirical testing ensemble of models compared with outputs of PCE
surrogate model. The PCE model can capture the shape of the distribution, including bimodality.

learns to navigate the grid by moving up, down, left and right, without being able to move through
boundaries or go back on itself5 (Panel b), Fig. 1). The policy can terminate after any number
of steps, up to a maximum, and the reward is given by the final position. Trajectories may only
terminate if they reach a mid or high reward, or if they get trapped. To stochastically vary the reward
function, we begin with the ground-truth reward grid and for each of the four +, we sample, with
probability p, whether or not it will shift. If the+ is chosen to shift, we choose, uniformly, whether
it will shift up, down, left or right, which yields 54 possible reward functions. Panel c) of Fig. 1
shows six random samples of a reward grid. We train two ensembles, 50 training models and 100
testing models, using random samples from the distribution over reward functions. For details on
the architecture and training objective see App. E.

Uncertain policy along a trajectory. The policy at each step along a trajectory is a discrete prob-
ability distribution over the actions [‘Left’, ‘Right’, ‘Up’, ‘Down’, ‘Stop’]. Panels d) and e) of
Fig. 1 show the policy over the trajectory from Panel b), for a single model, and the distribution of
policies for an ensemble of models, respectively. However, as the ensemble is only 50 samples, this
distribution does not capture the complete shape or variance of the distribution over the policy.

Low-dimensional parameterisation of reward functions. In this example, the reward function is
specified by a 10 × 10 array of numbers. This is a high-dimensional representation that contains
much redundant information. Following the discussion in Sec. 2.3, we learn a low-dimensional
representation of our reward function space using a VAE. Using a one-hot encoding of the reward
grid (3×10×10), we train a β−VAE [Higgins et al. (2017)] to project each grid to a latent Gaussian
distribution with d = 2 independent components. By increasing β, we increase the strength of the
prior assumption that the latent space is distributed as N (0, 1)d, which can increase disentanglement

5This condition prevents cycles. Nevertheless, these can be avoided using an augmented state-space with a
time-stamp [Bengio et al. (2023)].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a)

c)

d)

b)

Figure 2: Continuous grid-world with uncertain rewards. a) Ground-truth reward function with
an example trajectory of 5 steps. b) Samples of uncertain reward functions from a distribution. c)
Policies along the trajectory from Panel a) in x− and y− direction (columns) for each of 5 steps
(rows). Policies are taken from a testing ensemble of 100 GFNs trained on samples from the reward
distribution. The black line is the mean policy. d) We plot the distribution of the policies sampled
from the PCE surrogate model along a trajectory, where redder colours corresponds to policies with
higher probability density under the surrogate model. This experiment uses 50,000 samples.

between learnt features, but crucially increases the Gaussianity of the latent space (we opt for β =
4). This allows us to approximate the latent space with a maximum-likelihood Gaussian distribution
(with independent components) for which Hermite polynomials form an orthonormal basis. The
β−VAE is trained using 500 random samples from the reward grid distribution. Note that we do not
need to train a GFN for each one of these samples, as the latent representation is independent of the
policy. For details on the implementation see App. E.

Fitting a PCE with regularised regression. Using any one of the models or an ensemble approach,
we sample a trajectory through the discrete grid. In this case, we focus on the trajectory in Panel b),
Fig. 1. For this given trajectory, we extract the policy at each step to yield a tensor P ∈ Rm×n×5,
where m is the number of models in the ensemble, n is the number of steps and 5 is the number
of actions in the policy. Next, we construct an input-output dataset. For each of the m models, we
encode its associated reward grid to yield a 2-d Gaussian distribution, from which we can sample
points. Each sampled point becomes an input that is mapped to the output tensor P of the associated
model6. For each component of P , we fit a separate degree 7 PCE model using ridge regression7,
using the logit transform (as described in Sec. 3.1 and App. B).

6This allows us to augment our training data to have more than m data-points.
7Throughout, we opt for high degree PCE models, which are balanced via regularised regression. When

using un-regularised regression, such expansions may be unstable. For a brief discussion on choosing PCE
degrees and fitting methods, see App. B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

a)

b)

Figure 3: Symbolic regression of a function with additive noise. a) The target function f(x) =
sin(x) + 2 − x in the range [π, 4π], and a noisy function with additive Wiener noise. b) Empirical
testing policies compared with surrogate policies from a PCE along a trajectory.

