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ABSTRACT

It was known that the decomposed 1-D convolutions can replace the spatial 2-D convolutions
in several convolutional neural networks (CNNs) for computer vision. However, the
proper usage of 1-D convolutions was not shown in the field of binarized CNNs. This
paper proposes a new structure called OneBNet to maximize the effects of 1-D binarized
convolutions, thus producing excellent performance on CPU-based edge devices. To double
the effects of adjusting the activation distribution and non-linear activation function, specific
layers for BCNNs are doubled by applying them to both n× 1 row-wise and 1× n column-
wise 1-D binarized convolutions. The proposed 1-D downsampling can perform information
compression gradually through two 1-D convolutions, which can contribute tremendously
to the performance improvement in binarized convolutional neural networks (BCNNs) in
our analysis. In the decomposed 1-D binarized convolution, although computational costs
are reduced, the number of element-wise non-linear activation functions and learnable
bias layers can be doubled, which can be a significant burden. Therefore, we expect that
the 1-D binarized convolution is not suitable for all layers, and we present the reason and
experimental results proving it. Based on the above assumption and experimental results,
we can provide more optimized structure in terms of performance and costs. With ResNet
as a backbone, we evaluate the proposed model on several conventional image datasets. In
experiments, the proposed model based on ResNet18 achieves 93.4% and 93.6% Top-1
accuracy on the FashionMNIST and CIFAR10 datasets. In the case of training from scratch,
the proposed OneBNet based on ResNet18 can produce 63.9% Top-1 accuracy, showing
better performance over the state-of-the-art (SOTA) binarized CNNs based on ResNet18.
When applying the teacher-student training, 68.4% Top-1 accuracy can be obtained, which
overwhelms the existing SOTA BCNNs. With 5% additional delay on a single thread of
Raspberry Pi 4, the proposed lightweight model achieves 67.3% Top-1 accuracy on the
ImageNet dataset, outperforming the baseline by 1.8%.

1 INTRODUCTION

CNNs have made significant advances in various fields of machine learning. SOTA CNNs and vision
transformers overcome human ability as their structural complexity increases. However, the sophisticated
models exponentially increase computational and storage resource usage. Whereas a huge parallelism in
GPUs or neural network accelerators can achieve speedup for complex models, edge devices do not have
enough parallelism for accommodating the increasing model complexity. Quantization on edge devices can
make a quantized model adopt SIMD (single-instruction multiple-data) instructions. However, the number of
multiple issued instructions is limited, and multiply-accumulate operations are still needed on the quantized
model. BCNNs quantize both weights and activations into 1 bit in binarized convolutions. Therefore,
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multiply-accumulate operations are replaced by bitwise XNOR and bit-counting operations. However, SOTA
BCNNs still have significant accuracy drops over their FP32 counterparts.

While 2-D convolutions have been naturally used in computer vision, 1-D convolutions have been adopted
for filtering 1-D sequential data. An existing work (Wu et al., 2021) applied decomposed 1-D binarized
convolutions to image classification. Compared to n× n 2-D convolutions, decomposed n× 1 and 1× n
1-D convolutions can have smaller kernel size, mainly reducing the amount of computation in convolutions.
However, its performance (59.9% Top-1 accuracy on the ImageNet (Russakovsky et al., 2015) dataset) had a
significant gap from current SOTA BCNNs. In Bannink et al. (2021), although it is noted that the overhead
of shortcuts and element-wise operations is not serious in edge devices, the cases using the decomposed
1-D binarized convolutions are not analyzed. Whereas the decomposed 1-D binarized convolutions require
additional element-wise operations and more complex downsampling, the decomposition can double the
effects of the shortcuts, adjustments of activation distribution, and non-linear activation functions. There are
the above pros and cons when applying the decomposed 1-D binarized convolutions.

Therefore, we propose a new model called OneBNet, optimizing the usage of the decomposed 1-D binarized
convolutions in BCNNs. The proposed model can contain n × 1 row-wise and 1 × n column-wise 1-D
binarized convolutions for image classification. To overcome the weakness of BCNNs using 1-D binarized
convolutions, our contributions are as follows:

1. We propose basic blocks using 1-D binarized convolutions with and without downsampling. In
the proposed basic block, the row-wise and column-wise downsamplings are gradually performed,
which significantly enhances the classification accuracy. The decomposed 1-D binarized convolution
using n × 1 row-wise and 1 × n column-wise 1-D convolutions can slightly reduce the amount
of computations without significant performance degradation. Besides, we provide the detailed
structure of the basic block that adjusts the activation distribution in row-wise and column-wise
manners.

2. In order to demonstrate the effectiveness of the proposed basic blocks, we evaluate several different
structures based on baseline ResNet (He et al., 2016) models. In the pyramid structure, we conclude
that 1-D binarized convolutions can be more effective in deep convolutional layers, considering
both increasing computations in downsampling and reduced computations. For the proposed model,
we describe the detailed process of training environments and hyperparameters, including the
teacher-student training (Hinton et al., 2015) on the ImageNet dataset (Russakovsky et al., 2015).

3. Along with the performance evaluations, the latencies of the different structures are compared on
Raspberry Pi 4 using Larq (Bannink et al., 2021), which proves that the proposed structure does not
need significant additional latency, compared with baseline ReActNet (Liu et al., 2020).