To perform MC sampling from the surrogate model, we first sample a reward grid, encode it to a
latent Gaussian distribution, then sample a point from this distribution to serve as the input8. Panel
f), Fig. 1 shows a comparison between 50,000 surrogate outputs9 and an empirical testing ensemble
of 100 models. We see that the surrogate model matches the distribution of the empirical samples.
In particular, in the latter steps of the trajectory, when the model approaches the rewards, there is
a bifurcation, where some models have a high termination probability, whilst for others it is more
moderate. This differentiates between situations where the final position is a high or mid-reward
spot. The surrogate model is able to capture this bimodality.

4.2 CONTINUOUS GRID WORLD WITH UNCERTAIN REWARDS

In this problem, we consider a continuous reward function defined on R2, that is defined by a mixture
of two Gaussian distributions with means at (x1, y1) and (x2, y2) respectively, and with isotropic
variance σ2 = 0.3. As shown in Panel a), Fig. 2, starting at the origin, the model makes 5 steps,
where the movements in the x− and y−directions are sampled independently from two Gaussian
distributions, which make up the policy. The reward is given by the position after 5 steps. We
train a ‘training’ and ‘testing’ ensemble of models, where each is trained on a stochastically varied
reward function. In particular, (x1, y1) ∼ N ((−1,−1),

√
0.1I) and (x2, y2) ∼ N ((1, 1),

√
0.1I),

thereby slightly shifting the modes of the reward function, as shown in Panel b) of Fig. 2, leading
to uncertainty in the policy. In this case, there is an obvious low-dimensional representation of each
reward function, namely µ = (x1, y2, x2, y2), which has a normal distribution. The policy at each
step is described by (µx, σ

2
x, µy, σ

2
y), the mean and variance of the Gaussian density in the x− and

8Alternatively, we could sample from the Gaussian distribution which approximates the entire latent space,
which we used to construct the orthonormal distribution — but this is an approximation.

9Even though there are only 625 reward grids, as each one is mapped to a distribution in latent space which
can be sampled from, we can generate an arbitrary number of new samples.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Bayesian structure learning a linear Gaussian network. Top left. The ground-truth
Gaussian network. Panels 2-8. We show the policy, a distribution over 26 actions, for each of 7
steps along a trajectory. The policy distribution of the 250 empirical testing samples is shown in
orange, whilst the 10,000 surrogate samples are in teal. The dotted line shows the action taken at
each step. Outlier values beyond fences are not shown, but full scatters are presented in Fig. 6.

y−directions. We focus on a sampled trajectory (Panel a), Fig. 2), and extract the policy at each
step. Using a basis of Hermite polynomials, we fit a PCE that maps between µ and the policy at
each step, using degree 5 and ridge regression. Fig. 2 shows the distribution of the policy at each
step, from both a testing ensemble of 100 GFNs (Panel c)) and 50,000 samples from the surrogate
model (shown as a heatmap in Panel d)). The surrogate model can match the behaviour of the unseen
testing samples, including the bimodality in the final steps, which emerges from each of the policies
targeting one of the two modes.

4.3 SYMBOLIC REGRESSION OF A FUNCTION WITH ADDITIVE NOISE

In this next problem, we use a GFN to reconstruct the function f(x) = sin(x) + 2 − x, from a
small library of terms {x, 1, 2, 3,+,−,×, sin, cos}, in the presence of additive Wiener noise, i.e.
f̂(x) = f(x) + σW (x), as shown in the Panel a) of Fig. 3. Each expression is built sequentially by
adding a valid term at each step, with termination possible for a valid expression. The function is
evaluated at 100 equispaced points between [π, 4π] and then subject to additive noise. The reward
function is given by,

R(g) =
l

1 + 1
100

∑100
i=1 ||f̂(xi)− g(xi)||2

, (7)

where l = 1 + 0.2n is a bonus reward multiplier that encourages longer expressions, and n is
the length of the expression that forms g. In other words, the reward is inversely proportional to
the mean-squared error between the data and the proposed function. For each realisation of the
Wiener noise, this yields a slightly different reward function, implying epistemic uncertainty. To
obtain a low-dimensional representation for each reward function from a dataset of {f̂j}, we first
calculate the mean function from each sample and subtract it from our data, and then use the exact
solution for the Karhunen-Loève expansion10 of the resulting Wiener sample (see App. C) [Xiu
(2010); Giambartolomei (2015)]. We take the first two components of the expansion (z1, z2), which
are normally distributed with N (0, 1), to be the low-dimensional representation of each reward
function. We train a ‘training’ and ‘testing’ ensemble with 250 models each. Here we focus on

10An almost identical approach would be to use PCA on the set of function evaluations, but as we have the
exact solution, we opt to use it.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the trajectory11 [2,—,x,+,sin,x], and extract the policy from the training models, then fit a degree
14 PCE with ridge regression that takes (z1, z2) as input, and outputs the logit of the probability
distribution over tokens.The Panel b) of Fig. 3 shows the policy distribution of 150 testing models,
compared with 10,000 surrogate policies, which match the empirical distribution closely.

4.4 BAYESIAN STRUCTURE LEARNING OF A LINEAR GAUSSIAN NETWORK

A Bayesian network (BN) is a DAG which shows the direct dependence relationships between ran-
dom variables [Kitson et al. (2023)]. This is a general representation of a system that can be applied
to a wide array of datasets in various scientific fields, helping to unravel the causal mechanisms
within a system. However, reconstructing the dependence graph from finite observed data is a chal-
lenging and open problem. Deleu et al. (2022) present an approach for using GFNs to sample
candidate BNs in proportion with their likelihood. They illustrate this on a linear Gaussian model
using an Erdös-Rényi graph, as well as on flow cytometry data. The reward function is given by
the Bayesian Gaussian equivalent (BGe) score, which computes the likelihood of the data given a
candidate graph [Deleu et al. (2022); Kitson et al. (2023)]. As a result, each finite dataset yields
an uncertain reward function that is sampled from the distribution R ∼ R(E[R]). First, we train
a ‘training’ and ‘testing’ ensemble with 250 GFNs each. Each model is trained with respect to a
reward function calculated using the BGe score associated with a (different) dataset of 100 random
samples from the (same) linear Gaussian network with 5 variables (see Fig. 4). To parametrise these
reward functions in a low-dimensional space, we calculate the r−matrix12. This gives a 25-d vector
that represents each reward function. We then perform PCA to extract the first two components,
thus mapping each reward function to a point in 2-d. This distribution in R2 is well approximated
by a Gaussian with independent components, which we estimate with MLE. Next, we consider a
sequence of actions that constructs the ground-truth graph13. Each action adds an edge to the graph,
with cycles being prohibited. We map between a (source,target) edge and an action using,

action = 5 ∗ source+ target, (8)

where source,target ∈ {0, 1, 2, 3, 4} and action ∈ {0, ..., 25} with action = 25 corre-
sponding to termination. We extract the policy at each step along the action sequence to yield a
tensor P ∈ R250×7×26, where 7 is the number of actions needed to build the ground-truth graph
shown in the first panel of Fig. 4. For each of the 7 × 26 variables, we fit a degree 7 PCE with
Hermite polynomials using ridge regression using the 250 training samples as the input-output data.
We then sample 10,000 additional datasets from the linear Gaussian network, project them into the
latent space, and use the PCE to predict the policy at these additional inputs. Fig. 4 shows the distri-
bution of the policy for the 250 empirical testing samples and 10,000 surrogate samples for each of
the 7 steps along the trajectory. Our surrogate model allows us to get a more complete estimate of
the distribution of the policy stemming from uncertainty in the reward calculated from finite data.

5 DISCUSSION

GFNs learn a policy that has inherent epistemic uncertainty stemming from uncertainty in the reward
function. Our UQ-framework leverages low-dimensional representations of reward function space
to fit a PCE surrogate model and perform inexpensive MC sampling of policies along a specific tra-
jectory. This allows for an understanding of the variations over policies that emerge from the noise
and finitude of empirical data, which is essential when evaluating the predictions of a generative
model. In future, such techniques could be used within the sampling procedure of GFNs to yield
generative models that directly account for epistemic uncertainty. Moreover, our approach holds
promise for more complex tasks, such as the generation of new molecular structures [Jain et al.
(2023)], where prediction uncertainty has crucial implications. The use of polynomial models also
carries the advantage that the surrogate has an interpretable functional form, allowing for sensitivity

11We choose this trajectory as it represents one way of constructing the exact solution out of many.
12The r−matrix is a Bayesian form of the covariance matrix associated with the BGe score [Geiger &

Heckerman (1994)]. In this case, this is a 5× 5 matrix that we flatten and then perform PCA.
13We could use any trajectory from the state-space DAG, but it is informative to see the policy along the

desired solution. This is one trajectory that leads to the ground truth graph, but there are many equivalent ones,
i.e. we can add the same edges in a different order.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

analysis through the calculation of Sobol’ indices [Sudret (2008)], however, we consider a compar-
ison to a simple multi-layer perceptron (MLP) in App. F. Finally, whilst we have focused on GFNs
here, such methods could be adapted for other generative models in the presence of uncertain inputs,
such as next-token prediction with large language models (LLMs).