The proposed model based on ResNet18 achieves 93.4% and 93.6% Top-1 accuracy on the FashionM-
NIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2014) datasets. Moreover, when adopting the
teacher-student training, the proposed OneBNet based on ResNet18 reaches up to 68.4% Top-1 accuracy on
the ImageNet dataset. Compared with FP32 ResNet18, the proposed OneBNet can have only 1.2% Top-1
accuracy drop, having only 13% storage costs with ×4.7 inference speed.

2 RELATED WORKS

The concept of BCNNs was proposed in Courbariaux et al. (2016). It applied BCNNs on several small
datasets. XNOR-Net (Rastegari et al., 2016) shows the validity of BCNNs on the ImageNet dataset. Its
binarized ResNet18 (He et al., 2016) scaled the convolution outputs and achieved 51.4% Top-1 accuracy.
However, it was about 18% lower than FP32 ResNet18. ABC-Net (Lin et al., 2017) compensated large
quantization errors by linearly combining several binary weights. However, both computational and storage
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costs increased with the number of combined blocks. Bi-RealNet (Liu et al., 2018) proposed the single
skipped connection for each binarized convolutional layer and a customized backward function for the sign
function. However, its Top-1 accuracy was only 56.4%, still showing a significant gap from FP32 ResNet18.
Real-to-Bin (Martinez et al., 2019) adopted self-attention blocks and shows 65.4% Top-1 accuracy with
binarized ResNet18 on the ImageNet dataset. ReActNet(Liu et al., 2020) proposed adjusting the activation
distribution through learnable biases, resulting in achieving 65.5% Top-1 accuracy. In Liu et al. (2020);
Martinez et al. (2019), the effectiveness of teacher-student training (Hinton et al., 2015) was empirically
proved, having over 65% Top-1 accuracy. IR-Net (Qin et al., 2020) minimized information loss in the forward
path by maximizing the information entropy and minimizing quantization errors. In SI-BNN (Wang et al.,
2020), a trainable threshold was applied to the BCNN to guide the gradient propagation. BNSC-Net (Wu et al.,
2021) applied 1-D convolutions to reduce computational complexity. However, BNSC-Net degraded 10%
Top-1 accuracy compared to FP32 ResNet18. RB-Net (Liu et al., 2022) simplified operations by reshaping
convolutions and applying balanced activations. SA-BNN (Liu et al., 2021) proposed using independent
gradient coefficients for different states when updating the weights. AdaBin (Tu et al., 2022) approximated
FP32 value distributions through the adaptive binary set and improved the representation of binarized features.
DIR-Net (Qin et al., 2023) proposed a distribution-sensitive information-retention network to hold forward
activation and backward gradient information. The existing works (Liu et al., 2021; Tu et al., 2022; Qin et al.,
2023) mainly proposed better training methods; new BCNN structures were not considered.

PokeBNN (Zhang et al., 2022) significantly enhanced the accuracy of BCNNs. However, the model adopted
various types of quantization formats (1-bit, 4-bit, and 8-bit) and self-attention blocks. QuickNet (Bannink
et al., 2021) can improve inference speed by using depthwise convolutions in the first convolutional layer.
Because the purpose of this paper is to present an efficient method to use the proposed basic block, only FP32
and binary formats are adopted like many BCNNs. Besides, the first and last layers are from the FP32 layers
from the baseline ResNet. The number of channels in the proposed model follows the baseline model.

3 ONEBNET USING DECOMPOSED 1-D BINARIZED CONVOLUTIONS

3.1 MOTIVATIONS

Most of the BCNNs have been developed based on 2-D convolutions. However, when only the order of blocks
was changed in Rastegari et al. (2016), its performance was not acceptable, compared to its FP32 baseline. In
Bi-RealNet (Liu et al., 2018), the single skipped connection was proposed to apply skipped connection for
each binarized convolutional layer. The authors of Bi-RealNet explained that the single skipped connection
increased the resolution of binarized convolutions. The single skipped connection can provide better model
optimization by preventing internal covariant shift from large quantization errors in the binarized convolutions.
The experiments in Bannink et al. (2021) on edge devices showed that the increasing latency of the shortcuts is
very small, unlike the cases using GPUs. Therefore, it is concluded that the single skipped connections can be
effective in BCNNs. On the other hand, we think that the adjustment of activation distribution and non-linear
activation function are essential in BCNNs. For example, RSign and RPReLU of ReActNet (Liu et al., 2020)
introduced learnable biases for both inputs and outputs of binarized convolutions. The effects of the learnable
biases showed remarkable performance enhancements in BCNNs. We expect that the performance of BCNNs
can be enhanced if the above valuable effects over BCNNs can be reinforced.

To double the effects of the adjustment of activation distribution, we apply the adjustment of activation
distribution to the decomposed 1-D binarized convolutions. Whereas the conventional 2-D convolutions
use 3× 3 kernels, the decomposed convolutions use 3× 1 and 1× 3 kernels. The adjustment of activation
distribution is applied to each 1-D convolution. Although the decomposition had the same receptive field with
2-D convolution (Szegedy et al., 2016), it requires additional element-wise operations for the adjustments
and activation functions. This paper explains the structure of 1-D convolutional layer. Then, it analyzes the
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(a) 2-D binarized convolutional layer (b) 1-D binarized convolutional layers

Figure 1: Spatial convolutions using 2-D and 1-D binarized convolution layers. The spatial convolution using
1-D convolutional layers performed 3× 1 and 1× 3 binarized convolutions.

Figure 2: Downsampling using 1-D binarized convolutions. Activations are gradually downsampled in
row-wise and column-wise manners using 2× 1 and 1× 2 average poolings (denoted as Avg Pooling).

model structures in terms of latency and accuracy and shows the idea to deploy 1-D binarized convolutions,
considering the above explained pros and cons.

3.2 PROPOSED BASIC BLOCK

The proposed model can have 1-D binarized convolutional layers, which is used as a basic block in the
proposed OneBNet. Figure 1 illustrates 2-D and 1-D binarized convolutional layers without downsampling.
A symbol ⊕ denotes the element-wise addition with a shortcut. Whereas 2-D binarized convolutional layer
has 3× 3 binarized convolutional layer in Fig. 1 (a), 3× 1 and 1× 3 binarized convolutions are adopted in
Fig. 1 (b), doubling the effects of shortcuts. We think that the two 1-D binarized convolutional layers can
correspond to one 2-D binarized convolutional layer. As shown in Liu et al. (2020), activations are adjusted
in a learnable bias and RPReLU. Because the learnable bias and RPReLU are used in each row-wise and
column-wise convolutions, the numbers of the adjustments of activation distribution and non-linear activation
functions are doubled.
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(a) Adjustment of input activations for row-wise bina-
rized convolution

(b) Adjustment of input activation for column-wise
binarized convolution

Figure 3: Adjustments of activation distribution with learnable bias in row-wise and column-wise manners.

Figure 2 illustrates the convolutions during downsampling, where terms C, H , and W denote the number
of channels, height, and width in activations. The row-wise 1-D binarized convolution is performed, and
then the convolution outputs are summed with the outputs of the expanded channels from the first 1 × 1
FP32 convolution, producing 2C × H

2 ×W activations. The input activations are adopted in 1× 3 binarized
convolution of the column-wise downsampling. Besides, 1 × 1 FP32 convolution is also used in the
shortcut. The downsampling can gradually perform the information compression and adjustment of activation
distribution, producing 2C × H

2 × W
2 activations. The 2 × 1 and 1 × 2 average poolings are performed

with stride = (2, 1) and stride = (1, 2). Because two 1 × 1 FP32 convolutions are required on the
baseline ResNet, the downsampling using 1-D binarized convolutions requires additional computational
costs. However, the downsampling is not performed in all basic blocks. For example, there are only three
downsampling in binarized convolutions in the baseline ResNet18. Besides, whereas the number of channels
doubles, both height and width of activations halved, reducing the number of activations by half. The above
characteristics related to computational costs and model performance are used to decide the deployment of
1-D binarized convolutions.

3.3 ADJUSTMENT OF ACTIVATION DISTRIBUTION

In (Liu et al., 2020; 2022; Tu et al., 2022), the activation distribution in BCNNs significantly affects model
performance. The decomposed 1-D binarized convolutions double the number of the learnable bias and
RPReLU layers, reinforcing the effects of adjusting the activation distribution. The equations of the learnable
bias and RPReLU for the i-th channel are equations (1) and (2) as follows:

Learnable Bias(xi) = xi − αi. (1)

RPReLU(xi) =

{
xi − γi + ζi if xi > γi

βi(xi − γi) + ζi if xi ≤ γi

}
. (2)

Terms αi, βi, γi, and ζi are the learnable parameters for the i-th channel. For row-wise and column-wise
convolutions, their learnable parameters are adopted to adjust the activation distribution, respectively. Equation
(2) formulates the operation of RPReLU, which adjusts the input distribution of PReLU with γi. When
xi − γi is negative, learnable parameter βi scales it. Figure 3 shows the adjustment of activation distribution
with γi in a basic block using 1-D binarized convolutions. In Fig. 3 (a) and (b), the input distribution of
the learnable bias layer is illustrated in the left; the right distributions denote the output distributions of the
learnable bias layer. Although the distribution shift is not large, we observe that each distribution is slightly
shifted, showing that the learnable bias and RPReLU layers of each row-wise and column-wise 1-D binarized
convolution can double the adjustment of activation distribution.
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Figure 4: Architecture based on baseline ResNet18. There are sixteen basic blocks, where the layer in
Fig. 2 can be deployed during downsampling. The below numbers denote #channels× height× width of
activations. The first convolutional and final fully connected layers use FP32 operations like the baseline and
conventional BCNNs. More detail description of the model structure is listed in Appendix A.1.

3.4 BINARIZED CONVOLUTION

In binarized convolution, both binarized weights are stored, and activations are binarized using the sign
function. If a feature or weight is zero, it is binarized as −1. The binarized −1 and +1 values are represented
as 0 and 1 bits, respectively. To perform multiply-accumulate function in parallel, binarized features and
weights are bitwise-XNORed. Then, the accumulation is calculated by counting +1 output bits in forward
paths. The output of a binarized convolution are multiplied by a FP32 scaling factor shown in Rastegari et al.
(2016). The learnable parameters in the next batch normalization layer are used to scale the convolution
outputs and add a bias to them. As shown in Bannink et al. (2021), the binarized convolution and batch
normalization can be fused by reparameterizing the scaling parameters and biases. During model training,
weights in binarized convolution layers are binarized in the forward pass. In backward propagation, FP32
weights are updated based on the training method in Rastegari et al. (2016). Whereas the sign function
for binarizing activations is easily implemented, its derivative contains the delta function (Hassani, 2009),
which needs its approximate implementation. The derivative of the sign function was approximated into a
straight-through-estimator (Yin et al., 2019; Bengio et al., 2013).