An anonymised repository with the code can be found here: https://anonymous.4open.
science/r/uq4gfn-518B/README.md.

REFERENCES

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow net-
work based generative models for non-iterative diverse candidate generation. In 35th Conference
on Neural Information Processing Systems, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep universal
probabilistic programming. arXiv, 1810.09538, 2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. In 32nd International Conference on Machine Learning, 2015.

Tapabrata Chakraborti, Christopher R. S. Banerji, Ariane Marandon, Vicky Hellon, Robin Mi-
tra, Brieuc Lehmann, Leandra Bräuninger, Sarah McGough, Cagatay Turkay, Alejandro F.
Frangi, Ginestra Bianconi, Weizi Li, Owen Rackham, Deepak Parashar, Chris Harbron, and Ben
MacArthur. Personalized uncertainty quantification in artificial intelligence. Nature Machine
Intelligence, 7:522–530, 2025.

Paolo Conti, Mengwu Guo, Andrea Manzoni, Attilio Frangi, Steven L. Brunton, and J. Nathan Kutz.
Multi-fidelity reduced-order surrogate modelling. Proceedings of the Royal Society A, 480(2283),
2024.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In 38th Confer-
ence on Uncertainty in Artificial Intelligence, volume PMLR 180, pp. 518–528, 2022.

Jonathan Feinberg and Hans Petter Langtangen. Chaospy: An open source tool for designing meth-
ods of uncertainty quantification. Journal of Computational Science, 11:46–57, 2015.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In 33rd International Conference on Machine Learning, 2016.

Dan Geiger and David Heckerman. Learning Gaussian networks. In Proceedings of the Tenth
Conference on Uncertainty in Artificial Intelligence, pp. 235–243, 1994.

Giordano Giambartolomei. The Karhunen-Loève theorem. Master’s thesis, Universita di Bologna,
2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In 28th Conference on Neural
Information Processing Systems, 2014.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2009.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks: The com-
bination of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

10

https://anonymous.4open.science/r/uq4gfn-518B/README.md
https://anonymous.4open.science/r/uq4gfn-518B/README.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In 5th International Conference on Learning Representations,
2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Moksh Jain, Emmanuel Bengio, Alex-Hernandez Garcia, Jarrid Rector-Brooks, Bonaventure F. P.
Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with GFlowNets. In 39th
International Conference on Machine Learning, 2022.

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua
Bengio. GFlowNets for AI-driven scientific discovery. Digital Discovery, 2:557–577, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In Proceedings of the 37th Inter-
national Conference on Machine Learning, 2020.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. arXiv:1312.6114, 2013.

Neville Kenneth Kitson, Anthony C. Constantinou, Zhigao Guo, Yang Liu, and Kiattikun Chobtham.
A survey of Bayesian network structure learning. Artificial Intelligence Review, 56:8721–8814,
2023.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcı́a, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of contin-
uous generative flow networks. In 40th International Conference on Machine Learning, volume
PMLR 202, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In 31st Conference on Neural Information Process-
ing Systems, 2017.

Dianbo Liu, Moksh Jain, Bonaventure Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Niko-
lay Malkin, Chris Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, and Yoshua
Bengio. GFlowOut: Dropout with generative flow networks. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, 2023.

D J C MacKay. Probable networks and plausible predictions-a review of practical Bayesian methods
for supervised neural networks. Network: Computation in Neural Systems, 6(469), 1995.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei
Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from partial episodes
for improved convergence and stability. In Proceedings of the 40th International Conference on
Machine Learning, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. In 36th Conference on Neural Information Processing
Systems, 2022.

Theodore Norvell. Parsing expressions by recursive descent. 1999. URL https://www.engr.
mun.ca/˜theo/Misc/exp_parsing.htm.

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. In 39th Conference on Uncertainty in Artificial Intelligence, volume PMLR 202,
2023.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Proceedings of the Internal Conference on Learning Representations, 2016.

11

https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Paz Fink Shustin, Shashanka Ubaru, Vasileios Kalantzis, Lior Horesh, and Haim Avron. PCENet:
High dimensional surrogate modeling for learning uncertainty. arXiv:2202.05063, 2022.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In 32nd International Conference on
Machine Learning, 2015.