3.5 MODEL ARCHITECTURE USING 1-D BINARIZED CONVOLUTIONS

Figure 4 illustrates the proposed OneBNet based on the baseline ResNet18. Because the proposed OneBNet
follows the structure from ResNet, it is easy to make the pyramid structure using the proposed basic blocks.
If all basic blocks adopted 1-D binarized convolutions, there are 32 1-D binarized convolution layers. To
obtain the classification output, a 2-D global average pooling layer is deployed. Then, the fully connected
layer produces the classification output.

In order to enhance performance without significant speed degradation, computational costs of a basic
block are ideally calculated to determine whether 1-D binarized convolutional layers are deployed or not.
Figure 5 illustrates the comparison of computations with the cases using 1-D and 2-D binarized convolutions.
Terms FLOPs and BOPs denote that the numbers of FP32 and binarized operations, respectively. Each
binarized multiplication or addition is calculated as one BOP. Terms OPs are calculated by OPs = FLOPs+
BOPs

64 (Liu et al., 2020). Figure 5 (a) shows that computations can be reduced with 1-D binarized convolutional
layers when the number of channels is 256 or 512. On the other hand, additional OPs in downsampling can
affect the inference speed. Therefore, if the proposed 1-D convolutional layers in downsampling cannot
provide outstanding enhancements, the usage of 1-D binarized convolutions is meaningless. Our experiments
showed that when all downsampling layers use 1-D binarized convolutions, the model can show only
1.2% accuracy drop on the ImageNet dataset, compared with FP32 ResNet18. Besides, when the final
downsampling layer uses only 1-D binarized convolutions, it can produce 1.8% accuracy enhancement over
the baseline ReActNet18, having small additional latency.
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(a) Increased FLOPs and reduced OPs (b) OPs in downsampling

Figure 5: Comparison of computations with the cases using 1-D and 2-D binarized convolutions. (a)
illustrates the increased FLOPs and reduced OPs of an 1-D binarized convolution compared with a 2-D
binarized convolution. It shows that the computations can be reduced by increasing the number of channels.
On the other hand, the proposed 1-D binarized convolutions in downsampling require large additional costs.

Table 1: Summary of Top-1 accuracies and latencies by varying structures on ImageNet dataset.

1-D Conv 1-D DS Top-1 Latency 1-D Conv 1-D DS Top-1 Latency
(%) (ms) (%) (ms)

- - 65.5 83.2 64,128,256,512 - 65.4 85.5
256,512 - 65.7 80.8 64,128,256,512 128,256,512 67.7 105.4
64,128 128,256,512 68.1 106.9 256,512 128,256,512 68.1 99.5
- 128,256,512 68.4(1) 101.7 64,128 128 65.8 96.3
256,512 128 66.2 87.7 64,128 256,512 67.6 100
256,512 256,512 67.7(2) 92.3 512 512 67.3(3) 87.4
(1),(2),(3) : superscripts(1),(2),(3) denote the models called TypeI, TypeII, and TypeIII depending on the

usage of 1-D binarized convolutions. The latency was evaluated on a single thread of Raspberry Pi 4.

4 EXPERIMENTAL RESULTS AND ANALYSIS

Experiments were performed on the FashionMNIST, CIFAR10, and ImageNet datasets, where their environ-
ments and evaluations on FashionMNIST and CIFAR10 datasets are explained in Appendix A.2 and A.3 in
detail. Firstly, we experimented with the proposed OneBNet from ResNet18 on the ImageNet dataset. We
followed the two-stage training method and hyperparameters of ReActNet (Liu et al., 2020). In the training
method, a teacher-student training method (Hinton et al., 2015) was adopted using Pytorch official pre-trained
FP32 ResNet34 as a teacher. In the first stage having 256 epochs, only input features for 1-D convolutions
were binarized; weights for 1-D convolutions were FP32 values. In the second stage, the pre-trained weights
from the first stage were used in the initialization. Both input features and weights for 1-D convolutions were
binarized during 256 training epochs.

Table 1 summarizes Top-1 accuracies and latencies by varying structures. Term 1-D Conv means the number
of output channels of 1-D binarized convolutional layers. Term 1-D DS denotes the number of output channels
of 1-D binarized convolutional layers in downsampling. If 1-D binarized convolutions are not used, they are
not listed in Table 1. Compared with 65.5% Top-1 accuracy of ReActNet, when not using 1-D binarized
convolutions in downsampling, models cannot show outstanding improvements. In these cases, when 1-D
Conv=256,512, its performance was slightly better than other models using 1-D binarized convolutions
without downsampling. On the other hand, when three downsamplings adopted 1-D binarized convolutions,
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Table 2: Comparison with existing BCNNs on ImageNet dataset.

Training Model Top-1 Top-5 Model Top-1 Top-5
(%) (%) (%) (%)

Scratch

FP32 ResNet18 69.6 89.2 ABC-Net 42.7 67.6
XNOR-Net 51.2 73.2 Bi-RealNet 56.4 79.5
XNOR-Net++ 57.1 79.9 SI-BNN 59.7 81.8
IR-Net 58.1 80.0 BNSC-Net 59.9 81.8
SA-BNN 61.7 82.8 RB-Net 63.0 84.2
AdaBin 63.1 84.3 TypeII 63.9 84.5

TS

Real-to-Bin 65.4 86.2 ReActNet18 65.5 -
AdaBin 66.4 86.5 DIR-Net2 66.5 87.1
RB-Net 66.8 87.1 TypeI 68.4 88.0
TypeII 67.7 87.7 TypeIII 67.3 87.9

Top-1 accuracies were enhanced by 1.8-2.9%. When 1-D binarized convolutions were not adopted for
downsampling in TypeI, its latency was 101.7 ms. When 1-D Conv=64,128 and 1-D Conv=256,512, its
latencies were 106.9 ms and 99.5 ms, respectively. The difference showed that 1-D binarized convolutions
without downsampling can have small benefits in terms of inference speed, as shown in Fig. 5 (a). On
the other hand, when 1-D DS=256, 512 and 1-D DS=512, Top-1 accuracies were significantly enhanced,
compared with the model with 1-D DS=128. When 1-D Conv=1-D DS=512, Top-1 accuracies can be 67.3%
with the latency of 87.3 ms. Table 1 shows the effectiveness of 1-D binarized convolutions in downsampling,
where deep convolutional layers with many channels and small activation map can have significant benefits
for enhancing performance.

Table 2 shows the comparison with existing BCNNs on the ImageNet dataset. Except for FP32 ResNet18,
only binarized models were compared. For apples-to-apples comparison, we trained the proposed TypeII
model from scratch during 256 epochs. During training, binarized CNNs based on ResNet18 were trained
with 256 mini-batch sizes. Initial learning rate Irbase was set as 1e − 3 with zero weight decaying. In
Table 2, the models and their accuracies above the midline were based on the training from scratch, where the
accuracies of ResNet18 (He et al., 2016), ABC-Net (Lin et al., 2017), XNOR-Net (Rastegari et al., 2016),
Bi-RealNet (Liu et al., 2018), XNOR-Net++ (Bulat et al., 2019), SI-BNN (Wang et al., 2020), IR-Net (Qin
et al., 2020), BNSC-Net (Wu et al., 2021), SA-BNN (Liu et al., 2021), RB-Net (Liu et al., 2022), AdaBin (Tu
et al., 2022) are listed. Other models below the midline adopted teacher-student training, including Real-to-
Bin (Martinez et al., 2019), ReActNet18 (Liu et al., 2020), DIR-Net2 (Qin et al., 2023), which is denoted
as TS. The models and data marked with bold text are the proposed TypeI, TypeII, and TypeII models and
their training results. On the training from scratch, the proposed TypeII reached 63.9% Top-1 accuracies,
outperforming other counterparts trained from scratch. When the two-stage based teacher-student training
was applied, the proposed TypeI, TypeII, and TypeIII achieved 68.4%, 67.7%, and 67.3% Top-1 accuracies.
As far as we know, it overwhelmed the performance of other SOTA BCNNs based on ResNet18. Notably, the
proposed model outperformed SOTA BCNNs using reshaped convolutions (Wu et al., 2021; Liu et al., 2022).
Compared with RB-Net (Liu et al., 2022), Top-1 accuracy of TypeI was enhanced by 1.6%. Besides, TypeI
only shows 1.2% Top-1 accuracy drop compared with FP32 ResNet18 model.

Table 3 summarizes the comparison in terms of storage costs and inference speed. We note that the models in
Table 3 were based on ResNet18. Compared with FP32 ResNet18, the proposed TypeI, TypeII, and TypeIII
reduced storage costs and inference latency by 87.9%-89.2% and 78.9%-81.9%, respectively. Compared with
ReActNet18, the proposed TypeI increased storage costs and latency by 33% and 22%, but it enhanced Top-1
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Table 3: Comparison of storage costs and inference latency on ImageNet dataset

Model(1) Storage Latency Top-1 Model Storage Latency Top-1
(MB) (ms) (%) (MB) (ms) (%)

FP32 ResNet18 44.59 481.1 69.6 XNOR-Net 4.00 80.7 51.2
Bi-RealNet 4.00 80.2 56.4 Real-to-Bin 5.13 97.1 65.4
ReActNet18 4.05 83.2 65.5 TypeI 5.39 101.7 68.4
TypeII 5.03 92.3 67.7 TypeIII 4.82 87.3 67.3
(1) : Because the models are based on baseline ResNet18, the first FP32 convolutional and fully

connected layers are the same. Therefore, the difference between models is produced from
the structure of binarized convolutional layers.

Table 4: Comparison with existing BCNNs on CIFAR10 dataset.