Bruno Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineer-
ing and System Safety, 93(7):964–979, 2008.

T.J. Sullivan. Introduction to Uncertainty Quantification. Springer, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In 31th Conference on Neural
Information Processing Systems, 2017.

Pantelis R. Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale
simulations of complex systems by learning their effective dynamics. Nature Machine Intelli-
gence, 4:359–366, 2022.

Norbert Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936, 1938.

Dongbin Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press, 2010.

Dongbin Xiu and George Em Karniadakis. The Wiener–Askey polynomial chaos for stochastic
differential equations. SIAM Journal of Scientific Computing, 24(2), 2002.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial problems with GFlowNets. In 37th Conference on
Neural Information Processing Systems, 2023.

Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron Courville, and Yoshua Bengio. Distributional
GFlowNets with quantile flows. Transactions on Machine Learning Research, 2024.

APPENDIX

A GENERATIVE FLOW NETWORKS

In Sec. 2.1, we briefly introduce the definition of a GFN. Here, we expand on this formulation,
including specifying possible loss functions [Bengio et al. (2023)]. Previously, we defined the flow
function, F , and introduced the flow matching condition, which we now derive more explicitly. In
order for a function F to define a valid flow network, it must satisfy,

F (A) =
∑
τ∈A

F (τ), (9)

for all A ⊆ T [Bengio et al. (2023)]. From this definition, we can define the flow through a state
s ∈ S,

F (s) :=
∑

τ∈T :s∈τ

F (τ), (10)

and the flow through an edge (s → s′) ∈ E ,

F (s → s′) :=
∑

τ∈T :s→s′∈τ

F (τ). (11)

In other words, this enforces that flows are ‘consistent’, i.e. that the flow into a state is equal to the
flow out of the state. As a consequence, the flow matching condition,

F (s) =
∑

(s′′→s)∈E

F (s′′ → s) =
∑

(s→s′)∈E

F (s → s′), (12)

is satisfied for all s ∈ S.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.1 LEARNING A FLOW APPROXIMATION

Given a DAG and a target reward function, constructing a valid flow is a non-trivial problem. We
define a flow parametrisation of the pair (G,R), which acts as a function approximator and seeks to
minimise the error in some flow consistency condition. The simplest loss is derived directly from
the flow matching condition in Eq. (1). The parameters are trained to minimise the loss,

LFM(s) =

(
log

∑
(s′′→s)∈A Fθ(s

′′ → s)∑
(s→s′)∈A Fθ(s → s′)

)2

, (13)

which attempts to minimise the difference between the in-flow and out-flow at each state. As
terminal nodes have no out-flow, the loss function is modified slightly such that the in-flow equals
the reward [Bengio et al. (2021)].

A second choice is the detailed balance loss [Bengio et al. (2023)]. A valid flow satisfies the well-
known detailed balance construct for Markov chains given by,

F (s)Pf (s
′|s) = F (s′)Pb(s|s′), (14)

which can be used to define the loss function,

LDB(s, s
′) =

(
log

Fθ(s)Pf (s
′|s; θ)

Fθ(s′)Pb(s|s′; θ)

)2

, (15)

again with a similar condition on the terminal nodes [Bengio et al. (2023)].

Third, we have the trajectory balance constraint, which enforces that for any complete trajectory
(s0 → s1 → ... → sn = x), a valid flow will have that,

Z

n∏
t=1

Pf (st|st−1) = F (sn)

n∏
t=1

Pb(st−1|st), (16)

where it is implicit that P (sn = x) = F (x)/Z [Malkin et al. (2022)]. For any trajectory τ = (s0 →
s1 → ... → sn = x), we define the trajectory balance loss to be,

LTB(τ) =

(
log

Zθ

∏n
t=1 Pf (st|st−1; θ)

R(x)
∏n

t=1 Pb(st−1|st; θ)

)2

, (17)

where Zθ is the estimate of the total flow given the learnt policy [Malkin et al. (2022)].

Finally, we have the sub-trajectory balance loss. For a valid flow, the trajectory balance constraint
of Eq. (16) must hold, not only for a full trajectory, but for all partial trajectories as well [Madan
et al. (2023)]. This constraint yields the objective,

LSubTB(τ) =

(
log

Fθ(sm)
∏n

t=m Pf (st|st−1; θ)

Fθ(sN)
∏n

t=m Pb(st−1|st; θ)

)2

. (18)

The policy can then be optimised over the parameters θ to minimise the chosen loss over a batch of
sampled trajectories.