Model(W/A) Top-1(%) Model(W/A) Top-1(%)

ResNet18(32/32) 95.5 XNOR-Net++(1/1) 90.2
Bi-RealNet(1/1) 89.1 IR-Net(1/1) 91.5
RAD(1/1) 90.5 ReCU(1/1) 92.8
RBNN(1/1) 92.2 ReActNet(1/1) 92.3
AdaBin(1/1) 93.1 DIR-Net(1/1) 92.8
TypeI(1/1)(1) 93.6 TypeII(1/1)(2) 93.3
(1), (2) : TypeI and TypeII are described in Table 2.

accuracy by 2.9%. Besides, Type II and Type III offered the option of having a lower storage cost and smaller
latency. TypeIII enhanced Top-1 accuracy by 1.8%, having only 5% additional latency.

Top-1 accuracies from ResNet20 on the FashionMNIST dataset can reach up to 93.4% and 93.2%, where the
accuracy drops were under 0.5%, compared with FP32 ResNet20 model. Table 4 lists Top-1 accuracies of
ResNet18, XNOR-Net, Bi-RealNet (Liu et al., 2018), IR-Net (Qin et al., 2020), RAD (Ding et al., 2019),
ReCU (Xu et al., 2021), RBNN (Lin et al., 2020), ReActNet18, AdaBin, and DIR-Net on the CIFAR-10
dataset. The proposed model outperformed all other methods. Based on the above performances, We conclude
that TypeI and TypeII can achieve good accuracies on the FashionMNIST and CIFAR10 datasets.

5 CONCLUSION

This paper proposes new BCNNs for image classification by decomposing binarized 2-D convolutions.
In Wu et al. (2021), naively reshaped 1-D BCNNs cannot outperform SOTA 2-D BCNN models. However,
compared with 2-D BCNNs, the proposed OneBNet has significant benefits by having higher classification
accuracy. This paper shows that 1-D binarized convolutions can be suitable for image classification. The
proposed OneBNet significantly outperforms other SOTA BCNN models on the ImageNet dataset using the
decomposed 1-D convolutions in downsampling Above all, it showed only 1.2% Top-1 accuracy drop having
×4.7 inference speed, compared with its FP32 baseline. It suggests the possibility that BCNNs can be applied
with high performance and acceptable computational efficiency in any edge applications. Notably, the 1-D
binarized convolutions could be suitable for implementing CNNs on power-hungry edge devices. Considering
the above outperforming experimental results and structural benefits, we assure the proposed OneBNet is
the best BCNN model so far. Additional explanations and visualizations for proving the effectiveness of
OneBNet are included in the Appendix.
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6 REPRODUCIBILITY STATEMENT

We adopted conventional FashionMNIST, CIFAR10, and ImageNet datasets for easy reproduction. The
attached code can be run when Pytorch dataset formats are prepared. The detail structure when 1-D binarized
convolutions is described in Appendix A.1. For better understanding reproduction, additional description of
experimental environments and experiments on small datasets are included in Appendix A.2 and A.3. Besides,
the environments for evaluating inference speed are described in Appendix A.4. The operation of a basic
block can be easily understood based on Appendix A.5. The visualizations of training and internal activations
in Appendix A.6 and A.7 could be helpful for understanding the proposed model.
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A APPENDIX

A.1 ARCHITECTURE OF ONEBNET

Table 5: Architecture of OneBNet on ImageNet and CIFAR datasets

Layer Name Output Size ImageNet (Russakovsky et al., 2015) Output Size CIFAR (Krizhevsky et al., 2014)
ResNet18 ResNet20 ResNet18 ResNet20

Conv1 112×112 7×7, 64, stride 2 7×7, 16, stride 2 32×32 3×3, 64, stride 1 3×3, 16, stride 1

Conv2_x 56×56

3×3 max pool, stride 2

32×32

- 3×1, 64
1×3, 64
3×1, 64
1×3, 64

×2

 3×1, 16
1×3, 16
3×1, 16
1×3, 16

×3

 3×1, 64
1×3, 64
3×1, 64
1×3, 64

×2

 3×1, 16
1×3, 16
3×1, 16
1×3, 16

×3

Conv3_x 28×28

 3×1, 128
1×3, 128
3×1, 128
1×3, 128

×2

 3×1, 32
1×3, 32
3×1, 32
1×3, 32

×3 16×16

 3×1, 128
1×3, 128
3×1, 128
1×3, 128

×2

 3×1, 32
1×3, 32
3×1, 32
1×3, 32

×3

Conv4_x 14×14

 3×1, 256
1×3, 256
3×1, 256
1×3, 256

×2

 3×1, 64
1×3, 64
3×1, 64
1×3, 64

×3 8×8

 3×1, 256
1×3, 256
3×1, 256
1×3, 256

×2

 3×1, 64
1×3, 64
3×1, 64
1×3, 64

×3

Conv5_x 7×7

 3×1, 512
1×3, 512
3×1, 512
1×3, 512

×2 - 4×4

 3×1, 512
1×3, 512
3×1, 512
1×3, 512

×2 -

1×1 GAP 2-D, FC 1000-D, Softmax 1×1 GAP 2-D, FC 10 or 100-D, Softmax

The overall architecture of the proposed OneBNet follows ResNet (He et al., 2016). In this table, all binarized
convolutional layers are assumed to have the 1-D structure. Notably, FP32 Conv1 convolutional, the last 2-D
global average pooling (denoted as GAP 2-D), and fully connected layers (denoted as FC) are the same as
those of the original ResNet. In Table 5, FashionMNIST having 28× 28 input image is not considered. When
ResNet20 is adopted on the FashionMNIST dataset, the output size can be downsampled into (28 × 28)-
(14× 14)-(7× 7) three times. The detail information of the stacked 1-D convolutional layers inside the basic
blocks are shown in brackets of Table 5, where the height, width, and the number of output channels are
listed.
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A.2 EXPERIMENTAL ENVIRONMENTS

We adopted ResNet-based BCNN topology to evaluate the proposed OneBNet in terms of image classification
accuracy. Like other BCNN models, the first convolutional and last fully-connected layers adopted FP32
weights and activations. For apple-to-apple comparison, we adopted ADAM (Kingma & Ba, 2014) optimizer
in all cases, having β1 = 0.9 and β2 = 0.999. When training during Eepochs epochs, the initial learning
rate lrbase was assigned. During training, learning rate lr in the eepochs-th epoch was decreased based on
poly policy, which limits the maximum learning rate of the ADAM optimizer (Kingma & Ba, 2014) by
lrbase × (1− eepochs/Eepochs).

On various image datasets named FashionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009),
and ImageNet (Russakovsky et al., 2015), we experimented with ResNet-based binarized CNNs. the
FashionMNIST dataset has 28× 28 color images with 10 classes, having 60K training and 10K test images.
During training, no data augmentation was applied to the FashionMNIST dataset. On the other hand, the
CIFAR10 dataset contains 32× 32 color images with 10 classes, having 50K training and 10K test images.
During training with data augmentation, 32×32 images were randomly cropped from 40×40 padded images
and randomly flipped. The ImageNet dataset contains 1.3M training and 50K validation images with 1,000
classes. During training on the ImageNet dataset, 224× 224 augmented images based on (Liu et al., 2020)
were used. In inference, 224× 224 center-cropped images from the validation dataset were adopted without
the data augmentation. All experiments were conducted on an AMD Ryzen Threadripper PRO 5955WX
16-Cores CPU and 2 NVIDIA RTX 4090 GPUs and 263-GB RAM.
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A.3 EXPERIMENTS ON FASHIONMNIST AND CIFAR10 DATASETS

During 400 epochs, the proposed OneBNet was trained with 256 mini-batch sizes. Label smoothing with
ϵ = 0.2 was adopted with zero weight decaying. Initial learning rate Irbase was set as 1e − 3. We used
ResNet20 and ResNet18 topologies as baseline models for the FashionMNIST and CIFAR10 datasets.
Considering the image sizes and number of classes of each dataset, FashionMNIST and CIFAR10 adopted
only ResNet20 and ResNet18 topologies, respectively.

Table 6: Summary of Top-1 accuracies on small-size datasets. Term 1-D Conv means the number of output
channels of 1-D binarized convolutional layers. Term 1-D DS denotes the number of output channels
of 1-D binarized convolutional layers in downsampling. If there is no mention with the terms, only 2-D
binarized convolutional layers are adopted. The terms are used to indicate which layers adopted 1-D binarized
convolutional layers.

Dataset Baseline 1-D Conv 1-D DS FP32 (%) OneBNet (%)

FashionMNIST ResNet20 - 32,64 93.6 93.4
64 64 93.2

CIFAR10 ResNet18 - 128,256,512 95.5 93.6(TypeI)(1)

256, 512 256, 512 93.3(TypeII)(2)

(1),(2) : terms TypeI and TypeII denote the model structures according to the usage of 1-D
binarized convolutions.

Table 6 summarizes Top-1 accuracies and comparisons with FP32 counterparts. Terms FP32 (%) and OneBNet
(%) denote Top-1 accuracies of FP32 counterparts and OneBNets. Top-1 accuracies from ResNet20 on the
FashionMNIST dataset were 93.4% and 93.2%, where the accuracy drops were negligible, compared with
FP32 ResNet20 model. On the CIFAR-10 dataset, TypeI and TypeII had 93.6% and 93.3% Top-1 accuracies,
respectively.

Table 7: Summary of Top-1 accuracies by varying multiplier on CIFAR10 dataset. The multiplier m is applied
to the numbers of input and output channels.

Dataset Baseline multiplier(m) Structure OneBNet (%)

CIFAR10 ResNet18

2 TypeI 94.3
TypeII 93.6

1.4 TypeI 93.9
TypeII 93.4

1 TypeI 93.6
TypeII 93.3

0.7 TypeI 92.3
TypeII 92.2

0.5 TypeI 91.5
TypeII 91.0

For verifying the performance varying on model size, we adopted the multiplier m for the number of channels.
Both the number of input and output channels can be scaled by multiplying with m. On the CIFAR10 dataset,
the proposed OneBnet from baselined ResNet18 was evaluated by varying m. Whereas the computations
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in convolutions can be scaled by m2, those of element-wise operations are scaled by m. Table 7 shows
the summary of Top-1 accuracies by varying multiplier on CIFAR10 dataset. In TypeI and TypeII, as m
increased, Top-1 accuracy slightly increased. Notably, when m was 2, TypeI reached 94.3 Top-1 accuracy,
which showed 1.2% degradation over its FP32 counterpart. When m ≥ 1, the differences of Top-1 accuracy
was not significant. However, m < 1, Top-1 accuracies were dramatically degraded in Table 7.
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Table 8: Comparison of inference latencies using 4 threads on ImageNet dataset

Model Latency(ms) Model Latency(ms)