B POLYNOMIAL CHAOS EXPANSIONS

In Sec. 3.1, we briefly introduce PCE, which we elaborate on here. First, we take the PCE defined
previously, Y =

∑
j∈Nm cjφj(X), where the φj satisfy the orthonormality condition,∫

X
φi(x)φj(x)ρX(x) = δij. (19)

Here ρX is the density of the random vector X over support X . In practical settings, it is necessary
to truncate the infinite polynomial basis at a particular degree, d. We denote by Θd,m the subset of

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Nm which corresponds to the numeration of terms in a truncation of the polynomial basis with m
inputs and maximum-degree d. Given input-output data, we fit a PCE using regression by solving
the optimisation problem,

{cj} = argminc̃j

n∑
k=1

||yk −
∑

j∈Θd,m

c̃jφj(xk)||2. (20)

Regression does not impose constraints on the collocation points, {xk}nk=1, unlike pseudo-spectral
projection methods [Xiu (2010)]. Additionally, the coefficients can be regularised with ridge of
LASSO regression [Hastie et al. (2009)]. PCE is implemented using ChaosPy [Feinberg & Lang-
tangen (2015)].

B.1 MODELLING PROBABILITIES: THE LOGIT TRANSFORMATION

When the policy at each step is a discrete probability distribution over actions, this is represented
by the vector P ∈ [0, 1]m where

∑m
i=1 Pi = 1. As polynomial functions are not constrained to this

range, we first transform P using the logit transform,

logit(p) = log

(
p

1− p

)
, (21)

which takes values in R, with logit(0) = −∞. We then fit the PCE to the transformed values. When
taking samples from the PCE model, we undo the transform using the soft-max function to obtain a
probability distribution over the m actions.

B.2 CHOOSING A POLYNOMIAL DEGREE

In the interest of brevity and due to lack of impact, we offer little explanation for the choices of
polynomial degree in the PCEs. A higher-degree PCE includes more terms, which can prevent
under-fitting and generate a more complete picture of the distribution. However, too high a degree
can lead to the regression problem being underdetermined. We offer the following ‘rule of thumb’
for picking a polynomial degree. A polynomial of degree p with d input variables includes,

n =

(
d+ p

p

)
, (22)

terms. In order to solve the regression problem in Eq. (20), we need at least n input-output samples
to fit a d−dimensional PCE with degree p. Underdetermined regression problems can be solved
with regularised regression [Hastie et al. (2009)].

C KARHUNEN-LOÈVE EXPANSION

In Sec. 4.3, we use the KL expansion to embed noisy functions in a low-dimensional space. Here
we provide the necessary mathematical background. A mean-zero stochastic process, x(t), admits
the decomposition,

x(t) =

∞∑
k=1

zk
√
λkϕk, (23)

where λk and ϕk solve the eigenvalue problem for the covariance operator [Xiu (2010)],∫ T

0

K(s, t)ϕk(s) ds = λkϕk, (24)

and zk ∼ N (0, 1) are independent and identically distributed. For the Wiener process, this can be
solved analytically to give [Giambartolomei (2015)],

ϕk(t) =

√
2

T
sin

(
(k − 1

2)

T

)
, (25)

λk =
T 2((

(k − 1
2

)
π
)2 , (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where it is clear that the lower values of k have the largest eigenvalues and therefore explain most
of the variance. Using these expressions, it is possible to recover {zk} in an iterative fashion. For
the symbolic regression task, we center the data by subtracting the mean, then assume the remaining
signals are observations of the Wiener process. We then extract (z1, z2) for each noisy function to
obtain a low-dimensional representation of the reward. This approach is similar to, and intimately
related to, PCA, except that it uses the analytical covariance operator for the Wiener process, as
opposed to the empirical covariance.

D LINEAR GAUSSIAN NETWORK

In Sec. 4.4, we use the GFN model presented in Deleu et al. (2022) to demonstrate our approach.
Here we describe the example problem in greater detail. We focus on the problem of sampling
candidate graphs using data sampled from a linear Gaussian network.