FP32 ResNet18 257.7 XNOR-Net 33.8
Bi-RealNet 31.3 ReActNet18 40.3
ReActNetA 76.9 TypeI 52.4
TypeII 46.7 TypeIII 43.0

A.4 DETAIL DESCRIPTION OF EVALUATING INFERENCE SPEED

The target model was prepared using TensforFlow Keras framework. XNOR-Net (Rastegari et al., 2016),
Real-to-Bin (Martinez et al., 2019), and Bi-RealNet (Liu et al., 2018) Keras models were from Larq Zoo.
The models can be converted into a TFLite (TensorFlow Lite) filebuffer file by using Larq Compute Engine
(LCE) (Bannink et al., 2021). When checking the inference speed of a model, we adopted Larq Compute
Engine (Bannink et al., 2021), which provided a benchmark evaluation program based on TensorFlow Lite (ten,
2023) and the custom layers of binarized convolutional layers. It was known that LCE provided a collection of
hand-optimized TFLite custom operators. Along with full supports of existing TFLite operators, a binarized
convolutional layer can be converted into its custom binarized convolutional layer. In our evaluations, the
program showed the averaged latencies of 150 runs with randomly generated inputs on RaspBerry Pi 4 (ras,
2023). where XNNPACK (xnn, 2023) was enabled.

We downloaded Manjaro 64-bit GNOME Desktop for Raspberry Pi 4. Then, a prebuilt binary to benchmark
models was downloaded. When running the binary, several options can be chosen. We performed 150
runs, where 50 runs were repeated three times for suppressing the variation of achieving inference latencies.
Whereas Table 3 was based on a single thread, Table 8 summarizes data based on 4 threads. In this evaluation
on 4 threads, it was noted that the latency gaps between baseline ReActNet18 and proposed models were
reduced to 2.7ms by adopting more lightweight models.

We have added inference latency of ReActNetA (Liu et al., 2020) in Table 8. When using 4 threads on
RaspberryPi 4, the inference latency of ReActNetA was 86.9ms on the ImageNet dataset. With a single thread,
the inference latency was 123.3 ms. It is noted that ReActNetA was developed based on MobileNet (Howard
et al., 2017). Although the estimated OPs from the binarized operations were small in ReActNetA, it showed
longer latency.

18



Under review as a conference paper at ICLR 2024

A.5 OPERATIONS IN A BASIC BLOCK

Algorithm 1 Operations in basic block

Input: H ×W × Cin activations

1: residual1 = activations
2: learnable bias− sign
3: BinConv 3× 1−BatchNorm
4: if stride = 2 then
5: size of feature = (H2 ×W × Cout)
6: end if
7: shortcut(residual1)
8: residual2 = learnable bias− PReLU − learnable bias
9: learnable bias− sign

10: BinConv 1× 3−BatchNorm
11: if stride = 2 then
12: size of feature = (H2 ×

W
2 ×Cout)

13: end if
14: shortcut(residual2)
15: learnable bias− PReLU − learnable bias

16: return output feature map

Algorithm 1 describes the operations of a basic block in order. In the above algorithm, learnable bias - sign
and learnable bias - PReLU - learnable bias denote RSign operation and RPReLU activation function (Liu
et al., 2020). To adjust the activation distribution, RSign and RPReLU are invoked twice in the proposed basic
block. Terms shortcut(residual1) and shortcut(residual2) refer to the summations of the outputs of 1-D
binarized convolutional layers BinConv3× 1 and BinConv1× 3 and shortcuts residual1 and residual2,
respectively. In other statements, the output of a previous layer is used in its next layer.
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(a) TypeII trained from scratch (b) TypeI

(c) TypeII (d) TypeII

Figure 6: Training graphs of TypeI, TypeII, and TypeIII models. A term scratch denotes the training without
using the two-stage training process and teacher-student training.

A.6 TRAINING GRAPH ON IMAGENET DATASET

Figure 6 illustrates the training characteristics of TypeI, TypeII, and TypeIII during training epochs. When
following the two-stage training setup, accuracies rapidly increased in the early stages with the Adam
optimizer (Kingma & Ba, 2014). Using the data augmentation in Liu et al. (2020), validation accuracies were
higher than training accuracies in each stage. Compared with the training from scratch, the gap between
training and validation accuracies using the teacher-student training was greater in TypeII. Figure 6 shows the
training can be well performed without overfitting on the ImageNet dataset.
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(a) Binarized activations in TypeI (b) Convolutional outputs in TypeI

(c) Binarized activations in TypeII (d) Convolutional outputs in TypeII

(e) Binarized activations in TypeIII (f) Convolutional outputs in TypeIII

Figure 7: Illustration of activations in TypeI, TypeII, and TypeIII models.

A.7 IMAGES OF ACTIVATIONS

Figure 7 illustrates several binarized activations and convolutional outputs in TypeI, TypeII, and TypeIII,
which can be helpful to understand the image processing in the proposed OneBNet. Figure 7 shows that
the image filtering using the proposed 1-D binarized convolutions was performed well. When it did not
perform downsampling, TypeI adopted 2-D binarized convolutional layers. The rectangular images of Figure 7
represent the cases after the row-wise downsampling is performed. For example, Conv1x3 of Figure 7 (a)
illustrates the binarized activations after the row-wise 3× 1 binarized convolutions were performed.
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