A linear Gaussian network is a stochastic model defined by a causal DAG with adjacency matrix
(Aij). The model is defined by the relationship,

xj =
∑

xi∈Pa(xj)

βijxi + ϵ, (27)

where xj is a random variable and Pa(xj) are the set of its parent nodes, i.e. the set of nodes k
such that k → j is in the DAG; βij ∼ N (0, 1) if Aij = 1 and 0 otherwise; and ϵ ∼ N (0, 0.01)
is Gaussian noise [Deleu et al. (2022)]. Given a dataset D and a candidate DAG, G, the reward is
given by,

R(G) = P (G)P (D|G), (28)

where P (G) is the prior over DAGs, and P (D|G) is the marginal likelihood of the observed data
given G. Calculating the marginal likelihood is challenging; thus, we use the BGe score, under the
assumption that the prior over both the parameters and structure of the DAG is modular. For further
details, we direct the interested reader to Refs. [Deleu et al. (2022); Geiger & Heckerman (1994);
Heckerman et al. (1995)]. In Sec. 4.4, we use a single underlying DAG with 5 nodes, shown in
Fig. 4, and sample datasets with 100 points.

E ARCHITECTURES AND TRAINING

Here we describe the ML architectures used for the GFNs in Sec. 4.

E.1 DISCRETE GRID-WORLD

E.1.1 β-VAE FOR LOW-DIMENSIONAL REPRESENTATIONS OF REWARD GRIDS

We represent each reward grid with a one-hot encoding over the three possible reward values. This is
passed into a β-VAE where the encoder has a pair of convolutional layers, where the first has 3 input
channels and 16 output channels, and the second has 16 input channels and 32 output channels. This
is then passed through a linear layer to 128 units, and, finally, projected to a mean and log-variance
in d = 2 dimensions. This is reversed in the decoder. We set β = 4, and train the model with Adam
(learning rate, lr, set to lr = 0.001) for 1000 epochs. This is implemented in Pyro [Bingham et al.
(2018)].

E.1.2 GFN FOR DISCRETE GRID

For this experiment, the GFN is parametrised by an MLP which takes a one-hot grid representation
of the state as input, and passes it through two hidden layers with 128 units each, before a read-out
layer with 5 outputs — corresponding to the 5 actions.

The model is trained to optimise the sub-trajectory loss defined in App. A.1, by sampling a number
of trajectories to form a buffer, from which we perform priority trajectory sampling in proportion
with their rewards [Schaul et al. (2016)]. In addition, we use ϵ−greedy exploration with ϵ being

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

annealed during training, and soft-max temperature scaling to encourage discovery of high rewards.
We use a batch-size of 64, Adam with an lr of 0.001, a temperature of 0.4, a maximum path length
of 20, a buffer capacity of 10,000, and train the model for 20,000 episodes. The ϵ-parameter is
annealed with max(0.1, 0.5 ∗ (0.99k)) where k is the episode number.

E.2 CONTINUOUS GRID-WORLD

The GFN for the continuous grid-world environment is parametrised using an MLP which takes
a 3-d input, (x, y, t), where the components are the x− and y− positions, and the step counter,
respectively. The MLP has 2 hidden layers with 100 units each, and a 4-dimensional out-
put layer corresponding to the Gaussian policy in the x− and y− directions, respectively, i.e.
(µx, log σ

2
x, µy, log σ

2
y) from Sec. 4.2. In this example, we train two MLPs with identical struc-

tures, one representing the forward model, and the other representing the backward model. The
models are trained to optimise the trajectory balance loss. We train the model using Adam for 5000
episodes with a batch size of 256, and the minimum policy standard deviation 0.1 and a maximum
of 1.

E.3 SYMBOLIC REGRESSION

When performing the symbolic regression, we need to evaluate a function constructed from a
sequence of tokens/terms from the library of terms specified in Sec. 4.3. We do so via conversion
into reverse Polish notation (RPN) via the Shunting-Yard algorithm [Norvell (1999)]. The GFN
that implements the symbolic regression environment embeds each token into a latent vector
with 32 dimensions. The sequence of tokens is processed using an LSTM-RNN14 [Hochreiter &
Schmidhuber (1997)], where the final hidden state is the embedding of the whole expression. There
are then three output heads: a forward model, which defines a probability distribution for the next
token, a backward model, and the partition function. Expressions are capped at length 10.

This GFN is trained to optimise the trajectory balance loss for a batch of size 64, for 10,000 episodes
with a learning rate of 0.001. We use temperature scaling in the soft-max with temperature = 1.5.

E.4 BAYESIAN STRUCTURE LEARNING

In Sec. 4.4, we use the model published Deleu et al. (2022). Starting from the initial state s0, a
graph with no edges, graphs are constructed one edge at a time, masking actions that violate the
DAG condition (see Appendix C of Ref. [Deleu et al. (2022)]). Each input graph is encoded as a set
of edges, and each directed edge is embedded using an embedding for the source and target node,
with an additional vector indicating the presence of edges in a graph G. The embeddings are passed
through a linear transformer [Katharopoulos et al. (2020)] with two output heads, the first of which
gives the forward transition probabilities over possible actions, and the second gives the probability
to terminate the trajectory [Deleu et al. (2022)]. For further details see Deleu et al. (2022).

F COMPARISON TO MULTILAYER PERCEPTRONS

In this section, we compare our PCE surrogate model to a simple MLP. Whilst they lack the an-
alytical tractability of PCEs, MLPs have the advantage that they can fit multi-dimensional outputs
simultaneously. In Figs. 5 & 6, we show the testing ensemble and PCE surrogate samples from
Sec. 4, alongside surrogate samples from an MLP with two hidden layers, each with 64 units. As
with the PCEs, we train the MLPs on a training ensemble of input-output data, where inputs are low-
dimensional representations of reward functions and outputs are policies along a trajectory. For the
discrete world, symbolic regression and structure learning task, this network is trained to minimise
the Kullback-Leibler divergence between the surrogate and empirical distributions for the training
ensemble. For the continuous grid world, the MSE is optimised instead. To illustrate that both sur-
rogate models are able to capture the full breadth of the distribution, Figs. 5 & 6 show strip-plots
rather than distributions. Whilst the MLPs are typically able to capture the relationship between

14Long Short Term Memory Recurrent Neural Network

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

a)

b)

Figure 5: Comparison to an MLP for grid-worlds. a) Testing samples compared with surrogate
samples from a PCE and MLP model for the discrete-grid world example from Sec. 4.1. We see
that both surrogate models are able to capture the relationship between inputs and outputs, and that
the surrogate model with its additional samples builds up a distribution with greater variance. b)
Comparison for the continuous-grid world example from Sec. 4.2. The MLP can learn the input-
output relationship, but suffers from regression to the mean, i.e. the surrogate model predicts values
which are close to the mean, thus underestimating the variance of the empirical samples shown in
Fig. 2.

inputs and outputs, in some cases they suffer from regression to the mean, where predicted outputs
are often close to the mean value, thus underestimating the variance. This is most clearly illustrated
in both examples in Fig. 6, and Panel b) of Fig. 5, when compared to Fig. 2. Finally, we note that
MLPs do not allow for sensitivity analysis, such as the calculation of Sobol’ indices [Sudret (2008)],
which is a central feature of the PCE. The sensitivity analysis with NNs corresponds to examining
the partial derivatives of the predictions with respect to the inputs. The Jacobian of the outputs with
respect to the inputs evaluated at x∗ is given by,

Jij(x
∗) =

∂

∂xi
(fj(x

∗)) . (29)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

a)

b)

Figure 6: Comparison to an MLP for symbolic regression and Bayesian structure learning. a)
Testing samples compared with surrogate samples from a PCE and MLP model for the symbolic
regression example from Sec. 4.3. The MLP suffers from regression to the mean i.e. the surrogate
model predicts values which are close to the mean, thus underestimating the variance of the empirical
samples shown in Fig. 3, which does not occur for the PCE model. b) Comparison for the Bayesian
structure learning example from Sec. 4.4. The MLP again suffers from regression to the mean.

18

	Introduction
	Generative flow networks with uncertain rewards
	Flow networks
	Continuous generative flow networks
	Uncertain rewards and uncertain policies

	Surrogate modelling with polynomial chaos expansions
	Polynomial chaos expansions
	Integrating PCEs into GFNs

	Numerical experiments
	Discrete grid-world with uncertain rewards
	Continuous grid world with uncertain rewards
	Symbolic regression of a function with additive noise
	Bayesian structure learning of a linear Gaussian network

	Discussion
	Generative flow networks
	Learning a flow approximation

	Polynomial chaos expansions
	Modelling probabilities: the logit transformation
	Choosing a polynomial degree

	Karhunen-Loève expansion
	Linear Gaussian network
	Architectures and training
	Discrete grid-world
	-VAE for low-dimensional representations of reward grids
	GFN for discrete grid

	Continuous grid-world
	Symbolic regression
	Bayesian structure learning

	Comparison to multilayer perceptrons

